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STABILITY ANALYSIS OF A PREDECESSOR-FOLLOWING 
PLATOON OF VEHICLES WITH TWO TIME DELAYS

ABSTRACT

The problem of controlling a platoon of vehicles moving 
in one dimension is considered so that they all follow a lead 
vehicle with constant spacing between successive vehicles. 
The stability and the string stability of a platoon of vehicles 
with two independent and uncertain delays, one in the 
inter-vehicle distance and the other in the relative velocity 
information channels, are considered. The main objectives 
of this paper are: (1) using a simplifying factorization proce-
dure and deploying the cluster treatment of characteristic 
roots (CTCR) paradigm to obtain exact stability boundaries in 
the domain of the delays, and (2) for the purpose of distur-
bance attenuation, the string stability analysis is examined. 
Finally, a simulation example of multiple vehicle platoon 
control is used to demonstrate the effectiveness of the pro-
posed method.
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automated highway vehicle; stability; string stability; time 
delay;

1. INTRODUCTION

Traffic congestion has been one of the most serious 
social, economic, and environmental problems in the 
world. The intelligent transportation system (ITS) para-
digm is one possible solution for this problem. An ITS 
generally requires vehicles within each lane to drive in 
a platoon maintaining a small inter-vehicle spacing [1].

The control system for the vehicle platoon consists 
of a guidance model describing the interaction be-
tween vehicles, designing a spacing policy, and individ-
ual vehicle control. There are two major strategies for 
the control of a platoon of vehicles, constant spacing 

distance control [1-5] and constant time headway con-
trol [6-7]. Most of the studies on the platoon focused 
only on the unidirectional scheme [6-10]. Similar to a 
good human driver who usually takes advantages of 
information from the vehicles ahead and behind, it 
is expected that the vehicle controller behaves more 
safely using information from the front and rear ve-
hicles. Bidirectional adaptive cruise control (ACC) can 
be found, for instance, in [1-3]. Because vehicles in 
a platoon are dynamically coupled by feedback con-
trol laws, the spacing and velocity errors of one vehi-
cle may affect other vehicles or even amplify as they 
propagate upstream along the platoon [11-12]. Such a 
phenomenon is called string instability. String stability 
explains how errors are propagated through the group 
of vehicles as a result of disturbances or the reference 
trajectory of the formation lead. For this reason, one 
important aspect of platoon control, aside from stabi-
lizing, is to guarantee string stability. Review of string 
stability can be found in [7, 13].

Up to date, a great deal of research work has been 
done in this area. Studies on the platoon stability of 
the unidirectional scheme are presented in [4, 5, 7-9]. 
Xiao et al. developed a sliding mode controller using 
fuel and brake delays and lags, which guarantees 
both homogeneous and heterogeneous string stabil-
ity in unidirectional scheme [6]. Dunbar et al. [5] pre-
sented distributed receding horizon control algorithms 
to guarantee asymptotic stability and string stability. 
Due to practical design and implementation, the ac-
tuator lag must be considered [4, 6, 8]. Even though a 
considerable amount of research has been conducted 
on the robustness-to-disturbance and stability issues 
in the bidirectional scheme, most of them only inves-
tigated double integrator networks and the homoge-
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neous case in which each vehicle has the same mass 
and employs the same controller (exceptions include 
[14-15]). Double integrator networks with decentral-
ized bidirectional control are similar to mass-spring-
damper systems [16]. Horn [17] proposed a method 
for suppressing traffic flow instabilities based on a bi-
directional scheme.

The vehicles in an automated highway system 
(AHS) typically use radar to sense the relative spacing 
and velocity from their nearest neighbours. Since the 
signals are transmitted over a communication network 
of limited bandwidth, network induced delays are al-
ways inevitable, which makes the analysis and design 
of networked systems complicated. The effect of com-
munication delay on string stability in vehicle platoons 
was investigated in [18-20]. A significant amount of re-
search has been conducted on platoon stability issues 
without delays [1-3, 5, 7, 21, 22]. Since the presence 
of time delays in platoon control is often a source of 
instability, careful control design is critical in order to 
assure that the controlled system performs properly 
and remains stable despite the time delays. Recently, 
[23] considered the impact of communication delays 
on the platoon system and presented new algorithms 
to mitigate the delays to achieve the string stability of 
the platoon. The Lyapunov framework (e.g., linear ma-
trix inequalities (LMIs) [4, 9] or Lyapunov-Razumikhin 
theorem [8]) was utilized in order to design controllers. 
This framework requires complex formulations, and 
can lead to conservative results and possibly redun-
dant control.

Also, due to coupling delays, each vehicle cannot 
instantly get the information from others so that the 
effect of multiple delays, one in the inter-vehicle dis-
tance and the other in the relative velocity information 
channels, must be taken into account. To the best of 
our knowledge, despite the huge amount of relevant 
literature to date, a method and technique have not 
yet been reported to examine exact stability and string 
stability for a platoon of vehicles in the simultaneous 
presence of two communication delays. Therefore, this 
paper provides practical means to evaluate the ACC 
systems.

Hence, a computationally efficient approach based 
on the CTCR paradigm is presented in order to obtain 
stability boundaries in the domain of time delays. The 
process starts with holographic class coordinate trans-
formation from the delay space to a new set of coor-
dinates. This mapping reduces the dimension of the 
problem from infinite to a manageably small number. 

This methodology is then utilized to assess the stabil-
ity of a platoon of vehicles. The method starts with the 
determination of all possible purely imaginary charac-
teristic roots for any positive time delay. In practice, the 
delay is not fixed. The benefits of this paradigm could 
be exploited to examine multiple delay systems, espe-
cially in scenarios where delays are uncertain and/or 
unknown and complying with the necessary and suf-
ficient conditions of the stability. Hence, the system is 
stable if the upper bound of delay is within stability 
zone. The main theme of the above methodology is not 
new and has been implemented for time delayed sys-
tems in the past [24-25].

The remainder of the paper is structured as fol-
lows. Section 2 briefly introduces the longitudinal ve-
hicle model and states the problem. Section 3 deals 
with stability analysis and briefly describes the CTCR 
paradigm. Section 4 presents an analysis of string sta-
bility. In Section 5, the simulation results are given to 
show the efficiency of the proposed method. The pa-
per ends with a conclusion.

2. VEHICLE MODEL AND PROBLEM 
STATEMENT

2.1 Vehicle model

The vehicle longitudinal control is generally com-
posed of two loops: an inner force (acceleration) con-
trol loop which compensates the non-linear vehicle 
dynamics (acceleration and brake systems), and an 
outer inter-distance control loop which is responsible 
for guaranteeing good tracking of the desired inter-
vehicle distance reference. In this paper, it is assumed 
that the inner control loop has already been designed 
to compensate for the internal vehicle dynamics, and 
the only interest here is in the outer control loop. Con-
sider a group of vehicles in dense traffic with no over-
taking. The formation control of a N 1+  homogeneous 
string of vehicles is considered so that they all follow a 
lead vehicle, as shown in Figure 1.

The position, velocity and acceleration of the lead 
vehicle are denoted by x t0 ^ h , v t0 ^ h , a t0 ^ h , respec-
tively. Also, x ti ^ h , y ti ^ h , z ti ^ h  denote the position, 
velocity and acceleration of the i-th vehicle, respec-
tively.

The longitudinal dynamics of the i-th vehicle in the 
platoon are modelled as follows (see e.g. [26-27] for 
details):

lead

vi

xi

xi-1

di

vi-1 v0
v0

ref

0

Figure 1 - 1-D of Vehicle String
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i
i
i

| |=- +o . (1)

m a F A c v d2i i i
i di

i mi
2v= - - . (2)

where Fi  denotes the driving force produced by the i-th 
vehicle engine, ci  is the engine input, v  is the specific 
mass of air, Ai , cdi , dmi , mi  and i|  are the cross-sec-
tional area, drag coefficient, mechanical drag, mass 
and engine time constant of the i-th vehicle, respec-
tively. Equation (1) represents the i-th vehicle engine 
dynamics, and (2) represents Newton’s second law ap-
plied to the i-th vehicle modelled as a particle of mass 
mi .

Note that this simple model used to describe the 
engine dynamics (1) has been proved to be useful for 
preliminary system level studies in longitudinal control 
of a platoon of vehicles. In the sequel, exact lineariza-
tion methods are used to linearize and normalize the 
input-output behaviour of each vehicle in the platoon. 
Differentiating both sides of (2) with respect to time 
and substituting the expression for Fio , in terms of vi  
and ai  from (l) and (2) the following is obtained:

,a f v a g v ci i i i i i i= +o ^ ^h h , (3)
where ci  is the engine input and ,f v ai i i^ h  and g vi i^ h  
are given by:

,f v a a m
A c v m

d
m
A c v a1

2i i i i i
i
i di

i i
mi

i
i di i i2

|
v v= + + -^ ah k . (4)

g v m
1

i i i i|=^ h . (5)

The following control law has been adopted:
.c u m A c v d A c v a0 5i i i i di i mi i i di i i

2v | v= + + + , (6)
where ui  is the additional input signal to be designed. 
Obviously, this control law can be achieved by feed-
back linearization, since after introducing (6), the third 
equation in (3) becomes:
a a ui i i i| + =o . (7)
The feedback linearization controller in (6) plays 

the role of the first layer controller in our design. It 
helps to simplify the system model by excluding some 
characteristic parameters of the vehicle from its dy-
namics.

2.2 Problem statement

In this paper, the desired trajectory of the platoon is 
considered to be of a constant-velocity type, i.e. x t*0 ^ h ,  
so that spacing between successive vehicles does not 
change with time. The control objective is to make the 
string of vehicles track a pre-specified desired trajec-
tory whilst maintaining desired formation geometry.

The desired geometry of the platoon is specified 
by the desired spaces D ,i i1-  for , , ,i N1 2 f=  where 
D ,i i1-  is the desired value of x t x t Li i i1 1- -- -^ ^h h , where 
Li 1-  is the length of the i 1-  vehicle. The control ob-
jective is to preserve a rigid formation, i.e., to make 
neighbouring vehicles keep their pre-specified desired 

spaces and to make vehicle 1 follow its desired trajec-
tory x t D L*

,0 0 1 0- -^ h .
In this paper, a centralized control law is consid-

ered whereby this controller uses the distance and rel-
ative velocity to the preceding vehicle and the follower 
vehicle as well as relative velocity to the leading vehi-
cle as an input. The communication between vehicles 
of the group is affected by two rationally independent 
time delays. The first delay is assumed to be in the 
inter-vehicle spacing information channels, whereas 
the second delay is in the relative velocity information 
exchange. These delays are considered as constant 
and uniform throughout the communication topology. 
A repeating structure is used so that the vehicle string 
can be easily extended:
u t k x t x t D L,i i

f
i p i p i i i1 1 1x x=- - - - + + -- - -^ ^ ^^h h h h

 k x t x t D L,i
b

i p i p i i i1 1x x- - - - - - -+ +^ ^^ h h h
 x t x b x t x ti i i

f
i v i v0 1b x x- - - - - - --o o o o^^ ^ ^^h h h hh

 b x t x ti
b

i v i v1x x- - - -+o o^ ^^ h hh  (8)
where , , ,i N1 2 1f= - , kif , kib  are the front and back 
proportional gains and bif , bik  are the front and back 
derivative gains, respectively, and ib  is constant de-
rivative gain related to the leader vehicle. The first two 
terms are used to compensate for any deviation away 
from nominal position with the predecessor (front) and 
the follower (back) vehicles, respectively. The super-
scripts f and b correspond to front and back, respec-
tively. Notice that this protocol does not include self-
delayed information, while all data coming from the 
informers are delayed, positions by px  and velocities 
by vx . For the vehicle with index N which does not have 
a vehicle behind it, the control law is slightly different:
u b x t x t x xN N

f
N v N v N N1 0x x b=- - - - - - --o o o o^ ^^ ^h hh h

 k x t x t D L,N
f

N p N p N N N1 1 1x x- - - - + +- - -^ ^^ h h h . (9)
In the homogeneous and symmetric case, the 

following is obtained: i| |= , ib b= , k k ki
b

i
f= = ,  

b b bi
b

i
f= =  for some positive constants b , k , b . 

Combining the open loop dynamics (7) with the control 
law (8), yields:
a t a t k x t x t D L,i i i p i p i i i1 1 1| x x+ =- - - - + + -- - -o ^ ^ ^ ^^h h h h h

 k x t x t D L x x,i p i p i i i i1 1 0x x b- - - - - - - - -+ + o o^ ^^ ^h h h h
 b x t x t b x t x ti v i v i v i v1 1x x x x- - - - - - - -- +o o o o^ ^^ ^ ^^h hh h hh
 (10)

The dynamics of the N-th vehicle is obtained by 
combining (7) and (9). The desired trajectory of the i-th 
vehicle is:

x t x D L x D L* *
,

*
,i i j

j

i

j j
j

i

j
j

i

0 0
1

1

0 1
1 0

1
= - - = - - =

=

-

-
= =

-
^ h / / /

 x D L*
,j j j

j

i

0 1 1
1

= - +- -
=
^ h/ . (11)

To facilitate analysis, the following tracking error 
can be defined:
x x x x x x x x* *
i i i i i i i" "= - = - =u uo o o up p  (12)
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Substituting (12) into (10), and using 
x x D L* *

,i i i i i1 1 1- = -- - - , 
yields:
x t x t k x t x ti i i p i p1| x x+ =- - - - --up up u u^ ^ ^ ^^h h h hh

 b x t x t b x t x ti v i v i v i v1 1x x x x- - - - - - - - -+ -uo uo uo uo^ ^^ ^ ^^h hh h hh
 k x t x t x ti p i p i1x x b- - - - -+u u uo^ ^^ ^h hh h  (13)

By defining state 
, , , , , , , , ,X x x x x x x x x xN N N

T
1 1 1 2 2 2 f= u uo up u uo up u uo up6 @ , 

the closed loop dynamics can be written as compact 
form from (13) as:
X t AX t B X t B X tp v1 2x x= + - + -o ^ ^ ^ ^h h h h . (14)

The explicit form of this equation is:

/ /
X t I X t

0
0
0

1
0

0
1
1

N7

b | |

=
- -

+o

J

L

KKKKKKK

J

L

KKKKKKK
^ ^

N

P

OOOOOOO

N

P

OOOOOOO
h h

 
/ /

I
k

C
k

X t
0
0
2

0
0
0

0
0
0

0
0
0
0
0

0
0
0

N p7 7

| |

x+
-

+ - +

J

L

KKKKKKK

J

L

KKKKKKK

J

L

KKKKKKK
^

N

P

OOOOOOO

N

P

OOOOOOO

N

P

OOOOOOO
h

 
/ /

I
b

C
b

X t
0
0
0

0
0
2

0
0
0

0
0
0

0
0
0
0
0

N v7 7

| |

x+
-

+ -
J

L

KKKKKKK

J

L

KKKKKKK

J

L

KKKKKKK
^

N

P

OOOOOOO

N

P

OOOOOOO

N

P

OOOOOOO
h , (15)

C

0
1

0

1
0

0

0
1

0

0
0

1

0
0

0
h h h

f

f

j

f

h h
=

J

L

KKKKKKKKKK

N

P

OOOOOOOOOO

, (16)

where ,  denotes the Kronecker multiplication [28], 
IN  is the identity matrix of dimension N and C is con-
nectivity matrix of the communication topology [29]. 
Since the trajectory of the reference vehicle is equal to 
its desired trajectory, then x t x t 00 0= =u uo^ ^h h .

Due to the presence of transcendental terms, the 
characteristic equation of the closed loop dynamics 
(15) possesses infinitely many roots, some or all of 
which may determine stability. Because of this infinite 
dimensionality, the problem of determining the stabi-
lizing controller without introducing conservatism into 
the stability analysis can be difficult. The objective is to 
obtain a range of control parameters to guarantee the 
stability and the string stability of a platoon of vehicles.

3. STABILITY ANALYSIS

Before analyzing any aspect of a platoon, it is im-
portant that the stability of a platoon is analyzed. Since 
the presence of time delays in platoon control is often 
a source of instability, a careful control design is vital in 
order to guarantee that a controlled system performs 
properly and remains stable despite the time delays. 
Finding the delay independent stable controller gains 
can be difficult. This is because of two reasons; one 
being infinite dimensionality and the other the com-
plexity level of this dynamics which increases rapidly 
as the number of vehicles gets larger. The goal of this 

section is a structured methodology which can gener-
ate, very efficiently, an exact, exhaustive and explicit 
stability map of a platoon with respect to time delays. 
The methodology is based on the CTCR paradigm. The 
approaches are based on a non-conservative frame-
work, and the stability regions are found to those com-
positions in the parametric space that produce stable 
operation for the entire system.

Stability analysis can be solved by investigating the 
characteristic equation of the closed loop dynamics 
(14). The corresponding characteristic equation of the 
system is:

, , , , , , detCE x k b sI A B e B ep v N
s s

3 1 1
p v| b x x = - - -x x- -^ ^h h .

 (17)
To resolve the complexity level, the characteristic 

equation of this class of systems can be conveniently 
converted into a product of a set of factors whose or-
der is the same as the individual vehicle dynamics. 
This procedure reduces the complexity of the problem. 
This is inspired by a recent thesis work [30].

Lemma 1 (Factorization property): The transcendental 
function of the system (14) can always be expressed 
as the product of a set of n factors as:

, , , , , , detCE x k b sI A B e B ep v N
s s

3 1 1
p v| b x x = - - - =x x- -^ ^h h

 , , , , , ,ce s k bi p v i
i

N

1
| x x m= =

=
^ h%

 s s s be s ke2 2i
s

i
s

i

N
3 2

1

v p| b m m= + + + - + -x x- -

=
^ ^^ h h h% .

 (18)
The connectivity matrix is diagonalizable [31]. Then, 

there is a non-singular matrix T such that T CT1 K=-  
where , , ,diag N1 2 fm m mK = ^ h  has non-zero entries 
equal to the eigenvalues of C, which are all real. Then a 
state transformation X T I R N

3
37 !p= ^ h  is introduced 

into (15) and using the chain multiplication features 
of the Kronecker product U V W Z UW VZ7 7 7=^ ^h h  
[28], (15) is transformed into:

/ /
t I t

0
0
0

1
0

0
1
1

N7p

b | |

p=
- -

+o

J

L

KKKKKKK

J
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KKKKKKK
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P

OOOOOOO

N

P

OOOOOOO
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I
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0
0
2

0
0
0

0
0
0

0
0
0
0
0

0
0
0
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| |
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-
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J

L
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L

KKKKKKK

J

L

KKKKKKK
^

N

P

OOOOOOO

N

P

OOOOOOO

N

P

OOOOOOO
h

 
/ /

I
b b

t
0
0
0

0
0
2

0
0
0

0
0
0

0
0
0
0
0

N v7 7

| |

p xK+
-

+ -
J

L

KKKKKKK

J

L

KKKKKKK

J

L

KKKKKKK
^

N

P

OOOOOOO

N

P

OOOOOOO

N

P

OOOOOOO
h .

 (19)
Since IN  and K  are diagonal matrices, Equation 

(19) is block-diagonalised, and it can be expressed as 
a set of N decoupled subsystems of the form:

/ /
t t

0
0
0

1
0

0
1
1

i ip

b | |

p=
- -

+o

J

L

KKKKKKK
^ ^

N

P

OOOOOOO
h h
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0
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i i v

|
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|

p x+
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J
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^
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h  (20)

with , , ,i N1 2 f= . It is obvious that the transcenden-
tal function of each block (19) is:

, , , , , , ,ce s k b s s si p v i
3 2| b x x m | b= + + +^ h

 be s ke2 2i
s

i
sv pm m+ - + -x x- -^ ^h h , (21)

and the transcendental function of the complete sys-
tem is the product of these N factors, as stated in (18). 
Furthermore, since the only differentiating element 
from one factor to the other is the eigenvalue im , the 
stability analysis in the delays domain can be done 
just once. This property makes the stability analysis 
virtually independent of the number of vehicles. The 
complexity problem in determining the stability of a 
quasi-polynomial such as (17) is now shifted to find out 
the eigenvalues of a known matrix C and the repeated 
stability analysis over a very simple quasi polynomial 
as in (21).

The stability regions are intersected to determine 
those compositions in the parametric time delay space 
that produce stable operation for the whole system for 
a given setting of the control gains k , b  and b . For 
clarity of the development, this section is divided in 
two parts. The first part introduces the CTCR methodol-
ogy, including the concept of the spectral delay space 
(SDS), whereas the second part applies this methodol-
ogy to the analysis of the individual factors.

3.1 CTCR paradigm

In this section, an approach is followed to obtain 
this knowledge over a new domain which is called 
SDS. The following paragraphs present some prepa-
ratory definitions and key propositions of CTCR from 
[32-33].

Definition 1 (Kernel hypercurves): The hypercurves 
that consist of all the points , Rp v

2!x x +^ h  ex-
haustively, which cause an imaginary root s i~= ,  

R!~ +  and satisfy the constraint 0 2< <jx ~ r , 
,j p v=  are called the kernel hypercurves. The points 

on this hypercurve contain the smallest possible de-
lay values that create the given imaginary root at fre-
quency ~ .

Definition 2 (Offspring hypercurves): The hypercurves 
obtained from the kernel hypercurve by the following 
pointwise non-linear transformation can be calculated 
by:

,j j2 2
p v1 2! !x ~

r
x ~

r , , , ,j j 0 1 21 2 f= =  (22)

Definition 3 (Root tendency): The root tendency (RT) 
indicates the direction of the imaginary root transition 
(to the right or the left half of the complex plane) as 
only one of the delays, jx  increases by f , 0 1< <<f  
while all the others remain constant:

ReRT d
dssgns wi s i

j

x=x

~= =
a k: D . (23)

3.2 Spectral delay space

A procedure is described in this section for de-
termining the kernel (and offspring) hypercurves. A 
mapping is introduced from time delays space to a 
vk kx ~=  space for every point of , Rp v

2!x x +^ h  on the 
kernel or the offspring hypercurve which is called SDS. 
The main advantage of SDS is that the representation 
of the kernel hypercurve in the SDS, called the building 
hypercurve, is confined to a square of edge length 2r  
(Definition 1). This finite domain is known as the build-
ing block (BB). There are several other intriguing prop-
erties of the SDS and building block concepts which 
can be found in [34].

3.3 Stability analysis of individual factors

The transcendental function (21) possesses infi-
nitely many zeros due to the presence of transcenden-
tal terms. The closed loop dynamics (18) is asymptoti-
cally stable if and only if all these zeros have negative 
real parts. The continuity property of the roots of (21) 
on the complex plane holds, which indicates that sta-
bility analysis of (21) requires detecting the critical val-
ues of the time delays for which at least one root of 
(21) lies on the imaginary axis of the complex plane 
[35]. For delay-independent stability of the systems, it 
is necessary that the delay-free system is Hurwitz sta-
ble. This automatically guarantees that s 0=  cannot 
be a feasible solution of the corresponding transcen-
dental function (21) for finite time delays, see [36] for 
details. Next, we analyze the stability of the delay-free 
controlled system (i.e. 0p vx x= = ) by using the Routh-
Hurwitz stability criterion.

Lemma 2: The system (14) without communication 
delays is stable if and only if

k b1
2<

i| m
b
- +c m . (24)

Then stability is guaranteed if the first column el-
ements of the classical Routh’s array do not change 
sign. Therefore, the system without communication 
delay is stable if and only if
2 0>im- . (25)

b k2 0>im | b- - +^ ^h h . (26)
Based on the Gershgorin circle theorem, every ei-

genvalue of C lies within a Gershgorin disc, ,D 0 2^ h , 
(the closed disc centred at zero with radius 2). There-
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fore, the condition 2 > im  has always been satisfied. 
Hence, if the control parameters are chosen so that 

b k2 0>im | b- - +^ ^h h , the system without communi-
cation will be stable. By using elementary calculation, 
we can show this constraint will be satisfied if the fol-
lowing condition is held.

k b1
2<

i| m
b
- +c m . (27)

Here, the proof of the lemma is completed.
With the previous definitions and propositions, we 

now return to the particular problem. It is the exhaus-
tive determination of all the imaginary roots s i~=  for 
the generic factor of the characteristic equation, as in 
(21) within the semi-infinite quadrant of , Rp v !x x + .  
An enabling approach to study such solutions is by 
converting the infinite-dimensional characteristic 
equation (21) to a finite dimensional characteristic 
equation that has continuous coefficients as was done 
in [25, 26, 32-35]. This conversion does not lose the 
infinite-dimensional nature of the problem, and can be 
done via the exact Rekasius transformation [37]:

,e T s
T s T1

1
Rs

k
k

k
k != +

-x-  (28)

where s i~= , R!~ + . With the obvious mapping 
condition, we can obtain

tan T2
k k

1 " ,x ~ ~ r= - ^ h6 @ , , , ,0 1 2, f=  (29)
With the substitution of Tk  as given in (28) into 

(21) and following this domain transformation from 
kx  to Tk , we obtain a new characteristic equation 
,ce s T 0j k =^ h . It can be considered as a projection of 

an infinite dimensional equation in kx  domain into a 
finite dimensional equation in the new Tk  domain. The 
equation ,ce s T 0j k =^ h  is written slightly differently by 
using

.tanu T v0 5k k k~= = ^ h , ,v 0 2k k !x ~ r= 6 @  (30)
The set ,v vp v^ h  is used to represent the new coordi-

nation which is bound within ,0 2r6 @ . This new equa-
tion can be written as a polynomial in ~  with complex 
coefficients that are parameterized in up  and uv :

, ,ce f u u i g u uj k p v
k

k
k p v

k

k0

3

0

3
~ ~ ~= +

= =
^ ^d ^dh h n h n/ / . (31)

Now, we search for an imaginary solution. If there is 
a solution R!~ +  to (31), both its real and imaginary 
parts must be zero simultaneously. The condition that 
both real and imaginary parts of (31) have a common 
root is simply stated using a Sylvester’s resultant ma-
trix:
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. (32)

In order to satisfy both, the real and the imaginary 
parts of (31) simultaneously, s should be singular. This 
results in the following expression in terms of up  and 
uv :

, . , .det tan tanS F u u F v v0 5 0 5p v p v= =^ ^ ^ ^^h h h hh . (33)
It is important to mention that purely imaginary 

roots of ,CE s kx^ h  in (17) are invariant under Rekasius 
transformation. This point is proven in [39]. This point 
clearly represents that instead of the purely imaginary 
roots of the infinite dimensional system (17), one can 
study the purely imaginary roots of the finite dimen-
sional system ,CE s kx^ h . This is considerably easier for 
determining.

Equation (33) constitutes a closed-form descrip-
tion of the kernel hypercurves in the SDS ,v vp v^ h , i.e. 
the building block hypercurves. To obtain its graphi-
cal depiction, one of the parameters, say vv , can be 
scanned in the range of ,0 2r6 @  and the correspond-
ing vp  values are calculated again in ,0 2r6 @ . Notice 
that every point ,v vp v^ h  on these curves brings an 
imaginary characteristic root at i!~ . That is, we have 
a continuous sequence of , ,v vp v ~^ h  sets all along the 
kernel hypercurves. For more details on key proper-
ties of the building block concept as well as an earlier 
adopted longer procedure to find out the kernel and 
offspring hypercurves, the reader is referred to [34].

4. STRING STABILITY

For interconnected systems, in addition to the usu-
al stability and robustness analysis, other properties 
may become important and must be considered such 
as string stability. The string stability deals with how 
errors are propagated through the vehicle string due to 
disturbances or the reference trajectory of the forma-
tion lead. String stability is usually answered by looking 
at the transfer functions that relate the spacing errors 
between two successive vehicle pairs. String-stability 
ensures that range errors decrease as they propagate 
along the vehicle stream.

This Section focuses on the analysis of string sta-
bility of a homogeneous platoon which is composed 
of identical ACC-equipped vehicles. This assumption is 
acceptable, because by using appropriate lower-level 
vehicle acceleration controllers, the dynamic behav-
iour of the vehicles can be approximated with one ve-
hicle model.

The velocity and spacing error dynamic models can 
be derived based on the vehicle dynamics model (10). 
Differentiating both sides of (10) yields:
a a t x k x t x ti i i i p i p1| b x x+ =- - - - - --p o p o o^ ^ ^^h h hh

 b x t x t k x t x ti v i v i p x p1 1x x x x- - - - - - - - -- +p p o o^ ^^ ^ ^^h hh h hh
 b x t x ti v i v1x x- - - -+p p^ ^^ h hh . (34)

The Laplace transforms can be used to analyze 
string stability with the conventional notation and the 
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regular assumption of zero initial conditions for the 
derivation of transfer functions. Therefore, by taking 
the Laplace transform on both sides of (34), we obtain:
s s be s ke V2 2s s

i
3 2 v p| b+ + + + =x x- -^^ h h

 ke sbe V ke sbe Vs s
i

s s
i1 1

p v p v= + + +x x x x- -
-

- -
+^ ^h h . (35)

Then Equation (34) can be rewritten in the follow-
ing form:
V GV GVi i i1 1= +- + , (36)
where

G
s s be s ke

ke sbe
2 2s s

s s

3 2 v p

p v

| b
=

+ + + +
+
x x

x x

- -

- -

^ h . (37)

It is clear that the range error output must be small-
er than or equal to the range error input to avoid range 
errors from propagating indefinitely along the string. 
For a vehicle string, a string-stability definition is widely 
used [39-40] and it is described as follows:

V
V j 1 0< >
i
i
1

6~ ~
-
^ h . (38)

By dividing both sides of the Equation (36) by Vi 1-  
we get:

V
V G G V

V G G V
V
V
V

i
i

i
i

i
i

i
i

1 1
1 1

1
&= + = +

- -
+ +

-

 V
V G V

V G V
V

G V
V
G1

1i
i

i
i

i
i

i
i1

1
1 1

& &- = =
--

+
- +

a k . (39)

String stability is satisfied if the following condition 
is satisfied:

G j G j V
V j1<
i
i 1~ ~ ~- +^ ^ ^h h h . (40)

By considering this fact that in this scenario, the 
last vehicle does not have a vehicle behind it. If we 
start from the end of the platoon by assuming that 
/V V j 1<N N 1 ~- ^ h  if the following condition holds,

.G j 0 5<~^ h . (41)
string stability is satisfied. Note the condition (41) is a 
sufficient condition for string stability.

Lemma 3: if the following conditions hold, string stabil-
ity is satisfied.

k b k4 4 4 0p
2 $b b bx- - -  (42(a))

b b k1 2 4 4 4 0v p $b| x | |x- - - -  (42(b))

k b k2 2 2 0p
2 $b b bx- - -  (42(c))

Proof: G j~^ h  can be expressed as /G j p q~ =^ h  
that

sinp k b kb2 v p
2 2 2~ ~ x x= + + -^ h  (43)

q k b2 4 1 22 2 2 2 4 2 6b ~ b| ~ | ~= + + + - + +^ ^h h
 sinkb8 p v~ ~ x x+ -^ h  (44)

The magnitude of G j~^ h  is less than 0.5 if the 
following condition is satisfied:
q p4 1 22 2 4 2 6b ~ b| ~ | ~- = + - + -^ h
 cos sinb k4 4v p

2 2 2~ |~ b x ~ ~ |~ b x ~- - + - -^ ^h h
 cos sink b4 4 0>p v

2 3~ x ~ ~ x ~- -  (45)

Case I: if >2|~ b  then taking into account the fact 
sin x x$ - , sin x x$- - , cos x 1$- - , cos x 1$  for 
x 0$^ h , (45) can be simplified as:
q p k b k4 4 4 4 p

2 2$ b b bx ~- - + + +^ h
 b b k1 2 4 4 4 0v p

4 2 6 $b| x | |x ~ | ~+ - - - - +^ h . (46)

Case II: if <2|~ b  then taking into account the fact 
sin x x$ - , sin x x$- - , cos x 1$- - , cos x 1$  for 
x 0$^ h , (45) can be simplified as:
q p k b k4 4 4 4 p

2 2$ b b bx ~- - - - +^ h
 b b k1 2 4 4 4v p

4b| x | |x ~+ - - + + +^ h
 02 6 $| ~+ , (47)

While the coefficients of the inequality (45-46) are 
more than zero, the inequality (41-42) is satisfied. 
Hence, if the conditions k b k4 4 4 0p

2 $b b bx- - -  and 
b b k1 2 4 4 4 0v p $b| x | |x- - - -  hold simultaneously, 

inequality (45) is satisfied.
Note that the spacing errors have most of their 

energy in the region of low frequencies [13]. Hence, 
the coefficient k b k4 4 4 0p

2 $b b bx- - -  is the most 
important value of the polynomial. To determine 
which delay has the most negative effect, the mag-
nitude of G j 0p~ x =^ h  was compared with the mag-
nitude of G j 0v~ x =^ h  at low frequencies, where the 
sign of b2 b-  shows which delay has more nega-
tive effect if p vx x= . If b2 b-  is not negative then 
G j G j<0 0v p~ ~x x= =^ ^h h  i.e. the communication de-

lay in the relative velocity information channel makes 
the larger negative effect on string stability. Otherwise 
G j G j>0 0v p~ ~x x= =^ ^h h .

The next step of string stability analysis is to exam-
ine the previous assumption on /V V jN N 1 ~- ^ h . By dif-
ferentiating and by taking the Laplace transformation 
on both sides of the dynamics of the N-th vehicle, the 
following is obtained:

V
V

s s be s ke
ke sbe

N
N

s s

s s

1 3 2 v p

p v

| b
=

+ + + +
+
x x

x x

- - -

- -

^ h . (48)

/V V jN N 1 ~- ^ h  can be expressed as 
/ /V V j p qN N N N1 ~ =- ^ h

that
sinp k b kb2N v p

2 2 2~ ~ x x= + + -^ h  (49)

q k b 1 2N
2 2 2 2 4 2 6b ~ b| ~ | ~= + + + - + +^ ^h h

 sinkb2 v p~ ~ x x+ -^ h  (50)
The magnitude of /V V jN N 1 ~- ^ h  is less than one if 

the following condition is satisfied:
cosq p k1 2 2N N p

2 2 4 2 6 2b ~ b| ~ | ~ ~ x ~- = + - + - +^ h
 sin cosk b2 2p v

2~ |~ b x ~ ~ x ~+ - - -^ ^h h
 sinb2 0v

3 $~ x ~-  (51)

Case I: if >2|~ b  then taking into account the fact 
sin x x$ - , sin x x$- - , cos x 1$- -  for x 0$^ h , (51) 
can be simplified as:
q p k b k2 2 2N N p

2 2$ b b bx ~- - + + +^ h
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 b b k1 2 2 2 2 0v p
4 2 6 $b| x | |x ~ | ~+ - - - - +^ h , (52)

Case II: if <2|~ b  then taking into account the fact 
sin x x$ - , sin x x$- - , cos x 1$- - , cos x 1$  for 
x 0$^ h , (50) can be simplified as:
q p k b k2 2 2N N p

2 2$ b b bx ~- - - - +^ h
 b b k1 2 2 2 2v p

4b| x | |x ~+ - - + + +^ h
 02 6 $| ~+ , (53)

If the coefficients of the inequality (52-53) are 
greater than zero, inequalities (52-53) are satisfied. 
Hence, if the conditions k b k2 2 2 0p

2 $b b bx- - -  and 
b b k1 2 2 2 2 0v p $b| x | |x- - - -  hold simultaneously, 

inequality (51) is satisfied.
As mentioned earlier, the spacing errors have most 

of their energy in the region of low frequencies. Hence, 
the coefficient k b k2 2 2 p

2b b bx- - -  is the most impor-
tant value of the polynomial. It can be concluded that 
the communication delay in the inter-vehicle distance 
information channel makes the negative effect on the 
string stability.

Here, the proof of the lemma is completed.

5. SIMULATION

In order to validate the performance of the pro-
posed control algorithm, computer simulations have 
been carried out for the platoon system containing 
ten followers, i.e. N 10= . As stated before, the ability 
to maintain the distance between vehicles is impor-
tant for the safety of the vehicle platoon system. In 
the simulations, the desired vehicle spacing was set 
as D 8m,i i1 =-  and the length of vehicle as mL 4i = ,  
other parameters used in the simulations are the 
same as parameters mentioned in [1, 4, 10], that is, 

/N m1i
3v = , .H 2 2mi

2= , .c 0 35di = , ,m 1 500 kgi = ,  
d 150Nmi =  and .0 2 si| = .

The most important disturbances in a platoon con-
trol system include lead vehicle acceleration/decel-
eration. The disturbance is defined as any source that 
causes the vehicle string to lose maintaining constant 
velocity. We assume that, without losing generality, 
the desired acceleration for the lead vehicle is given  
by:

a
t

t

0
2
0

20
20

30
m/s

s
s t 30 s

s
des

2
#

$

# #=

Z

[

\

]]]]
]]]]

. (54)

The initial velocity is v 20m/sinitial =  and the final 
desired velocity is v 40m/sfinal = .

For this communication structure, the complete ei-
genvalue set of the corresponding connectivity matrix is 
. , . , . , . , .1 919 1 6825 1 3097 0 8308 0 2846! ! ! ! !" ,. 

For all the factors which are generated by these eigen-
values, the stability boundaries in the SDS, i.e. the BB 
representations, are presented in Figures 2-4 using 
the control gains k 2= , b 1=  and 1b = .

In Figures 2-4 the building curves (in the range 
of ,0 2r6 @ ) are shown with their reflection curves in 

,v vp v^ h  coordinates. It can be seen that the building 
block exactly repeats itself in its reflection curves with 
a period of 2r . It is necessary and sufficient to detect 
the building block for the complete stability analysis 
in the ,p vx x^ h  domain. By using Definition 2, we cre-
ate offspring curves from the kernel curves and depict 
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which are displayed as shaded in Figure 8. It is very 
simple to mark these regions using the D-Subdivision 
rule.

All ,p vx x^ h  compositions inside the shaded region 
of Figure 8 result in the vehicles reaching stability at a 
constant velocity, whereas points outside that region 
render the system unstable. Furthermore, points on 
the boundaries of the shaded region create marginally 
stable behaviour.

Figure 8(b) shows that the system is more robust 
with respect to inter-vehicle distance channel ( px ). As 
a numerical validation of these results, Figure 9 pres-
ents the spacing error of ten follower vehicles with the 
delay combination of .0 6 spx =  and .0 2 svx =  cor-
responding to point a in Figure 8. Figure 10, as a way 
of contrast, shows the results of an unstable case 

.0 6 spx =  and .0 25 svx =  (point b).
Next, the string stability condition is examined. 

The parameters are chosen as the string stability is 
maintained. By taking k 7= , b 1= , .0 2| = , 9b = , 

.0 05px =  and .0 05vx = , Figure 11 illustrates the per-
formance of the string stability of the platoon under 
the above control parameters and Figure 12 demon-
strates excellent tracking in velocity.
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m m m=1.919, =1.6825 =1.3097and

all of them in Figures 5-7 (kernel curves are shown in 
the range of ,0 2r6 @ ). Notice that there is a one-to one 
mapping between the BB curves of Figures 2-4 and 
the kernel hypercurves of Figures 5-7.

Next, we look at the root tendencies on these 
curves using Definition 3. Deploying this feature, those 
regions where the number of unstable roots is zero, 
can be detected, and they represent stable regions, 
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6. CONCLUSION

The paper addresses the coordination problem of a 
multi-vehicle system with a leader. The determination 
of stability robustness against delay uncertainties of 
this system was the main objective in this work. The 
communication lines were affected by two rationally 
independent delays. The first delay was assumed to 
be in the inter vehicle distance information channels, 
whereas the second delay was in the velocity informa-
tion exchange. To resolve this dilemma, the complex-
ity of the problem is significantly reduced firstly by de-
composing the transcendental function of the system. 
Then, the stability of the resulting subsystems was as-
sessed exactly and exhaustively in the domain of the 

time delays by using the CTCR paradigm. The stability 
analysis demonstrated that the system was more ro-
bust with respect to the communication delay in the in-
ter-vehicle distance information channel. The analyti-
cal analysis of error accumulation was also performed. 
The analysis of string stability demonstrated the nega-
tive effect of the communication delays on the string 
stability and the sign of b2 b-  showed which delay 
had a more negative effect on string stability.

Because of the nature of traffic which gives more 
influence to the preceding vehicle, it is desirable that 
the forward term has more influence than the back-
ward term. Hence, the analysis of stability taking into 
account the asymmetry in position and velocity feed-
back is still an open problem.
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 خلاصه

جزیه و تحلیل پایداری یک دسته از ت
تاخیر  دودر نظر گرفتن  با خودروها

 یزمان

کنترل طولی یک دسته از خودروها در 
نظر گرفته شده است به نحوی که 
خودروها یک خودرو راهنما را با 

خودروئی ثابت دنبال می  فاصله بین
پایداری و پایداری رشته ای . کنند

در نظر یک دسته از خودروها با 
مستقل و زمانی دو تاخیر گرفتن 
تأخیر اول در کانال ، نامعین

و تأخیر دوم  نسبی ارتباطي موقعیت
بررسی  ،نسبی در تبادل اطلاعات سرعت

 .شده است
عبارتند  این مقاله اهداف اصلی

تجزیه ساده  روش استفاده از( 1):از
الگو رفتار خوشه و ( دیکاپلینگ)

برای یافتن  ، (CTCR) ریشه هاي مشخصه
 ی حوزهمرزهای دقیق پایداری در 

تجزیه و تحلیل   (2)و زمانیتاخیر 
به منظور تضعیف ای پایداری رشته 

انجام شبیه در انتها، با  .اغتشاش
 سازي برای یک دسته از خودروها

 ، نشان دادهارائه شده اثربخشی روش
 است. شده
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