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A NEW ALGORITHM FOR DYNAMIC ANALYSIS OF THIN PLATES 
IN THE COMBINED FINITE-DISCRETE ELEMENT METHOD 

Summary 

This paper presents a new numerical algorithm for a dynamic analysis of thin plate 
structures based on the combined finite-discrete element method (FDEM). A nonlinear 
analysis of thin plates subjected to static or dynamic load has been provided. The model uses 
3-noded triangular finite elements and is implemented in the open source FDEM package - 
Yfdem. The performance of the new model on simple benchmark tests is presented. 
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1. Introduction 

In mechanical terms, thin plates resist transverse loads by means of bending, where 
flexural properties of a plate depend greatly upon its thickness in relation to other two 
dimensions. As is well known, the term ‘thin plates’ refers to the plate structures to which 
Kirchhoff-Love theory of plates can be applied. Given the wide engineering applications of 
thin plate structures, including civil, marine and aerospace engineering, and their positioning 
in the design, thin plates tend to be subjected to various dynamic and impact loads (flying 
debris, moving vehicles, wind gusts, seismic disturbances, vehicle impact etc.). Therefore, an 
extensive dynamic analysis of such structures is clearly called for. If a structural member is 
not initially flat, these structures are referred to as shells. If the thickness of a plate becomes 
so small that the structure is devoid of flexural rigidity, then they are referred to as 
membranes. 

Since exact analytical solutions for plate bending problems are very limited [22], 
various numerical methods have been developed. The most commonly used numerical tool for 
the dynamic analysis of thin plate structures is the finite element method (FEM), which is 
based on triangular, rectangular or quadrilateral finite elements [3], [9], [23]. The Kirchhoff-
Love theory called for a deployment of conforming triangular and rectangular elements. 
However, when the thickness of the plate is reduced in relation to its width, shear members 
become dominant in the stiffness matrix, causing an unrealistic increase in plate stiffness 
known as shear locking [5], [6], [8]. A solution emerged in the form of a selective and 
reduced integration approach as a response for overcoming the shear locking phenomenon [1], 
[4], [10]. Nowadays, due to a richer strain field and increased accuracy, in comparison to 
triangular and rectangular elements, quadrilateral finite elements are considered optimal. 
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However, they are more difficult to apply to a description of an arbitrary geometry and are 
more sensitive to mesh distortions than triangular finite elements. 

Unlike the finite element method, the discrete element method (DEM) is the approach 
best suited for the analysis of discrete elements. The advantages of the FEM and the DEM are 
the basis of a combined finite-discrete element method FDEM [11].Within the framework of 
this method, interaction between any discrete elements is enabled, with each of them having 
their own finite element mesh. An explicit central difference integration scheme is used in 
order to resolve the equations of motion directly. This is combined with lumped nodal masses, 
meaning that there is no need for either stiffness or mass matrices to be assembled. A 
simulation of plate structures using the FDEM has been made using triangular prismatic [16] 
and spherical finite elements [19]. 

In this paper, a finite strain, large displacement numerical model for the dynamic 
analysis of thin plate structures has been proposed. The following chapter presents 
discretization of the problem and a detailed description of the membrane and transverse 
carrying mechanisms. Subsequently, numerical examples are presented and discussed, 
illustrating the performance of the proposed numerical model. 

2. Proposed combined finite-discrete element formulation 

2.1 Discretisation 

A discretization with 3-noded finite elements has been adopted to create an efficient 
representation of an arbitrary geometry. Masses are lumped into the nodes of finite elements, 
as shown in Fig. 1. 

 

Fig. 1  Discretization of plate structure 

2.2 Membrane carrying mechanism 

Change between the initial and the current nodal coordinates of each finite element 
defines membrane stresses. As shown in Fig 2, each node is described by its global initial 
Cartesian coordinates  zyx ,,  and global current Cartesian coordinates  zyx ~,~,~ .  

 

Fig. 2  Initial and current coordinates of the nodes of a 3-noded finite element 

48 TRANSACTIONS OF FAMENA XXXIX-2 (2015)



A New Algorithm for Dynamic Analysis of Thin Plates I. Uzelac, H. Smoljanović, B. Peroš 
in the Combined Finite-Discrete Element Method 

Nodal coordinates of each finite element are transferred to a local 2D coordinate system, 
with a deformation gradient F [11] 

F = 
1

0201

0201

0201

0201
~~~~

~~~~ 























yyyy

xxxx

yyyy

xxxx
 (1) 

In order to improve the CPU efficiency while preserving consistent multiplicative 
decomposition, a rotated global coordinate system is adopted [7]. As the origin of the 
coordinate systems coincides with the first node of the element, this yields: 

F = 
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Using the deformation gradient, the Green-St. Venant strain tensor is obtained as follows: 

E = 
2

1
(FFT – I) (3) 

Employing Hooke's law, the Cauchy stress tensor T is obtained according to 
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where E is the modulus of elasticity, v is the Poisson ratio, dE


 is the shape changing part and 

sE


 is the volume changing part of the Green-St. Venant strain tensor,   is the damping 

coefficient and D is the rate of the deformation tensor [17]. Equivalent nodal forces are then 
integrated directly from traction forces along the edges of the finite element 
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where xn~  and yn~  present components of the geometric normal along the edge of the finite 

element. Each node takes half of the traction forces from neighbouring sides of the finite 
element. 

2.3 Transverse carrying mechanism 

Due to the deformation of the plate structure, change in the angle between adjacent 
finite elements occurs, as shown in Fig. 3. 

 

Fig. 3 (a) Geometry of two neighbouring finite elements, (b) Angle between two neighbouring finite elements 
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Taking into account a mathematical expression for a curvature having 3 points, the initial 
curvature of the adjacent finite element is defined as: 

i

i
i x




sin
2  (6) 

where φi presents the initial angle between the finite elements and xi presents the initial 
distance x shown in Fig. 3. Analogously, the current curvature is defined as: 
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where φc represents the current angle between the finite elements and xc represents the current 
distance x shown in Fig. 3. Change in the curvature к between two adjacent finite elements is 
thus: 

ic κκκ   (8) 

The bending moment is calculated from the change in the curvature by using a constitutive 
law, as shown in Fig 4. For a linear, elastic material, the bending moment equals [22] 

( ) ( )μκνκκνκm 00 +++Ι=   (9) 

where к0 represents the mean value of the change in the curvature in the direction orthogonal 
to r1 or r2,   represents the velocity of the change in the curvature, 0 represents the velocity 

of the change in the curvature in the direction orthogonal to r1 or r2, μ represents the damping 
coefficient, and Ι is the bending stiffness given by the well-known expression: 
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where t is the plate thickness. 

 

Fig. 4  (a) Initial and current angle between finite elements, (b) Bending moment 

The moment is converted into equivalent nodal forces f, which are perpendicular to the plane 
of the parent finite element, as shown in Fig. 5, with 
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where h is the length of the contact element, Fig. 3a. Forces acting on the nodes j and k are 
defined as: 
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Fig.  5  Bending moment presented with equivalent nodal forces 

Forces due to the moment are then added to a global nodal force vector. 

3. Numerical examples 

3.1 Dumped vibrations of a simply supported round plate 

In this example, a simply supported round plate was chosen in order to verify the static 
displacement of the plate under uniform load. The geometry of the plate and the finite element 
mesh are shown in Fig. 6. The finite element mesh consists of 1527 finite elements. 
Mechanical properties of the material used in this numerical analysis are E=70 GPa and 
material density ρ= 2500 kg/m3. Gravity constant g was assumed to be 10.0 m/s2. The 
thickness of the plate is 0.014 m. 

 

Fig.  6  Geometry of the round plate 

Starting from an initially flat geometry, the plate oscillates due to its self-weight, and, 
subsequently, as a result of dumping, finds an equilibrium position. Fig. 7 shows the mid-span 
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deflection of the plate obtained by adopting the dumping coefficient μ equal to 3.5 Nms. The 
numerical solution, which amounts to d=1.70 mm, shows excellent agreement of the result 
with the deflection obtained by the program Scia Engineer [20], where the deflection amounts 
to ds=1.70 mm. 

 

Fig. 7  Time-displacement curve at the centre of the dumped round plate  

3.2 Dynamic analysis of a simply supported square plate 

In this example a square plate, simply-supported at all four edges, has been chosen in 
order to verify dynamic behaviour of the numerical model. Validation was performed by 
comparing the numerical with the analytical solutions, using three different mesh densities. 
The geometry of the plate and finite element meshes are shown in Fig. 8 and Fig. 9. Mesh 
densities are: M1 with 580 finite elements, M2 with 1160 finite elements and M3 with 2612 
finite elements. The thickness of the plate was 0.014 m, and the mechanical properties are the 
same as in example 3.1. 

 

Fig. 8  Geometry of the square plate 

 

Fig. 9  Discretisation of the square plate for different mesh roughness (a) M1 (b) M2 (c) M3 
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The vibrations are induced in a manner that the plate starting from initially flat 
geometry, due to its self-weight, oscillates around the equilibrium position. Fig. 10 shows the 
comparison of the analytical result for the displacement at the centre of the plate [22] with the 
response obtained by the FDEM model. 

 

Fig. 10  Time-displacement curve at the centre of the free oscillating square plate using meshes M1, M2 and M3 

Table 1 shows the comparison of the dynamic displacement at the centre of the plate with the 
analytical solution by using M1, M2 and M3. It can be seen that the numerical model, with 
the increase in the number of finite elements, converges to the analytical solution. 

Table 1  Comparison between numerical and analytical solutions 

Discretization Mid-span deflection (mm) Error (%)  

M1 2.75 mm 0.033 

M2 2.80 mm 0.014 

M3 2.82 mm 0.007 

4. Conclusion 

This paper presents a new numerical algorithm for the static and the dynamic analysis of 
thin plate structures. It is based on the combined finite-discrete element method, with a novel 
approach to the transverse carrying mechanism and its implementation in Yfdem. For the sake 
of simplicity and efficiency, the structure has been discretised with 3-noded finite elements. 
Numerically, this reflects as a decrease in the size of a problem, which is computationally 
desirable.  

The comparison between the analytical and the numerical results shows that the 
developed model successfully simulates bending stiffness as a result of inner moments. Also, 
by introducing a dumping coefficient, an equilibrium position can be easily obtained. Large 
displacements and large rotations are by default taken into account, as is the standard 
approach with the FDEM. Furthermore, the model is easily upgradable for performing impact 
simulations, which is yet another advantage of using the FDEM model.  

It is worth pointing out that, in order for this model to be generalised for performing 
arbitrary shell structure analyses, a more detailed study is needed. 
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