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Molecular dynamics computer simulation was performed on the systems
consisting of 100 two dimensional particles interacting with the hard core
square well potential. Calculations were performed for various combinations
of the parameters defining the attractive part of the potentials and for vari-
ous densities. The pairs ¢ and A, denoting the depth and width of the poten-
tial well, were chosen in such a way that the systems approached Baxter’s
limit of sticky or adhesive potential with infinite depth and zero width of the
well, provided that the product A exp(¢/kT) remained finite. The results of
the simulation gave support to the claims based on the analysis of higher
order virial coefficients that the system of adhesive particles does not possess
thermodynamic stability. The results show that the approach of the system
towards equilibrium slows down when approaching the limit of stickiness
and, besides, systems close to the sticky limit show a tendency to aggregation
and collapse towards the crystal structure, which raises doubts about the re-
gularity of the percolation problem of sticky systems.

INTRODUCTION

In many scientific fields where a multitude of objects is treated and within this
multitude the objects can form clusters, one observes an interesting phenomenon
regarding cluster statistics.

If there exists a parameter upon which the connectivity of the objects depends,
then there exists a value of this parameter beyond which the clusters become infinite
and this limit is usually called the percolation threshold. Percolation transition pos-
sesses all the attributes of critical phenomena so that, besides the percolation
threshold, one can define all the critical exponents.

The disciplines where the percolation phenomena are observed and studied range
from epidemiology, ecology to physics and chemistry. The simplest model systems on
which the percolation phenomena can be studied are either the objects positioned on
regular lattices or the objects in continuous space (lattice or continuum percolations).!
Lattice percolation problems are simpler than continuum percolation problems and for
the majority of systems the lattice percolation problems have already been solved.? As
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far as the continuum percolation is concerned, there are still many open questions and
even the simplest system, such as the percolation of randomly centered spheres, does
not possess an accurate solution.®> The problem of randomly centered spheres can be
classified as noncorrelated percolation. The systems of physical particles that interact
over some potential represent the problem of correlated percolation. In such a system,
one should solve two hierarchically ordered problems. One should first solve the ther-
mal problem, which means that the relation between the thermodynamic variables
such as pressure, volume and temperature have to be determined. At each particular
thermodynamic state, one can solve the percolation problem. If the connectedness cri-
terion is unambiguously defined, then one can only ask whether the system is below
or above the percolation threshold. In general, the criterion whether two particles are
connected or not can be arbitrarily defined. In such a case, for each thermodynamic
state, one can look for a connectedness criterion that would produce the percolation
transition exactly at that point. This is the case of the system of particles interacting
with the Lennard-Jones potential. For this type of potential, it was shown that, with
several values of proximity criteria, one can observe a complete phenomenon of per-
colation transition.* Some other types of interparticle interactions are more suitable
for the study of percolation phenomena, such as the hard core square wall (HCSQW)
potential. In this case, it is quite easy to define the connectedness criterium. The hard
core part of the potential does not allow two particles to penetrate so that they are
held at separations greater than the diameter of the hard core. If the particles are at
a distance greater than the diameter of the hard core increased for the width of the
square well, they do not touch each other. What remains is the case in which two par-
ticles are bound by the square well part of the potential and it is straightforward to
postulate that such a pair of particles is connected. After having defined the connec-
tedness criterion, one can determine the size and the distribution of clusters, which
are directly related to the percolation problem.

A special variant of the HCSQW potential was proposed by Baxter.® If the depth
of the well goes towards infinity and the width towards zero, one obtains the so called
sticky or adhesive potential model due to which two particles are bound only when
they are in contact. Intuitively, one can expect that such a potential may cause tro-
ubles, and only recently it was shown® that the systems of adhesive disks or spheres
do not possess thermodynamic stability.

Adhesive Disk Systems

Baxter’s limit of the HCSQW potential is defined as that combination of square
well width (A) and depth (¢) at which the product of A e#¢ remains constant when A
tends towards zero and e towards infinity. For such a potential, several low order
virial coefficients have been well defined and, since also the Percus-Yevick approxima-
tion for the integral equation for the radial distribution function can be solved analyti-
cally, it led to the impression that the system of adhesive particles is a well defined
statistical mechanical model. However, recently Stell and Williams have shown qualita-
tively that the expression for the pair correlation function contains terms that involve
higher powers of Dirac d function, which is certainly an irregular feature. Later, Borst-
nik and Stell” performed a quantitative analysis of virial coefficients when approaching
the adhesive disk limit. It was shown that the first six virial coefficients attain a re-
gular limit when A - 0, and ef® -+ «, while the seventh virial coefficient B; can be
written as a polynomial of twelfth order in ef®
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The value of B; would attain a regular limit if all the coefficients a; contained A raised
to the power which may not be smaller than j. It turns out that this is not the case
since a,; behaves like A'!, which means that when approaching the sticky limit, B,
diverges linearly with e,

Higher virial coefficients diverge even more drastically and, consequently, there is
no thermodynamic limit of sticky disk systems. The fact that, in spite of the absence
of thermodynamic stability, there is a solution of the Percus-Yevick approximation of
the integral equation for the pair distribution function can be explained by the fact
that within this approximation the above mentioned singularities are left out. On the
other hand, there are reports in the literature where the systems of particles bound
by adhesive potentials are studied by the specially designed Monte Carlo method.® The
results obtained by this method show no pathological behaviour that would prevent
determination of the equation of state and the percolation line which delimits the re-
gions of phase diagram below and above the percolation threshold density.

According to the results of the analysis of higher virial coefficients, it is hard to
believe that a clear picture provided by the Monte Carlo simulation is a real feature.
Seaton and Glandt assert that certain moves are not permitted in their new Monte
Carlo method. In particular, their method leaves aside the moves that build or destroy
the fragments of close packed structure. The seventh virial coefficient, which we found
to be singular, refers exactly to the above mentioned structures and this may be the
source of the disagreement between the results of Seaton and Glandt’s new Monte
Carlo method and other approaches.

In this work, we would like to apply the molecular dynamics method to the
HCSQW system with deep and narrow potential wells. The structure and time evolu-
tion of these systems might help us to understand the pathologies of sticky systems.

Molecular Dynamics Simulation of the HCSQW System Close to the
Limit of Stickiness

Sticky potentials are not accessible to molecular dynamics simulation because
Newtonian mechanics cannot deal with infinite depth of the potential well, since this
would lead to infinite velocities of the particles.

According to our belief, the sticky system is irregular and, therefore, any effort to
determine the structural, dynamic or thermodynamic properties will have a rather un-
certain outcome. This is not true for the HCSQW systems which are approaching the
sticky limit. As long as the width and the depth of the SQW potential is finite, it is
natural to expect that any method should behave regularly. Molecular dynamics simu-
lation is especially suitable as it provides structural as well as dynamical information.
When studying the percolation phenomena, an insight into the dynamical processes
is particularly important, since one can follow the time evolution of the cluster dyna-
mics. In the system with narrow and deep square wells, one can expect that the clus-
ters rearrange less frequently than in the systems where the depth of the potential is
comparable to thermal energy. However, there is no information available about how
the cluster dynamics depends upon the depth and width of the potential well. There-
fore, the study of this phenomenon will be the primary concern of this paper.
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Discontinuous potentials need special treatment in the molecular dynamics com-
puter experiments. One cannot follow particle trajectories along uniformly spaced time
intervals but should follow individual collisions. There is a standard numerical metho-
dology how to treat the dynamics of hard core systems.® One forms the matrix of col-
lision times. The i, j element of this matrix tells at what time the particles i and j will
collide if their motion is not interrupted by other particles. One finds the pair that is
going to collide first and carries out the collision, then the matrix of collision times
is updated and the next collision can proceed.

Each collision is carried out in the centre of the mass frame of the participating
particles, which turns out to be a rather simple algebraic manipulation of particle velo-
cities. It is interesting to point out that addition of the square well potential destabil-
izes the numerical procedure significantly. This can be demonstrated by a test in which
a system of particles is followed until a certain number of collisions occur and then
the velocities are reversed to move the particles backward.

If the number of collisions in such an experiment is beyond some threshold values,
the particles do not reach their starting positions when moving backward for the same
number of collisions as in forward motion. It turns out that the threshold number of
collisions, is much lower in the system with the HCSQW potential than in the case
when the interaction potential is of pure hard core type. This means that the increased
complexity of the HCSQW potential, relative to the hard core potential, amplifies the
round off numerical error. The round off error can be decreased if one increases the
precision of numerical operations (double precision) but it can not be eliminated.

All the calculations were performed in two dimensions with 100 particles. Periodic
boundary conditions were applied. Since our interest lies in the thermodynamic sta-
bility of the sticky disk system and in the study of properties relevant to the percola-
tion phenomena, we decided to choose non-stationary initial conditions and study the
approach towards equilibrium.

Two kinds of non-equilibrium initial conditions were used. In the first category of
calculations, the starting configuration was that of randomly positioned disks in such
a configuration that no bonds between them were formed. This was achieved by the
following preparation of the system. The particles were positioned on the grid points
of a regular square lattice. The particles were allotted random initial velocities and the
system was let to evolve in time. In this period, the interaction potential was modelled
as a hard sphere potential with the diameter o + A, where o and A are the parameters
of the HCSQW potential, which is used in the main calculation to be described later.
The randomization took 200 collisions per particle.

Another class of calculations started from the configuration of particles in the
form of a single cluster of compact form, as seen in Figure 1. In this cluster, 100 atoms
are arranged in such a way that the number of bonds is maximized. All the neighbours
on the lattice are bound by the square well.

All the productive runs were started with one of the above mentioned initial con-
figurations and the systems were followed until a large number of collisions occurred.
The configurations of particles that appeared during the time evolution of the system
were analyzed in order to control the cluster statistics, total energy and pressure in
the system.

The simulations were run at isothermal conditions at T = 1. 'Each 100 collisions,
the velocities were rescaled so that the temperature was returned to the required value.
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Figure 1. The arrangement of disks which served as a starting configuration for molecular dy-
namics runs.

During the simulation, we observed an undesired feature manifested in the non-
conservation of momentum. The accumulation of round off numerical errors had the
consequence that the kinetic energy split into two parts: kinetic energy due to the
translation of the centre of mass and real thermal energy. This means that some of
our calculations were, in fact, run at a lower temperature than it had been anticipated.
The situation was cured by projecting out the centre of mass motion.

RESULTS AND DISCUSSIONS

In what follows, the unit of length will be the hard core diameter o, the particles
will have unit mass (n = 1) and the depth of the potential will be expressed in terms
of energy unit ¢, = 1, which also served as the unit of average thermal energy (T)
which is the measure of temperature. The unit of time is equal to sqrt(mo?/2 e,).

The calculations were performed at two values of number density, p; = 0.33 and
p2 = 0.55. The values of the depth of the potential for which the calculations were
performed were ¢ = 0.5, 1, 2, 3, 4, and 5. The corresponding widths of the well were
determined by the expression which guarantees the approach towards Baxter’s limit:

A =0ePe/(41) (1)

where 7 is the dimensionless indicator of the temperature in sticky limit and 8 = 1/7.
All the calculations performed are listed in Table I. The information made available
by all these calculations is still not sufficient to get a clear picture of the possible states
that the HCSQW system can take. When studying the percolation properties, it is im-
portant to know the equation of state because. only in that case, one can locate those
points in the phase diagram where it is meaningful to look for the percolation
threshold line. For the case of the two dimensional HCSQW system, only a limited in-
formation regarding the equation of state is available.!® Therefore, we rely on the
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TABLE 1

List of the molecular dynamics runs performed on HCSQW systems.
The A value can be determined by means of Eq. (1), with 7 = 0.3.
Third column gives the number of independent parallel runs. Fourth
column gives the total number of collisions and the last column tells
whether initial configuration was random (x) or clustered (c).

- no. par. total length initial
2 runs (millions) configuration
0.5 0.33 1 0.5 c
1.0 0.55 1 0.5 c,r
1.0 0.33 1 0.5 c,r
2.0 0.55 1 1.1 c,r
2.0 0.33 1 1.1 c,r
3.0 0.55 4 3.5 r
3.0 0.33 4 3.5 x
3.0 0.55 1 1.1 c
5.0 0.55 4 3.5 r
5.0 0.33 4 3.5 r

results of our own calculations. The minimum information needed is the location of
the spinodal decomposition curve that separates the metastable and unstable regions
in the phase diagram. In the temperature-density plane, the points of interest lie above
the spinodal decomposition curve. One can expect the position of the spinodal curve
to be different for each combination of ¢, A values and it would be an enormous task
to give proper attention to the problem of determination of spinodal curves. We have
chosen a limited number of points, as given in Table I. The calculations performed at
these points reveal the character of the systems and on this basis we shall try to draw
the conclusions about the thermal as well as percolation properties.

Thermal properties of the systems were estimated on the basis of the calculated
total energy, pressure and on the basis of the visual inspection of pictorial illustrations
of particle configurations. Pressure was determined by calculating the virial of the sys-
tem which is obtained by summing up the momentum transfers in binary collisions.

The quantities that we used for the clarification of percolation properties of the
systems were deduced from the distribution of clusters. Every so often, we calculated
the size of the largest cluster (ny,y), the distribution of coordination numbers and the
distribution of clusters according to their size (n) for n = 1 to 10.

A general impression which emerges on the basis of molecular dynamics results
is the following. At a relatively shallow well (¢<1), the results are in agreement with
the results of other authors.!? In this case, it is easy to determine the spinodal decomposi-
tion curve and the percolation threshold curve. At a deeper well (¢=2), things begin
to be complicated because the number of collisions necessary for the system to appro-
ach the equilibrium configuration goes beyond the limit that can be reached by stand-
ard computer technology . For that reason, the results are slightly uncertain. In spite
of this difficulty, we succeeded in determining the trend of changes that take place
when the sticky limit is approached. The most important dynamical characteristic is
the slowing down of the equilibrium process. As far as the structural characteristics
are concerned, the results seem to be compatible with the findings that higher order
virial coefficients diverge, which makes the aggregated state the only stable configuration.
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A greater part of the calculations was performed for the value of Baxter’s tempera-
ture parameter r = 0.3, but the calculations were also performed below this value. The
limit of stickiness was approached from a relatively shallow and wide potential well
withe = 1, A = 0.3, and then we proceeded towards deeper wells with ¢ = 2, 3, 4 and
5, and with the corresponding widths following from Eq. (1). At ¢ < 3, the systems
equilibrate after a few hundreds of collisions per particle. This is shown in Figure 2,
where the total energy of the system at ¢ = 2, A = 0.11036,p = 0.55and T = 1 is
shown as a function of time. Two runs were performed. One was started from a clus-
tered configuration of particles (as in Figure 1) and the other from a random confi-
guration. A typical configuration of particles taken from the equilibrium part of the
history of the system is depicted in Figure 3. We can see that the system is in the vici-
nity of the percolation threshold. The particles marked by crosses are members of a
cluster that extends across the system and, due to the cluster boundary conditions,
they form a cluster with infinite extension. In the course of time evolution, such clus-
ters decompose and form again. This process is compatible with the definition of the
percolation threshold.

At deeper and narrower potential wells (¢ = 3, A = 0.0406, p = 0.553; Figure 4
and ¢ = 5, A = 0.00549, p = 0.55; Figure 5), the structure of the system changes
qualitatively. The clusters attain a more compact shape in the form of fragments of a
closed packed structure. As far as the percolation properties are concerned, we can see
that the systems are close to the percolation threshold. As it can be seen in Table I,
the calculations were also performed for the density p = 0.33. At this density, all the
systems are below the percolation threshold.

The calculations at ¢ = 3 and ¢ = 5, fragments of which are displayed in Figures
4 and 5, were started from randomized configurations. After more than one million
collisions had occurred, we were not sure whether the systems had reached. equilibrium.

Therefore, we also performed runs with the initial structure in the form of a close
packed cluster in order to see whether the time evolution would lead to the same struc-
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Figure 2. Total energy of the system of HCSQW disks with e = 2, A = 0.11036. p = 0.55, T =
1 as a function of time. One can see that, after approximately 70 time units, the system which
started from random configuration (upper curve at ¢ < 70), and the system which started from
clustered configuration (lower curve at ¢ < 70) converge.
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Figure 3. A snapshot of particles taken from the equilibrium part of the calculation mentioned in
the caption of Figure 2. The particles marked by crosses belong to a cluster which percolates in
the infinite system of replicas of the central square implemented by periodic boundary conditions.

Figure 4. Snapshot of the system with ¢ = 3, A = 0.0406, p = 0.55, T = 1.

ture as in the case of the calculations started from random configurations. It turned
out that the clustered configurations was very stable. The stability decreases with
decreasing depth of the well, but even at p = 3, A = 0.0406 and T = 1, the cluster
did not decompose within 800000 collisions. In Figure 6, we can see that the total ener-
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Figure 5. Snapshot of the system with ¢ = 5, A = 0.00549. p = 0.55, T = 1.

gies of the two runs started with random and clustered configurations do not meet at
a common point and, consequently, the question whether the equilibrium configura-
tion of the system at ¢ = 3, T = 1, p = 0.55 is fluid or solid-like cannot be answered
with certainty.

Most probably, both the liquid-like and the crystal-like phases represent the equi-
librium states and, consequently, the states at ¢ = 3, T = 1 find themselves below the
spinodal decomposition curve. This is also true of the states with ¢ = 4 and ¢ = 5.
These findings are important when the approach towards the limit of stickiness is
analyzed, since on this basis we can anticipate the following scenario. If one proceeds
towards the sticky limit by choosing a certain value of Baxter’s indicator of tempera-

200

T T T T T T T T T T T T T T

T
0 50 100 150

Figure 6. Total energy of the system with ¢ = 3, A = 0.0406, p = 0.55, T = 1. Upper curve-
random initial configuration; lower curve-clustered initial configuration.
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ture and starting from a certain width and depth of the potential above the spinodal
decomposition curve, one will sooner or later cross the spinodal decomposition curve
where the system becomes unstable.

CONCLUSIONS

We can conclude that the molecular dynamics methods is a suitable tool for study-
ing the real nature of the adhesive potential. Although the method does not give a
direct access to the properties of sticky systems, one can get useful information about
the structure and dynamics of the systems in which the particles can be bound by deep
and narrow square-well potentials. We performed the simulations on a series of sys-
tems exhibiting various degrees of stickiness. The results show that, on the way
towards the sticky limit, one crosses the spinodal decomposition curve, where the sys-
tem is no more stable. If this is true, the sticky limit does not possess thermodynamic
stability. This belief is compatible with the results of the analysis of the terms defining
the pair correlation function® and calculation of higher order virial coefficients both
of which deny the thermodynamic stability of sticky systems.
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SAZETAK
Perkolacijski prijelazi u adhezivnim disk sustavima. Molekulsko-dinamiéka studija
Branko Borstnik i Danilo Pumpernik

Numeri¢ka simulacija molekulske dinamike provedena je na sustavima od 100 dvodimenzij-
skih &estica, koje medusobno djeluju preko kvadratne potencijalne jame &vrste jezgre. Ra¢unanja
su provedena za razli¢ite kombinacije parametara koji definiraju privlaéni dio potencijala, te za
razli¢ite gustoce. Parovi vrijednosti dubine (¢) i $irine (A) potencijalne jame bili su izabrani tako,
da su se sustavi pribliZavali Baxterovoj granici adhezivnog potencijala, pri kojemu je potencijalna
jama beskonaéno duboka i uska, $to uvjetuje da produkt A exp(¢/kT) ostaje konacéan. Rezultati
simulacije daju podrsku tvrdnjama koje se zasnivaju na analizi visih virijalnih koeficijenata, da
sustavi ¢estica vezanih adhezivnim potencijalom ne posjeduju termodinamié¢ku stabilnost. Rezul-
tati pokazuju da pribliZavanje sustava ravnoteZi usporava pribliZenjem granici ljepljivosti. Osim
toga sustavi uz granicu ljepljivosti pokazuju tendenciju agregacije &estica do prijelaza u kristalnu
strukturu, $to poveéava sumnju u regularnost perkolacijskog problema ljepljivih sustava.
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