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A simple approach to the group-theoretical factorizing of the
Hamiltonian matrix of highly symmetrical molecules is presented.
This approach, which is based on the Lanczos method, requires
only a symmetry-adapted linear combination (SALC) for each cate-
gory of irreducible representation (IR) of the molecular point-
group, while it reduces the size of the problem by more than one
order of magnitude. We demonstrate the treatment by applying it
to the study of electronic structures of the Goldberg type-II fuller-
enes, Cgp, C150, C320, Cs00 and Cggg within the Hiickel tight-bind-
ing framework. The results, in terms of the factor characteristic
polynomial (or the subspectrum) for each category of irreducible
representation, are presented for these giant molecules.

INTRODUCTION

Stimulated by the experimental observation of Buckminsterfullerene!
and the spheroidal concentric graphitic structures,?? the energetics and con-
figurations of I,-symmetrical carbon cages (Goldberg type-I and type-II
fullerenes)*~” have been the focus of numerous theoretical investigations.54°
Among them, calculations®2° based on the Hiickel (tight-binding) molecular
orbital theory provide preliminary results for the topological analysis of
their stability.

The central theme of quantum mechanical calculations for a molecule is
known to be the determination of the eigenvalues and eigenvectors of its

* Author to whom correspondence should be addressed.



202 C. LIU ET AL.

Hamiltonian. With the Hiickel approximation, the Hamiltonian matrix is of
dimension N, the number of atoms. Consequently, when we are dealing with
giant molecules, for instances, C;9y and Cgg, direct diagonalization of the
Hiickel Hamiltonian matrix becomes unfavorable due to the limited capacity
of an ordinary computer. One of the traditional ways of reducing this diffi-
culty is to factorize (reduce) the Hamiltonian matrix into the block-diagonal
form and to solve the eigenproblem of smaller blocks.

Thus, the problem arises of how to factorize the Hamiltonian matrix in
an efficient way. There have been several solutions to this problem thus
far.19-29 In this work, we prefer a treatment based on the Lanczos method. Its
efficiency and facility will be illustrated by several giant Goldberg fullerenes.

APPROACH

First, let us give a brief review of the group factorization problem of the
Hamiltonian matrix within the Hiickel framework. Assume ¢; (¢ = 0, 1, ...N-1)
are the basis functions for the molecule under consideration. The Hamil-
tonian matrix will be of dimension N and the matrix elements are

Hy=@; | Hp) . 1)

The basis functions {¢;} span a reducible representation space of the Hamil-
tonian, which decomposes to a sum of irreducible representations

h
r=ey f.r, (2)

a=1
where I', stands for the a-th irreducible representation (IR) of the point
group and f, denotes its repetitive frequency, and the sum runs over the A
categories of IRs of the point group. The structure of I implies that, on
adopting a set of mutually-orthogonal symmetry-adapted linear combina-
tions of atomic orbitals (SALCs) as new basis functions, the Hamiltonian

matrix H decomposes into the direct sum of submatrices

h
H-0Y I, H, (3)

a=1

where [, is the dimensionality of the irreducible representation I', and H,
the corresponding Hamiltonian submatrix of order f,. At the same time, the
secular determinant of the molecule, det(x/-H), is factorized in the following
manner
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h h
det(xI-H) = 1 [detxI, - H ) =11 [P )] . 4)

a=1 a=1

It is obvious that the f, roots of the a-th sub-determinant equation
P,(x)=det (x[,~H) =0 (5)

will make up the subspectrum for IR I', and each of the roots will be /_-de-
generate in the entire molecular energy spectrum.

Now, it is clear that the essential step to attain the factorization de-
scribed by Eg. (3) or (4) is to find a complete set of SALCs to be employed
as new basis functions. As far as we know, constructing all the SALCs re-
quired for the factorization has been a somewhat cumbersome task in the
case of highly symmetrical giant molecules, either through the linear com-
binations of the spherical harmonics*~*3 or by utilizing the complete projec-
tion operator technique.** However, as it will be seen in this paper, if one
applies the Lanczos method,*¢ all the SALCs required can be easily gen-
erated in a recursive way. As a result, the Hamiltonain matrix will be read-
ily factorized.

As we know, the Lanczos method can be applied to the tridiagonalization
of the Hamiltonian matrix. It begins with an arbitrary starting state u,, ren-
dering a set of mutually orthogonal states {u;} through the following recur-
sive process. The first of the states u; is derived as follows,

u1=Huo—a0 Uy (6)

where coefficient a, can be determined in accordance with the orthogonality
condition, i.e. (u;fu;) = 0, for i #j. So we have

_ (wolHluo)
T (uolug)

(7

The second and the subsequent states are constructed one by one by the re-
cursion formula

Uy, = Huy — apuy — byuy (8)

where coefficients a;, b, are determined by

_ wHluy) _ (wp|Hluy)

= =" 7 9
iy F T g ©)
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The recursion process will terminate at some step when u, = 0. In this
way, one obtains a set of states {x;}. In quantum mechanics, one prefers the
normalized states defined as

Up,

{lk)} = (10)

(uglug)®

In terms of this new orthogonal set {|k)}, the Hamiltonian matrix corre-
sponds to a tridiagonal form, where only the diagonals and their nearest
neighboring entries are not equal to zero, i.e.,

H__=(mlHm)= <u’"_IH|L_‘_’”_> =a (11)
mm Wy —
<um-llIilum> 1
= = _ = - /2
Hm—l,m Hm, m-1 <m 1|H|m> (um_llum_1>]/2 (umlum>l/2 bm (12)
H, =0 if m-m'|>1. (13)

Moreover, it can be easily proved that the above transformation process pre-
serves the symmetry of the starting state, i.e. if 4 is a SALC of irreducible
representation I, the derived states uy, uy,...., &, are also SALC belonging
to the same row of irreducible representation I',. In this way, the Lanczos
method can be generally applied to deriving f, SALCs belonging to the same
row of irreducible representation, I,

Now, this approach for the group-theoretical factorizing of the Hamil-
tonian can be better summarized as a three-step scheme:

(1) Construct a SALC for each category of irreducible representation;

(2) For each category of irreducible representation I",, use the corre-
sponding SALC as the starting state to start the recursive process, and de-
rive the other SALC belonging to the same row of irreducible representation,
evaluate the corresponding tridiagonal Hamiltonian submatrix H, of dimen-
sion f,. As a whole, the Hamiltonian matrix of the molecule falls into the
block-diagonal form as in Eq. (3).

(3) Solve the eigenproblem of each tridiagonal submatrix separately.

At this stage, the factor characteristic polynomials and, thus, the sub-
spectrum referring to each category of IR are obtained.
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Figure 1. Structural units of Goldberg type-II fullerenes.

TREATMENT OF GOLDBERG TYPE-II FULLERENES

In the 30's, Goldberg* noted a class of polyhedra possessing only triva-
lent vertices, and only pentagonal and hexagonal faces. He showed that
there are exactly twelve pentagons and that the remaining faces are hex-
agonal. The number of vertices of these polyhedrons, N, is given by 20(a? +
ab + b?), with a, b non-negative integers.>3 If a equals b (type-I, N = 60 £2)
or ab equals 0 (type-II, N = 20k?), the polyhedron will be of I, symmetry. If
carbon atoms are placed on the vertices of these polyhedrons, Goldberg
fullerenes result. In a topological sense, the carbon atoms of Goldberg fuller-
enes are distributed on the twenty triangles of a master icosahedron. In Fig-
ure 1, one of the triangles is depicted for six Goldberg type-II fullerenes,
Cogz (& = 2,3,...7).

0 ¢ 99

Figure 2. Repeat units of Goldberg type-II fullerenes (each repeat unit is made up
of two neighboring structural units).
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Resulting from the S;, subgroup symmetry of these molecules, a frag-
ment with 2k2 carbon atoms (see Figure 2) can be regarded as the repeat
unit for Cyg2, and the carbon atoms can be labelled in a circulant way so

that the Hiickel Hamiltonian matrix is a circulant matrix?™*° as follows:

UV WO0OO0O0 0 0 Wwr've

ViU vVW®O0OGO0O0 0 0w
wrviuvwaoo®OoOoOOo

OWrviu vweo®oG®OoOo

0O OWIVI U VWO0O0 0

H=ly 0 owWIVIU VWO o0 il

0 00 OWIVIU VWO

000 0 0WVIUV W
WoOoOUOGOOoOWViUYV
VWO0OO0OO0OO0 O0OWViyU

where U, V, W, VT, WT are all of dimension 2k2, U describes the internal
connectivity in the repeat unit in Figure 2, V and W describe the connectiv-
ity between the neighboring repeat units, and VT, WT are their transposes.

It can be easily proved that this representative of the Hamiltonian is a
reducible one with respect to I, group, decomposing according to the follow-
ing formula

k2 + 3k + 25), gms; k2 -k k2 -k 2k? + 8 3ma1

5k2+3k_25k,3mi1H @k2_3k+25k,37ni'1A @k2+k

6 g 6 u 2 Tlu (15)
k2 +k 2k% + 5}, 3ms1 5k% — 3k — 25}, 3ma1
® = Ty, ® —5-"G, . .

The repetitive frequencies of IRs in Eq. (15), which depend on %, are col-
lected up to £ < 7 in Table I. One may notice that the A, irreducible repre-
sentation doesn't appear in Cgy and C,gy, but does appear one or more times
in Cgyy and larger cages.

Now, we apply the approach, described in the last section, to the factori-
zation of the Hamiltonian matrix for these fullerene molecules. In a previous
work?® by using the projection operator technique, we constructed a set of
SALCs as starting states for the nine IRs occurring in Cg, which are con-
tributed by the sixty equivalent atomic orbitals on 12 pentagons. These
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TABLE 1

Repetitive frequencies of irreducible representations for Goldberg type-II fullere-
nes within the Hiickel tight-binding approximation

k N (=20k%) A, Ty Toe G, Hy A, T1, To, G, H,
9 80 2 1 1 3 4 0 3 3 3 2
3 180 3 3 3 6 9 0 6 6 6 6
4 320 5 6 6 11 15 1 10 10 1 1
5 500 7 10 10 17 23 2 15 15 17 18
6 720 9 15 15 24 33 3 21 21 24 27
7 980 12 21 21 33 44 5 28 28 33 37

starting states can be also applied to higher members of Cyy2 due to the
structural similarity, that is, the sixty atoms on the 12 pentagons of these
cages are also equivalent and distributed analogously on an icosahedron (see
Figure 1.). As a result, similar SALCs can be constructed as the starting
states for any higher member of Cyy2 which are also linear combinations
of atomic orbitals on pentagons, with the same coefficients of SALCs of Cg,
which were tabulated in ref. 28. The starting state for A, which appears in
Csq0 and larger ones can also be constructed with the 120 atoms which are

TABLE II

Factor characteristic polynomials (FCPs) of Cgy and their related eigenvalues

IR FCPs Eigenvalues
A, x®-2x-3 3, -1
1-+5
T 0.618
g X+ 5 61

Tog £+ 4'2‘/5 -1.618

G, Bra?-dx+1 1.377, 0.274, -2.651

H, xt-x®-6x2+38x+7 2.473, 1.463, -1, -1.935
3+5 9-+5

Ty, e ; x4 - B+ — 2.818, 1, —1.200
3-5 9+V5

Ty, 23— 4+ B+ +2 2.081, 1, -2.699

G 2 +x2-4x-3 1.912, -0.714, -2.199

H, rx-1 0.618, -1.618
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Factor characteristic polynomials (FCPs) of Cygy and their related eigenvalues

IR FCPs Eigenvalues
A, x%-3x2-3x+9 3, 1.732, -1.732
3-v5, 3+V6 3-45
Tyg T e T 1.514, -0.144, -1.752
3+V65, 3-V5 3++5
Tyq B - - 0.916, -1.251, —2.283
6.5 aub_ .3 9 ~ 2.202, 1.475, 0.737,
Gy x° + x° — 9x* — 5x° + 20x + 6x — 11 _1.078, —1.508, —2.828
. a9 — 268 — 127 + 2245 + 44x° 2.762, 2.270, 1.551, 1, 0.595,
g — 72x* - 53x3 + 75x2 + 18x - 21 -0.698, —1.099, —1.913, —2.470
3+45 21+ 5V5
6 _ 5_(q_ 4 L2279V 3
r o \/_x © - Byt + = \jx_ 2.919, 1.980, 1.269 —0.067,
lu 41-9V5 23 - 95 -1.386, —2.098
+ =gt = (144 3B - =
3-5 21-5V5
6 _ 5 _ 4 4279 3
T x 2\/_" @+ VBt + — \/’i 2.569, 1.889, 1.157, —0.920,
u 41+ 95 23+ 9V5 -1.464, —2.849
T - (14 3B - T
6. .5 od .8 9 _ 2.503, 1.123, 0.724, —0.940,
G, x°+x°—9x* — Tx° + 18x“ + 6x - 9 21799, —2.613
1.864, 1.162, 0.512, —0.817
6, 25 _@rd_ 4.3 2 _ 5 , . s
H, x°+x° - 6x* —4x° +9x*+3x -3 Z1.465, —2.957

the second nearest neighbors with respect to the pentagons by the projection
operator technique.

Due to the circulant property of the Hamiltonian matrix (see Eq. (14)),
only smaller matrices U, V, W and their transposes will be used in the fac-
torization. On the other hand, as indicated in Table I, the dimension of the
resulting Hamiltonian submatrices will be no larger than %2 (one twentieth
of the dimension of the Hamiltonian matrix). Therefore, this approach re-
duces the size of the problem by more than one order of magnitude. In re-
ality, it takes only several minutes to attain the factorization for giant mole-
cules such as Cyyy and Cggy on a PC 486/33. In Tables II-IV, the factor
characteristic polynomials (FCPs) in analytical form and their related eigen-
values are presented for Cgy, Cig0 and Cggp; While for the other three Gold-
berg type-II fullerenes, the subspectra instead of FCPs are given to save
space.
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TABLE IV

Factor characteristic polynomials (FCPs) of Cggy and their related eigenvalues

IR FCPs Eigenvalues
A, x° - 3w - 6c® + 18 + 5x - 15 3,2.236, 1, -1, -2.236
3- \/5 11+ V5,
6 _ 3
Tig T 2 - B2 2.122, 1, 0.765,
17 +5 , 9- \/‘ -0.708, —1.305, —2.256
%%+ (5 - 2B - ——
3+ x/‘ - V5,
6 _ 3
o Ty s, g -6+ 2://__)" 1.559, 1, 0.575,
17~ 9 -1.285, —1.898, -2.570
+ 24+ (5+2VB) — z
2.538, 2.083, 1.555,
Gy 211 4+ 210 — 16x° — 1348 + 897 + 5946 1.122, 0.740, —0.281,
- 211x5 - 111x* + 207x3 + 84x2 — 65x — 20 -0.806, -1.226, -1.772,
-2.054, —2.898
2.866, 2.579, 2.120,
I 15 4 214 — 2213 4 41512 4 190x11 - 323410 1.669, 1.541, 1.150, 1,
g - 834x% + 125548 + 2020x7 — 25795 — 271645 0.331, -0.784, -1,
+2767x* + 1887x3 — 13982 — 526x + 239 -1.216, -1.491, -1.736,
-2.341, —2.689
Ay x+1 -1
5+V5 , 27-3V5
%10 +2 19 = TS0 (33 + VBN
Tw ; +2 X5 (99-59Bt 1264, 1, 0.578, -1,
-1.054, —1.992, —2.473
147 - 1535 41-65V5 ’ ’
+ (208 + 105V5)x3 + —2—12 -101x - B
5- \/5 274+3\5 ¢
%102 +2 8+ (33 — 5VB)"

S5 (99 + 59VB)ct 1.438, 1, -0.632, 1,

2 2
-1.471, -1.998, -2.910
147 + 153V5 41+ 65V5 ’ ’
+ (208 — 105vB)® + _+2_x2 ~101x - —"}—
2.717, 1.817, 1.342,
G, a4 210~ 1629 — 1348 + 89%7 + 5148 1.279, 0.710, 0.148,
- 2195 - 71x% + 239x3 + 2042 — 89x + 12 -0.925, -1.458, -1.587,
-2.271, -2.774
_ 2.335, 1.844, 1.254,
H, xt + 2010 - 12x9 — 2348 + 49x7 + 89«6 0.883, 0.689, -0.466,
— 84x5 — 140x* + 63x3 + 88x2 — 18x ~ 17 -1, -1.286, -1.646,

-2.056, -2.552
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Figure 3. Hiickel subspectra of Csoo.
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Figure 4. Hiickel subspectra of C720.
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Figure 5. Hiickel subspectra of Cggo.

DISCUSSION AND CONCLUSION

From the calculations in the last section, it is quite clear that upon util-
izing the Lanczos method, a series of Symmetry-adapted Linear Combina-
tions (SALCs) can be generated recursively from one SALC, and thus the
Hiickel Hamiltonian matrix of a highly symmetrical molecule can easily be
group factorized into a direct sum of the smallest submatrices. Therefore,
in this paper, we have suggested a simple but efficient approach for solving
the Hiickel eigenvalue problem for highly symmetrical molecules.

To our knowledge, besides this approach, there have already been sev-
eral other approaches dealing with the Hiickel eigenvalue problem of fuller-
enes: the direct diagonalization of the Hamiltonian matrix; reducing the
molecule into subsystems by the use of its Z, or S0 symmetry;'"-22 deriving
the characteristic polynomial referring to each irreducible representation on
the basis of the character table and the multiplication table,?® and so on.
We notice that the approach advanced by Lin and Nori?*26 also employs the
Lanczos method. The chief difference between our work and theirs lies in
the choice of the starting state. Our choice emphasizes the symmetry of the
starting state in order to attain idealized factorization rendering maximum
analytical results. It seems to us that the approach in this work may have
a wider application and can be applied to other quantum chemical problems.

Acknowledgements. — This work is supported by China NSF.
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SAZETAK

Faktorizacija matrice Hiickelova hamiltoniana
za visoko simetri¢éne molekule

Chungen Liu, Yihan Shao i Yuansheng Yiang

Prikazan je jednostavan pristup faktorizaciji matrice hamiltoniana visoko sime-

triénih molekula s pomoéu teorije grupa. Postupak, zasnovan na Lanczosovoj metodi,
zahtijeva samo simetrijski prilagodenu linearnu kombinaciju (SALC) za svaku ka-
tegoriju ireducibilne reprezentacije (IR) molekulske grupe, a smanjuje velié¢inu pro-
blema za viSe od jednog reda veli¢ine. Primjena tog postupka prikazana je u
proucavanju elektronske strukture Goldbergovih fullerena II. tipa: Cgo, C180, Cs20,
Cs500, C720 1 Cogo, unutar Hiickelove koncepcije jake veze. Rezultati za ove velike mo-
lekule prikazani su kao faktori karaktertistiénog polinoma (odnosno podspektri) za
svaku kategoriju ireducibilne reprezentacije.
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