CROATICA CHEMICA ACTA CCACAA 70 (3) 873-882 (1997)

ISSN-0011-1643
CCA-2461 Original Scientific Paper

Compiling an Adjacency Matrix of an Arbitrary
Structure

E. C. Kirby

Resource Use Institute, 14 Lower Oakfield, Pitlochry, Perthshire PH16 5DS,
Scotland UK.

Received August 19, 1996; revised April 28, 1997; accepted May 5, 1997

An experimental project on which work continues intermittently is
the development of an interactive Personal-Computer program to
assist in the capture of connectivity information about an arbitrary
chemical graph of moderate size. (By arbitrary we mean one that
does not fall, or is not recognized as falling, into a class which has
useful symmetries or easily applicable analytic formulae to provide
short cuts.) The approach is to deal with a graphics-screen image
using a small set of tools, in the hope of being able to obtain a con-
nection table faster and with a smaller risk of errors than by man-
ual methods alone. It is applicable both to planar structures and
to non-planar ones that have been cut to give a 2D representation.

INTRODUCTION

A chemical graph with N vertices is defined and represented as a list of
connections between pairs of its vertices, so that if, as is common practice,
the vertices are labelled with integers within the range 1-N, assigned in a
unique although sometimes arbitrary manner, then a concise form is an N
x 3 integer matrix (for a regular graph of degree-3). Here, in the i?* row will
be the three entries jj, jy, j3, these being labels of the vertices adjacent to
vertex i. The same information can be given by restricting entries j, to those
cases where i < j,, but this saves only a little computer memory and makes
searching more difficult. This table can obviously be entered manually, edge
by edge, from a keyboard, but various short cuts may be deployed. One tech-
nique we have used extensively! is to automatically set up the table for a
linear chain of the same size, and then make or break connections as nec-



874 E. C. KIRBY

essary to derive the required structure. Such a procedure works best if the
structure of interest is path-Hamiltonian.

The adjacency matrix is a square matrix A, where each element a; jis 1
if vertex; and vertex; are connected (i.e. adjacent) or O otherwise. (Actually
n! different but equivalent matrices for any graph are possible, correspond-
ing to different labellings.) It plays a fundamantal role in chemical graph
theory; for example, its eigenvalues may be taken as energy levels within
Hiickel Theory; it is used for some structure encoding techniques; and nu-
merous so-called topological indices relating chemico-physical properties to
connectivity are based upon it.2

‘An-active computer screen showing an image consists of a rectangular
array of pixéls— small areas of the screen which may be 'on' or 'off', and
which if 'on' are emitting light of a particular hue (produced by combining
primary colours from the electron guns in suitable proportion). A number of
different physical standards are in use, dating from the various stages of
commercial development and hardware evolution. At the present time a
typical (not the best) display device for a popular personal computer (PC)
is the 'VGA' graphics screen. In graphics mode this shows 640 x 480 pixels,
each one of which may in principle show one of many colours, although for
present purposes a palette of 16 colours is more than sufficient. Colour is
not essential to the depiction of a chemical graph, although, as will be seen,
it is very useful for aiding machine recognition if constituent parts of dia-
grams are rendered in different colours. (Note that we are not here making
use of the action of »colouring« in the graph-theoretical sense to partition
vertices or edges into two classes where no two members of the same class
are adjacent.?)

So far, so good, and, apart from the existence of graphics screen stand-
ards other than VGA (the usual difference from a software point of view be-
ing in the number of pixels used), the parameters needed to describe an im-
age that is being shown on a computer screen are relatively straightforward.
If we turn our attention to stored images on diskette, however, the picture
is far more complicated. Because of competing commercial standards, and
the need for data compression (graphics data are notoriously bulky, and
sparse in terms of significant bits), a variety of encoding formats has arisen.
Among the more popular image file types in use are TIF, GIF, PCX, JIPG,
the acronyms (unimportant here) indicating the type of coding used. Many
of these are further subdivided into different version numbers, as different
compression algorithms have been developed.

There is a broad division between methods which simply store the array
of pixel values (or a compressed set from which the array can be recovered
with a decoding algorithm), essential for the more complex photographic
type of image — and those which store a set of vectors and can be used for
the simpler type of line drawing programs. In principle, this latter kind



COMPILING AN ADJACENCY MATRIX OF AN ARBITRARY STRUCTURE 875

could obviously be extended to encompass chemical graph information. How-
ever, besides the technical and legal difficulties of understanding and modi-
fying an existing drawing program, it is highly desirable that any kind of
image, including a free-hand drawing scanned into a computer, should be
usable. It was therefore decided at an early stage that the program to be
developed should use only an image already displayed on screen, from what-
ever source, as its input.

THE PROGRAM STRUCTURE IN SUMMARY

The ideal to be aimed at is a machine algorithm that will accept a draw-
ing such as chemists commonly draw freehand, consisting of a line drawing
that does not even show atoms or vertices; these being implicitly assumed
to be wherever a line ends or two or more lines meet. Such a computer pro-
gram should place vertices correctly, label them, list the connections and
print out or file a connection table.

Not surprisingly, any rigid insistence of these goals is unrealistic if the
program is to accept a useful variety of input formats. Consequently the
strategy has been to try to create a flexible program that mostly provides
more than one way to carry out each operation. Fully interactive or partially
automatic modes made be chosen, depending on the quality of the graphics
line drawing available. The simplest procedures are available when the
drawing consists of lines that are all vertical, horizontal, or at 45° to these,
and of one pixel width.

In operation the computer process followed is:

1. Provide a blank VGA graphics screen (»Screen 12«) with 640 x 460 pix-
els available for the chemical graph. The whole screen actually has 640 x
480 pixels, but for this program a top horizontal strip 20 pixels deep is re-
served in order to display one line of text. All messages and instructions are
displayed here.

2. Load a screen image of a chemical graph, as a white line drawing.

3. Place vertices where any line ends, or where two or more lines meet.
In the most favourable cases this can be done automatically; in others vertices
are placed under Mouse control. As each vertex is encountered and marked
on-screen, it is assigned a label and is entered in the connection table.

4. Search for all pairs of connected vertices. For each connection found,
recolour the connection line to reflect this, and update the connection table.

5. Where necessary, mark pairs of vertices on screen as being identical,
and update the connection table accordingly. (This is necessary for certain
2D representations of 3-dimensional structures.)

6. Save a copy of the modified image together with its connection table.



876

In practice the

program consists of about fifty small procedures, grouped
together for operational purposes into eleven specialised toolkits which may
be selected in any order. These are shown in Figure 1, and some details

noted in the following section.

ISet the cursor size.J

. Load, Save, Save-As, Draw Image. |<

. Scan image and place vertices. |

: Edit vertices manually. l

. Scan image and make connections. |

: Edit connections manually. |

. Identify vertex pairs to make 3D structure. ]

: Edit screen at the pixel level. |

. Edit internal connection table. ]

: Edit line colours. |

: Compact and renumber connection table. |

: File a 3-column connection table for output.l >—o

Figure 1. The menu

The main operations that can be invoked from the program's main menu
are summarised below, the numbering and legends corresponding to those

of main program options available.

THE MENU OF PROGRAM TOOLS:

shown in Figure 1.



COMPILING AN ADJACENCY MATRIX OF AN ARBITRARY STRUCTURE 877

1. Load, Save, Save-As, Draw Image

Rudimentary line drawing tools are provided, mainly for effecting small
repairs, but more commonly a previously drawn or scanned-image is dis-
played, using a program (such as WordStar's Inset) which can be loaded as
a Terminate and Stay Resident (TSR) item. The image is then captured (by
the SAVE-AS command and stored, for the purposes of this program, in five
files. These are filename.GO1 - filename.G04, which contain, respectively,
blue, green, red and white component images; and filename DAT which con-
tains the raw connection table. This is more comprehensive than the final
connection table to be exported (see 8. and 11. below).

2. Scan image and place vertices

This unit allows the image to be scanned vertically, horizontally, diagonally
from top left to bottom right, and diagonally from bottom left to top right. Pixels
are examined line by line across the screen. Each one is labelled 1 if it has an
attribute equal to the draw colour, or 0 otherwise. Any sequence 1-0-1 in a line
is assumed to be at a conjunction of two lines (see Figure 3), and to be asso-
ciated with a vertex. So it is marked on screen, and an entry made in the con-
nection table. This routine is preceded by an option to restrict the scan to a
smaller section of the screen, but with the equipment used (see Appendix), it
was generally found that use of this option did not save time.

The automatic method works well for simple and smooth line drawings,
but is often useless for scanned images where lines may be thicker and have
indentations. In such cases, extra spurious vertices may be assigned. When
this happens, a vertex can be erased, but more often it is simpler to abandon
the image and start again with a fresh copy, avoiding one or more of the
automated sweeps and going straight to manual insertion.

3. Edit vertices manually

This allows precise positioning of vertices using a Mouse, with or with-
out the usual screen arrow cursor controls. The cursor consists of a square box
with a central cross-hair, and the program will refuse to assign a new vertex
if any other exists within the area displayed. It's default size is 25 x 25 pixels,
but this can be changed at the start of the program. A vertex is marked on
screen as a 5 x 5 square of magenta coloured pixels. The central pixel is the
one whose screen coordinates are tracked and used for identification.

4. Scan image and make connections

This is another automatic sweep (cf. 2, above), although in this case only
vertically from top to bottom. A sequence of pixel lines one cursor box width
apart are examined. Any pixels with the attribute of the drawing colour



878 E. C. KIRBY

which are encountered are assumed to belong to an edge, and a search is
made above and below. If this results in contact with two vertices, then
these are located in the connection table and connection entries made. Fi-
nally the drawn edge is painted in the 'edge colour' (cyan) so that the search
will not be repeated, and the rest of the pixel line examined. False positives
are fairly rare, but some existing connections are missed, for example be-
cause of an unnoticed gap in the drawing, or a bug in the edge-search rou-
tine. Such omissions must be completed manually.

5. Edit connections manually

Here again, vertices are located with the Mouse, and a sequence of clicks
will instruct the program to enter a connection. When the mouse is swept
over an image and encloses a vertex, it normally displays extra temporary
lines, and a statement at the top of the screen, to confirm which connections
are recorded for that vertex.

6. Identify vertex pairs to make 3D structure

This routine is most typically used to prepare the connection table for a
toroidal fullerene,* when a planar structure is treated as if it is folded over
and opposite edges fused to form first a cylinder, and then a torus. In the
simplest cases the structure is a near rectangle. This means that vertices
on the perimeter must be grouped into either pairs or triads which each rep-
resent a single 'real’ vertex. This identification is again effected with Mouse
clicks. Either pairs of individual vertices, or pairs of multi-vertex perimeter
sequences may be matched.

The selection of vertices to be identified, and the order in which processing
is done has not been automated in any way, and does require some care. As a
precaution against error, the program checks that every vertex is of degree-3
before it will allow a completed identifying operation to become permanent.

7. Edit screen at the pixel level

This is option enables a part of the image to be examined in fine detail,
and repaired or modified if necessary. A short sequence of pixel attributes
straddling the cursor position is displayed at the top of the screen, and these
can be changed one by one.

8. Edit the internal connection table

This gives access to the internal connection table by displaying it one line
at a time, at the top of the screen. When this table exists, it is filed as file-
spec.DAT whenever a SAVE or SAVE AS instruction is given under option 1.



COMPILING AN ADJACENCY MATRIX OF AN ARBITRARY STRUCTURE 879

The table itself contains seven columns of integers, and as many rows
as there are vertices displayed on screen. The seven columns are:

(1): A sequential label number, assigned automatically as vertices are
marked. A value of -1 indicates that in the graph itself (rather than in this
particular image) it is identical to another vertex; see (4) below.

(2) and (3): These give the screen coordinates (pixel count from the left
and from the top, respectively) of the central pixel of a marked vertex. This:
pair of numbers is what is used by the program to search for and identify
an existing vertex.

(4): This has a non-zero value only if this vertex has already been
marked as being identical to another one (see Option 6 above). In such a
case the value refers to the label (column 1) of the corresponding partner,
and its own first column is set to a value of —1.

(5),(6) and (7): These give the labels of the adjacent vertices. If all are
zero then either the edge assignment is incomplete, or the vertex is identical
to another — see (4) above — and has a label in the first column of —1.

9. Edit line colours

This is used to change the colour of connecting lines in the image, for
example, from draw-colour (white) to edge-colour (cyan) after making a man-
ual connection under option 5 above, or vice versa. It has no effect on the
internal connection table. The same thing is done automatically under Op-
tion 4 above.

The reason for using different colours for a drawn connection and an in-
stalled connection is (i) to provide a visual check on progress, and (ii) to enable
the program to recognize and ignore connections that have already been made.

At the time of writing, this routine is not fully bug-free, and occasionally
fails to follow a curved line to its end where it must abut a vertex. High
level language FILL' or 'PAINT' commands, which change the colour of all
contiguous pixels of existing like colour, are quite common, but we have not
fourid an easy way to access their reporting flags.

10. Compact and renumber connection table

This routine is only needed when vertices have been deleted, or identi-
fied with others. It could be made subject to automatic calls under other op-
tions, but was separated so that the labelling remains constant during proc-
essing until a conscious decision is made to consolidate it.

A call to this procedure simply renumbers consecutively the set of 'real’
vertices, (which has fewer than the original number if deletions have been
made, and fewer than are on-screen if identifications have been made), and
revises the whole table accordingly.



880 E. C. KIRBY

Figure 2. Stages in the processing of a line drawing: (a) image as input from a dra-
wing program; (b) image after an automatic vertical sweep to place vertices; (c) ima-
ge after manual completion of vertices, automatic recording of adjacencies and ma-
nual marking of identities (placing the cursor over one screen vertex of a pair brings
up another smaller one to show its partner vertex that has the same graph label;
and (d) the same stage with the cursor at another position, which again confirms
the adjacencies of one vertex, and that this part of the required folding over of the
structure has been done.

11. File a 3-column connection table for output

This prints or files (in ASCII alphabetic characters) a subset of the in-
ternal connection table, namely a 3-column matrix giving the connections for
each vertex with non-zero connections.

The file can be passed as input to other programs.

CONCLUSION

This paper has given a short description of the main features of the pro-
gram at this time. This is an ongoing development project rather than a fin-
ished and polished piece of software. Any specialised piece of software of sig-
nificant size and negligible commercial value requires a substantial investment
of programming time and effort, which is made in hopes of a continuing
'dividend' in the form of either previously inaccessible calculation results, or
a saving of routine work, or a reduction of error risk. Only the last two are



COMPILING AN ADJACENCY MATRIX OF AN ARBITRARY STRUCTURE 881

J

n

Figure 3. A magnified view of a small area of the screen where the tip of a hexagon
has been drawn (each square represents one screen pixel). The heavy lined square
shows the area that would be coloured as a vertex during a vertical sweep of the
vertex-finding routine. The screen coordinates of the central pixel (i,j) are stored and
the pair is used as the unique identifier of this vertex.

Figure 4. A typical result from scanning of a very rough pencil drawing. Most ver-
tices would need to be placed manually for this example, followed by a check to see
that all intended connections had been properly completed.

applicable to this program, and it will be some time before it 'pays its way'
in terms of effort saved. Nevertheless, work continues, as resources permit,
on gradual improvements.

APPENDIX

The system parameters used (not necessarily all system requirements)
are: PC with a 100 MHz 486 CPU, 20 MB of RAM, VGA screen and Track
ball. The operating system is DOS 6.22 (Use of Windows has, so far, been



882 E. C. KIRBY

avoided, in order to maximise available speed.), and program code was writ-
ten in PowerBasic Version 3.20 (PowerBasic Inc, Carmel, CA, USA). At the
time of writing the development program has about 3370 code statements,
and occupies about 115 KB of disk space in its compiled 'EXE' version.

REFERENCES

1. (a) E. C. Kirby, in: Graph Theory and Topology in Chemistry, R. B. King and D.
H. Rouvray (Eds.), University of Georgia, Athens, Georgia, USA — Studies in Phy-
sical and Theoretical Chemistry 51 (1987) 529, (Elsevier Science Publishers B. V.,
Amsterdam); (b) E. C. Kirby, J. Math. Chem. 1 (1987) 175.

2. See for example (a) Nenad Trinajstié Chemical Graph Theory, 2nd Edition, CRC
Press, Boca Raton, Florida, 1992; (b) Computational Graph Theory Dennis H.
Rouvray (Ed.), Nova Science Publishers, New York, 1990; (c) Sabljié and Horvatié,
J. Chem. Inf. Comput. Sci., 33 (1993) 292-295.

3. Robin J. Wilson and John J. Watkins, Graphs An Introductory Approach, John
Wiley & Sons, New York, Chichester, 1990.

4. (a) E. C. Kirby, R. B. Mallion, and P. Pollak, J. Chem. Soc. Faraday Trans. 89
(1993) 1945; (b) E. C. Kirby, Croat. Chem. Acta 66 (1993) 13; (c) E. C. Kirby, Ful-
lerene Science and Technology 2 (1994) 395.

SAZETAK
Izrac¢unavanje matrice susjedstva proizvoljne strukture
E. C. Kirby

Pokusni projekt na kojem se radi povremeno, jest razvoj interaktivnog programa
za osobno ra¢unalo koji bi olakS§ao dobivanje informacije o povezanosti u proizvolj-
nom kemijskom grafu srednje veli¢ine (pod »proizvoljnim grafom« podrazumijeva se
graf koji ne spada, ili za koji se moZe smatrati da ne spada, u klasu koja ima upo-
trebljive simetrije ili lako primjenljive analiti¢ke formule koje omoguéuju pojedno-
stavljenje). Pristup se temelji na upotrebi grafi¢kog prikaza uz primjenu malog sku-
pa alata, u nadi da ce se tablica povezanosti dobiti brZe i uz smanjenu opasnost od
pogresSaka nego u sluéaju samo ruénih metoda. Pristup se moZe primijeniti kako na
planarne tako i na neplanarne strukture koje su razrezane kako bi se svele na dvo-
dimenzijski prikaz.



	scan873
	scan874
	scan875
	scan876
	scan877
	scan878
	scan879
	scan880
	scan881
	scan882

