Original scientific paper Accepted 12. 11. 2014.

BORIS ODEHNAL

Distances and Central Projections

Distances and Central Projections

ABSTRACT

Given a point P in Euclidean space \mathbb{R}^3 we look for all points Q such that the length \overline{PQ} of the line segments PQ from P to Q equals the length of the central image of the segment. It turns out that for any fixed point P the set of all points Q is a quartic surface Φ . The quartic Φ carries a one-parameter family of circles, has two conical nodes, and intersects the image plane π along a proper line and the three-fold ideal line p_2 of π if we perform the projective closure of the Euclidean three-space. In the following we shall describe and analyze the surface Φ .

Key words: central projection, distance, principal line, distortion, circular section, quartic surface, conical node

MSC 2010: 51N20, 14H99, 70B99

Udaljenosti i centralna projekcija SAŽETAK

Za danu točku P u euklidskom prostoru \mathbb{R}^3 traže se sve točke Q takve da je duljina \overline{PQ} dužine PQ jednaka duljini njezine centralne projekcije. Pokazuje se da je za čvrstu točku P skup svih točaka Q kvartika Φ . Kvartika Φ sadrži jednoparametarsku familiju kružnica, ima dvije dvostruke točke, te siječe ravninu slike π po jednom pravom pravcu i tri puta brojanom idealnom pravcu p_2 ravnine π (promatra se projektivno proširenje trodimenzionalnog euklidskog prostora). U radu se opisuje i istražuje ploha Φ .

Ključne riječi: centralna projekcija, udaljenost, glavni pravac, distorzija, kružni presjek, kvartika, dvostruka točka

1 Introduction

It is well-known that segments on lines which are parallel to the image plane π or, equivalently, orthogonal to the fibres of an *orthogonal projection* have images of the same length, *i.e.*, they appear undistorted, see [1, 4, 5, 7]. The lines orthogonal to the fibres of an orthogonal projection are usually called *principal lines* and they are the only lines with undistorted images under this kind of projection.

In case of an *oblique parallel projection*, *i.e.*, the fibres of the projection are not orthogonal (and, of course, not parallel) to the image plane, the principal lines are still parallel to the image plane π . Nevertheless, there is a further class of principal lines in the case of a parallel projection $\iota : \mathbb{R}^3 \to \mathbb{R}^2$. As illustrated in Figure 1, we can see that in between the parallel fibres f_P and f_Q of two arbitrary points P and Q on a principal line $l \parallel \pi$ we can find a second segment emanating from P and ending at \widetilde{Q} with $\overline{PQ} = \overline{PQ} = \overline{P'Q'}$. (Here and in the following we write P' for the image point of P instead of $\iota(P)$.) In case of an orthogonal projection, we have $Q = \widetilde{Q}$, cf. Figure 1.

In both cases, the orthogonal projection and the oblique parallel projection, the principal lines are mapped *congruent* onto their images.

What about the central projection? Let $\kappa : \mathbb{R}^3 \setminus \{O\} \to \pi$ be the a central projection with center (eyepoint) *O* and image plane π . For the sake of simplicity, we shall write *P'* instead of $\kappa(P)$. Again the lines parallel to π serve as principal lines. Of course, the restriction $\kappa|_l$ of κ to a line $l \parallel \pi$ is a similarity mapping. The mapping $\kappa|_l$ is a congruent transformation if, and only if, $l \subset \pi$ because it is the identity in this case.

From Figure 2 we can easily guess that even in the case of central projections there are more line segments than

those in the image plane π having central images of the same length. Once we have chosen a point *P* on the fibre f_P through *P'* we can find up to two points Q, \tilde{Q} on the fibre f_Q through Q' such that $\overline{P'Q'} = \overline{PQ} = \overline{PQ}$ holds as long as $\overline{Pf_Q} < \overline{P'Q'}$. The points *Q* and \tilde{Q} coincide exactly if $\overline{Pf_Q} = \overline{PQ'}$. Finally, there are no points *Q* and \tilde{Q} if $\overline{Pf_Q} > \overline{P'Q'}$.

Figure 2: Some of infinitely many segments of length s with the same image P'Q' and, therefore, also of length s.

In the case of a central projection κ , only the lines in the image plane are mapped *congruent* onto their images. All the other lines which carry segments whose images are of the same length are *not mapped congruent* onto their images. Just one segment on all these lines has a κ -image of the same length.

Note that if either Q or P equals O the line [P, Q] is mapped to a point. Thus $s = \overline{PQ} \neq \overline{P'Q'}$ since the latter quantity is undefiend for either Q' or P' does not exist.

Assume further that $P \neq O$ is an arbitrary point in Euclidean three-space. Now we can ask for the set of all points Q at fixed distance, say $s \in \mathbb{R} \setminus \{0\}$, such that

$$s = \overline{PQ} = \overline{P'Q'} \tag{1}$$

where $P' := \kappa(P)$ and $Q' = \kappa(Q)$ and $s \in \mathbb{R} \setminus \{0\}$. The left-hand equation of (1) can also be skipped. Then, we are looking for all points Q being the endpoints of line segments emanating from P whose central image has the same length. It is clear that the set of all Q is an algebraic surface. In Section 2 we shall describe and analyze this surface in more detail. Section 3 is devoted to the study of algebraic properties of this surface. Surprisingly, this type of quartic surface does appear among the huge number of quartic surfaces in [3].

In the following $\mathbf{x} = (x, y, z)^{\mathrm{T}} \in \mathbb{R}^3$ are Cartesian coordinates. For any two vectors \mathbf{u} and \mathbf{v} from \mathbb{R}^3 we denote the canonical scalarproduct by

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_x v_x + u_y v_y + u_z v_z$$

Based on the canonical scalar product, we can compute the length $\|\mathbf{v}\|$ of a vector \mathbf{v} by $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.

2 The set of all endpoints

In the following we assume that there is the central projection $\kappa : \mathbb{R}^{3*} \to \pi \cong \mathbb{R}^2$ with the *image plane* π where $\mathbb{R}^{3*} := \mathbb{R}^3 \setminus \{O\}$ and $O \notin \pi$ shall be the center of the projection, *i.e.*, the *eyepoint*. The *principal (vanishing) point* $H \in \pi$ is π 's closest point to the eyepoint O and $d := \overline{OH} = \overline{O\pi}$ is called the *distance* of κ . Therefore, His the pedalpoint of the normal from the eyepoint O to the image plane π .

Let us assume that $P \in \mathbb{R}^{3*} \setminus \{\pi\}$ is a point in Euclidean three-space (neither coincident with *O* nor in π). With $P' = [O, P] \cap \pi$ we denote the κ -image of *P*. The set of all points $Q' \in \pi$ with a certain fixed distance $s \in \mathbb{R} \setminus \{0\}$ from *P'* is a circle $c_{P',s}$ in the image plane π centered at *P'* with radius *s*, see Figure 3.

Figure 3: Line segments in π and their equally long preimages.

We find all possible preimages of Q' on the quadratic cone $\Gamma_{P',s} = c_{P',s} \lor O$ of κ -fibres through all points on $c_{P',s}$. The preimages shall satisfy

$$s = \overline{P'Q'} = \overline{PQ}$$

and, therefore, they are located on a Euclidean sphere $\Sigma_{P,s}$ centered at *P* with radius *s*. Consequently, we can say:

Theorem 1 The set of all points $Q \in \mathbb{R}^3$ with $\overline{PQ} = \overline{P'Q'} = s \in \mathbb{R} \setminus \{0\}$ for some point $P \in \mathbb{R}^{3*} \setminus \{\pi\}$ is a quartic space curve q being the intersection of a sphere $\Sigma_{P,s}$ (centered at P with radius s) with a quadratic cone $\Gamma_{P',s}$ whose vertex is the eyepoint O and the circle $c_{P',s}$ (lying in π , centered at P's κ -image P', and with radius s) is a directrix.

The quartic curve q mentioned in Theorem 1 has always two branches, since the two points on each generator f_Q of $\Gamma_{P',s}$ are the points of intersection of the generator f_Q with the sphere $\Sigma_{P,s}$. Therefore, q is in general not rational. An example of such a quartic is displayed in Figure 4 where the sphere $\Sigma_{P,s}$ and the cone $\Gamma_{P',s}$ are also shown.

Figure 4: The quartic curve q of possible endpoints of line segments starting at P with length s and equally long image segments. The curve q is the intersection of the quadratic cone $\Gamma_{P',s}$ and the sphere $\Sigma_{P,s}$.

Not even in the cases $[O, P] \perp \pi$ and $P \in \pi$ an exeption occurs: q happens to be the union of two circles (rational curves). However, the union of rational curves is (in general) not rational. In the first case $\Gamma_{P',s}$ is a cone of revolution and $\Sigma_{P,s}$ is centered on the cone's axis. Consequently, q degenerates and becomes a pair of parallel circles on both surfaces. In the second case the quartic q is also the union of two circles, namley $c_{P',s}$ and a further circle on $\Sigma_{P,s}$ and $\Gamma_{P',s}$.

Figure 4 shows an example of such a quartic curve (in the non-rational or generic case) carrying the preimages of possible endpoints Q.

As the length *s* of *PQ* as well as of P'Q' can vary freely, there is a linear family of quartic curves depending on *s*. Thus, from Theorem 1 we can deduce the following:

Theorem 2 The set of all points Q being the endpoints of line segments PQ starting at an arbitrary point $P \in \mathbb{R}^{3*} \setminus \{\pi\}$ with $\overline{PQ} = \overline{P'Q'}$ is a quartic surface Φ .

Proof. There exists a (1,1)-correspondence between the pencil of quadratic cones $\Gamma_{P',s}$ and the pencil of spheres $\Sigma_{P,s}$. Consequently, the manifold of common points, *i.e.*, the set of points common to any pair of assigned surfaces is a quartic variety, cf. [6].

Figure 5 shows the one-parameter family of quartic curves mentioned in Theorem 1.

Figures 5 and 6 show the quartic surface Φ mentioned in Theorem 2.

Figure 5: *The linear one-parameter family of spherical quartic curves covers a quartic surface.*

Figure 6: The quartic surface Φ with its circles in planes parallel to π has a singularity at O and P. Φ intersects π in the line l and the ideal line p_2 of π , the latter with multiplicity three.

3 The quartic surface

In order to describe and investigate the quartic surface Φ , we introduce a Cartesian coordinate system: It shall be centered at *H*, the *x*-axis points towards *O*, and π shall serve as the [*yz*]-plane. Thus, $O = (d, 0, 0)^{T}$ and the image plane π is given by the equation x = 0.

For any point $P \in \mathbb{R}^{3*}$ with coordinate vector $\mathbf{p} = (\xi, \eta, \zeta)^{\mathrm{T}}$ with $\xi \neq d$ the central image $P' := \kappa(P) = [O, P] \cap \pi$ is given by

$$\mathbf{p}' = \left(0, \frac{d\eta}{d-\xi}, \frac{d\zeta}{d-\xi}\right)^{\mathrm{T}}.$$
(2)

Obviously, P' = P if $P \in \pi$, *i.e.*, $\xi = 0$. The points in the plane

$$\pi_v: x = d \tag{3}$$

have no image in the affine part of the plane π . Therefore, the plane π_v is called *vanishing plane*. The plane π_v contains the center O and is parallel to π at distance d. Performing the projective closure of \mathbb{R}^3 the images of all points of $\pi_v \setminus \{O\}$ are the ideal points of π gathering on π 's ideal line p_2 .

Let now *Q* be the variable endpoint of a segment starting at *P*. The point *Q* shall be given by its coordinate vector $\mathbf{x} = (x, y, z)^{\mathrm{T}}$. Then, an implicit equation of Φ is given by

$$\Phi: \overline{PQ}^2 - \overline{P'Q'}^2 = 0.$$
⁽⁴⁾

Using Eq. (2) we can write Eq. (4) in terms of coordinates as

$$\Phi: d^{2}((\eta(d-x)-y\delta)^{2} + (\zeta(d-x)-z\delta)^{2}) = ((x-\xi)^{2} + (y-\eta)^{2} + (z-\zeta)^{2}) \cdot \delta^{2}(d-x)^{2}$$
(5)

where $\delta := d - \xi$.

4 **Properties of** Φ

A closer look at the equation of Φ as given by Eq. (5) allows us to formulate the following theorem which holds in projectively extended Euclidean space \mathbb{R}^3 :

Theorem 3 Let $\kappa : \mathbb{R}^{3*} \to \pi$ be a central projection from a point $O \in \mathbb{R}^3$ to a plane $\pi \not\supseteq O$ and let further $P \in \mathbb{R}^{3*}$ be a point in Euclidean three-space. The set of all points Q satisfying

$$\overline{PQ} = \overline{P'Q'}$$

(where $P' = \kappa(P)$ and $Q' = \kappa(Q)$) is a uni-circular algebraic surface Φ of degree four. The ideal line p_2 of π is a double line of Φ .

Proof. The algebraic degree Φ can be easily read off from Eq. (5).

In order to show the circularity of Φ , we perform the projective closure of \mathbb{R}^3 and write Φ 's equation (5) in terms of homogeneous coordinates: We substitute

$$x = X_1 X_0^{-1}, y = X_2 X_0^{-1}, z = X_3 X_0^{-1}$$

and multiply by X_0^4 . The intersection of the (projectively) extended surface Φ with the ideal plane ω : $X_0 = 0$ is given by inserting $X_0 = 0$ into the homogeneous equation of Φ which yields the equations of a quartic cycle

$$\phi: X_1^2(X_1^2 + X_2^2 + X_3^2) = X_0 = 0.$$
(6)

The first factor of the latter equation tells us that the ideal line p_2 of the image plane π : $X_1 = 0$ is a part of $\phi = \omega \cap \Phi$ and has multiplicity two. In order to be sure that p_2 is a double line on Φ , we compute the Hessian H(Φ) of the homogeneous equation of Φ and evaluate at

$$p_2 = (0:0:X_2:X_3)$$

(with $X_2: X_3 \neq 0: 0$ or equivalently $X_2^2 + X_3^2 \neq 0$). This yields

which shows that all but two partial derivatives of Φ 's homogeneous equation do not vanish along p_2 . Therefore, p_2 is a double line on Φ .

The second factor of the left-hand side of (6) defines the equation of the *absolute conic* of Euclidean geometry with multiplicity one. Thus, Φ is uni-circular.

A part of the double line p_2 is shown in Figure 7 which shows a perspective image of the surface Φ and the circles and lines on Φ .

Corollary 1 In the case $P \in \pi$, i.e., $\xi = 0$, the surface Φ is the union of the image plane π (a surface of degree one) and a cubic surface.

Proof. If $P \in \pi$, we have $\xi = 0$. Inserting $\xi = 0$ into Eq. (5) we find

$$x(\|\mathbf{x}\|^2(x-2d)-2(x-d)(\eta y+\zeta z)+d^2x)=0.$$

Obviously, Φ is the union of the plane π (with the equation x = 0) and a cubic surface.

Figure 7: A perspective image of the situation in space: The ideal line p_2 of the image plane π of κ is a part of the double curve of Φ . The two parallel lines l and m meet in the common ideal point $L \in p_2$. The two planes π and x = 2d serve as tangent planes of Φ along p_2 and meet Φ along p_2 with multiplicity three and l and m appear as the remaining linear part.

The spheres of the one-parameter family of concentric spheres centered at *P* carrying the one-parameter family of quartic curves $q \subset \Phi$ intersect Φ along the quartics q and the absolute circle of Euclidean geometry. At the latter the spheres are in concact with each other and with the quartic surface Φ . This can easily be shown by computing the resultants of Φ 's and the spheres' homogeneous equations with respect to X_0 . From this resultant the factor $X_1^2 + X_2^2 + X_3^2$ splits off with multiplicity 2. In other words: Φ and all spheres about *P* share an isotropic tangent cone with vertex at *P*.

The shape of the curve $\omega \cap \Phi$ together with $\eta^2 + \zeta^2 \neq 0$, *i.e.*, $P \notin [O,H]$, tells us:

Theorem 4 A plane x = k ($k \in \mathbb{R}$) parallel to the image plane π intersects Φ along

- 1. the union of a circle whose center lies on a rational planar cubic curve γ and the two-fold ideal line p_2 if $k \neq 0, d, 2d, \xi$,
- 2. the union of a line l and the three-fold line p_2 if k = 0,
- 3. the union of a line $m \parallel l$ and the three-fold line p_2 if k = 2d, and
- the union of a pair of isotropic lines and the two-fold line p₂ if k = d,ξ.

Proof. Each planar section of the affine part of Φ is an algebraic curve whose degree is at most 4. As we have seen in the proof of Theorem 3, the ideal line p_2 of the image plane π is a two-fold line in Φ . Thus, the intersection of (the projectively extended) surface Φ with any plane parallel to π also contains this repeated line. The remaining part *r* of these planar intersections is at most of degree 2.

The planes parallel to π meet the absolute conic of Euclidean geometry at their *absolute points* which induce Euclidean geometry in these planes. Since the absolute conic is known to be a part of ϕ , the curves *r* are Euclidean circles (including pairs of isotropic lines and the join p_2 of the two absolute points as limiting cases). The equations of the intersections of Φ with planes parallel to π can be found by rearranging Φ 's equation (5) considering *y* and *z* as variables in these planes. The coefficients are univariate functions in *x* and we find

$$x(x-2d)\delta^{2}(\underline{y^{2}}+\underline{z^{2}})+$$

$$+2\delta(d-x)(\delta x+d\xi)(\eta \underline{y}+\zeta \underline{z})+$$

$$+(d-x)^{2}\delta^{2}(\langle \mathbf{p},\mathbf{p}\rangle+x(x-2\xi))$$

$$-d^{2}(\eta^{2}+\zeta^{2})=0.$$
(8)

The essential monomials y^2 , z^2 , y, and z are underlined in order to emphasize them. Note that the monomial yz does not show up. Since $coeff(x^2) = coeff(y^2)$ the curves in Eq. (8) are Euclidean circles.

We only have to show that the centers of the circles given in Eq. (8) on Φ in planes x = k (with k ≠ 0, d, 2d, ξ) are located on a rational planar cubic curve. For that purpose we consider Φ's inhomogeneous equation (5) as an equation of conics in the [y, z] plane. By completing the squares in Eq. (8), we find the center of these conics. Keeping in mind that x varies freely in ℝ \ {0, d, 2d, ξ} we can parametrize the centers by

$$\gamma(x) = \begin{pmatrix} x \\ \frac{\eta(d-x)(d\xi + dx - x\xi)}{\delta x(2d-x)} \\ \frac{\zeta(d-x)(d\xi + dx - x\xi)}{\delta x(2d-x)} \end{pmatrix}$$
(9)

which is the parametrization of a rational cubic curve. The cubic passes through *O* and *P* which can be verified by inserting either x = d or $x = \xi$. In order to show that *m* is planar, we show that any four points on γ are coplanar. We insert $t_i \neq 0, d, 2d, \xi$ with $i \in \{1, 2, 3, 4\}$ into (9) and show that the inhomogeneous coordinate vectors of the four points $\gamma(t_i)$ are linearly dependent for any choice of mutually distinct t_i . From

$$\det \begin{pmatrix} 1 & \gamma(t_1)^{\mathrm{T}} \\ 1 & \gamma(t_2)^{\mathrm{T}} \\ 1 & \gamma(t_3)^{\mathrm{T}} \\ 1 & x \ y \ z \end{pmatrix} = 0$$

we obtain the equation

$$\eta y - \eta z = 0$$

of the plane that carries $\boldsymbol{\gamma}.$

Figure 8 shows the cubic curve γ with its three asymptotes.

2. The image plane π : x = 0 of the underlying central projection κ touches (the projective extended surface) Φ along the ideal line p_2 of π . This can be concluded from the following: We write down the quadratic form

$$\mathbf{X}^{\mathrm{T}}\mathbf{H}(\Phi)\mathbf{X} = X_1(X_1 - 2dX_0) = 0$$

with $H(\Phi)$ being the Hessian from (7) and $\mathbf{X} = (X_0, X_1, X_2, X_3)^T$ being homogeneous coordinates. (Non-vanishing factors are cancelled out.) This form gives the equations of the two planes through p_2 that intersect Φ along p_2 with higher multiplicity than two, *i.e.*, in this case with multiplicity three. Thus, the multiplicity of the line p_2 considered as the intersection of π and Φ is of multiplicity three and a single line *l* of multiplicity one remains. This line is given by

$$l: (2d-\xi)\langle \mathbf{p}, \mathbf{p} \rangle - d^2\xi = 2\delta(\eta y + \zeta z)$$

where *y* and *z* are used as Cartesian coordinates in the image plane π .

3. In a similar manner we find the line *m* which is the only proper intersection of Φ with the plane x = 2d:

$$m: d(2d^2 - 5d\xi + 4\xi^2) - \xi \langle \mathbf{p}, \mathbf{p} \rangle =$$
$$= 2\delta(\mathbf{n}\mathbf{y} + \zeta z)$$

The plane of the cubic curve γ is orthogonal to the lines *l* and *m*.

4. In case of $x = \xi$, the plane runs through *P*. Again, the ideal line p_2 splits off with multiplicity two. The remaining part *r* is the pair of isotropic lines through *P* with the equation

$$x = \xi$$
, $(y - \eta)^2 + (z - \zeta)^2 = 0$.

The same situation occurs at *O*, *i.e.*, x = d where the isotropic lines have the equation

$$x = d, \quad y^2 + z^2 = 0. \qquad \Box$$

Figure 8: The cubic curve γ carries the centers of all circles on Φ . Its ideal doublepoint $(0:0:\eta:\zeta)$ is the ideal point of the lines orthogonal to $l \parallel m$. The tangent of c at the third ideal point (0:1:0:0) passes through P. The three dashed lines are γ 's asymptotes.

The circles as well as the line l on the quartic surface Φ can be seen in Figures 6, 9 and 8. In Figure 8, a small piece of the line *m* shows up.

Remark 1 In the case of $P \in [O,H]$, or equivalently, $\eta^2 + \zeta^2 = 0$ the lines l and m coincide with the ideal line of π and, thus, $\pi \cap \Phi$ is the ideal line of π with multiplicity four. The same holds true for the plane x = 2d if $P \in [O,H]$.

Remark 2 The planes π and x = 2d behave like the tangents of a planar algebraic curve *c* at an ordinary double point *D* because these tangents intersect *c* at *D* with multiplicity three. This cannot just be seen from Figure 7.

The lines *l* and *m* from the proof of Theorem 4 are parallel to each other but skew and orthogonal to the line [O, P] as long as $\xi(\xi - 2d) \neq 0$. If $\xi = 0$ or $\xi = 2d$, we have the case mentioned in Remark 1 and *l* and *m* are ideal lines. They are still skew to [O, P] but orthogonality is not defined in that case.

The set of singular surface points on Φ contains only points of multiplicity two. A more detailed description of the set of singular surface points is given by:

Theorem 5 The set of singular surface points on Φ is the union of eyepoint O, the object point P, and the ideal line p_2 of the image plane π . The eyepoint O and the object point P are conical nodes on Φ .

Proof. The ideal line of π is a line with multiplicity two on Φ . The planes π : x = 0 and x = 2d intersect Φ along this ideal line with multiplicity three as shown in the proof of Theorem 4. Therefore, the points on π 's ideal line are singular points considered as points on Φ .

The points *O* and *P* are singular surface points on Φ since the gradients of Φ vanish at both points:

$$grad(\Phi)(d,0,0) = (0,0,0)^T$$
 and
$$grad(\Phi)(\xi,\eta,\zeta) = (0,0,0)^T$$

Now we apply the translation $\tau_1 : O \mapsto (0,0,0)^T$ to Φ , *i.e.*, the singular point *O* moves to the origin of the new coordinate system. The equation of Φ does not alter its degree. However, the monomials in the equation of Φ are at least of degree two in the variables *x*, *y*, *z*. If we remove the monomials of degree three and four, we obtain the equation of a quadratic cone Γ_O centered at *O*. Its equation (in the new coordinate system, but still labelled *x*, *y*, *z*) reads

$$\begin{split} \Gamma_O: \ d^2\delta^2 \langle \mathbf{x}, \mathbf{x} \rangle + 2d^2\delta x (\eta y + \zeta z) = \\ = (\delta^4 + \xi (2d + \xi) \langle \mathbf{p}, \mathbf{p} \rangle + \xi^3 (d + \delta)) x^2. \end{split}$$

 Γ_O is the second order approximation of Φ at O. Since Γ_O is a quadratic cone the singular point O is a conical node, see [2].

In order to show that *P* is also a conical node of Φ we apply the translation $\tau_2 : P \mapsto (0,0,0)^T$. Again we use *x*, *y*, *z* as the new coordinates and the quadratic term of the transformed equation of Φ given by

$$\Gamma_P: \xi(\delta+d)\delta^2 \langle \mathbf{x}, \mathbf{x} \rangle + 2d^2 \delta x(\eta y + \zeta z) + d^2 (\langle \mathbf{p}, \mathbf{p} \rangle - \delta^2 - 2\xi^2) x^2 = 0.$$

is the equation of a quadratic cone Γ_P centered at *P*. Consequently, *P* is also a conical node (cf. [2]).

Remark 3 The homogeneous equations of the quadratic cones Γ_O and Γ_P are the quadratic forms whose coefficient matrices are (non-zero) scalar multiples of the Hessian matrix of Φ 's homogeneous equation evaluated at O and P.

Figure 9 illustrates the two quadratic cones Γ_O and Γ_P . The planes parallel to π (except x = k with $k \in \{d, \xi\}$) intersect both quadratic cones Γ_O and Γ_P along circles.

If P = P' but $[0, P] \not\perp \pi$, *i.e.*, $P \in \pi$ and $P \neq H$, then Φ is the union of the image plane π and a cubic surface $\overline{\Phi}$ with the equation

$$(x-2d)\langle \mathbf{x}, \mathbf{x} \rangle = 2(x-d)(\eta y + \zeta z) - d^2 x.$$
(10)

The cubic surface $\overline{\Phi}$ has only one singularity at O which is a conical node.

B. Odehnal: Distances and Central Projections

Figure 9: The two singular points O and P are conical nodes, i.e., the terms of degree two of Φ 's equation when translated to O or P are the equations of quadratic cones. The circular sections of Φ lie in planes that meet the quadratic cones Γ_O and Γ_P along circles.

If $P \in [O,H]$ (but $P \neq O,H$), then $\overline{\Phi}$ is a surface of revolution with the equation

$$x(x-2d)\langle \mathbf{x}, \mathbf{x} \rangle + \xi(\xi - 2x)(x-d)^2 - d^2x^2 = 0$$
(11)

where $\eta^2 + \zeta^2 \neq 0$ in contrast to earlier assumptions. The set of singular surface points on Φ contains only points of multiplicity two. A more detailed description of the set of singular surfaces points is given by:

Theorem 6 The set of singular surface points on Φ is the union of eyepoint O, the object point P, and the ideal line p_2 of the image plane π . The eyepoint O and the object point P are conical nodes on Φ .

Proof. The ideal line of π is a line with multiplicity two on Φ . The planes π : x = 0 and x = 2d intersect Φ along this ideal line with multiplicity three as shown in the proof of Theorem 4. Therefore, the points on π 's ideal line are singular points considered as points on Φ .

The points *O* and *P* are singular surface points on Φ since the gradients of Φ vanish at both points:

grad(
$$\Phi$$
)(d,0,0) = (0,0,0)^T
and
grad(Φ)(ξ , η , ζ) = (0,0,0)^T

Now we apply the translation $\tau_1 : O \mapsto (0,0,0)^T$ to Φ , *i.e.*, the singular point *O* moves to the origin of the new coordinate system. The equation of Φ does not alter its degree.

However, the monomials in the equation of Φ are at least of degree two in the variables *x*, *y*, *z*. If we remove the monomials of degree three and four, we obtain the equation of a quadratic cone Γ_O centered at *O*. Its equation (in the new coordinate system, but still labelled *x*, *y*, *z*) reads

$$\Gamma_O: d^2\delta^2 \langle \mathbf{x}, \mathbf{x} \rangle + 2d^2\delta x(\eta y + \zeta z) =$$

= $(\delta^4 + \xi(2d + \xi) \langle \mathbf{p}, \mathbf{p} \rangle + \xi^3(d + \delta))x^2.$

 Γ_O is the second order approximation of Φ at O. Since Γ_O is a quadratic cone the singular point O is a conical node, see [2].

In order to show that *P* is also a conical node of Φ we apply the translation $\tau_2 : P \mapsto (0,0,0)^T$. Again we use *x*, *y*, *z* as the new coordinates and the quadratic term of the transformed equation of Φ given by

$$\Gamma_P: \xi(\delta+d)\delta^2 \langle \mathbf{x}, \mathbf{x} \rangle + 2d^2 \delta x(\eta y + \zeta z) + d^2 (\langle \mathbf{p}, \mathbf{p} \rangle - \delta^2 - 2\xi^2) x^2 = 0.$$

is the equation of a quadratic cone Γ_P centered at *P*. Consequently, *P* is also a conical node (cf. [2]).

Figures 10 and 11 show the two distinct cases where Φ is a surface of revolution.

Figure 10: The set Φ of all points Q is a quartic surface of revolution if $P \in [O,H]$ and $P \neq O,H$.

Figure 11: Φ is the union of π and a cubic surface of revolution touching π at H if P = H.

References

- [1] H. BRAUNER, Lehrbuch der konstruktiven Geometrie, Springer-Verlag, Wien, 1986.
- [2] W. BURAU, *Algebraische Kurven und Flächen*, De Gruyter, 1962.
- [3] K. FLADT, A. BAUR, *Analytische Geometrie spezieller Flächen und Raumkurven*, Vieweg, Braunschweig, 1975.
- [4] F. HOHENBERG, *Konstruktive Geometrie in der Technik*, 3rd Edition, Springer-Verlag, Wien, 1966.
- [5] E. MÜLLER, Lehrbuch der Darstellenden Geometrie, Vol. 1, B. G. Teubner, Leipzig-Berlin, 1918.
- [6] B. L. VAN DER WAERDEN, *Einführung in die Algebraische Geometrie*, Springer-Verlag, Berlin, 1939.
- [7] W. WUNDERLICH, *Darstellende Geometrie*, 2 Volumes, BI Wissenschaftsverlag, Zürich, 1966 & 1967.

Boris Odehnal

e-mail: boris.odehnal@uni-ak.ac.at

University of Applied Arts Vienna Oskar-Kokoschka-Platz 2, A-1100 Vienna, Austria