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Abstract. In view of the usefulness and great importance of the kinetic equation in cer-
tain astrophysical problems, the authors develop a new and further generalized form of the
fractional kinetic equation in terms of the Aleph-function by using the Sumudu transform.
This new generalization can be used for the computation of the change of chemical com-
position in stars like the sun. The manifold generality of the Aleph-function is discussed
in terms of the solution of the above fractional kinetic equation. The main results, being
of general nature, are shown to be some unification and extension of many known results
given, for example, by Saxena et al. [23, 25, 31], Saxena and Kalla [22], Chaurasia and
Kumar [6], Dutta et al. [8], etc.

AMS subject classifications: 26A33, 44A10, 44A20, 44A35, 33C20, 33C45, 33C60,
33E12

Key words: fractional kinetic equation, Sumudu transforms, Laplace transforms, frac-
tional calculus, Aleph-function, I-function, H-function, Mittag-Leffler function, M -series

1. Introduction and preliminaries

Throughout this paper, let N, R and C be the sets of positive integers, real numbers
and complex numbers, respectively, and N0 = N∪{0}. The Aleph-function is defined
by means of Mellin-Barnes type integral in the following manner [36, 37] (see also
[19, 28, 30, 32]):

ℵ [z]=ℵ m,n
pi,qi,τi; r

[
z

∣∣∣∣(aj ,Aj)1,n,..., [τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,..., [τj(bji,Bji)]m+1,qi;r

]
:=

1

2πi

∫
L

Ωm,n
pi,qi,τi;r (s) z

−sds, (1)

where z ∈ C \ {0}, i =
√
−1 and

Ωm,n
pi,qi,τi;r(s) =

∏m
j=1 Γ (bj +Bjs) .

∏n
j=1 Γ (1− aj −Ajs)∑r

i=1 τi
∏qi

j=m+1 Γ (1− bji −Bjis) .
∏pi

j=n+1 Γ (aji +Ajis)
. (2)

The integration path L = Liγ∞ (γ ∈ R) extends from γ − i∞ to γ + i∞. The poles
of the gamma functions Γ (1− aj −Ajs), j, n ∈ N, 1 ≤ j ≤ n do not coincide with
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those of Γ (bj +Bjs), j,m ∈ N; 1 ≤ j ≤ m. The parameters pi, qi are non-negative
integers satisfying the condition 0 ≤ n ≤ pi, 1 ≤ m ≤ qi, τi > 0 for 1 ≤ i ≤ r.
The parameters Aj , Bj , Aji, Bji > 0 and aj , bj , aji, bji ∈ C. The empty product in
(2) is interpreted as unity. For the existence conditions and further details of the
Aleph-function, one can refer to [26, 27, 29].

In the literature, there are numerous integral transforms which are widely used
in physics and astronomy as well as in engineering. Integral transforms are also used
to solve some differential equations in a rather efficient way.

In the early 90’s the Watugala [38, 39] introduced a new integral transform, the
so-called Sumudu transform, and applied it further to the solution of an ordinary
differential equation in control engineering problems. For further details and funda-
mental properties of the Sumudu transform, see [2, 3, 4, 5]. Let A be the class of
exponentially bounded functions f : R → R, that is,

|f(t)| <
{
Me−t/τ1 , t ≤ 0,
Met/τ2 , t ≥ 0,

whereM , τ1 and τ2 are some positive real constants. The Sumudu transform defined
on the set A is given by the following formula

G (u) = S [f (t) ;u] =

∞∫
0

e−tf (ut) dt for u ∈ (−τ1, τ2) . (3)

The Sumudu transform given in (3) can also be derived directly from the Fourier
integral. The Sumudu transform has been shown to be the theoretical dual of the
Laplace transform. It is interesting to compare the Sumudu transform (3) with the
well-known Laplace transform (see, e.g., [33]) defined by

F (p) = £ [f (t)] =

∞∫
0

e−ptf (t) dt, ℜ (p) > 0. (4)

The Sumudu transform of the ℵ-function is given by Saxena, Ram and Kumar [31]
in the following manner:

S

[
tλ−1ℵm,n

pi,qi,τi;r

[
z tσ

∣∣∣∣ (aj , Aj)1,n , . . . , [τj (aji, Aji)]n+1,pi;r

(bj , Bj)1,m , . . . , [τj (bji, Bji)]m+1,qi;r

]]

= uλ−1ℵm,n+1
pi+1,qi,τi;r

[
zuσ

∣∣∣∣(1− λ, σ) , (aj , Aj)1,n , . . . , [τj (aji, Aji)]n+1,pi;r

(bj , Bj)1,m , . . . , [τj (bji, Bji)]m+1,qi;r

]
,(5)

where λ, u, z ∈ C,ℜ (u) > 0, σ > 0, and

ℜ (λ) + σ min
1≤j≤m

ℜ (bj)

Bj
> 0, |arg z| < πζl

2
, ζl > 0,

and

ζl =
m∑
j=1

bj −
n∑

j=1

aj + τl

 q
l∑

j=m+1

bjl −
p
l∑

j=n+1

ajl

+
1

2
(pl − ql) , 1 ≤ l ≤ r. (6)
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From (5), it is clear that

S−1

[
uλℵm,n

pi,qi,τi;r

[
zuσ

∣∣∣∣ (aj , Aj)1,n , . . . , [τj (aji, Aji)]n+1,pi;r

(bj , Bj)1,m , . . . , [τj (bji, Bji)]m+1,qi;r

]]
= tλ−1ℵm,n

pi,qi+1,τi;r

[
ztσ

∣∣∣∣ (aj , Aj)1,n , . . . , [τj (aji, Aji)]n+1,pi;r

(1− λ, σ) , (bj , Bj)1,m , . . . , [τj (bji, Bji)]m+1,qi;r

]
,(7)

where

ℜ (λ) + σ min
1≤j≤n

1−ℜ (aj)

Aj
> 0, |arg z| < πζl

2
,

and ζl is given in (6).

2. Fractional kinetic equations

Recently, a remarkable interest has been developed in the study of the solution of
fractional kinetic equations due to their importance in astrophysics and mathemati-
cal physics. The kinetic equations of fractional order have been successfully used to
determine certain physical phenomena governing diffusion in porous media, reaction
and relaxation processes in complex systems etc. Therefore, a large body of research
in the solution of these equations has been published in the literature.

Haubold and Mathai [11] established a functional differential equation between
the rate of change of reaction, the destruction rate and the production rate as follows:

dN

dt
= − δ (Nt) + p (Nt) , (8)

where N = N (t) is the rate of reaction, δ (Nt) =: δ is the rate of destruction,
p = p (N) is the rate of production and Nt denotes the function defined by Nt (t

∗) =
N (t− t∗) , t∗ > 0.

A special case of (8), when spatial fluctuations or homogeneities in the quantity
N (t) are neglected, has been investigated and was given by the following equation
(see [11]; see also [15]):

dNi

dt
= −ciNi (t) , (9)

where the initial condition Ni (t = 0) = N0 is the number of density of species i
at time t = 0, ci > 0. If we decline the index i and integrate the standard kinetic
equation (9), we have

N (t)−N0 = −c0 0D
−1
t N (t) , (10)

where 0D
−1
t is the standard fractional integral operator.

Haubold and Mathai [11] gave the fractional generalization of the standard ki-
netic equation (9) as

N (t)−N0 = −cν0 0D
−ν
t N (t) , (11)

where 0D
−ν
t is the Riemann-Liouville fractional integral operator (see, e.g., [21])

defined as

0D
−ν
t f (t) =

1

Γ (ν)

∫ t

0

(t− u)
ν−1

f (u) du, t > 0,ℜ (ν) > 0. (12)
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The solution of the fractional equation (11) is given by (see [11])

N (t) = N0

∞∑
k=0

(−1)
k

Γ (νk + 1)
(c0t)

νk
. (13)

By applying the convolution theorem for the Sumudu transform [2, 4, 5], (12) can
be written in the following form:

S
{
0D

−ν
t f (t)

}
= S

{
tν−1

Γ (ν)

}
.S {f (t)} = uνG (u) , (14)

where G (u) is given in (3).
It is easy to see that the Sumudu transform of the function f (t) = tλ is given by

S [f (t)] =

∫ ∞

0

(tu)
λ
e−tdt = uλΓ (λ+ 1) , ℜ (λ) > −1. (15)

Hilfer [12, 13] have investigated fractional kinetic equations in order to determine
and deduce certain physical phenomena that govern such processes as diffusion in
porous media, reaction and relaxation in complex systems, anomalous diffusion, and
so on.

Saxena et al. [31] presented a very interesting and new generalized form of the
fractional kinetic equation in terms of the Mittag-Leffler function and the G-function
by making use of the Sumudu transform.

Further, Saxena, Mathai and Haubold [23] investigated three generalizations of
the fractional kinetic equation in terms of the Mittag-Leffler functions, which ex-
tended the work of Haubold and Mathai [11]. Saxena, Mathai and Haubold [25]
also developed the solutions for fractional kinetic equations associated with the gen-
eralized Mittag-Leffler function. Recently, Gupta et al. [10] investigated further
computable extensions of the generalized fractional kinetic equation in terms of a
generalized Lauricella confluent hypergeometric function by using the Sumudu trans-
form technique.

Fractional kinetic equations have also been studied by many authors, for exam-
ple, Saichev and Zaslavsky [20], Saxena et al. [23, 24, 25], Saxena and Kalla [22],
Chaurasia and Pandey [7], Gupta and Sharma [9], whose importance is given in view
of solutions of certain physical problems.

In this paper, we introduce and investigate further computable extensions of
the generalized fractional kinetic equation. The fractional kinetic equation and its
solution, discussed in terms of the Aleph-function, are written in compact and easily
computable form as in the next section.

3. Solution of generalized fractional kinetic equations

Theorem 1. If λ, ν, σ, c0, h > 0, ℜ (u) > 0 with |u| < c−1
0 , c0 ̸= h, τi > 0, i =

1, . . . , r, the solution of the generalized fractional kinetic equation

N (t)−N0t
λ−1ℵm,n

pi,qi,τi;r

[
htσ

∣∣∣∣(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r

]
=−cν0 0D

−ν
t N (t) (16)
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is given by the following formula:

N (t) = N0 t
λ−2

∞∑
k=0

(−cν0 tν)
k

× ℵm,n+1
pi+1,qi+1,τi;r

[
h tσ

∣∣∣∣(1−λ , σ),(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r
, (2−λ−νk, σ)

]
.

(17)

Proof. Applying the Sumudu transform to both sides of (16) and using (5) and
(14), we get

S {N (t)} − N0S

{
tλ−1ℵm,n

pi,qi,τi;r

[
htσ

∣∣∣∣(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r

]}
= −cν0

{
0D

−ν
t N (t)

}
,

N∗ (u) = N0u
λ−1ℵm,n+1

pi+1,qi,τi;r

[
huσ

∣∣∣∣(1−λ,σ),(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r

]
−cν0uνN∗ (u) ,

where N∗ (u) = S {N (t) ;u} and S
{
tµ−1

}
= uµ−1Γ (µ). Thus we have

N∗ (u) = N0
uλ−1

(1 + (c0u)
ν
)
ℵm,n+1
pi+1,qi,τi;r

[
huσ

∣∣∣∣(1−λ,σ),(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r

]
.(18)

Using the relation S−1 {uν} = tν−1

Γ(ν) , ℜ (ν) > 0,ℜ (u) > 0, and taking into account

of (7), we have

N (t) = N0t
λ−2

∞∑
k=0

(−1)
k
(1)k (c0t)

νk

k!

× ℵm,n+1
pi+1,qi+1,τi;r

[
htσ

∣∣∣∣(1−λ,σ),(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r
,(2−λ−νk,σ)

]
.

This completes the proof of Theorem 1.

Theorem 2. Assume that λ > 0, ν > 0, σ > 0, ω > 0, k ∈ N, τi > 0, i = 1, . . . , r,
c0 > 0, ℜ (u) > 0 with |u| < c−1

0 . Then the solution of a generalized fractional
kinetic equation

N (t)−N0t
λ−1ℵm,n

pi,qi,τi;r

[
ωtσ

∣∣∣∣(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r

]
= −

[
k∑

ε=1

(
k
ε

)
cνε0 0D

−νε
t

]
N (t)

(19)

is given by the following formula:

N (t) = N0t
λ−2

∞∑
ℓ=0

(k)ℓ (−cν0tν)
ℓ

ℓ!

× ℵm,n+1
pi+1,qi+1,τi;r

[
ωtσ

∣∣∣∣(1−λ,σ),(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r
,(2−λ−νℓ,σ)

]
.

(20)
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Proof. Taking the Sumudu transform on both sides of (19) and using (5) and (14),
we find that

(1 + cν0u
ν)

k
N∗ (u)

= N0u
λ−1ℵm,n+1

pi+1,qi,τi;r

[
ωuσ

∣∣∣∣(1−λ,σ),(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r

]
,

which, upon solving for N∗ (u), yields

N∗ (u) =
N0u

λ−1

(1 + (c0u)
ν
)
k
ℵm,n+1
pi+1,qi,τi;r

[
ωuσ

∣∣∣∣(1−λ,σ),(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r

]
.(21)

By applying the generalized binomial formula

(1− x)
−γ

=

∞∑
n=0

(γ)n
n!

xn (|x| < 1) (22)

to a factor in (21), we find that, for |u| < c−1
0 ,

N∗ (u) = N0

∞∑
ℓ=0

(k)ℓ (−cν0uν)
ℓ

ℓ!
uλ−1

× ℵm,n+1
pi+1,qi,τi;r

[
ωuσ

∣∣∣∣(1−λ,σ),(aj ,Aj)1,n,...,[τj(aji,Aji)]n+1,pi;r

(bj ,Bj)1,m,...,[τj(bji,Bji)]m+1,qi;r

]
.

(23)

If we now take the inverse Sumudu transform of (23), the result (20) readily follows.
This completes the proof of Theorem 2.

Remark 1. If we set k = 1 and ω = h in Theorem 2, then we get the result (17),
which is derived in Theorem 1.

The generalizedM -series is defined as follows (see [35]): For z, α, β∈ C,ℜ (α)> 0,

α,β

pMq (a1, . . . , ap; b1, . . . , bq; z)

:=
∞∑
r=0

(a1)r . . . (ap)r
(b1)r . . . (bq)r

zr

Γ (rα+ β)
(24)

=
Γ (b1) . . .Γ (bq)

Γ (a1) . . .Γ (ap)
p+1ψq+1

[
(a1, 1) , . . . , (ap, 1) , (1, 1)
(b1, 1) , . . . , (bq, 1) , (β, α)

; z

]
, (25)

where the last relationship exhibits the fact that the so-called generalized M -series
is in fact a special case of the Fox-Wright function pψq (z) , p, q ∈ N0 (see [14]; see
also Mathai et al. [17]).

When r = 1, τi = 1, σ = ν, p1 = p, q1 = q and h is replaced by hν , applying Fox’s
H-function [17], we obtain a (presumably) new result in terms of M -series asserted
by the following theorem (see also [8]).
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Theorem 3. If λ, ν, c0, h > 0,ℜ (u) > 0, c0 ̸= h, then the solution of a generalized
fractional kinetic equation

N (t)−N0t
λ−1

ν,λ

pMq (a1, . . . , ap; b1, . . . , bq;−hνtν) = −cν0 0D
−ν
t N (t) (26)

is given by the following relation:

N (t) = N0t
λ−2

∞∑
k=0

(−c0t)νk
ν,λ+νk−1

pMq (a1, . . . , ap; b1, . . . , bq;−hνtν) , (27)

where
ν,λ

pMq is the generalized M -series.

Proof. Applying the Sumudu transform to both sides of (26), we get

N∗ (u) = N0S

{
tλ−1

∞∑
r=0

(a1)r . . . (ap)r
(b1)r . . . (bq)r

(−hνtν)r

Γ (νr + λ)

}
− cν0u

νN∗ (u) ,

where N∗ (u) = S {N (t) ;u}, and by using S
{
tµ−1

}
= uµ−1Γ (µ), we obtain

N∗ (u) =
N0u

λ−1

(1 + cν0u
ν)

∞∑
r=0

(a1)r . . . (ap)r (−h
νuν)

r

(b1)r . . . (bq)r
,

or

N∗ (u) = N0u
λ−1

∞∑
k=0

(−1)
k
cνk0 uνk

∞∑
r=0

(a1)r . . . (ap)r (−h
ν)

r
uνr

(b1)r . . . (bq)r
. (28)

Now, taking the inverse Sumudu transform on both sides of (28), we obtain the
desired result (27). This completes the proof of Theorem 3.

4. Special cases

Here we consider some interesting special cases of the results given in Section 3.
If we put τi = 1, 1 ≤ i ≤ r in (16), we obtain the following result in terms of the

I-function (see, e.g., [34]).

Corollary 1. If λ, ν, σ, c0, h > 0,ℜ (u) > 0, c0 ̸= h, then the solution of the following
generalized fractional kinetic equation

N (t)−N0t
λ−1Im,n

pi,qi;r

[
htσ

∣∣∣∣(aj ,Aj)1,n,...,(aji,Aji)n+1,pi;r

(bj ,Bj)1,m,...,(bji,Bji)m+1,qi;r

]
= −cν0 0D

−ν
t N (t) (29)

is given by

N (t)=N0t
λ−2

∞∑
k=0

(−cν0tν)
k
Im,n+1
pi+1,qi+1,;r

[
htσ

∣∣∣∣(1−λ,σ),(aj ,Aj)1,n,...,(aji,Aji)n+1,pi;r

(bj ,Bj)1,m,...,(bji,Bji)m+1,qi;r
,(2−λ−νk,σ)

]
. (30)

If we take τi = 1, 1 ≤ i ≤ r and set r = 1 in (16), then we get the following
result in terms of the H-function (see, e.g., [17]).



120 J.Choi and D.Kumar

Corollary 2. If λ, ν, σ, c0, h > 0,ℜ (u) > 0, c0 ̸= h, then the solution of the general-
ized fractional kinetic equation

N (t)−N0t
λ−1Hm,n

p,q

[
h tσ

∣∣∣∣ (bq, Bq)
(ap, Ap)

]
= −cν0 0D

−ν
t N (t) (31)

is given by

N (t) = N0t
λ−2

∞∑
k=0

(−cν0tν)
k
Hm,n+1

p+1,q+1

[
htσ

∣∣∣∣ (1− λ, σ) , (ap, Ap)
(bq, Bq) , (2− λ− νk, σ)

]
. (32)

The generalized Mittag-Leffler function introduced by Prabhakar [18] and defined
by the series representation as follows:

Eγ
ν,λ (z) =

∞∑
n=0

(γ)n z
n

Γ (νn+ λ)n!
, ν, λ, γ ∈ C,ℜ (ν) > 0,ℜ (λ) > 0. (33)

In Theorem 3, if we set p = 1 = q, b1 = 1, a1 = γ, and c = h, then we arrive at the
result given by Saxena, Ram and Kumar [31] as follows.

Corollary 3. If ν > 0, c0 > 0, λ > 0, γ > 0,ℜ (u) > 0, then the solution of the
following equation

N (t)−N0t
λ−1Eγ

ν,λ (−c
ν
0t

ν) = −cν0 0D
−ν
t N (t) (34)

is given by

N (t) = N0t
λ−2Eγ+1

ν,λ−1 (−c
ν
0t

ν) , (35)

where Eγ
ν,λ (z) is the generalized Mittag-Leffler function.

If we take p = 0 = q in and c = h in (26), we obtain another known result given
by Saxena, Ram and Kumar [31].

Corollary 4. If ν > 0, c0 > 0, λ > 0,ℜ (u) > 0, then the solution of the following
generalized fractional kinetic equation

N (t)−N0t
λ−1Eν,λ (−cν0tν) = −cν0 0D

−ν
t N (t) (36)

is given by

N (t) =
N0t

λ−2

ν
[Eν,λ−2 (−cν0tν) + (2 + ν − λ)Eν,λ−1 (−cν0tν)] , (37)

where Eν,λ (z) is the Wiman function [40] (also known as the Agarwal function [1]).

If we set p = 0 = q and c0 ̸= h in (26), then we obtain another known result
given by Saxena, Ram and Kumar [31].
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Corollary 5. If ν > 0, c0 > 0, h > 0, λ > 0,ℜ (u) > |h|ν/α , c0 ̸= h, then the solution
of the equation

N (t)−N0t
λ−1Eν,λ (−hνtν) = −cν0 0D

−ν
t N (t) (38)

is given by

N (t) =
N0

cν0 − hν
tλ−ν−2

[
Eν,λ−ν−1 (−hνtν)− Eν,λ−ν−1 (−cν0tν)

]
. (39)

Furthermore, if h→ 0 in (38), we find that the solution of the following equation

N (t)− N0t
λ−1

Γ (λ)
= −cν0 0D

−ν
t N (t) (40)

is given by

N (t) =
N0t

λ−ν−2

cν0

[
1

Γ (λ− ν − 1)
− Eν,λ−ν−1 (−cν0tν)

]
. (41)

If we take ν = 1 = λ in (26), then the M -series reduces to the generalized
hypergeometric function pFq (see [14, 16]) and we have the following interesting
result:

Corollary 6. If c0, h > 0,ℜ (u) > 0, c0 ̸= h, then the solution of the generalized
fractional kinetic equation

N (t)−N0 pFq

(
(aj)

p
1 ; (bj)

q
1 ;−ht

)
= −c0 0D

−1
t N (t) , (42)

there holds the relation

N (t) = N0t
−1

∞∑
k=0

(−c0t)k
1,k

pMq (a1, . . . , ap; b1, . . . , bq;−ht) . (43)

5. Concluding remarks

It is further noted that a number of other special cases of our main results as illus-
trated in Section 4 can also be obtained. In this paper, we have studied a new frac-
tional generalization of the standard kinetic equation and presented their solutions.
It is not difficult to obtain several further analogous fractional kinetic equations and
their solutions as those exhibited here by Theorem 3 and its Corollaries. Moreover,
in view of close relationships of the ℵ-function and the M -series with other special
functions, it does not seem difficult to construct various known and new fractional
kinetic equations.
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