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Abstract. The paper considers the stochastic multiobjective allocation problem. An 
assumption is made that a particular resource should be allocated to T projects. The 
specified level of each goal (along with the known probabilities) can be obtained based 
on the amount of the resources allocated. We will propose an identification strategy 
procedure that the decision maker can implement. Our technique combines 
multiobjective dynamic programming and an interactive approach. First, efficient 
strategies are identified using Bellman's principle applied to the multiobjective problem. 
Next, a dialog procedure is used to find a solution that is satisfactory for the decision 
maker. A numerical example is presented to show how the procedure can be applied. 
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1. Introduction 
 
The stochastic multiobjective allocation problem (SMAP), considered in this 
paper, can be described in the following manner. A company has a limited 
amount of a particular resource that can be allocated to various projects. We 
assume that the decision maker has defined K goals that are to be achieved. 
Several levels of achievement are specified for each goal. The issue becomes a 
stochastic problem, i.e. a particular amount of the resource is allocated to a 
certain project, and a planned level of the goal is achieved at a certain 
probability. Hence, a decision has to be made as to which projects to implement 
and the intensity of their realization. 

The single objective deterministic allocation problem, which was formulated 
above, are described and solved in [1] and [2]. The dynamic programming 
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approach was applied. A biobjective deterministic allocation problem is analyzed 
in [10]. The manner in which the vector version of Bellman’s optimality 
principle can be used to identify the whole set of non-dominated solutions has 
also been shown.  

Various other types of stochastic allocation problems have been considered 
in literature. For example, sensor allocation management and dynamic 
programming for the stochastic resource allocation problem was considered in 
[4]. Techniques in finding an approximate solution for a certain class of resource 
allocation problems that arise in stochastic sequential decision-making problems 
and are computationally efficient were considered in [3]. The problem of 
allocating a quantity of a resource to several activities to satisfy stochastic 
demands occurring randomly is described in [6]. An application of dynamic 
resource allocation in wireless communication using stochastic optimization is 
described in [5]. 

Our goal is to propose a procedure to solve SMAP, which combines 
multiobjective dynamic programming and an interactive approach. We will 
identify a strategy to be implemented by a decision maker, and which suits best 
the decision maker’s preferences. The proposed procedure is a modification of 
the procedure described in [7] and [9], and has been adapted to the problem at 
hand. First, a set of efficient strategies is identified using Bellman’s principle of 
optimality, which has been adapted to the multiobjective problem. Next, an 
interactive procedure is used to find the final solution. In each iteration, a 
candidate strategy is presented to the decision maker. If satisfied with the 
proposal, the procedure ends; otherwise, the decision maker is asked for 
preferences by specifying the criterion values to be achieved, or at least 
indicating the criterion that is to be improved. 

The rest of the paper is organized into a number of sections. Section 2 
presents a stochastic allocation problem is presented as an example of dynamic 
programming with partially ordered criteria space. Next, Section 3 describes the 
proposed interactive procedure for identifying the final solution. Section 4 
presents a numerical example. Finally, the last section provides some final 
remarks. 
 
2. The stochastic allocation problem as an example of 
dynamic programming with partially ordered criteria space  
 
A partially ordered criteria space (W, ≤, ) consists of the set W, the preference 
relation ≤ ( “not worse than”) and the binary operator .  

In describing a discrete decision process, we identify sets of feasible states 
and decisions, transition functions, period criteria functions and multi-period 
criteria functions. By applying Bellman’s principle of optimality, the set of non-
dominated vectors of evaluations in the criteria space and efficient process 
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realizations in the decision space can be identified. The details are described in 
[9, 11].  

Let us consider the set of probability sequences, defined in the following 
way [13]: 
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where ( ) { }0,max, >∈=== ki pkniXp NP . For the sake of simplicity, we 
assume that random variables take only nonnegative integer values. This is an 
example of a partially ordered criteria space. 
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To define the relation ≤ we use FSD (First Stochastic Dominance) and SSD 
(Second Stochastic Dominance) relations: 
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The stochastic allocation problem considered in this paper can be regarded 
as a T – stage decision problem in a partially ordered criteria space. The 
number of stages is determined by the number of analyzed projects. In stage t (

Tt ,1∈ ), the decision on the number of units allocated to a particular project is 
made. 

The set Yt of feasible states yt in the consecutive stages Tt ,1∈  is defined as 
follows:  

 { }0
0 0: nyy ttt ≤≤∈= NY                               (6) 

The set of feasible decisions for the consecutive states tty Y∈  for Tt ,1∈  
is defined in the following way:  

 ( ) { }ttttt yxxy ≤≤∈= 0:0NX                           (7) 

For Tt ,1∈  , the transition functions are defined as follows:  
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 ttt xyy −=+1                                       (8) 
Each of the K criteria functions considered is an element of the set W, 

described by formula (1). The criteria space WK is the product of K structures 
W. The operator K and relation ≤K are defined as follows: 

 ( ) ( ) ( )KKKKK qpqpqpqqqppp  ,,,,,,,,, 22112121
def
=          (9) 

 ( ) ( ) KKKKK qpqpqpqqqppp ≤∧∧≤∧≤=≤  22112121 ,,,,,,
def

 (10) 
The relation ≤K holds if FSD or SSD relations hold for each criterion [12]. 
 

3. The proposed interactive procedure 
 
Interactive techniques are widely used for solving multiobjective problems. In 
this approach, the preference information is obtained in a stepwise manner. The 
decision maker is asked to define which criteria influence his or her preferences 
and to provide preference information for a given solution or set of solutions 
(local preference information).  

Various interactive techniques were proposed for the discrete stochastic 
decision making problems by one of the authors of this paper [8]. A modification 
of the INDECM technique is presented [7]. The problem is solved iteratively. 
The decision maker analyzes the results in each iteration and decides how to 
improve the current solution. The procedure is continued until a satisfactory 
solution is identified. 

As the evaluation of each alternative with relative to each criterion is 
represented by a probability distribution, we must choose what measures to use 
during the dialog phase of the procedure. These can be either measures of 
central tendency, or else measures of dispersion. At least one measure must be 
used for each criterion. The measures should be chosen by the decision maker at 
the initial phase of the procedure. 

The potency matrix is generated in each iteration and presented to the 
decision maker. It has two rows: the first one groups the worst (pessimistic) 
values, and the second one, the best (optimistic) values of the considered 
measures attainable independently within the set of alternatives. The decision 
maker is asked whether pessimistic values are satisfactory. If the answer is 
“yes”, a request is directed to make the final choice. Otherwise, the decision 
maker is asked to express preferences by defining values that the measures 
should achieve (aspiration levels), or at least by indicating the criterion for 
which the pessimistic value should be improved. 

Let D


 be the set of efficient solutions, D(l) – the set of solutions analyzed 
in iteration l, M – the number of measures analyzed, and G(l) – the potency 
matrix: 
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where: ( )l
m

g  is the worst value of the m-th measure attainable in the set of 

solutions analyzed in iteration l, and 
( )l
mg  is the best one. 

The procedure for identifying the final solution is as follows: 
1. Set l = 1, ( ) DD


=1 . 

2. Identify the potency matrix G(l). 
3. Ask whether the decision maker is satisfied with the pessimistic values. If the 

answer is “yes”, go to (8). 
4. Ask whether the decision maker would like to define the aspiration levels for 

the criteria. If the answer is “no” – go to (6). 
5. Ask the decision maker to specify aspiration levels ( )l

mg~  for m = 1, …, M. 
Identify the set ( )1+lD  which includes the solutions satisfying the decision 
maker’s requirements. If ( ) ∅=+1lD , report this to the decision maker and 
go to (4), otherwise go to (7). 

6. Ask the decision maker to indicate the index m of the measure for which the 
pessimistic value is unsatisfactory. Identify the set ( )1+lD  which groups the 
solutions for which the value of the m-th measure is better than the current 
pessimistic value ( )l

m
g . 

7. Set l = l + 1 and go to (2). 
8. Ask the decision maker to indicate the index m of the measure that should 

achieve the optimistic value, select the solution for which the m-th measure 
is equal to the optimistic value 

( )l
mg . 

 

4. Numerical example  
 
The data used in this example are fictitious. The company is going to allocate 
six units of resources among three projects. Three goals are considered, and 
three criteria are used to evaluate the level at which the goal is achieved. Tables 
1-3 show probabilities that a particular level of goal is achieved for Projects 1, 2 
and 3. 
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Units of 
resource  Level  

Probability Units of 
resource  Level  

Probability 
Goal 1  Goal 2 Goal 3 Goal 1  Goal 2 Goal 3 

0 0 1.0 1.0 1.0 4 2 0.2 0.4 0.2 
1 0 0.5 0.3 0.8  3 0.1 0.2 0.1 
  1 0.5 0.7 0.2 5 0 0.2 0.1 0.4 
2 0 0.4 0.3 0.7  1 0.4 0.2 0.2 
  1 0.5 0.5 0.2  2 0.2 0.4 0.2 
  2 0.1 0.2 0.1  3 0.2 0.3 0.2 
3 0 0.3 0.2 0.6 6 0 0.1 0 0.3 
  1 0.5 0.4 0.2   1 0.3 0.1 0.3 
 2 0.2 0.4 0.2   2 0.3 0.4 0.2 
4 0 0.2 0.1 0.5  3 0.3 0.5 0.2 
  1 0.5 0.3 0.2      

Table 1: Probabilities that a particular level of goal is achieved for Project no. 1 
 

Units of 
resource  Level  

Probability Units of 
resource  Level  

Probability 
Goal 1  Goal 2 Goal 3 Goal 1  Goal 2 Goal 3 

0 0 1.0 1.0 1.0 4 2 0.4 0.3 0.2 
1 0 0.3 0.4 0.7  3 0.2 0.1 0.1 
  1 0.7 0.6 0.3 5 0 0.1 0.1 0.2 
2 0 0.3 0.3 0.5  1 0.2 0.2 0.3 
  1 0.4 0.6 0.4  2 0.5 0.4 0.3 
  2 0.3 0.1 0.1  3 0.2 0.3 0.2 
3 0 0.1 0.3 0.4 6 0 0.1 0 0.2 
  1 0.7 0.4 0.4   1 0.3 0.2 0.2 
 2 0.2 0.3 0.2   2 0.3 0.4 0.4 
4 0 0.1 0.2 0.3  3 0.3 0.4 0.2 
  1 0.3 0.4 0.4      

Table 2: Probabilities that a particular level of goal is achieved for Project no. 2 
 

Units of 
resource  Level  

Probability Units of 
resource  Level  

Probability 
Goal 1  Goal 2 Goal 3 Goal 1  Goal 2 Goal 3 

0 0 1.0 1.0 1.0 4 2 0.2 0.2 0.3 
1 0 0.6 0.5 0.9  3 0.1 0.2 0.1 
  1 0.4 0.5 0.1 5 0 0.1 0.1 0.1 
2 0 0.2 0.4 0.7  1 0.4 0.3 0.2 
  1 0.3 0.5 0.2  2 0.3 0.4 0.5 
  2 0.5 0.1 0.1  3 0.2 0.2 0.2 
3 0 0.2 0.3 0.5 6 0 0.1 0.1 0.1 
  1 0.4 0.5 0.3   1 0.3 0.2 0.1 
 2 0.4 0.2 0.2   2 0.3 0.3 0.3 
4 0 0.3 0.2 0.3  3 0.3 0.4 0.5 
  1 0.4 0.4 0.3      

Table 3: Probabilities that a particular level of goal is achieved for Project no. 3 

 
We are looking for the best allocation of the resource by applying the 

interactive procedure described above. At the beginning of the first stage, six 
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units of the resource are available. Thus, we allocate 0, 1, 2, 3, 4, 5 or 6 units 
for Project 1, hence: 

}6{1 =Y , }6,5,4,3,2,1,0{)6(1 =X  
In applying the transition function (8), we obtain the set of feasible states 

at the beginning of the second stage, which is as follows: 
}6,5,4,3,2,1,0{2 =Y  

If in stage 1 the decision x1 = 6 has been made, then according to the 
transition function (8) the process will reach the state y2 = 0. As all units of the 
resource are allocated to project 1, the only feasible decision in stage 2 is x2 = 0, 
hence:  

}0{)0(2 =X  
If in stage 1 the decision x1 = 5 has been made, the process will reach the 

state y2 = 1 at the next stage. In this case, according to (7), two decisions can 
be made in stage 2: x2 = 0 or x2 = 1, hence: 

}1,0{)1(2 =X  
The remaining sets of feasible decisions for the stage 2 are as follows:  

}2,1,0{)2(2 =X , }3,2,1,0{)3(2 =X , }4,3,2,1,0{)4(2 =X ,  
}5,4,3,2,1,0{)5(2 =X , }6,5,4,3,2,1,0{)6(2 =X  

The set of feasible states in stage 3 is the same as in stage 2:  
}6,5,4,3,2,1,0{3 =Y  

As the whole amount of the resource should be allocated, the sets of 
feasible decisions in stage 3 are as follows: 

}0{)0(3 =X , }1{)1(3 =X , }2{)2(3 =X , }3{)3(3 =X ,  
}4{)4(3 =X , }5{)5(3 =X , }6{)6(3 =X  

Finally, the only feasible state at the end of stage 3 is y4 = 0. Thus: 
}0{4 =Y   

The total number of process realizations is 28. First, the efficient process 
realizations are identified. We start from the last stage. Since only one feasible 
decision exists for each feasible state in this stage, all decisions in stage 3 are 
efficient. Next, we identify the efficient partial realizations for stage 2. We use 
formula (2) to calculate probabilities of reaching a particular level of 
achievement for each goal. Next, we use stochastic dominance rules to compare 
partial process realizations for each feasible state at the beginning of stage 2. A 
partial process realization is defined by the decisions made in stages 2 and 3. 

For the state y2 = 0, there is only one feasible partial process realization: 
(0, 0), which is obviously efficient. For the state y2 = 1, there are two feasible 
partial realizations: (1, 0) and (0, 1). According to the former, the only available 
unit of resource is allocated to project 2, while according to the latter, one unit 
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of resource is allocated to project 3. Table 4 presents stochastic dominance 
relations that occur between partial realizations (1, 0) and (0, 1). 

Goal 1 (0, 1) (1, 0) Goal 2 (0, 1) (1, 0) Goal 3 (0, 1) (1, 0) 
(0, 1) X  (0, 1) X  (0, 1) X  
(1, 0) FSD X (1, 0) FSD X (1, 0) FSD X 

Table 4: Stochastic dominance relations between partial process realizations for state 
y2 = 1. 

Process 
realization Level  

Probability Process 
realization Level  

Probability 
Goal 1  Goal 2 Goal 3 Goal 1  Goal 2 Goal 3 

(0, 0, 6) 0 0.100 0.100 0.100 (1, 2, 3) 3 0.310 0.324 0.142 
 1 0.300 0.200 0.100  4 0.200 0.125 0.038 
 2 0.300 0.300 0.300  5 0.060 0.014 0.004 
 3 0.300 0.400 0.500 (1, 3, 2) 0 0.010 0.036 0.224 

(0, 1, 5) 0 0.030 0.040 0.070  1 0.095 0.177 0.344 
  1 0.190 0.180 0.170  2 0.235 0.322 0.280 
 2 0.370 0.340 0.410  3 0.355 0.302 0.116 
 3 0.270 0.320 0.290  4 0.255 0.142 0.032 
 4 0.140 0.120 0.060   5 0.050 0.021 0.004 

(0, 3, 3)  0 0.020 0.090 0.200  (1, 4, 1) 0 0.030 0.030 0.216 
  1 0.180 0.270 0.320  1 0.140 0.160 0.366 
 2 0.360 0.350 0.300  2 0.290 0.315 0.254 
 3 0.360 0.230 0.140  3 0.320 0.305 0.132 
  4 0.080 0.060 0.040  4 0.180 0.155 0.030 

(0, 4, 2) 0 0.020 0.080 0.210  5 0.040 0.035 0.002 
 1 0.090 0.260 0.340 (1, 5, 0) 0 0.050 0.030 0.160 
 2 0.220 0.340 0.250  1 0.150 0.130 0.280 
 3 0.310 0.230 0.150  2 0.350 0.260 0.300 
 4 0.260 0.080 0.040  3 0.350 0.370 0.220 
 5 0.100 0.010 0.010  4 0.100 0.210 0.040 

(0, 6, 0) 0 0.100 0.000 0.200 (2, 2, 2) 0 0.024 0.036 0.245 
 1 0.300 0.200 0.200  1 0.098 0.174 0.322 
 2 0.300 0.400 0.400  2 0.223 0.328 0.268 
 3 0.300 0.400 0.200  3 0.298 0.302 0.124 

(1, 0, 5)  0 0.050 0.030 0.080  4 0.238 0.136 0.035 
 1 0.250 0.160 0.180  5 0.104 0.024 0.006 
 2 0.350 0.330 0.440  6 0.015 0.000 0.000 
 3 0.250 0.340 0.260 (3, 1, 2) 0 0.018 0.032 0.294 
 4 0.100 0.140 0.040  1 0.099 0.152 0.308 

(1, 1, 4) 0 0.045 0.024 0.168  2 0.235 0.308 0.246 
 1 0.210 0.140 0.282  3 0.331 0.324 0.114 
 2 0.335 0.292 0.300  4 0.247 0.160 0.032 
 3 0.255 0.284 0.188  5 0.070 0.024 0.006 
 4 0.120 0.176 0.056 (6, 0, 0) 0 0.100 0.000 0.300 
 5 0.035 0.084 0.006  1 0.300 0.100 0.300 

(1, 2, 3) 0 0.030 0.027 0.200  2 0.300 0.400 0.200 
 1 0.130 0.162 0.330  3 0.300 0.500 0.200 
 2 0.270 0.348 0.286      

Table 5: Probabilities that a particular level of goal is achieved for efficient process 
realizations 
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As for each goal, the partial process realization (1, 0) dominates the partial 
process realization (0, 1), the partial realization (0, 1) is not efficient and 
according to the FSD rule. Consequently, no process realization that includes 
the partial realization (0, 1) will be considered. 

In the same way, partial realizations for other feasible states at stage 2 are 
analyzed. Next, we go to stage 1 and compare all process realizations that 
comprise non-dominated partial process realizations from stage 2 by using 
stochastic dominance rules. Finally, the set of efficient process realizations is as 
follows: 

(0, 0, 6); (0, 1, 5); (0, 3, 3); (0, 4, 2); (0, 6, 0); (1, 0, 5); (1, 1, 4); 
(1, 2, 3); (1, 3, 2); (1, 4, 1); (1, 5, 0); (2, 2, 2); (3, 1, 2); (6, 0, 0). 

The probabilities of reaching the successive levels of goal achievement for 
efficient process realizations are presented in Table 5. 

Let us assume that the decision maker decided to analyze the probability 
that level 2 or higher will be reached for each goal. The example below provides 
a dialog conducted with the decision maker. 
 
Iteration 1 

The potency matrix is presented to the decision maker Table 6). 
 
 Probability of 

reaching at least 
level 2 – goal 1 

Probability of 
reaching at least 
level 2 – goal 2 

Probability of 
reaching at least 
level 2 – goal 3 

Pessimistic value 0.600 0.640 0.398 
Optimistic value 0.895 0.900 0.800 

Table 6: Potency matrix in iteration 1. 

 
The decision maker expresses dissatisfaction with the pessimistic value for 

goal 3, and asks to consider only those solutions for which the probability that 
goal 3 will reach at least level 2 is not less than 0.5. The following process 
realizations do not satisfy this constraint: 

(0, 3, 3); (0, 4, 2); (1, 2, 3); (1, 3, 2); (1, 4, 1); (2, 2, 2); (3, 1, 2); (6, 0, 0). 

As a result, six process realizations are considered in the next iteration: 

(0, 0, 6); (0, 1, 5); (0, 6, 0); (1, 0, 5); (1, 1, 4);  (1, 5, 0). 
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Iteration 2 

A new potency matrix is presented to the decision maker (Table 7). 
 

 Probability of 
reaching at least 
level 2 – goal 1 

Probability of 
reaching at least 
level 2 – goal 2 

Probability of 
reaching at least 
level 2 – goal 3 

Pessimistic value 0.600 0.700 0.550 
Optimistic value 0.800 0.840 0.800 

Table 7: Potency matrix in iteration 2. 

 
The decision maker expresses dissatisfaction with the pessimistic value for 

goal 1, but is  unable to specify a satisfactory probability value. The decision 
maker asks only to improve the pessimistic value for goal 1. As for the two 
solutions (0, 0, 6) and (0, 6, 0), the probability of reaching at least level 2 is 
equal to the pessimistic value 0.6. The solutions are excluded and the following 
ones are taken into account in the next iteration: 

(0, 1, 5); (1, 0, 5); (1, 1, 4);  (1, 5, 0). 
 

Iteration 3 

A new potency matrix is presented to the decision maker (Table 8). 
 
 Probability of 

reaching at least 
level 2 – goal 1 

Probability of 
reaching at least 
level 2 – goal 2 

Probability of 
reaching at least 
level 2 – goal 3 

Pessimistic value 0.700 0.780 0.550 
Optimistic value 0.800 0.840 0.760 

Table 8: Potency matrix in iteration 3. 

 
The decision maker expresses satisfaction with pessimistic values for all 

goals and decides to choose the solution that maximizes the probability for goal 
2. As a result, the process realization (1, 5, 0) is identified as the final solution.  
 

5. Final remarks 
 
The allocation problem considered in this paper can be used for describing a 
wide range of real-world problems. Dynamic programming is an efficient tool for 
solving it. However, in a multiobjective environment, it must be used together 
with a procedure for identifying the final solution. We propose the use of an 
interactive method in which preference information is obtained in a stepwise 
manner. This allows the decision maker to obtain better insight into trade-offs 
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among different criteria. It is often pointed out that decision makers put much 
reliance in solutions generated through interactive procedures, and as a result, 
such solutions have a better chance of being implemented. 
 The interactive procedure presented here is a modification of the 
INSDECM method proposed in [7]. It was originally designed for static 
problems. Here, we have presented a version adapted to dynamic problems, in 
which not a single decision but a series of decisions were made. We have 
analyzed such problems in [9]. In this paper, we propose a different method. The 
decision maker does not have to specify the aspiration levels ( )l

mg~  in each 
iteration, but simply indicate the criterion that is to be improved. Thus, the 
amount of preference information that the decision maker has to provide is 
smaller. 
 In our problem, the decision makers defines their own requirements relative 
to the realization processes. However, in many dynamic problems they may wish 
to formulate their requirements relative to period results. Our plan for future 
research is to propose a procedure that enables decision makers to specify their 
needs in such a manner. A mixed problem should also be considered, in which 
some of the criteria are stochastic, while others are deterministic or fuzzy. 
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