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The current invariants of all-benzenoids (k, n, m, n;, n,, s — defined in
the Introduction), in addition to the number of full and of empty hexagons
(v and ¢), are studied. Their possible values are specified. Some of the rela-
tions between these invariants are summarized in a systematic way. The
upper and lower bounds for all of them are accounted for as functions of any
of these invariants.

INTRODUCTION

The fully benzenoid hydrocarbons are known to be of great importance in organic
chemistry.!-® A citation from Randi¢! may serve as a definition of this class of molecules:
»For these compounds one can write a valence structure in which a ring is either rep-
resented as an isolated sextet or is devoid of conjugation.« Here, we adhere to the term
»all-benzenoid« as an abbreviation for all-benzenoid systems,>® which, considered as
chemical graphs, correspond to the fully benzenoid hydrocarbons, chemically known
or unknown. The term »all-benzenoid« was adopted from the late Professor O. E.
Polansky and his collaborators, who provided the first substantial graph-theoretical
characterization of such systems.”-®

Studies of topological properties of all-benzenoids continue. The reader is referred
to a series of eight articles!? and some later works.!! Extensive works on enumeration
of all-benzenoids are also worth mentioning. They were foreshadowed by Dias,!? while
Knop et al.!® reported the first of such results obtained by computer aid. In his later
works, Dias!* contributed to the enumeration of all-benzenoids with an emphasis on
the strain-free systems. Other enumeration results from the above citations are avail-
able.10@,100,10®- Finally, some recent studies on all-benzenoid isomers should be men-
tioned.!®

In the present work, the invariants of all-benzenoid systems are treated. Their
upper and lower bounds are reported as functions of all the invariants that are cur-
rently taken into account. The results are presented in terms of inequalities of the
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Harary-Harborth!® type, referring to the classical treatment of »extremal animals« by
these authors.

A LIST OF INVARIANTS

The adopted symbols for the main invariants of a benzenoid system are listed in
the following; # means »number of«.

h = # hexagons; n = # vertices; m = # edges; n; = # internal vertices; n, = #
external vertices; s = # vertices of degree two.

All these notions are immediately applicable to all-benzenoids as special cases of
benzenoids. However, the values of the invariants are more restricted. Possible values
of h are 1 (for the trivial case of benzene), 4 (triphenylene), and all integers h = 6 (see
also Table I). Restrictions are more profound for most of the other main invariants
and lead to introduction of certain reduced invariants, as explained in the following.

It was already noted, at least by Polansky and Rouvray,? that n = 0 (mod 6) for
any all-benzenoid. Hence, it is reasonable to define as a reduced invariant

v=n/6; v=1, v=3. (L

Here, the given possible values of integer v are consistent with possible n values specified
in Table I.

The possible values of m for all-benzenoids (cf. Table I) are accounted for by the
following scheme.

m = 6 Joo= 1,69710.11 ;=13 (2a)
m =6, + 1 i =801, =13 (2b)
m = 6 + 2 it o Y 1 (20)
m = 6 + 3; Jjs = 3,7,8, iz 1L @24d)
m = 6, + 4; Jo Bil1,12:13; hojizds (2e)
m = G + 5; Jjs = 4,89, ) @6

Furthermore, one has n; = 0 (mod 2), n, = 2 (mod 4) and s = 0 (mod 2). Hence,
the following reduced invariants for all-benzenoids are defined.

v,-=ni/2 b ViZO (3)
Ve = (n. — 2)/4 ve=1, v, 24 4)
o =s/2 =3, 0=6 (5)

The above equations (3) - (5) include the possible values for the reduced invariants in
question. These specifications are consistent with those of Table I
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When we presently speak about invariants of all-benzenoids in general terms, then
the reduced invariants are included.

RELATIONS BETWEEN INVARIANTS

Connections between the six main (not reduced) invariants (cf. Table I) for ben-
zenoids are well known.5%!7 Any pair of them, except (n., s), for which n, = 2s - 6,
represents two independent invariants. Each of the other invariants can be expressed
linearly in terms of the two invariants from such a pair.

Corresponding expressions are readily obtained, of course, for all-benzenoids when the
reduced invariants are taken into account. Table II shows a collection of relations for
(reduced) invariants in terms of selected pairs of quantities taken among the reduced
invariants with A included.

TABLE I

Invariants of all-benzenoids and their possible values

Symbol Possible integer value
h 1,54,:6;7,8:95.;
n =6y 6, 18, 24, 30, 36,...

6, 21, 29, 36,37, 44,45,
51,52,53,54, 59,60,61,62,

L 66,67,68,69,70, 74,75,76,77,78,79,
81,82,83,84,85,86,87, 89,90,91,92,...
n; = 2vi 0,:2, 4, 6.
Ne = 4ve+2 6;.18.:-22,-26,230;
s = 20 6, 12214 216,18,
TABLE II
Relations for invariants of all-benzenoids
(Reduced) (h,v) (h, ve)
invariant W, i) ¥, 0)
A h h
(1/2)(3v+v;—1) v—o+1
(1/3)(2h—v; +1) (1/3)(h+ve+1)
£ v v
5h—2v;+1 3h+2v.+1
i (1/2)(15v+v;—3) W—g
v; Vi h—v,
¢ Vi 3v—20+3
= h—v; Ve
2 (1/2)(3v—v;—1) o—2
h—v;+2 Vet+2
o

(1/2)(3v—v;+3) o
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Figure 1 shows a benzenoid (C4H,3), well known to organic chemists as hexaben-
zolbc,ef,hi,kl,no,qrlcoronene and also studied by mathematical chemists as a chemical
graph. The system has: h = 13,v = 7, m = 54,v; = 6, v, = 7,0 = 9.

FULL AND EMPTY HEXAGONS

Definitions and Relations

The notions of full and empty hexagons are specific for all-benzenoids.® Already
Polansky and Rouvray, in the cited reference® pointed out that the number of full
hexagons is n/6, viz. equal to the reduced invariant that we call v. Let us also introduce
a symbol for the number of empty hexagons so that we have altogether:

v = # full hexagons; ¢ = # empty hexagons.

All positive integer values, in addition to ¢ = 0 for benzene, are possible for all-
benzenoids. One has

h=v+e; 20 (6)

Full hexagons may be identified as the aromatic sextets in 2 Kekulé (valence) struc-
tures. They are usually indicated by circles in the appropriate hexagons; see, e.g., Fig-
ure 1. This particular example (hexabenzo[bc,ef,hi,kl,no,qrlcoronene) hasv = 7, ¢ = 6.

Numbers v and ¢ constitute a pair of independent invariants (v, ¢) for all-benzenoids.
Thus, all the other invariants considered above can be expressed linearly in terms of
the pair (v, ¢) or other pairs containing e. Table III shows a selection of such relations.
They are consistent with Eq. (6) and with!'® ¢ = (1/4)2v + n; — 2).

Extremal All-Benzenoid

To every extremal benzenoid A, except for naphthalene, a unique all-benzenoid S
can be constructed. If A has h(A) hexagons and n;(A) internal vertices, then S should
have h(A) full hexagons (v) and n;(A) empty hexagons (¢). The v full hexagons should
be arranged in the same way as the h(A) hexagons in the initial benzenoid. This is
the one-to-one correspondence between the extremal benzenoids and certain all-ben-
zenoids which was described by Dias.!%®:15® It is said that the all-benzenoid S is as-

Figure 1. A fully benzenoid hydrocarbon C4oHjg or an all-benzenoid system with A = 13, n =
42, m = 54,n; = 12, n, = 30,s = 18.
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sociated with A.15:15@ As an example, the system of Figure 1 is associated with coronene:
the 7 hexagons and 6 internal vertices of coronene match the 7 full hexagons and 6
empty hexagons, respectively, of hexabenzo[bc ef,hi,kl,no,qrlcoronene. An all-benzenoid
which is associated with an extremal benzenoid is called an extremal all-benzenoid.
Also, as a degenerate case, the non-benzenoid biphenyl is usually said to be associated
with naphthalene. It should be noted that the extremal all-benzenoids, except benzene
(which is associated with benzene), are not extremal benzenoids.

An extremal benzenoid is defined as having the maximum number of internal ver-
tices (n;) for a given number of hexagons (h),n; = (n)n«(h), and the expression for this
maximum is known:'%18 (n;)(h) = 2 + 1 - [(12h - 3)V/2].

From the above considerations it can be deduced by analogy that
emax®) = 2v. + 1 =[@2h=3)12): (7

It is reasonable to assume that Eq. (7) applies to all-benzenoids in general. Hence, an
extremal all-benzenoid can also be defined as having the maximum number of empty
hexagons (¢) for a given number of full hexagons (v). This maximum is given by Eq. (7).

From (7), since ¢ < ep,,, it is obtained

v —¢+ 1=z [(12v - 3)V/7] . (8)

Since [ (12v-3)1/%] = (12v — 3)!/2, it follows that

—¢+ 1= (12v - 3)V/2 . 9

Furthermore,
v —e+ 12 =12 -3, (10)
-4 + 2w + (-2%=20. 1y

Herefrom, the sign of equality gives
ve = (1/2) (¢ + 2 % 61/2:1/2) | (12)

Consequently, v = v, orv < v_. However, the solution with v_ can be ruled out because
v > (1/2)(e +2). This fact emerges from Eq. (8) when it is observed that [(12v — 3)1/2] >
2. As a net result one obtains the minimum number of full hexagons (v) for a given
number of empty hexagons (e) as:

Vmin(e) = [(1/2)(e + 2 + 6'7212] = 1 + [(1/2) (¢ + 61/21/2)] . (13)

This relation is consistent with v = v,, but does not follow immediately from it. How-
ever, a closer inspection verified the correctness of (13).
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Upper and Lower Bounds for v and ¢

The analysis of the preceding section gives the upper bound of ¢ in terms of v and
the lower bound of v in terms of ¢ for all-benzenoids. It is also of interest to determine
the lower bound of ¢ and the upper bound of ».

The lower bound of ¢ for a given value of v is realized in catacondensed systems
(n; = v; = 0) when v is odd and in systems with two internal vertices (n; = 2, v; = 1)
when v is even. Elucidating examples are found in Figure 2. In general, one has (cf.
Table III)

e =(1/2) w +v; - 1). (14)

Now, in the former case (v odd) v; = 0 gives ey, = @ — 1)/2, while v; = 1 gives ey =
v/2 in the latter case (v even). Altogether:

emin(v) = L'V/?«_l (15)
The upper bound of v for a given ¢ is obtained quite straightforwardly: v, is realized
in the catacondensed systems (see the left-hand part of Figure 2 for an example) for
every ¢ value. From Table III or Eq. (14) one has now

v=2e-v; +1 (16)
which for v; = 0 gives

Vmax(e) = 28 + 1. (17)

The findings of the two preceding sections are summarized in the following ine-
qualities for all-benzenoids.

¥/2] se=<2v + 1- [(120-3)'/%] (18)

Figure 2. Two all-benzenoids with the minimum number of empty hexagons, eni,(v) = 4, for the
given numbers of full hexagons. In the left-hand system, v (the number of full hexagons) = 9,
while v = 8 in the right-hand system.
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[(1/2)( + 2 + 6Y/%1/2)] =v <2 + 1 (19)

Here, as well as in all inequalities of this type in subsequent sections, the upper and
lower bounds are always realized for all-benzenoids. In the present cases of Egs. (18)
and (19), also all intermediate values, between an upper and a lower bound, are real-
ized (in steps of one unit) among the all-benzenoids.

Other Inequalities in Terms of v and e

Inequalities of type (18) are readily obtained for all the other invariants considered
here. One only has to substitute ¢ by the appropriate expression in terms of v and the
invariant in question. The expressions are easily found from Table IIl. The resulting
inequalities for h, m, v;, v. and o are listed in Table IV. Here, a small complication
occurs for v; since 2¢ = v; + v — 1. Hence, (18) should first be multiplied by 2 throughout,
and then 2¢ should be inserted. Again, the upper and lower bounds, viz. (v;)n.(®) and
(dmin(v), are always realized in all-benzenoids (cf. also above). But, now one has
dmax®) = ()min) (mod 2), and the possible intermediate values of v; should be
taken in steps of 2 units. This is indicated in Table IV by number 2 in the column
labelled Interval. Example: for v = 8, 1 < v; < 7; the possible values are v; = 1, 3, 5, 7.

The inequalities for o in terms of v (see Table IV) were deduced previously'®® using
a somewhat different approach from that of the present work.

The inequalities in terms of ¢ listed in Table IV were obtained from (19) in a quite
analogous way as those of v. For m in particular (number 7 under Interval), one has
Muax(€) = Mpin(e) (mod 7), and the intermediate m values should be taken in steps of
7 units. Example: for ¢ = 4, 45 < m < 66; the possible values are m = 45, 52, 59, 66.

TABLE III

Relations for all-benzenoid invariants which include
the number of empty hexagons (&)

(Reduced) (h, &) ,¢€)
invariant (&, vi) (¢,0)
h h v+e
3e—v+1 (1/2)(3e+0—1)
h—¢ v
ke 2e—v;+1 (1/2)(e+0—1)
Th—6e—1 Tv+e—1
L 156—Tv;+6 (1/2)(9e+70—9)
- 3e—h+1 2e—v+1
< Vi (1/2)(3e—0+3)
2h—3e—-1 v—e—1
Ve 3e—2w;+1 g—2
- 2h—3e+1 v—e+1

3e—2v;+3 a
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TABLE IV

Invariants of all-benzenoids in terms of v and ¢ see also Eq. (18) and Eq. (19)

Inequalities Interval

v+ [v/2] < h < 3v+1-[(120-3)1/2] 1
Tv-1+ |v/2] = m < Y-[(12v-3)1/2]
1v+2|v/2] <v; < 3v+3-2[(12v-3)1/2]
[(12v-3)1/2]-2 < v, < 2v-1-|v/2]
[12v-3)1/2] < 0 < w+1-|v/2]

—

- =N

e+ [(1/2)(e+2+61/261/2)] < h < 3e+1
[(1/2)(e +2+61/2e1/2)] < v < 2e+1
e+6+7[(1/2)(e+61/2¢1/2)] < m < 15646
0 <v; < 2e-[(1/2)(e+61/2£1/2)]
1-e+2[(1/2)(e+6Y/2¢1/2)] < v, < 3e+1
3-e+2[(1/2)(e+61/261/2)] < 0 < 3643

N N = = e

INEQUALITIES IN TERMS OF INVARIANTS OTHER THAN v AND ¢

Introductory Remarks

It is of interest to deduce inequalities of type (18) and (19) for the invariants of
all-benzenoids as functions of other variables than v and . Assume that we have found
such inequalities for a certain invariant in terms of another invariant, for instance
Ymin(h) < v < vy(h). Then, the upper and lower bounds for all the other invariants
(different from v) are easily obtained as functions of h by means of the known rela-
tions between the different invariants (Tables II and III). The methods are basically
the same as described above for the functions of v and ¢. Therefore, it should not be
necessary to go into details on the derivations of most of the results in the following.

Functions of h

The inequalities for v in terms of h are given at the top of Table V. Throughout
this table, particular invariants (as v in the present case) are chosen so that the in-
tervals, in the sense of Table IV are constantly 1.

The upper bound v, (h) was found through ;)ni(h) € {0, 1, 2}. Let h, € {0, 1, 2}
be defined by
ho = h - 3|h/3] (20)
Then
Wdmin(h) = 2k, + 1 - 3j 21

where
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TABLE V

Inequalities for selected invariants of all—benzenoids in terms
of h, m, v;, v, and o (Intervals equal 1 throughout)

[(1/3)[h+1+(4r-3)1/2]] <v < 2|h/3] + |(1/2)(h+1-3|h/3])]
[(1/21)[3m+2+ (12m-23)1/2]] < »
v < 2|m/15] + [(1/8)(m+2-15|m/15])|
[(1/3)[2v;+1+ Wi+ DY2]< & < oo
Vet 1-[(1/3) W, +2)| = v < [(1/12)w@+4v+7)]
o-1-|0/3] = v =< |(1/12)(62+3)]

J = L/2)(¢, + 1. 22)
The net result is
Wdmin = 2h + 1 -6|h/3] - 3(1/2)(h + 1~ 31h/3])] (23)

Then, simply viya(h) = (1/3)[2h + 1 — @;)mi], which gives the expression of Table V.
In this expression, as well as in Eq. (23), it is seen that a floor function inside another
floor function occurs. This feature is not present in the equivalent expression below.

Ymah) = [(2/3)(h + D] + [1/3)h + 1)] - L@/3)@x + ] -1 (24)
For the sake of completeness, we give here the inequalities for v; in terms of h:
(Vdmin < v;i < 2h + 1-3[(1/3)[h + 1 + (4h + 3)!/2]] (25)

In this case V)mux(h) = @)min(h) (mod 2); the interval is 2, which is to say that the
intermediate values of v; should be taken in steps of 2 units.

Functions of m

Table V includes the inequalities for v in terms of m. Here, the upper bound
Ymax(m) was found through @)pyin(m) € {0, 1, 2, ---, 14}. An analysis corresponding
to the one for (1;)pi,(h) led to

@dmin(m) = 2m, + 3 - 15 (26)
where
m, = m - 15|m/15| 27
and

J = LB (m, + 2)]. (28)
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The net result is @;)nin(m) = 2m + 3 — 15v,,(m), where the last function (v, is
found in Table V. For the upper and lower bounds of v; one has (v))u(m) = @) min(m)

(mod 15), and for a given m the possible v; values between these bounds should be
taken in steps of 15 units.

It appears that the m value in many cases determines all the other invariants of
an all-benzenoid. Firstly, this is the case for all m < 96. The smallest m value that is
compatible with more than one value for one of the other invariants is 96. In this case,
v =12t =13)orv = 13 (h = 6).

Functions of v;

For given values of »; the invariant ¢ has no upper bound, as indicated in Table
V. This is also true of all the other invariants of interest.

Functions of v, and o

Finally, in Table V, the inequalities for v in terms of v, and of o are given. The
inherent upper and lower bounds in the latter case, viz. v, (o) and vpi,(o), have been
published previously.!5©

CONCLUSION

The studies of upper and lower bounds for invariants in benzenoids were initiated
by Harary and Harborth!® and pursued in several later works.®!%19 In the present work,
the corresponding problem for the important subclass of benzenoids called all-ben-
zenoids was tackled. A complete solution is presented inasmuch as the upper and lower
bounds of all the current invariants are accounted for as functions of any of these in-
variants, viz. h, n, m, n;, n,, s and ¢. For the sake of brevity, all versions of the per-
tinent inequalities have not been given, and many results have been formulated in
terms of certain reduced invariants (v, v;, v., o). However, all the desired versions of
inequalities in terms of the seven current invariants, which are listed above, are ac-
cessible from the reported formulas by simple substitutions. An illustrative example is
given below.

Stojmenovi¢ et al.?’ used n, (the perimeter length) as the leading parameter for
their computerized enumerations of benzenoids. For each n,, they found »empirically«
a range of h. The analytical expression of this range has not been given explicitly
before, but is easily obtained from the known formulas!® as:

[(1/9 (. - 2)] < h = |(1/48)(n2 + 12)] (29)

The corresponding inequalities for all-benzenoids are now found from the formula ap-
paratus of the present work with the result:

1/2)(n, + 2) - 3[(1/12)(n, + 6)] < h
h < 3((1/192)(n2 + 12n, + 84)| - (1/4)(n, + 2). (30)

Here, the intermediate values of h should be taken in steps of 3 units.
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SAZETAK
Potpuno benzenoidni sustavi: Algebra invarijanti
Sven J. Cyvin, Bjorg B. Cyvin, i Jon Brunvoll
Osim broja praznih i punih Sesterokuta u potpunim benzenoidima, prouc¢avane su i neke

recentne invarijante u tim sustavima. Specificirane su moguée vrijednosti i sustavno su navedene

veze medu ovim invarijantama. Za svaku invarijantu dane su gornje i donje ocjene u ovisnosti o
svakoj preostaloj invarijanti.
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