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Color image segmentation based on intensity and hue
clustering – a comparison of LS and LAD approaches
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Abstract. Motivated by the method for color image segmentation based on intensity and
hue clustering proposed in [26] we give some theoretical explanations for this method that
directly follows from the natural connection between the maximum likelihood approach and
Least Squares or Least Absolute Deviations clustering optimality criteria. The method is
tested and illustrated on a few typical situations, such as the presence of outliers among
the data.
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1. Introduction

The term image segmentation refers to partitioning an image into two or more differ-
ent regions that are “similar” in some image characteristic. This is an important task
in the image analysis process because all subsequent tasks, such as object recogni-
tion, depend on the quality of segmentation. For this reason, methods for successful
image segmentation are constantly being improved.

Most attention with respect to image segmentation has been focused on gray
scale images (see, e.g., [15]). However, there are situations where this approach is
not appropriate, and color components of the image have to be taken into account.
Computers mostly use RGB (Red, Green, Blue) color space for image storage and
manipulation, but this does not coincide with the vision psychology of human eyes
because of a high correlation among its three components (see, e.g., [1]). For this
reason, we will use HSI color space which is more compatible with the human vision.

In HSI color representation, I component represents intensity, H component rep-
resents hue, and S component represents saturation. To convert RGB representation
to HSI representation, first compute [1]: Y
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Thereafter, HSI values can be computed as:

I = Y, S =
√

C2
1 + C2

2 , H =

{
arccos(C2

S ) C1 ≥ 0
2π − arccos(C2

S ) C1 < 0.

Among the three components of HSI representation, the most important ones are
H and I; therefore, they will be used in the segmentation process. In that sense,
a color image could be represented (see, e.g., [26]) by intensity-data set I = {Ii ∈
R : i = 1, . . . ,mI} ⊂ R, with corresponding weights wI

i > 0, where Ii ̸= Ij , i ̸= j,
and hue-data set H = {Hi : i = 1, . . . ,mH} ⊂ [0, 2π⟩ with corresponding weights
wH

i > 0, where Hi ̸= Hj , i ̸= j, and mI , mH are numbers of possible different
discrete values for intensity and hue components, respectively.

There is plenty of literature considering the image segmentation problem (see,
e.g., [1], [2], [15], [26]). Our starting point is the method proposed in paper [26]
which deals with segmentation of an image represented in HSI space based on the
least squares criterium. According to this method, image segmentation tasks are per-
formed separately in the intensity and hue spaces. The results obtained in that way
are associated with the so-called fuzzy membership function, the data is mapped into
a multidimensional space and the multi-dimensional clustering problem is solved. For
the purpose of the hue-data segmentation process, it is necessary to determine the
centers of clusters, which is reduced to solving the problem of nonlinear optimization
with a large number of local extrema. To address this problem, the method which
finds the stationary point of the corresponding objective function that does not nec-
essarily have to be the point of the global minimum is proposed in [26]. Furthermore,
a natural criterion for defining the fuzzy membership function is not given in [26].
Motivated by the method in the cited paper, in this paper: (i) we show that the
objective function used for determining cluster centers in huespace is Lispshitz con-
tinuous, hence the known global DIRECT method can be used for its minimization;
(ii) on the basis of the maximum likelihood approach we construct a specific natural
fuzzy membership function; (iii) besides the Least Squares approach, we also observe
the Least Absolute Deviations approach, which is particularly important in the case
of the presence of so-called outliers among data; (iv) we illustrate our methods by
means of several graphical examples.

The paper is organized as follows. In the next section, a brief introduction to
the weighted clustering problem is given. In Sections 3 and 4, the one-dimensional
clustering problem in intensity and hue space is considered and the corresponding
connection with the maximum likelihood approach is given. On the basis of the
relation between one-dimensional optimal partitions, an image is represented in high-
dimensional space. In Section 5, clustering in high-dimensional space is considered.
Section 6, gives several illustrative numerical examples.
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2. Weighted clustering problem

A partition of the set A = {ai ∈ Rn : i = 1, . . . ,m} ⊂ Rn with the corresponding
weights wi > 0 into k disjoint subsets π1, . . . , πk, 1 ≤ k ≤ m, such that

k∪
j=1

πj = A, πr ∩ πs = ∅, r ̸= s, |πj | ≥ 1, j = 1, . . . , k,

will be denoted by Π(A) = {π1, . . . , πk}, and the elements π1, . . . , πk of such partition
are called clusters in Rn.

Any function d : Rn × Rn → R+, R+ := [0,+∞⟩, that has the following two
properties

∀(x, y) ∈ Rn × Rn d(x, y) ≥ 0 d(x, y) = 0 iff x = y,

(see, e.g., [11, 24]) is called a distance-like function. Let d : Rn × Rn → R+ be
some distance-like function by applying the minimum distance condition (see, e.g.,
[11, 23]); to each cluster πj ∈ Π we can associate its center cj defined by

cj = c(πj) := argmin
x∈conv(πj)

∑
ai∈πj

wid(x, ai). (1)

If we define an objective function F : P(A, k) → [0,+∞⟩ on the set of all parti-
tions P(A, k) of the set A containing k clusters by

F(Π) =

k∑
j=1

∑
ai∈πj

wid(cj , ai),

then we define an optimal partition Π⋆, such that F(Π⋆) = min
Π∈P(A,k)

F(Π).

Conversely, for a given set of centers c1, . . . , ck ∈ Rn, by applying the minimal
distance condition we can define the partition Π = {π1, . . . , πk} of the set A in the
following way: πj = {a ∈ A : d(cj , a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k, where
one has to take care that every element of the set A occurs in one and only one
cluster. Therefore, the problem of finding an optimal partition of the set A can be
reduced to the following optimization problem

min
c1,...,ck∈Rn

F (c1, . . . , ck), F (c1, . . . , ck) =
m∑
i=1

min
j=1,...,k

wid(cj , ai), (2)

where F : Rkn → R+. In general, this functional is not differentiable and it may
have several local minima. Optimization problem (2) can also be found in literature
as a k-median problem and it is most frequently solved by various metaheuristic
methods [5, 16, 20].

The most known algorithm for searching for a locally optimal partition is the k-
median algorithm [4, 13], which can be described by two steps which are iteratively
repeated.
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Step 1 For each set of mutually different assignment points c1, . . . , ck ∈ Rn the set
A should be divided into k disjoint nonempty clusters π1, . . . , πk by using the
minimal distance principle

πj = {a ∈ A : d(cj , a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k. (3)

Step 2 Given a partition Π = {π1, . . . , πk} of the set A, one can define the corre-
sponding centers by

cj = argmin
x∈conv πj

∑
ai∈πj

wid(x, ai), j = 1, . . . , k. (4)

Let us mention that for the least squares distance-like function d(x, y) = ∥x − y∥22
the previous algorithm is also known as the k−means algorithm.

Let cj be locally optimal centers of clusters πj , j = 1, . . . , k. For every ai ∈ A
define a set of indexes of the nearest assignment points

Ui = {j ∈ J : d(cj , ai) ≤ d(cs, ai), ∀s ∈ J}, J = {1, . . . , k}. (5)

Note that the set Ui is not empty, and that it can be a single member set or a
multi-member set. If for every ai ∈ A the set Ui is a single member set, then a cor-
responding partition Π = {π(z1), . . . , π(zk)} is said to be a well-separated partition.

3. Least squares and least absolute deviations one-dimensional
weighted clustering in intensity space

The set I = {Ii ∈ R : i = 1, . . . ,mI} ⊂ R of intensity-data, with corresponding
weights wI

i > 0 has to be divided into kI clusters ΠI = {πI
1 , . . . , π

I
kI
}, 1 ≤ kI ≤

mI . Note that without loss of generality we can suppose that Ii ̸= Ij , i ̸= j. In
this section we consider a one-dimensional clustering problem using Least Squares
(LS) based on the LS distance–like function d2(x, y) = (x − y)2, and the Least
Absolute Deviations (LAD) optimality criterion based on the LAD distance function
d1(x, y) = |x−y|. The problem of finding an optimal partition of the set I according
to (2) reduces to the following nonconvex and nonsmooth optimization problem

min
c1,...,ck∈R

F (p)(c1, . . . , ck), F (p)(c1, . . . , ck) =

mI∑
i=1

min
j=1,...,kI

wI
i dp(cj , Ii), p = 1, 2.

It is generally well known that the LAD approach ignores outliers among the data
[3, 19], while the LS approach stresses them.

In order to apply the k-median algorithm, it is necessary to efficiently determine
the centers of clusters in accordance with (1). It can be shown that for p = 1, 2
the centers cIj (p) of clusters π

I
j (p), j = 1, . . . , kI can be explicitly determined by the

following formula:

cIj (p) = argmin
x∈conv πI

j (p)

∑
Ii∈πI

j (p)

wI
i dp(x, Ii) =


med

Ii∈πI
j (1)

(wI
i , Ii), p = 1

mean
Ii∈πI

j (2)
(wI

i , Ii), p = 2,
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where med
Ii∈πI

j (1)
(wI

i , Ii) is a weighted median of the set πI
j (1) (see, e.g., [17, 18, 25])

and mean
Ii∈πI

j (2)
(wI

i , Ii) =

∑
Ii∈πI

j

wI
i Ii∑

Ii∈πI
j

wI
i

is a weighted mean of the set πI
j (2).

3.1. Connection with the maximum likelihood approach

In this subsection, we are going to illustrate the connection between minimization
of the function F (p) and maximum likelihood approach.

Let cIj (p) be the centers of clusters πI
j (p), j = 1, . . . , kI and σj > 0, j = 1, . . . , kI

given positive numbers. Let us suppose that intensity-data Ii, i = 1, . . . ,mI are
independent and come from mixing distribution with probability density function

f (p)(x;λ1, . . . , λkI
, cI1(p), . . . , c

I
kI
(p), σ1, . . . , σkI

) =

kI∑
i=1

λj

σj
φ(p)

(
x− cIj (p)

σj

)
,

∑kI

j=1 λj = 1, λj ≥ 0, j = 1, . . . , kI , where x 7→ 1
σj
φ(p)

(
x−cIj (p)

σj

)
, p = 1, 2 are a

probability density function of Laplace random variable L(cIj (1), σ2
j ), i.e., Gaussian

normal random variable N (cIj (2), σ
2
j ), and φ(p)(x) = 1√

2
e−|x|p/2.

The corresponding likelihood function reads

L(p)

(
1

kI
, . . . ,

1

kI
, c1, . . . , ckI

, σ, . . . , σ

)
=

m∏
i=1

 kI∑
j=1

1

kIσ
φ(p)

(
Ii − cj

σ

)wI
i

.

It can be shown that in the limit case for sufficiently small variances (σ2
j , j =

1, . . . , kI) the corresponding negative log-likelihood function can be approximated
by the objective function F (p) (see, e.g., [12]).

3.2. Data representation with the fuzzy membership function

Let σ > 0 be a given positive number and let us suppose that the optimal centers
cIj (p) of clusters π

I
j (p), j = 1, . . . , kI , p = 1, 2 have been determined. Motivated by

paper [26] and the maximum likelihood approach, to every intensity-data Ii with

respect to center cIj (p) we can assign the value ω
(p)
σ (Ii, π

I
j (p)), where

x 7→ ω(p)
σ (x, cIj (p)) :=

φ(p)

(
x−cIj (p)

σ

)
∑kI

l=1 φ
(p)
(

x−cIl (p)

σ

) =
e
− 1

2

∣∣∣∣ x−cIj (p)

σ

∣∣∣∣p
∑kI

l=1 e
− 1

2

∣∣∣∣ x−cI
l
(p)

σ

∣∣∣∣p ,
is the so-called fuzzy membership function.

Note that

kI∑
j=1

ω(p)
σ (Ii, c

I
j (p)) = 1 and lim

σ→0+
ω(p)
σ (Ii, c

I
j (p)) =

{
1

µ
(p)
i

, if j ∈ U
(p)
i

0, if j ∈ {1, . . . , k} \ U (p)
i ,
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where U
(p)
i is defined by (5) for the corresponding distance-like function d(x, y) =

dp(x, y), p = 1, 2, and µ
(p)
i = |U (p)

i |. In this context, every intensity-data Ii with
respect to partition ΠI(p) could be represented by the kI−tuple(

ω(p)
σ (Ii, c

I
1(p)), . . . , ω

(p)
σ (Ii, c

I
kI−1(p)), ω

(p)
σ (Ii, c

I
kI
(p))

)
∈ [0, 1]kI .

Since
∑kI

j=1 ω
(p)
σ (Ii, c

I
j (p)) = 1, it is sufficient to consider, a kI − 1−tuple represen-

tation with respect to partition ΠI(p) :

Ii ≡ Ii(σ,Π
I(p)) =

(
ω(p)
σ (Ii, c

I
1(p)), . . . , ω

(p)
σ (Ii, c

I
kI−1(p))

)
∈ [0, 1]kI−1, i = 1, . . . ,mI .

4. Least square and least absolute deviation one-dimensional
weighted clustering in hue space

The set H = {Hi : i = 1, . . . ,mH} ⊂ [0, 2π⟩ of hue-data, with corresponding weights
wH

i > 0 has to be divided into kH clusters ΠH = {πH
1 , . . . , πH

kH
}, 1 ≤ kH ≤ mH .

Note that without loss of generality we can suppose that Hi ̸= Hj , i ̸= j. In this
section, we consider a one-dimensional clustering problem using the Least Absolute
Deviation (LAD) optimality criterion, based on the LAD distance function [14, 22]:

D1(x, y) =

{
|x− y|, |x− y| ≤ π
2π − |x− y|, else = min{|x− y|, 2π − |x− y|} = π − ||x− y| − π|,

and the Least Squares (LS) optimality criterion the based on the LS distance–like
function [14, 26]: D2(x, y) = D2

1(x, y) = (π− ||x− y| − π|)2. The problem of finding
an optimal partition of the set H according to (2) reduces to the following nonconvex
and nonsmooth optimization problem

min
c1,...,ckH

∈[0,2π⟩
G(p)(c1, . . . , ckH ), G(p)(c1, . . . , ckH ) =

mH∑
i=1

min
j=1,...,kH

wH
i Dp(cj , Hi), p = 1, 2.

In order to apply the k-median algorithm, it is necessary to efficiently determine
the centers of clusters

cHj (p) = argmin
x∈[0,2π⟩

∑
Hi∈πH

j (p)

wH
i Dp(x,Hi), j = 1, . . . , kH , p = 1, 2. (6)

In paper [26], a very useful formula for calculating the centers of clusters in hue
space was given. Unfortunately, it is only a local solution of problem (6). Instead of
this, some efficient numerical method for a global optimization should be used. One
of the most popular algorithms for solving a global optimization problem for the
Lipschitz continuous function is the DIRECT (DIvidingRECTangles) algorithm [7, 8].
The DIRECT algorithm requires the objective function to be Lipschitz continuous. In
this context, let us show the following proposition.
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Proposition 1. Functions gp : [0, 2π⟩ → R+, gp(x) =
∑

Hi∈πH
j (p) Dp(x,Hi), p =

1, 2 are Lipschitz continuous on [0, 2π⟩, i.e., there exists L > 0 such that

gp(α)− gp(β) ≤ L|α− β|, ∀α, β ∈ [0, 2π⟩

Proof. Since the proofs for p = 1 and p = 2 are very similar, we will prove only the
case p = 1. Let α, β ∈ [0, 2π⟩; then it holds

g1(α)− g1(β) =
m∑

Hi∈πH
j (1)

wH
i ||α−Hi| − π| −

∑
Hi∈πH

j (1)

wH
i ||β −Hi| − π|

≤
∑

Hi∈πH
j (1)

wH
i ||α−Hi| − |β −Hi|| ≤

m∑
i=1

wH
i |α− β|.

Analogously, it can be shown that g1(β)− g1(α) ≤
∑

Hi∈πH
j (1)

wH
i |α− β|, and finally

g1(α)− g1(β) ≤ L|α− β|, L =
∑

Hi∈πH
j (1)

wH
i .

4.1. Connection with the maximum likelihood approach

Let cHj (p) be the centers of clusters πH
j (p), j = 1, . . . , kH and σj > 0, j = 1, . . . , kH

given positive numbers. Let us suppose that hue-data Hi, i = 1, . . . ,mH are inde-
pendent and come from mixing distribution with probability density function (see,
e.g., [14]):

g(p)(x;λ1, . . . , λkH , cH1 (p), . . . , cHkH
(p), σ1, . . . , σkH ) =

kH∑
j=1

λj

σj

∞∑
l=−∞

φ(p)

(
x− cIj (p) + 2lπ

σj

)
,

∑kH
j=1 λj = 1, λj ≥ 0, j = 1, . . . , kH , where x 7→ 1

σj

∑∞
l=−∞ φ(p)

(
x−cIj (p)+2lπ

σj

)
, p = 1, 2

are a probability density function of wrapped Laplace random variable LW(cIj (1), σ
2
j ),

i.e., wrapped normal random variable NW(cIj (2), σ
2
j ), and φ(p)(x) = 1√

2
e−|x|p/2. It

can be shown that in the limit case for sufficiently small variances (σ2
j , j = 1, . . . , kH)

the corresponding negative log-likelihood function can be approximated by the ob-
jective function G(p) (see, e.g., [14]).

4.2. Data representation with the fuzzy membership function

Let σ > 0 be a given positive number and let us suppose that the optimal centers
cHj (p) of clusters πH

j (p), j = 1, . . . , kH , p = 1, 2 have been determined. Analogously

to the intensity space case, any pixel with respect to partition ΠH(p) could be
represented by the kH − 1− tuple

Hi ≡ Hi(σ,Π
H(p)) =

(
v(p)σ (Hi, c

H
1 (p)), . . . , v(p)σ (Hi, c

H
s−1(p))

)
∈ [0, 1]kH−1, i = 1, . . . ,mH ,
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where the corresponding fuzzy membership function is given by the following for-
mula:

v(p)σ (x, cHj (p)) :=

φ(p)

(
x−cHj (p)−2π

σ

)
+ φ(p)

(
x−cHj (p)

σ

)
+ φ(p)

(
x−cHj (p)+2π

σ

)
∑kH

l=1 φ
(p)
(

x−cHl (p)−2π

σ

)
+ φ(p)

(
x−cHl (p)

σ

)
+ φ(p)

(
x−cHl (p)+2π

σ

) .
5. Multidimensional weighted clustering

Any pixel ai, i = 1, . . . ,m is uniquely determined by a pair (Ii,Hi), where Ii and Hi

are corresponding values of intensity and hue. Here we suppose that mI ,mH ≤ m.
Let ΠI(p) and ΠH(p) be optimal partitions obtained by clustering in intensity and
hue space. According to [13], a k-median algorithm is initiated with e.g. 100 different
randomly generated initial centers, and the one that gives the smallest value of the
objective function (2) is taken as a solution.

With respect to partitions ΠI(p) and ΠH(p), every pixel ai, i = 1, . . . ,m could
be represented by the (kI + kH − 2)−tuple

ai ≡ ai(σ,Π
I
(p),Π

H
(p))

=
(
ωσ(Ii, c

I
1(p)), . . . , ωσ(Ii, c

I
kI−1(p)), v

(p)
σ (Hi, c

H
1 (p)), . . . , v

(p)
σ (Hi, c

H
kH−1(p))

)
∈ [0, 1]

kI+kH−2
.

Finally, the problem of image segmentation could be considered as clustering in
(kI + kH − 2)-dimensional space. For this purpose, the k-median algorithm based
on the distance-like function dp : [0, 1]kI+kH−2 × [0, 1]kI+kH−2 → [0,∞⟩, defined by
dp(x, y) = ∥x− y∥pp, p = 1, 2 with e.g. 100 random initializations should be used.

6. Numerical and illustrative examples

We have implemented all described methods in a program written in C++ program-
ming language and tested it with different parameters on the following examples.

Example 1. Figure 1 shows a greyscale image with “noise” (outliers) which is
clustered in intensity space with kI = 2 clusters. It is noticeable that the LS –
optimality criterion separates outliers in the individual cluster, while the rest of
the image falls into another cluster. Nevertheless, the LAD – optimality criterion
ignores those outliers and segments the image more accurately.

Example 2. A similar example of clustering in hue space using kH = 2 clusters is
shown in Figure 2. The LS optimality criterion stresses the outliers, while the LAD
optimality criterion ignores them.

Example 3. Figure 3 shows the benefits of multidimensional weighted clustering.
When the test image of an athletic track is segmented in intensity space with kI = 2
clusters, numbers on the track are well separated, but pixels showing the grass and
the track fall into the same cluster. A similar situation occurs when clustering in hue
space with kH = 2 clusters: the grass and the track are separated, but the numbers
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(a) Original image (b) LS based clustering (c) LAD based clustering

Figure 1: Weighted clustering in intensity space

(a) Original image (b) LS based clustering (c) LAD based clustering

Figure 2: Weighted clustering in hue space

fall into the same cluster as the track. However, when we perform multidimensional
weighted clustering (Section 5) in two-dimensional space (kI + kH − 2 = 2) into
3 clusters, we obtain an accurate and well separated representation of the original
image. Let us note that the appropriate number of clusters has been determined in
accordance with the Silhouette width criterion (see [10]).

(a) Original image (b) Clustering in in-
tensity space

(c) Clustering in hue
space

(d) Multidimensional
clustering

Figure 3: Multidimensional weighted clustering

7. Conclusions

Some theoretical improvements of results given in [26] are proposed in this paper.
First of all, the global method DIRECT for determining the centers of clusters in hue
space is proposed. For this purpose, theoretical assumptions on the corresponding
objective function ensuring suitability of the DIRECT method are demonstrated. The
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fuzzy membership function connecting hue and intensity spaces is constructed on
the basis of motivation provided by the maximum likelihood approach. The method
is extended on the Least Absolute Deviations criterion and several examples that
illustrate the differences between the approaches are presented. It is shown that the
Least Absolute Deviation approach is much less sensitive to the presence of outliers
compared to the Least Squares approach.

In further research, instead of multiple launching of the k-median algorithm, we
will endeavor to construct an efficient method for finding a nearly global optimal par-
tition based on the the method described in [21], and a method which automatically
determines the appropriate number of clusters in a partition.
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[23] Späth, H.(1983). Cluster-Formation und Analyse, R.Oldenburg Verlag, München.
[24] Teboulle, M.(2007). A unified continuous optimization framework for center-based

clustering methods, Journal of Machine Learning Research 8, 65–102.
[25] Vazler, I., Sabo, K., Scitovski, R.(2012). Weighted median of the data in solving least

absolute deviations problems, Communications in Statistics - Theory and Methods,
41, 1455–1465.

[26] Zhang, C., Wang, P.(2000), A new method for color image segmentation based on
intensity and hue clustering, In Proceedings of the 15th ICPR, Barcelona, 3, 613–616.


