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Review paper

The Minister of Health for the UK was advised by an expert committee meeting

in February 2014 to include a new, broad-spectrum meningococcal serogroup B

(MenB) vaccine, 4CMenB (Bexsero®) into the childhood immunization pro-

gram. This new vaccine which recently received regulatory approval in Europe,

Canada and Australia combines a conventional wild-type outer membrane vesi-

cle (wtOMV) vaccine and antigens identified through reverse vaccinology.

Strain coverage estimates from different parts of the world are in the range of

70 % to 90 %, depending on the local epidemiological situation. Following im-

plementation of this vaccine, monitoring should focus on effectiveness data for

various circulating strains and potential vaccine effects on carriage and herd im-

munity. From use of this new MenB vaccine on a larger scale and good monitor-

ing in UK and other countries that are likely to follow shortly, the international

vaccine community will learn a number of lessons. Such insights will be impor-

tant for further improvement towards later generations of MenB vaccines and

other protein-based vaccines against various diseases. Herein sights gained

from more than 35 years of development and use of MenB vaccines are present-

ed. The novel vaccine, 4CMenB represents a new time horizon in protein-based

vaccine formulation, evaluation and value. Importantly, 4CMenB was devel-

oped with "cutting edge" joined with conventional vaccine technology, includ-

ing experience from previous wtOMV vaccines, which have been successfully

used since the late 1980s to prevent clonal outbreaks. Data from large clinical

studies and retrospective statistical analyses give effectiveness estimates of at

least 70 % and a consistent pattern of moderate reactogenicity during the use of

>80 million doses of three different wtOMV vaccine formulations. The key lim-

itation of these wtOMV vaccines is the immunodominant response against the

hypervariable PorA protein (especially in infants) and their likely inability to

control disease in a population where the circulating strains are highly diverse.

In New Zealand from 2004 to 2008, the wtOMV vaccine MeNZB® was used to

control a clonal MenB epidemic. This public health intervention provided a

number of new insights regarding international and public-private collabora-

tion, vaccine safety surveillance, vaccine effectiveness-estimation and commu-

nication to the public. Thus, 4CMenB marks a new paradigm and represents the

use of historical knowledge at the same time. Finally, the world now has the pos-

sibility to use a vaccine which is designed to give more comprehensive protec-

tion in epidemiological situations where circulating strains are very heterolo-

gous with respect to the genetic and antigenic properties. The historical integra-

tion of knowledge represented by 4CMenB will also prove important for other

vaccine development in the time to come.

Dug i trnovit put prema sveobuhvatnom cjepivu protiv meningokoka

grupe B

Pregledni rad

Stru~no povjerenstvo je na sastanku u velja~i 2014. godine savjetovalo ministra

zdravlja Ujedinjenog Kraljevstva da u imunizacijski program za djecu uklju~i

novo sveobuhvatno cjepivo za meningokoknu serogrupu B (MenB), 4CMenB

(Bexsero®). Ovo novo cjepivo, koje je nedavno slu`beno odobreno u Europi,

Kanadi i Australiji, kombinira konvencionalno cjepivo dobiveno iz vanjske

membrane vezikula divljeg tipa meningokoka (wtOMV) i antigene koji su iden-

tificirani kroz reverznu vakcinologiju. Procjena obuhva}enosti sojeva meningo-

koka iz razli~itih dijelova svijeta ovim cjepivom je izme|u 70 % i 90 %, ovisno
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ingly widespread. This was possible because of important

advances in technology, including the principle of using

the capsular polysaccharide as a vaccine antigen, which

was discovered and developed by Drs. Emil C. Gotschlich,

Irvin Goldschneider and colleagues at the Walter Read

Army Institute of Research, USA, in the late 1960s [23,

24]. Their efforts produced highly effective vaccines

against serogroup A and C disease. Serogroup Y and W

vaccines were developed using the same strategy, and a

quadrivalent ACYW polysaccharide vaccine was licensed

in 1981 [25, 26]. Although these relatively inexpensive

vaccines are effective, they have some important limita-

tions. They employ T-cell independent antigens, which do

not induce immunological memory, are in general not ef-

fective in children below 2 years of age and may induce

hyporesponsiveness after multiple immunizations [27–

29]. In the early 21st century, safe and effective conjugate

vaccines against serogroups A, C, Y and W were intro-

duced in a number of countries to protect all age groups by

2004 [30–34] and a low-cost conjugate vaccine against

serogroup A disease was developed for use in Africa a few

years later [15, 35, 36]. Hence, control of meningococcal

serogroup B (MenB) became the remaining challenge for

the overall prevention of meningococcal disease world-

wide [22, 30]. 

The story of vaccine development against MenB dis-

ease has been long, complicated and full of challenges [2,

3, 37, 38]. Due to molecular mimicry between the MenB

capsular structure [α(2→8)-linked N-acetylneuraminic

acid residues or polysialic acid] and glycoproteins in hu-

man tissue (especially in fetal, neural structures as, the

neural cell-adhesion molecule, N-CAM) the MenB cap-

sule is non-immunogenic [39, 40]. Should a vaccine for-

mulation successfully break this immunologic tolerance,

the scientific community and the regulators have been

afraid that it might lead to auto-immunologic damages [41,

Introduction

A vaccine against serogroup B has long been consid-

ered as part of the 'final frontier' of meningococcal disease

prevention [1–3]. Recently, a novel vaccine, 4CMenB,

was recommended by the Joint Committee of Vaccines and

Immunisation (JCVI) in the UK as an addition to the rou-

tine childhood immunization schedule [4, 5]. This article

discusses the history and lessons learned, as well as the dif-

ficulties surmounted to achieve this long sought-after goal.

Meningococcal septicemia and meningitis were feared

even before the meningococcus was identified in the early

nineteenth century [6–10]. Meningococcal infection is as-

sociated with rapid onset of severe disease, often follow-

ing initial mild unspecific symptoms, and can often result

in high case fatality rates or permanent disability. Hence

there is a high level of anxiety concerning the possibility

for epidemic disease caused by virulent clones or more

sporadic, endemic incidences, which can occur suddenly

in otherwise healthy individuals [1, 11–14]. Before the an-

tibiotic era, the mortality rate was 70–90 %, and this has re-

mained between 5 and 15 % despite the advent of modern

antibiotics and advanced intensive hospital care [5, 9, 13,

15]. Permanent disabilities affect approximately 10–20 %

of survivors [16, 17]. Case fatality rates are higher than

average in patients with septicaemia, during epidemics,

among adolescents and the elderly [18–20]. Infants and

children under five years of age are most commonly affect-

ed by invasive meningococcal disease, and adolescents are

also vulnerable to the disease especially during epidemic

waves [12, 21]. Traditionally, the seasonal outbreaks of

serogroup A disease in the Sub-Saharan "meningitis belt"

in Africa has been considered to have the most significant

global impact [22].

Starting in the late twentieth century, routine vaccina-

tion against meningococcal disease has become increas-

o lokalnoj epidemiolo{koj situaciji. Nakon provedene primjene

ovog cjepiva, treba usmjeriti promatranje na podatke o u~inkovi-

tosti za razli~ite cirkuliraju}e sojeve i potencijalne u~inke cjepi-

va na klicono{tvo i ste~eni imunitet. Dio me|unarodne zajednice

koja se bavi cjepivima nau~it }e brojne lekcije iz {ire upotrebe

ovog novog MenB cjepiva i dobrog pra}enja djelotvornosti

cjepiva u Ujedinjenom Kraljevstvu kao i ostalim zemljama koje

bi uskoro mogle slijediti ovaj primjer. Takve spoznaje bit }e

va`ne za daljnje pobolj{anje kasnijih generacija MenB cjepiva i

ostalih cjepiva protiv raznih bolesti koja se baziraju na proteini-

ma. Rad donosi nove spoznaje ste~ene tijekom 35 godina razvo-

ja i upotrebe MenB cjepiva. Novo cjepivo, 4CMenB, predstavlja

novu epohu u formulaciji, procjeni i vrijednosti cjepiva koja se

baziraju na proteinima. Zna~ajno je spomenuti da je 4CmenB

razvijeno spajanjem "cutting edge" i konvencionalne cjepne

tehnologije, uklju~uju}i iskustva od ranijih wtOMV cjepiva koja

se uspje{no koriste od 1980-ih u svrhu prevencije klonalnih epi-

demija. Podaci velikih klini~kih studija i retrospektivne sta-

tisti~ke analize daju procjenu u~inkovitosti od najmanje 70 % i

dosljedno prikazuju umjerene reaktogenosti cjepiva tijekom

uporabe od >80 milijuna doza za tri razli~ite formulacije

wtOMV cjepiva. Glavno ograni~enje ovih wtOMV cjepiva je

imunodominantni odgovor prema hipervarijabilnom PorA pro-

teinu (posebno u djece) i vjerojatna nemogu}nost da se bolest

kontrolira u populaciji gdje postoje razli~iti cirkuliraju}i sojevi.

Na Novom Zelandu je u razdoblju od 2004. do 2008. godine ko-

ri{teno wtOMV cjepivo MeNZB® kako bi se kontrolirala klo-

nalna MenB epidemija. Javnozdravstvena intervencija je pru`ila

mnogo novih spoznaja u pogledu me|unarodne i javno-privatne

suradnje, nadzora sigurnosti cjepiva, procjene u~inkovitosti

cjepiva i komunikacije s javno{}u. Stoga, 4CMenB obilje`ava

novu paradigmu i predstavlja kori{tenje povijesnog znanja

istodobno. Kona~no, svijet sada ima mogu}nost koristiti cjepivo

koje bi trebalo biti namijenjeno sveobuhvatnijoj za{titi u epi-

demiolo{kim situacijama gdje su cirkuliraju}i sojevi vrlo hetero-

geni u pogledu genskih i antigenskih osobina. Povijesna inte-

gracija znanja koju predstavlja 4CMenB }e se pokazati va`nom i

za razvoj drugih cjepiva u budu}nosti. 
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42]. Thus, for MenB vaccine development, sub-capsular

structures have been the choice as vaccine candidates [2,

3]. Several wild-type outer membrane vesicle (wtOMV)

vaccines have been successfully used to control clonal

MenB outbreaks [43, 44].

Progress in Meningococcal Vaccine

Development

A graphical representation of the development of

meningococcal vaccines with broad strain coverage can be

seen in Figure 1. Vaccines that use the capsular polysac-

charide as the target cover all organisms with the same

chemically and immunologically defined capsule, which

is generally designated as the serogroup. In contrast, pro-

tein-based vaccines against MenB consist of a combina-

tion of selected antigens that aim for broad strain coverage.

For decades, the "tailor-made" wtOMV vaccines against

particular outbreak strains were the only vaccines with

documented efficacy and effectiveness against MenB dis-

ease [2, 3, 45]. Vaccines based on the OMVconcept were

pioneered during the 1970s by Dr. Wendell D. Zollinger of

Walter Read Army Institute of Research, USA, Dr.

Torstein B. Helting of Behringwerke, Germany and Dr.

Carl E. Fraschof the US Food and Drug Administration,

USA and their coworkers [43, 46–51]. The research activi-

ty in these, and other laboratories, led to the development

of two vaccine formulations for clinical protection trials in

Cuba and Norway in the late 1980s [43]. Since they were

designed to target specific epidemic strains, there was no

expectation that they would be suitable for general use [43,

45, 52].

The initial wtOMV vaccine in general use was 

VA-MENGOCOC-BC®, developed at the Finlay Institute

in Cuba [53]. The second wtOMV formulation was

MenBvac®, developed at the Norwegian Institute of

Public Health (NIPH). Efficacy estimates of 83 % and

57 % were found for the Cuban and Norwegian trials in

adolescents, respectively [45, 53, 54]. The major differ-

ence between the efficacy estimates in the two trials was

due to a longer observation period for the Norwegian trial

(29 months versus 16 months in Cuba). Reanalysing the

Norwegian clinical data for a 10-month observation peri-

od, following a two-dose schedule, showed 87 % efficacy

[43, 45, 55]. A separate immunogenicity trial in Norway

confirmed that adding a booster dose about one year after

the primary immunization resulted in better persistence of

protective antibodies, thus potentially providing longer

lasting protection and greater effectiveness [43, 45,

55–57].

Two immunogenicity and reactogenicity trials [58, 59]

sponsored by the Ministry of Health in Iceland, the US

Centers for Disease Control and Prevention (CDC), the

World Health Organization (WHO) and the Pan-American

Health Organization (PAHO)compared the Cuban and

Norwegian wtOMV MenB vaccines. In the two studies

performed (one in Reykjavik, Iceland and the other in

Santiago, Chile), both vaccines induced good functional

immune responses as measured in a serum bactericidal ac-

tivity test, using human complement (hSBA) against the

respective, homologous MenB strains that were the basis

for the vaccines. Neither of the two vaccines gave a suffi-

ciently convincing immune response against heterologous

MenB strains (i.e. strains with a different PorA serosub-

type). When considering the MenB epidemic in Chile (on-

Figure 1. A dream coming through; in 2012 it became possible to prevent meningococcal disease caused by all major serogroups. (Note
that the first wtOMV vaccines against MenB disease came in 1988/89 giving mainly serosubtype specific protection.)

Slika 1. Ostvarenje sna; 2012. godine postalo je mogu}e sprije~iti meningokoknu bolest uzrokovanu naj~e{}im serogrupama
meningokoka (treba naglasiti da su prva wtOMV cjepiva protiv bolesti uzrokovane MenB iz 1988/89 pru`ala uglavnom za{titu
protiv odre|enih subtipova)
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going at that particular time), the monitoring committee

judged that neither of the wtOMV vaccines would impact

the local MenB clonal epidemic, especially not in infants,

because the causative organism was heterologous to both

vaccine strains. Immune responses to wtOMV vaccines in

infants are largely directed towards the PorA protein; only

about 10 % of infants mounted a protective antibody re-

sponse against the Chilean epidemic strain following vac-

cination with either the Cuban or Norwegian wtOMV vac-

cine [59]. In contrast, approximately half of adult vacci-

nees had a protective antibody response against the Chi-

lean epidemic strain after either of the two wtOMV vac-

cines, indicating broader immune response and thus, a less

restricted protection in this age group [59]. Reassuringly,

both wtOMV vaccines demonstrated good functional im-

munity; approximately 98 %, against their respective vac-

cine production strain in infants and older age groups,

which suggested that [43, 59] a protein based, "tailor-

made" vaccine for a defined clonal outbreak was likely to

be successful in all age groups [43, 60]. Another important

lesson from these pioneering clinical trials was that prima-

ry immunization with two doses of a wtOMV vaccineis

likely to be insufficient to maintain long term protection

against MenB disease [43, 45, 55].

Further Development and Use of 

"Tailor-Made" Vaccines

In 1991, a substantial clonal MenB outbreak was ac-

knowledged in New Zealand [61]. This outbreak was later

found to be caused by a strain with a PorA protein that was

heterologous to that in the Cuban and Norwegian wtOMV

vaccines. The magnitude and ongoing nature of this out-

break made it necessary to develop a new wtOMV vaccine

[61–64]. The MeNZB® vaccine, which was based on a typ-

ical isolate, strain NZ98/254, from the clonal outbreak in

New Zealand [65–69], was used between 2004 and 2008 to

limit the MenB epidemic. 

The experience from New Zealand is particularly im-

portant in the context of MenB vaccine development be-

cause extensive safety and effectiveness evaluations were

undertaken in more than one million vaccine recipients

[44]. In the present review, lessons learned during the de-

velopment and use of wtOMV vaccines and the significant

role that the experience played in the formulation of a mul-

ti-component MenB vaccine with broad strain coverage is

summarized. Particular emphasis should be given to the

history of MeNZB® where public health intervention was

used to fight the devastating MenB epidemic occurring in

New Zealand from the early 1990s to mid-2000s [44]. 

Since control of the epidemic was the primary objec-

tive of the MeNZB® program, vaccine effectiveness was

assessed in an observational manner. Initial effectiveness,

estimated using two different methodologies, was 80 %

(95 % CI 52.5–91.6 %) for children 6 months to less than 5

years of age [68] and 73 % (95 % CI 52–85 %) for all ages,

[68, 70–72]. However, since this was a large-scale intro-

duction rather than a clinical trial, interpretation of effec-

tiveness was complicated by secular disease trends. In an

analysis of disease prior to the vaccine campaign in 2004

showed a steady decrease in incidence between 2001 and

2004, which accelerated following implementation of the

vaccination program, indicating a vaccine effect [71].

Arnold and colleagues estimated overall vaccine effective-

ness using Poisson-regression models adjusted for year,

age, season, region, ethnicity and socioeconomic status

[71]. They also tested for a relationship between the num-

ber of doses and effectiveness, and for possible waning ef-

fectiveness one year after vaccination. Their approach al-

lowed the vaccine program effect to be differentiated from

a secular decrease in disease incidence. Arnold et al. esti-

mated vaccine effectiveness of 77 % (95 % CI 62–85 %)

over an average period of 3.2 years following the three-

dose primary series, but only 68 % when potential residual

confounding was considered. In partially vaccinated indi-

viduals, effectiveness was estimated to be 47 % (95 % CI

16–67 %) after two doses of MeNZB®. No evidence of

waning protection after one year with the full three-dose

Figure 2. Main Protein Composition of wtOMVs from
MenBvac® (44/76) and MeNZB® (NZ 98/254), visu-
alized by CBB staining after SDS-PAGE. (Please note
that Rmp and Opc is synonymous with "class 4" and
"class 5" proteins, respectively; indicated in Fig. 4.)

Slika 2. Proteinski sastav wtOMVs u MenBvac® (44/76) i
MeNZB® (NZ 98/254), prikazan bojanjem s CBB po-
mo}u SDS-PAGE (Rmp i Opc su sukladni proteinima
"klase 4" i "klase 5", kao {to je ozna~eno na Slici 4.)



Development of the first MenB vaccine with broad strain coverage

immunization series could be detected [71]. The adjust-

ments for residual confounding resulted from a test for

"protection" against pneumococcal disease by MeNZB®.

An observed dose-response relationship in the level of pro-

tection (not attributed to the vaccine itself) was interpreted

as a combination of program effects and some degree of

residual confounding [71]. The correlation of protection

with the number of doses further supports the conclusion

that the observed effectiveness is vaccine related.

Figure 3 illustrates the decline of the MenB disease

among the vaccinated and unvaccinated parts of the popu-

lation below 20 years of age in New Zealand. As can be

seen from the graph, the epidemic was on decline before

the vaccine campaign started. However, a significantly

more rapid decline was demonstrated among the vaccinat-

ed individuals. The effect of introducing the vaccine ap-

peared even more dramatic; analysing the cumulative cas-

es of meningococcal disease over the years from 2002 to

2010 in the Northern region (having the highest incidence,

and it was also here where the vaccination started).Within

a year the drop in meningococcal cases was significant and

by 2007 it was down to pre-epidemic rates in that region

[44].

It is worth noting that some protection was also ob-

served against MenB strains other than the outbreak clone

(i.e. non-P1.4) with an effectiveness of 54 % (41 % includ-

ing the correction for potential residual confounding).

Since the wtOMV component is not serogroup- (i.e. capsu-

lar polysaccharide) specific, effectiveness was also calcu-

lated against meningococcal disease caused by additional

serogroups where effectiveness was found to be 56 %, (or

43 % corrected for residual confounding) [71, 72]. These

observations are important when considering the role of

the New Zealand strain wtOMV in the new multi-compo-

nent vaccine 4CMenB. Another recent experience is the

regional use of MenBvac®, originally designed for Nor-

way, in the Normandy district in France [52, 73–76]. This

unique undertaking provided new data to expand the use of

the OMV concept [73].

Combining "Cutting-Edge" Technology with

Conventional Vaccinology

To provide broad strain coverage against the substan-

tial diversity of MenB organisms circulating worldwide,

vaccine candidates require well-conserved antigens and a

combination of multiple surface proteins, which can in-

duce bactericidal antibodies against a majority of circulat-

ing strains [77]. Inspired by whole genome sequencing of

Haemophilus influenzae in 1995 by Dr. J. Craig Venter and

colleagues at TIGR [78], Dr. Rino Rappuoli and the re-

search group at Chiron Vaccines in Siena (later Novartis

Vaccines) started on the endeavour of sequencing the

whole genome of one particular MenB strain (MC58).

From the digitally available genome there could be

searched for potential vaccine candidates in silico; clone

these proteins in E. coli and immunize mice, search for ex-

pression by flow cytometry and study the capacity of spe-

cific antibodies to kill meningococcus (bactericidal activi-

ty). This approach was called "reverse vaccinology" [79–

Infektolo{ki glasnik 34:2, 61–74 (2014) 65
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Figure 3. Rates of Meningococcal B Disease in New Zealand. (Adopted from a Figure originally designed by Richard Arnold, New
Zealand; and presented in a slightly different format in [44])

Slika 3. Incidencija meningokokne bolesti grupe B u Novom Zelandu (preuzeta i djelomi~no promijenjena originalna slika autora
Richarda Arnolda, Novi Zeland [44])
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81]; this in contrast to the classical search for vaccine can-

didates where the investigation starts with specific anti-

bodies and/or the vaccine candidate itself. Through re-

verse vaccinology, the research team in Siena discovered a

number of new and previously unknown vaccine candi-

dates that, in only a few years, surpassed the efforts of con-

ventional vaccine research by the previous three decades

[82–85]. Initially, seven proteins were identified as pro-

mising vaccine candidates and later, a recombinant vac-

cine was formulated with three main active ingredients:

Neisserial adhesin A, (NadA), factor H-binding protein

(fHbp) and Neisserial heparin-binding antigen (NHBA)

[15, 86–88]. The two latter proteins were manufactured as

fusion proteins with genome-derived Neisserial antigen

(GNA) 2091 and GNA1030, respectively, to impart

greater stability and immunogenic properties [89]. The

three active components, NadA, fHbp, NHBA have been

identified as important virulence factors; NadA being an

adhesin, fHbp a lipoprotein binding the complement regu-

lating protein, human factor H, with substantial impor-

tance for survival of the bacteria in blood. Finally, NHBA

has demonstrated properties for binding heparin or highly

sulphated glycosaminoglycan analogues and other highly

negative charged biomolecules (anions). The full extent of

the pathophysiology of NHBA is under investigation.

Various studies have provided data showing importance

for adhesion and survival in the human bloodstream [90].

The whole story of vaccine development for 4CMenB has

been thoroughly described by Drs. Marzia M. Giuliani,

Mariagrazia Pizza and Davide Serruto in various publica-

tions [89, 91–93].

Early preclinical and clinical data for the properties

and performance of the three recombinant antigens

showed substantial promise. However, it became evident

that the strength and breath of immunogenicity could be

improved with the addition of OMVs [94, 95]. A formula-

tion where the recombinant proteins were combined with

OMVs from strain NZ 98/254 (the active ingredient in

MeNZB®, with PorA P1.4 as the immunodominant pro-

tein), performed much better than the recombinant pro-

teins alone [94, 95]. The choice with the addition of

MeNZB® was fortunate since this type of strain (cc41/44),

with fHbp-1.14 in general seems to be more difficult to kill

with antibodies raised by the recombinant proteins [89, 94,

95]. The reason for this is possibly due to a low degree of

expression and surface availability of the three antigens.

For fHbp some sophisticated studies illustrating this have

been done by the research group led by Dr. Dan M. Granoff

at CHORI, Oakland (CA), USA; showing that antibodies

raised against fHbp modular group I (for example fHbp-

1.1 as in the Novartis vaccine) are not very effective in

killing bacteria with fHbp modular group IV (for example

fHbp-1.14 or fHbp-1.55). This effect is most pronounced

when the strain tested in hSBA is a low or medium ex-

presser of fHbp [96, 97]. For the main components and for-

mulation of 4CMenB, Bexsero®; see Figure 4.

Figure 4. The Composition of 4CMenB, Bexsero®.Two recombinant fusion proteins and one single recombinant vaccine antigen
(NadA); the three main active components visualized red letters on a blue background. The forth active ingredient is the
wtOMV manufactured from the strain NZ 98/254 with PorA P1.4 as the immunodominant protein. The final vaccine is formu-
lated with Al-hydroxide as an adjuvant; making it a colloidal suspension.

Slika 4. Sastav cjepiva 4CMenB, Bexsero®. Dva rekombinantna fuzijska proteina i jedan rekombinantni cjepni antigen (NadA);
prikazane su tri glavne aktivne komponente uz ~etvrti aktivni sastojak wtOMV proizveden iz soja NZ 98/254 imunodomi-
nantnog proteina PorA P1.4. Cjepivo je napravljeno kao koloidna suspenzija dodatkom Al-hidroksida kao adjuvanta.
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The 4CMenB vaccine was granted Marketing Authori-

zation by the European Medicines Agency in January 2013

and later in Canada and Australia [87, 89, 91, 98]. In April

2014, 4CMenB received FDA Breakthrough Therapy des-

ignation in the US, and in June 2014 Novartis submitted an

application for 4CMenB to help protect US adolescents

and young adults [99, 100]. After MenB outbreaks at

Princeton University and University of California Santa

Barbara [101, 102], nearly 30,000 doses of Bexsero® were

distributed among students and staff under an

Investigational New Drug (IND) designation in the period

from December 2013 to April 2014 [100]. Estimates for

global strain coverage performed by the meningococcal

antigen typing system (MATS) for 4CMenB, vary from

about 70 % to over 90 %, depending on the regional epi-

demiologic situation [103], a substantial improvement

from the wtOMV vaccines (about 50 % in adults and less

than 10 % among infants against some heterologous

strains) [44, 59]. The recently developed method, MATS is

a way to measure the degree of total expression for each of

the three recombinant vaccine antigens (NadA, fHbp and

NHBA) and cross reactive variants of these proteins [104].

The MATS assay can be seen as a correlate to the well-es-

tablished bactericidal activity test with human comple-

ment (hSBA), that for a long time has been accepted as a

correlate of protection [23, 24, 105, 106]. How well

4CMenB really performs clinically and in real life awaits

practical use and prospective effectiveness studies. Of

note, MATS evaluation accounts separately for each indi-

vidual antigen, which eliminates any accounting for syner-

getic effects between antibodies against different antigens.

In some preclinical studies, such an effect has been shown

(cooperation between anti-fHbp and anti-NHBA antibod-

ies) [107, 108]. How these observations translate into clin-

ical performance of the 4CMenB among ordinary popula-

tion groups worldwide, only post-licensure evaluations

and implementation studies can tell.

Introducing a New Vaccine in Current

Childhood Immunization Programs

In developed countries, especially the UK, a MenB

vaccine has been high on the priority list since the control

of serogroups A, C, W and Y by conjugate vaccines [109,

110]. After decimation of MenC disease, 90 % of the cases

in the UK are MenB and this disease remains the last chal-

lenge in the area of meningococcus (as in most of the other

European countries). In the past 20 years, no other infec-

tious disease has claimed more lives than meningococcal

disease in the UK. Currently there are between 600 to

1,400 cases each year in England and Wales, generally in

infants less than 6 months of age [111]. Although 4CMenB

has the desired broad strain coverage, a substantial hesita-

tion to implement the vaccine in the routine childhood im-

munization has so far dominated the situation.

The precedence of using cost effectiveness studies

started with the introduction of pneumococcal conjugate

vaccines in the US, early in the 21st century [112]. In June

2013 the Joint Committee on Vaccination and Immun-

isation (JCVI) in UK presented a preliminary, non-favour-

able advice to the Ministry of Health of introducing the

4CMenB vaccine [113]. A number of doubts and problems

were presented, of which unfavourable cost-effectiveness

estimation was judged as the most important issue. This in-

terim JCVI recommendation started a large debate in

newspapers and scientific publications [112, 114–120].

Various aspects of the estimation were discussed, includ-

ing the role of economic evaluation in such decision

processes, the lack of sophistication for the cost-effective-

ness models per se and the relative accuracy of several pa-

rameters involved in the calculations. 

Various stakeholders were invited to submit more data

and arguments, which were evaluated and discussed by

JCVI in February 2014 [121]. Key points from the updated

recommendations are: introduction of 4CMenB in the

childhood immunization program with a "2+1" schedule at

2, 4 and 12 months. The vaccine is planned to be given to-

gether with the ordinary childhood vaccines. Infants who

have passed their 2 and 4 month visits will receive one

dose at 6 months and the booster dose at 12 months of age.

No other "catch-up" program will be offered [4, 122]. It is

important to note that a prerequisite for the proposed intro-

duction of 4CMenBmay be negotiations about the price

with the manufacturer. Involved parties are aiming for a

start of vaccination using 4CMenB by the autumn 2014

[111]. 

Important points to note include: 

i) Strain coverage is estimated to be 88 % for UK based

on the hSBA of 40 UK strains, not the 72 % predicted

by MATS [103, 123], which is known to underestimate

strain coverage [123].

ii) Vaccine efficacy is defined to be 90 %, with duration of

18 months after the two primary immunizations and 36

months following the booster. Duration of 10 years

protection might be expected if the vaccine is to be

used among adolescents; however, only infants are in-

cluded in the current plan because of a lack of cost ef-

fectiveness in older persons.

iii) The issue of possible influence on carriage and herd

immunity is currently under discussion. A recent car-

riage study in UK by Dr. Robert Read et al. (Lancet

2014, in press) and data from the use of MenBvac® in

Normandy, France [76] suggest a possible impact.

Reliable carriage data and the true effect on herd im-

munity would require implementation of the vaccine in

the population, followed by specific studies and over-

all good surveillance.

iv) The current cost-effectiveness models were ques-

tioned, particularly the value of vaccines for serious

diseases with a fairly low incidence. It was decided to
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establish a working group for study of some of these

aspects in greater detail. 

Discussion

Over the past 50 years, our understanding has evolved

regarding the importance of MenB disease per se, the so-

cial impact of fear caused by the devastating effects of the

disease and the role of OMV vaccines in providing protec-

tion. We now know that wtOMV-based vaccines are most

effective when used against epidemics due to a homolo-

gous or clonal outbreak caused by bacteria carrying the

same PorA as present in the vaccine. When used against

endemic disease or outbreaks due to a number of different

strains, (a heterologous epidemiologic situation), the level

of effectiveness will generally be too low to rely on a con-

ventional wtOMV vaccine alone for protection. Multiple

doses of these vaccines are required for primary protection

and a booster dose is needed to assure long term protec-

tion, especially in those who receive an initial vaccine se-

ries as young infants.  

More than 6,000 cases and around 250 deaths were

caused by meningococcal disease in New Zealand be-

tween 1991 and 2006, with approximately 80 % of cases

due to the epidemic clone targeted by the MeNZB® vac-

cine [64, 124]. However, following the concerted efforts of

an extensive international and national collaboration, in-

cluding the WHO, Chiron and NIPH; a vaccine, the

MeNZB® was developed to control this specific outbreak.

A substantial national mobilization in New Zealand, in-

volving complex logistics, monitoring and various com-

munication exercises were successfully carried out to han-

dle the public health challenge represented by the particu-

lar meningococcal epidemic. The mass vaccination cam-

paign that started in July 2004 and ended in June 2006, tar-

geted the population below 20 years of age (approximately

1.2 million persons) resulted in a vaccine uptake of 81 %

[68, 70, 71]. It has been estimated for the period between

July 2004 and December 2008that 210 cases, six deaths

and 15–30 cases of severe sequelae were avoided thanks to

the MeNZB® vaccine [71].

The New Zealand epidemic was waning before and

during the roll-out of MeNZB®. However, the staggered

introduction of the vaccine enabled year-by-year compari-

son of rates in vaccinated and unvaccinated populations

that allowed estimating the effectiveness of the vaccine.

Simultaneous modeling of invasive pneumococcal disease

and the clonal outbreak strain of MenB disease suggests a

degree of residual confounding that reduces the effective-

ness estimate from 77 % to 68 % [71]. Following the (cu-

mulative) number of MenB cases in the area with the high-

est incidence in New Zealand (the northern region) from

2002 to 2010 also demonstrate the vaccine impact from

one year (2004) to the next (2005) [44]. There was also

found some evidence for (lesser) cross-protection against

other MenB strains [71]. This observation is consistent

with the findings of Dr. Jordan Tappero et al. in Santiago,

Chile were they found an age-dependent, but clear func-

tional immune response (hSBA) against non-vaccine type

strains [59]. 

The extensive general experience with wtOMV vac-

cines, and in particular thethorough evaluation of

MeNZB® in more than one million individuals, provides

vital information regarding the safety and acceptability of

wtOMV vaccines for widespread use. By the end of 2013

more than 80 million doses of the wtOMV vaccine type

have been administered worldwide [20, 125]. Although

these vaccines are moderately reactogenic, in New

Zealand local and systemic reactions such as fever were

common, but predictable and transient; moreover did not

interfere with widespread acceptance of vaccination. A

very effective education program to inform parents and re-

cipients regarding the nature of these events likely con-

tributed to the high levels of public acceptance of this vac-

cine.

Unlike MeNZB®, which was designed to provide pro-

tection against a clonal outbreak, 4CMenB was formulated

to provide protection against the majority of circulating

MenB strains, which enable it to be used for routine immu-

nization in various regions of the world. The three recom-

binant protein components, active in this vaccine, were

identified through a process called reverse vaccinology,

starting with the bacterial genome instead of microbial

pathogenicity factors inducing dominant immune respons-

es in convalescents. A multi-component vaccine approach

was considered necessary for MenB because of the labile

nature of the meningococcal genome, differences in pro-

tein sequences and surface expression among various

MenB strains for the proteins selected as vaccine antigens.

The intrinsic ability of the meningococcus to change both

through recombination and variability in the degree of sur-

face expression of proteins creates a situation in which any

single component vaccine, even if effective initially,

would likely become ineffective over time as meningococ-

cus could adapt and become resistant to that particular vac-

cine. A multi-component strategy severely reduces the

ability of the organism to circumvent all antibodies elicited

by the vaccine. Based on these observations and insights

the novel multi-component vaccine 4CMenB contains

four major active ingredients, including the same wtOMV

as used in MeNZB®. It is important to recognize that this is

a new class of vaccine, which has employed reverse vacci-

nology in the design of a vaccine against MenB disease

suitable for more general use.

Apart from the implications of the MeNZB® experi-

ence for newer OMV containing vaccines such as

4CMenB, the program also provides a number of other im-

portant broadly applicable public health lessons. Key fac-

tors that contributed to the success of the program were the
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willingness of New Zealand and international parties to

collaboratively support the goal of epidemic control.

Lengthy negotiations and discussions built trust and un-

derstanding between parties. Those leading the project

from the New Zealand government and Chiron Vaccines

were given enough autonomy to enable timely progress.

The overall process from recognition of the outbreak in

New Zealand, to the final implementation of the vaccine

program was much faster than the normal process of vac-

cine development and introduction. Despite this, it took

several years, and some critics have indicated the need to

act more expediently during similar situations in the future

[126]. One key lesson might be that all countries should be

prepared, with regulatory mechanisms already in place, to

anticipate the possible rapid evaluation and introduction of

a new vaccine? The recent H1N1 influenza pandemic is a

case in point, but this lesson might be especially relevant

for developing countries where new vaccines for malaria,

typhoid and other diseases for which no prior experience in

Europe or the US exists, will become available. Such situ-

ations will also require local oversight and evaluation, ac-

tive surveillance, adequate epidemiology and sufficient

strain characterizations. In Cuba, Norway and New

Zealand [45] the basis for using the concept of wtOMV

vaccines was the selection of a manufacturing strain that

matched the clone causing the epidemic. In each case, a

measured approach to vaccine evaluation and introduction

was undertaken. In considering approaches to any public

health emergency, there will always be a tension between

the need to introduce a new intervention quickly and the

need to ensure that the intervention is safe and effective.

The extent and success of the post-introduction evaluation

in New Zealand could provide the impetus to develop pro-

tocols for earlier introduction of interventions for public

health emergencies which are associated with contempo-

raneous evaluation, thus reducing the need for extensive,

time consuming pre-introduction evaluations. This will

most likely happen when the vaccine is of a type or form

about which much is already known. 

Learning Points 

A number of learning points can be extracted from the

long and challenging voyage towards a MenB vaccine

with broad strain coverage. These points might also be

used in other vaccine development programs in times to

come.

1. Recombinant proteins are often inferior immunogens

when compared to their native counterparts produced

by pathogenic bacteria. Thus, a strong need for better

adjuvants and/or more optimal ways of formulating

vaccines continues to exist.

2. Preclinical immunization procedures and screening

methods do not always translate 1:1 in the clinic (for

example, the proteins GNA1030 and GNA2091 that

early on were shown to induce functional immunity,

but later proved to contribute little to hSBA when sera

from clinical trials were tested).

3. Even minor outer membrane proteins that might not be

under strong immunological selection ("pressure")

may vary much more than originally anticipated (for

example, fHbp versus PorA; PorA has a long standing

reputation of being "hypervariable" and antibodies in-

duced by one fHbp variant do not cross-react as well as

hoped for. This effect seems to be most pronounced in

the case where the expression level is low to moderate

and the difference is fairly large between the fHbp vari-

ant in the vaccine and the one harboured by the target

strain used in the hSBA test).

4. For development of protein based bacterial vaccines,

one is likely to reduce the risk for "escape mutants" by

choosing the strategy of using a multicomponent vac-

cine; especially with a dynamic and adaptive organism

as N. meningitidis.

5. Thorough epidemiological surveillance and strain

characterization is essential on a global level. Access to

well-curated strain collections is paramount for proper

vaccine evaluation.

6. Proper and well justified evaluation and judgement of

the actual value of a vaccination program requires con-

tinuing scrutiny and improvement of the models used

for evaluating them.

7. It is a constant and growing need for a balanced and re-

spectful collaboration between private industry (as

vaccine developers) and various public, governmental

bodies (as responsible for disease surveillance, imple-

mentation of vaccination programs and vaccine evalu-

ation from the perspective of society). 

Conclusion

Meningococcal wtOMV vaccines have been employed

for decades and administered to millions of individuals.

These vaccines have been effective and documented a well

characterized and acceptable safety profile. The major

limitation of these wtOMV vaccines is that their immune

response provides protection mainly against strains that

are homologous (i.e. harbouring the same PorA, sero-sub-

type protein) to the outbreak strain used to develop the vac-

cine [45, 59]. This shortcoming has restricted the utility of

wtOMV vaccines to large ongoing epidemics, and public

health benefits have been limited due to the long delay in

formulation. To address these concerns and make manage-

ment of MenB disease a routine rather than an episodic

event, a multi-component vaccine (4CMenB), which in-

cludes the wtOMV used in MeNZB®, has recently been

designed for widespread use and coverage against multi-

Infektolo{ki glasnik 34:2, 61–74 (2014) 69

J. HOLST



70

ple strains and diverse epidemiological situations globally

[86, 87, 89, 91, 98]. Thus, even novel technologies in this

field draw on previous experience with wtOMV vaccines.

Additional knowledge and experience for use of the

wtOMV concept can also be gleaned from the handling of

a localized clonal outbreak in Normandy, France [52, 73,

74] and from preclinical and clinical studies using so-

called native OMV vaccines; where the LPS has been ge-

netically detoxified (lpx1-mutants), avoiding the need for

detergent extraction and with over expressed vaccine anti-

gens naturally folded in the membrane [127–133]. These

different and promising vaccine approaches owe much to

the pioneering experiences gained by using wtOMV vac-

cines, and in particular such large scale public health inter-

ventions as the one that took place in New Zealand with the

MeNZB® vaccine.

The first universal MenB vaccine is about to be imple-

mented in UK and in the coming years the whole vaccine

community will learn numerous important lessons; also

applicable to development and use of other protein-based

bacterial vaccines against other diseases. How well

4CMenB will perform we do not know. Available data and

a number of years with clinical experience give substantial

hope for success. However, it is also evident that there are

still room for improvement. The present vaccine is unlike-

ly to protect against all circulating strains. Somewhere be-

tween 70 % and 90 % might be a reasonable guess for clin-

ical straincoverage. Real sustainability of the protection in

field situations and the true effect on carriage and herdim-

munity will be evaluated as more information is gathered.

The introduction of 4CMenB marks a paradigm shift in

vaccinology. It is the first protein-based vaccine against a

bacterial disease that does not depend on some sort of tox-

in neutralization. In years to come, a number of similar

vaccines will be implemented in various immunization

programs [134, 135]. Thus, lessons learnt from the pio-

neering achievement will be paramount for making need-

ed vaccines faster available to those who are in need.

The heated and extended discussion from the UK, fol-

lowing the interim JCVI decision from July 2013, brought

out important and thoughtful arguments and views. One

important example was Professor Steven Black's comment

on the use of cost-effectiveness analyses as a "gating crite-

ria" to decide which vaccines should be developed or rou-

tinely used; runs the risk of transforming vaccines into pri-

marily "a tool for achieving cost savings within the health

care system rather than a public health intervention target-

ing human suffering, death and disability" [112]. It is real-

istic to hope for an increased understanding of the true and

comprehensive value of vaccines and vaccination follow-

ing the recent debate in UK. From various initiatives it can

also be anticipated an increased refinement in various

models used for estimating cost effectiveness and a better

understanding of the limitations of such calculations.

Over the past 20 years, particularly in the UK, tremen-

dous amounts of effort and many resources have been

spent on improving outcomes from meningitis and septi-

caemia by the government, scientists and health profes-

sionals by raising awareness and promoting early recogni-

tion of disease in addition to developing rapid life-saving

procedures in hospitals. This great cooperative effort has

been important and has made a difference. However, it has

also become painfully evident that prevention by an effec-

tive vaccine is the only sustainable solution to the chal-

lenge posed by the devastating consequences of meningo-

coccal disease. Even in situations like the current low inci-

dence of MenB disease in countries like Norway and

Croatia one might very well argue that a good and safe vac-

cine should be used. A new "tool" in the fight against

meningococcal disease is now available and should be

used in the best possible way to prevent the maximum

amount of death and suffering in the future.
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