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A Watson sphere removed to infinity is used to calculate, doubly charged
negative ions of the atoms B, C, N, O, Al Si, P, and S by the electron-cor-
relation and self-interaction corrected generalized exchange local-spin-den-
sity functional theory. These second electron affinities are compared to other
theoretical calculations and show the doubly charged negative ions of these
atoms to be unstable even when the Watson sphere radius is made infinite
by an algebraic equation, but less unstable than in ionic crystals.

1. INTRODUCTION

The stability of negative ions of atoms has attracted attention!'!>. The existence
of doubly charged negative ions!!, such as, 0?-, Tz, Bi?-, F2-, CI?-, Br?-, and I*- was
found experimentally. Theoretically the stability of doubly charged negative ions of
atoms has given rise to some interesting problems. Baughan!® calculated the first, se-
cond, and third electron affinities for atoms using the lattice-energy data of ionic crys-
tals, and spectroscopic data for the corresponding molecules, and estimated the second
electron affinities for the elements O, S, and Se and the third electron affinity for N
by extrapolation, starting from the first, second and third ionization potentials of the
corresponding atom such extrapolations are often unreliable. Gaspar and Csavinsky!”
presented O%-; Watson!® published O?- results in the Hartree-Fock (HF) theory with
an artificial positively charged sphere surrounding the doubly charged negative ion.
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Clementi and McLean'? reported N2- and O%- and concluded that they were unstable
because the second electron affinities were —-0.454 Ry for N and —0.444 Ry for O in
the electron-correlation corrected HF theory. Ahlrichs2? pointed out that the HF cal-
culations which yield & > 0 for an occupied orbital do not minimize the HF energy,
and calculated some multiply charged negative ions, 0%, N3-, C?-, S2-, 0,2-, and C,2-
in the HF theory by an appropriate admixture of a continuum function to the corres-
ponding orbital, but could not find any evidence of stable multiply charged negative
ions, but obtained much lower total energies than Robb and Csizmadia?!. Kalcher??
studied the stability of the doubly charged negative ions of Si, P, S, and Cl in a con-
figuration-interaction (CI) calculation, systematically using different substitutions
from any configuration of the reference wave functions. He reported that the doubly
charged negative ions of Si, P, S, and Cl were unstable with negative electron affinities
between —0.0494 Ry and -0.0612 Ry.

There is no successful calculation of doubly charged negative ions of atoms in the
gas phase by the local-density functional (LDF) theory?®2?4 in the literature, although
the LDF theory has been widely used to study molecular bonding, magnetism,
cohesion, the surface electronic properties of metals, and semiconductors?® and to
predict the stability of singly charged negative ions®"%628 because of a non-convergent
solution to the one-electron Schridinger equation with a positive asymptotic potential,
as r approaches infinity, in the numerical self-constituent-field (SCF) procedure in
LDF theory?®®. Cole and Perdew?! tried to calculate O?- and Te?- in the SIC-LSD
theory, but failed to give self-consistent bound solutions.

Second electron affinities of atoms are essential to calculate molecular properties®,
such as the hardness of acids, bases, and atomic groups®2%, in the quantum-mechani-
cal cluster calculations of defects in ionic solids®*%%, and in calculating the EA(n) in
an chemical compound®, in super halogens MXy,,% to calculate the highest electron
affinity®® possible in a molecule and the interatomic distances in ionic solids®. Hence
the investigation of the stability of the double negative charged ions of atoms is im-
portant. ’

In this work, the self-interaction corrected, generalized exchange local-spin-den-
sity functional (SIC-GX-LSD) theory?), with the Vosko, Wilk and Nusairt! (VWN)
electron-correlation energy functional, is employed to investigate the stability of the
doubly charged negative ions of the second and third period elements which involve
one orbital in going from the neutral atom to their doubly charged negative ions. As
mentioned previously®’, no bound solution can be found by directly solving the
Schrédinger equation in the SIC-LSD theory for doubly negative ions. Consequently,
a positively charged artificial sphere, proposed by Watson!® (the Watson sphere) used
in molecular anion calculations!!-#3, is used to surround the doubly charged negative
ion and ensure that the one-electron Schrédinger equation has a bound solution. Ob-
viously, the statistical total energy and the electron-density distribution of a doubly
charged negative ion depend on the Watson sphere size rws and charge +q. However,
if the charge on the Watson sphere is fixed, and the radius of the Watson sphere is
fixed, and the radius of the Watson sphere is gradually increased to infinity, the cal-
culated statistical total energy and the electron-density distribution of the doubly
charged negative ion will gradually approach the real statistical total energy and the
electron-density distribution of the real doubly charged negative ion. The VWN cor-
relation corrected SIC-GX-LSD theory has been previously established as reliable in
predicting the ionization potentials and electron affinities of atoms®"28 compared to
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experiment, when the Gopinathan, Whitehead and Bogdanovié¢‘2 (GWB) Fermi-hole
parameters are used. The calculation method is in Refs. 28 and 40.

COMPUTATIONAL DETAILS

The SCF procedure in the electron-correlation corrected SIC-GX-LSD theory was
achieved easily for doubly charged negative ions of the elements in the second and
third periods with a small Watson sphere (rws < 10 a,), whereas it was increasingly
difficult when the Watson sphere radius increased. The electronic structures of these
doubly charged negative ions are very sensitive to the potential with a large Watson
sphere: no converged results were obtained by starting with the converged potential
of the neutral atom from a Herman and Skillman calculation?® and the electron con-
figuration for the corresponding doubly charge negative ions, when the Watson sphere
radii are bigger than 10 a,. Hence, an adiabatic convergence technique’ was used:
starting with the converged potential and electron configuration of the neutral atom,
1 percent of an electron was added in each following iteration until a total of two
electrons was included in the extra orbitals. This is possible because the second and
third period neutral atoms are very stable systems. This slow, adiabatic change from
the neutral atom allows the system to remain in its ground state. The mixture factor
was chosen to be 0.01 to 0.001 when the Watson sphere radii increase from 10 a, to
62 a,, the largest Watson sphere radius used in this work, for B and Al*-, 10 q, to
74 a, for C?-, 10 a, to 60 a, for Si*-, 10 a, to 70 a, for N2- and P2, and 10 a, to 36
a, for O~ and S?*-. This means that 99.9 percent of the electron density from the (-1)th
iteration and 0.1 percent of electron density from the i*! iteration are combined
together to produce the new potential for the (i+1)% iteration, when the mixture fac-
tor is 0.001. The SCF procedure was completed when the differences in the wave func-
tions of electrons between the i*" and the (i + 1) iterations were less than 10-8 at all
mesh points. Obviously, the speed of convergence is very slow, and decreases, when
the Watson sphere radius increases. In all this work, the net charge on the Watson
sphere is +1 e. When the Watson sphere radius is bigger than the largest Watson
sphere radius of the corresponding doubly charged negative ions, no converged results
were obtained. The largest Watson sphere radius which can be used to produce the
converged electronic structure of the corresponding doubly charged negative ion dif-
fers for different doubly charged negative ions and depends on the electronic structure
and electron configuration. For example, the largest radius is 62 a, for both B%- and

Al%-, which have the same valence electron configurations with a half occupied p or-
bital py3.

RESULTS AND DISCUSSION

The additional potential produced by introducing a Watson sphere in the doubly
charged negative ions is

_ “"2/rws’ When r< I'ws
Vws(r) = {—2/r, whenr > ryg @

in Rydberg atomic units. The total potential including the Coulomb interactions be-
tween the nucleus and electron, electron and electron, and positive charge on the Wat-
son sphere and electron, the exchange and correlation potentials, is certainly a con-
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tinuous function of the radial r. But its derivative is not a continuous function of r,
because of the Watson sphere potential. The left-hand derivative of the Watson sphere
potentials Vyg(1), is zero and its right-hand derivative is 2/r2yg at r = rys. Figure 1
plots the product of the potential and the radial r for the outermost orbital, 2p |, of
the doubly charged negative ion of carbon, C%-, against the modified radial x (the
modified radial x is related to the ordinary radial r by r = 1/2(3n/4)%/® Z-1/3x with
atomic number Z) and demonstrates the discontinuous behaviour of the first derivative
of the total potential at r = rys. It is very interesting that there is a total potential
barrier with positive total potential inside the Watson sphere. The total potential of
the outermost orbital gradually increases passing rV(r) = 0 with a zero total potential
and then becomes positive arriving at a peak. As the radial r continuously increases,
the total potential gradually decreases and passes rV(r) = 0 again and becomes nega-
tive outside the Watson sphere. This implies that the electron-electron interaction
potential, which is the only positive contribution to the potential in the total potential
expression, is larger than the negative potential, which includes the contribution from
the nuclues-electron and Watson sphere charge-electron interaction and the exchange-
correlation effect.
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Figure 1. The potential of the outermost orbital, 2p | , of the doubly charged negative ion of carb-
on, C°, vs the modified radial x

Figure 2 plots the dependence of the electron density distribution for the electron
in the outermost orbital, 2p |, of the doubly charged negative ion of carbon, C?>-, on
the Watson sphere radius. It is clear that the electron density is gradually shifted
toward a large radius, when the Watson sphere radius is increased. To keep the nor-
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Figure 2. The dependence of the electron density distribution for the electron in the outermost
orbital, 2p |, of the doubly charged negative ion of carbon, C*7, on the radius of the Watson sphere

malization of the wave function, the peak of the curve is reduced and the electron den-
sity gradually spread, as the Watson sphere size increases. The electron density dis-
tribution of a core orbital, such as the 1s orbital in C?-, is not affected by changing

the Watson sphere radius.

Comparing Figures 1 and 2 shows that the electron.density of the outermost or-
bital is mainly distributed outside of the Watson sphere, when the Watson sphere
radius is less than 70 a,. Hence, the barrier of the total potential is not caused by the
charge density of the electron in the outermost orbital, but is created by the constant
potential generated by the charge on the Watson sphere inside the Watson sphere.

Obviously, the statistical total energy and the one-electron eigenvalue of a doubly
charged negative ion in the electron-correlation corrected SIC-GX-LSD theory with the
GWB Fermi-hole parameters are dependent on the Watson sphere size, when it is not
large enough. Table I shows the dependence of the total energy, including the statis-
tical total energy and the VWN correlation energy, but excluding the energy contribu-
tion from the Watson sphere, the one-electron eigenvalue, and the expectation value
of the Watson sphere potential for the electron in the outermost orbital of the doubly
charged negative ion of carbon, C?-, on the Watson sphere radius. When the Watson
sphere radius increases, the electron density spreads toward the large radial. There-
fore, the electron-electron repulsive energy decreases and the nucleus-electron attrac-
tive energy decreases. Because the contribution of the former to the statistical total
energy is positive and the contribution of the latter is negative, they partly cancel. The
total energy excluding the Watson sphere energy (Table I) depends slightly on the Wat-
son sphere radius and increases in size as the Watson sphere radius increases. Fur-
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TABLE I

The dependence of the total energy and the one-electron eigenvalue and the expectation value
of the Watson sphere potential for the outermost orbital of the doubly charged negative ion of
carbon, C2"(Ry) by the SIC-GX-LSD-VWN-GWB

rws Etot £2p) <2p| |Vws|2p| >
10 -76.1276 -0.004366

14 ~76.1292 ~0.004320 e
18 -76.1309 -0.004265 —0’03654
22 -76.1327 -0.004197 —0.03462
26 ~76.1346 -0.004119 _0'03274
30 -76.1364 -0.004033 _0'03094
34 -76.1381 -0.003943 _0'02927
38 -76.1398 -0.003853 '

42 -76.1413 -0.003763 -0.02772
46 ~76.1426 -0.003675 -0.02629
50 -76.1439 -0.003590 -0.02500
54 -76.1450 -0.003508 -0.02380
58 -76.1460 -0.003429 -0.02271
62 -76.1470 -0.003353 -0.02170
66 -76.1479 -0.003280 -0.02079
70 -76.1487 -0.003211 -0.01994

thermore, the dependence of the total energy on the Watson sphere radius decreases
as the Watson sphere radius increases. For example for C?- the difference of the total
energies calculated with rws = 14 a, and rys = 18 q, is 09.0017 Ry, whereas the dif-
ference of the total energies calculated with rys = 54 a, and rys = 58 q, is 0.0010
Ry. However the one-electron eigenvalue for the outermost orbital of the doubly char-
ged negative ion is strongly dependent on the Watson sphere radius and decreases in
magnitude as the Watson sphere radius increases. The dependence of the expectation
value of the Watson sphere potential for the electron in the outermost orbital of C?-
is shown in column 4 of Table I. The value decreases as the Watson sphere radius in-
creases, because the Watson sphere potential is gradually reduced by increasing the
Watson sphere radius. The real one-electron eigenvalue can be obtained by subtracting
the expectation value of the Watson sphere potential, column 4 of Table I, from the
calculated one-electron eigenvalue of the corresponding orbital, column 3 of Table L
Hence the real one-electron eigenvalue excluding the contribution from the Watson
sphere is positive and gradually decreases when the Watson sphere radius increases.

Since the total energy, excluding the Watson sphere energy, for a doubly charged
negative ion increases as the Watson sphere radius increases, the difference between
the total energies of the doubly and singly charged negative ions should decrease in
size, because no Watson sphere is used in calculating the singly charged ion. Table II
lists the dependence of the second electron affinities for an Al on the Watson sphere
radius in the electron-correlation corrected SIC-GX-LSD theory with the GWB Fermi-
hole parameters. The difference of the electron affinities becomes smaller and smaller,
when the Watson sphere radius becomes bigger and bigger. For instance, the differen-
ce of the electron affinity for B is -0.2437 Ry, when the Watson sphere size is increased
from 2a, to 4 a,, —0.0020 Ry when the size is increased from 30 a, to 32 a, and -0.0006
Ry when the size is increased from 60 a, to 62 a,. The electron affinity in the electron-
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correlation corrected SIC-GX-LSD theory is not significantly changed by increasing the
Watson sphere radius when the Watson sphere radius is large enough and approaches
a constant value. Unfortunately, no converged values were obtained for B, when the
Watson sphere radius was bigger than 62 a,. This raises the question of what is the
asymptotic value of the electron affinity for B when the Watson sphere radius goes to
infinity? Is it possible to fit the calculated value and then estimate its asymptotic
electron affinity using any function? The behaviour of the calculated electron affinity
for B is inversely proportional to the Watson sphere radius.

The simplest function worthwhile testing is

A=4,-2 @
'ws

where A, and a are constants to be determined. If the equation can fit the electron
affinities calculated in the electron-correlation corrected SIC-GX-LSD theory with a
large size of Watson sphere, the asymptotic value should correspond to the real
electron affinity, when ryg approaches infinity, that is A,.

This approach was tested for B first. It was found that when A, = —-0.147 Ry and
a = 1 Ry/a,, the electron affinities calculated using the Watson spheres whose radii
are bigger than 30 a, were perfectly fitted by equation (2). The calculated and fitted
results are listed in the columns 2 and 3 of Table II, respectively. The dependence of
calculated electron affinities for Al on the Watson sphere is of the same behaviour as
those for B. The calculated electron affinities by using different radii of the Watson
spheres also can be fitted by equation (2) with A, = -0.1344 Ry and a = 1 Ry/a,. The
calculated and fitted electron affinities are summarized in the columns 4 and 5 of
Table II, respectively.

For a test, the singly negative ions X~ were calculated with a Watson sphere radius
rys and ¢ = +1: when the asymptotic result was applied the EA(1) were identical with
the values calculated without the Watson sphere. Then the doubly charged negative
ions X~ were calculated with rws and ¢ = +2 and gave the same asymptotic results
as the calculation with rws and ¢ = +1 which are reported. The same behaviour can
be applied to other doubly charged negative ions of the second and third period ele-
ments. The calculated electron affinities can be fitted well by equation (2) with A, =
-0.0047 Ry and a = 0.9 Ry/a, for C, A, = —0.0083 Ry and a = 0.7 Ry/a, for Si, A, =
—0.0237 Ry and a = 1.425 Ry/a, for N, A, = -0.0458 Ry and a = 1.395 Ry/a, for P,
A, = -0.3606 Ry and a = 0.6353 Ry/q, for O, and A, = —0.2012 Ry and a = 0.56 Ry/a,
for S. The electron affinities are presented in Table III and compared with the HF cal-
culation given by Clementi and McLean'® and the CI calculations with the single and
double substitutions obtained by Kalcher??. The calculated results are very different
and those of HF and CI(SD) suspiciously constant between very different ions with
very different EA(1). The present results are the only ones which are part of a large
body of established results and should be correct. There are no experimental values
for free atoms available for comparison, but all these calculations show that the doubly
charged negative ions of the second and third period elements are unstable in gas
phase, and give insight into the energy required to generate the doubly charge ions.
The variation in the EA(2) with occupancy in the SIC-GX-LSD-VWN (GWB) theory
reflected the VWN correlation effect when the electrons doubly occupy an orbital;
when the electrons occupy different orbitals the exchange effect predominates.



224 Y. GUO AND M. A. WHITEHEAD
TABLE II

The dependence of the second electron affinities (Ry) of B and Al on the Watson sphere radius
(aw), and fitting by a function of A = Ao — a/rws with A = —0.1147 Ry and a = 1 Ry a0
for B and —0.1344 Ry and a = 1 Ry ao! for Al

B - Al i

rws SIC-GX-LSD-VWN-GWB HUNg  S1C-GX-LSD-VWN-GWB itting
2 —0.5835 ~0.6147 ~0.5839 ~0.6344
4 —0.3398 -0.3647 -0.3577 —0.3844
6 -0.2613 -0.2814 -0.2771 ~0.3011
8 -0.2248 -0.2397 -0.2397 —0.2594
10 -0.2040 -0.2147 -0.2193 —0.2344
12 -0.1903 ~0.1980 -0.2063 -0.2177
14 ~0.1805 -0.1861 -0.1971 -0.2058
16 -0.1730 ~0.1772 -0.1902 —0.1969
18 -0.1671 ~0.1703 -0.1846 —0.1900
20 -0.1623 —0.1647 -0.1802 —0.1844
29 —0.1583 ~0.1602 -0.1745 -0.1799
24 ~0.1547 ~0.1564 -0.1733 -0.1761
26 -0.1501 ~0.1532 -0.1706 ~0.1729
28 ~0.1489 ~0.1504 -0.1676 ~0.1701
30 ~0.1474 ~0.1480 -0.1666 —0.1677
32 -0.1454 ~0.1459 ~0.1647 -0.1656
34 —0.1437 -0.1441 -0.1630 ~0.1638
36 -0.1421 -0.1425 -0.1615 -0.1622
38 -0.1407 —0.1410 —0.1600 —0.1607
40 , -0.1394 —0.1397 -0.1587 -0.1594
42 —0.1384 " -0.1385 ~0.1577 -0.1582
44 -0.1373 -0.1374 ~0.1566 -0.1571
46 —0.1364 —0.1364 ~0.1557 -0.1561
48 —0.1354 ~0.1355 ~0.1546 -0.1552
50 -0.1347 ~0.1347 ~0.1543 ~0.1544
52 -0.1339 -0.1339 —0.1535 —0.1536
54 -0.1332 -0.1332 —0.1528 ~0.1529
56 -0.1325 ~0.1326 -0.1521 -0.1523
58 -0.1319 -0.1319 -0.1516 —0.1516
60 -0.1314 -0.1314 —0.1510 —0.1511
62 -0.1308 ~0.1308 —0.1505 -0.1505

Consequently from B to C and Al to Si, the exchange energy stabilizes the doubly
negative ion while from C to O and Si to S the correlation energy decreases the
stability of the doubly negative ion. This trend parallels than in the M-, M®, M*, M2+,
and M3* ions30:46:47,

CONCLUSION

It can be seen that with the aid of a Watson sphere, the SCF procedure can be
carried out, when the Watson sphere radius is not too big. The dependence of the se-
cond electron affinities in the electron correlation corrected SIC-GX-LSD theory with
the GWB Fermi-hole parameters on the Watson sphere radius is as in equation (2),
and can be approximated by the asymptotic values of equation (2) as the Watson sphe-
re radius goes to infinity.
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TABLE 111

The second electron affinities EA (2) (Ry) of B, C, N, O, Al, Si, P and S obtained by
fitting the calculated value in the electron correlation corrected SIC-GX-LSD theory with
the GWB Fermi-hole parameters, compared with other theoretical calculations

Atom SIC-GX-LSD* HFb CI(SD)c
B Z0.1147
C ~0.0047
N ~0.0237 ~0.4540
0 ~0.3606 ~0.4440 0.0542
Al ~0.1344 ;
Si ~0.0083 ~0.0812
1
~0.0612
P ~0.0458 PSS
s 0.2012 -0.

2The present work SIC-GX-LSD-VWN-(GWB) theory
Reference 19;
‘Reference 22.
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Qualitatively, the signs of the second electron affinities in the electron correlation
corrected SIC-GX-LSD theory with the GWB parameters are the same as those obtained
by the HF and CI(SD) calculations. The doubly charged negative ions in their ground
states are unstable in the gas phase for the second and third period elements which
involve one orbital in going from the neutral atom to its doubly charged negative ion.
They are similar to the values calculated for small molecules in sign and magnitude37-3?
and the method should prove useful for solid state and molecular calculations.

In Figure 3 the results for carbon electron affinities for C3*, C2*, C*, C% C-, and
C?- are plotted. The C%- are from the present paper and the other ions from references
30 and 46. The second value of C?- was calculated using the Watson sphere which gave
the experimentally measured values of M? in the ionic crystal and equaled the experi-
mentally measured interatomic distance in the ionic crystal. Consequently in moving
rw from the experimental value in an ionic crystal to « for the corresponding doubly
charged negative atom, the EA(2) of the doubly negative ions follow the same pattern
as in ionic crystals®®Pt but are considerably smaller. The figure shows the EA(2) smo-
othly related to both EA(2);y=w and EA(2),y=interatomic-

The electronic structure of a doubly-charged negative ion is complicated, perhaps
including the coupling of the valence and continuum states and forming the metas-
table doubly-charged negative ion states. But no matter what state the system would
be in, it should obey the Schriodinger equation. The present method is a simple tech-
nique to predict second electron affinities of atoms, and allow calculation of electro-
negativities and hardness of atoms® and groups®.
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SAZETAK

Stabilnost dvostruko nabijenih negativnih iona u okviru teorije funkcionala gustoée

Yufei Guo i Michael A. Whitehead

Izra¢unani su drugi elektronski afiniteti negativno nabijenih iona atoma B, C, N, O, Al, Sj,

P iS primjenom poopéene teorije funkcionala lokalne spinske gustode. Pri tome je koristen model
pozitivno nabijene kugle (Watson), ¢&iji je radijus postupno poveéavan do neizmjernosti. Rezultati
pokazuju da su dvostruko nabijeni negativni ioni nestabilni, ali manje nego u ionskim kristalima.
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