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 The occurrence of the mode localization is studied 
in a structure of a single-layer spherical reticulated 
shell. The matrix perturbation method is used to 
analyze the mechanism of the occurrence of mode 
localization. The dynamical characteristics of this 
structure, especially the effects of the variation of 
the stiffness parameter on the vibration modes of 
the structure, were analyzed by numerical 
simulations. An amplitude significance coefficient 
is proposed as a measure of the degree of the mode 
localization. The results show that small deviations 
of the stiffness parameter can cause significant 
changes to the structural dynamics characteristics; 
the mode localization does occur for some 
particular modes of this structure in the case of 
random stiffness mistuning. Preliminary analysis 
found that the mode can be considered as strongly 
localized when the amplitude significance 
coefficient is greater than 8. 
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1 Introduction  
 
The mode localization phenomenon in the mistuned 
periodic structure with cyclic symmetry has been 
heavily studied in the past few decades. The 
phenomenon was first observed by Anderson and 
Mott in their research to explain the transport 
properties of disordered solids in 1958 [1]. Early 
studies were devoted to investigate the electrical 
conduction processes in disordered solids. In solid 
state physics, mode localization typically means that 
the state vector associated with a particle becomes 
localized to a small region, and the probability of 
finding the particle outside this region becomes 
infinitely small; thus, the particle becomes “trapped” 
and an “ordered” solid may change from a metallic 
conductor to a semiconductor [2]. Similar to the 
mode localization phenomenon in solid state 
physics, in the vibration problems encountered in 

structural dynamics, the mistuning of periodic 
structures may localize the vibration modes and 
confine the energy to a region close to the source. 
Therefore, a lot of research work was done in the 
1980s on periodic structures and the mode 
localization analysis is extended to the field of 
structural vibration [3-5]. 
A large number of theoretical and experimental 
studies on the mode localization phenomenon have 
been reported during the past few decades. These 
research studies mainly focused on periodic 
structures with cyclic symmetry [2-9], such as 
bladed disk in turbo machines, flexible space 
antennas, large astronomical telescope, and so on. 
Previous studies showed that the dynamic 
characteristics of the structures could be radically 
different from their ideal values owing to small 
deviations, such as manufacturing or construction 
errors, geometrical irregularity, material defects and 
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structural damage, etc. Using their ideal values as 
the structural responses these studies would lead to 
completely erroneous results. The analysis of mode 
localization in one-dimensional linear and nonlinear 
lattices showed that the analysis of the linear 
problems was a necessary step for the transition to 
the nonlinear ones [10]. The reticulated shell, which 
usually has elegant designs, is an architecture 
structure with many applications. Nowadays, 
reticulated shells, especially spherical reticulated 
shells have been heavily studied and widely used 
[11-13]. As one of the periodic structures with 
cyclic symmetry, spherical reticulated shell 
structures also consist of many identical or similar 
member bars; however, to our knowledge, little 
work has been devoted to the analysis of the mode 
localization in them. 
Considering the structural similarity of the spherical 
reticulated shell structure with the bladed disk in 
turbo machines and flexible space antennas, we 
studied the occurrence of the mode localization in a 
single-layer spherical reticulated shell model. The 
paper is laid out as follows: in the first section of the 
paper, the occurrence mechanism of the mode 
localization phenomenon is analyzed with the 
matrix perturbation method; in the second section, 
the occurrence of the mode localization is studied by 
FEM simulation in a single-layer spherical 
reticulated shell. The effect of the random stiffness 
mistuning parameters on the natural frequencies and 
the mode shapes are analyzed. Subsequently, the 
mode shape characteristics of the structure under 
different mistuning parameters are analyzed, and an 
amplitude significance coefficient is proposed as a 
measure of the degree of the mode localization. In 
the end, the main results of this paper are 
summarized, and the prospective research is 
suggested.  
 
2 Mechanism of localization phenomenon 
 
When the structural stiffness matrix or mass matrix 
has small changes, matrix perturbation method is 
undoubtedly a powerful tool of structure re-analysis. 
The basic idea of the perturbation method is using 
the eigenvalues and eigenvectors of the structural 
state without any mistuning to approximately 
express the structural state of the mistuned structure 
[14]. Here, the matrix perturbation method is used to 
study the occurrence mechanism of localization 
vibration in a mistuned single-layer spherical 
reticulate shell structure. 

For an undamped system, the free vibration 
eigenvalue problem is given by 
   
 Κu Mu , (1) 

 
where, K and M are the stiffness matrix and the 
mass matrix, respectively, λ denotes the eigenvalue, 
and u is the modal vector. When a small 
perturbation is introduced, the mass matrix and 
stiffness matrix can be described as: 
   
  0 1M M M , (2) 

  0 1K K K , (3) 

 
where ε is a parameter representing the disorder in 
the system. Thus, εK1 is a variation of the 
unperturbed stiffness matrix K0, and εM1 is a 
variation of the unperturbed mass matrix M0. The 
perturbation matrices K1 and M1 are of the same 
order as the unperturbed matrices. 
According to the perturbation theory, the 
eigenvectors and eigenvalues can be expanded in a 
power series, i.e., 
   

 2
0 1 2 ...i i i i        , (4) 

 2
0 1 2 ...i i i i    u u u u , (5) 

 
Substituting Eqs (2), (3), (4) and (5) into (1), and 
comparing the coefficient of the first power of ε, the 
following result can be obtained, 
   
 1 0 0 1 0 0 1 0i i i i i i i i     0 1 0 1 0K u K u M u M u M u . 

  (6)
   
The expansion theorem states that any nonzero 
vector can be expressed as a linear combination of n 
of independent vectors. Thus, u1i can be written as 
   

 1 1 0
1

n

i s s
s

C


 u u . (7) 

 
Substituting Eq. (7) into (6), and premultiplying the 
resulting equations by the transpose of u0s to obtain 
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1

n
T T

s s s s i
s
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1
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 
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u M u M u M u . (8) 
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Considering the orthogonality conditions: 
   

 0 0 0 ( , 1~ )T
i j ij i j n u M u , (9) 

 
where δij is the Kronecker symbol, we obtain, 
   

 1 0 0 1 0 0 0 0 0
T T

s i s i is s i i s iC        1 1u K u u M u . 

  (10) 
   
If i ≠ s, δis = 0, C1s can be obtained from Eq. (10), 
   

  01 0 0
0 0

1 T
ss i i

i s

C 
 

 
 1 1u K M u . (11) 

 
If i = s, C1i is determined from the normalization 
condition,  
   

 1 0 0
1

2
T

i i iC   1u M u . (12) 

 
Substituting Eqs (10), (11) into (7), the first-order 
perturbation of the eigenvectors can be written as 
 

 01 0 0 0
1, 0 0

1n
T

si i i s
s s i i s


  
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 1 1u u K M u u  

  0 0 0
1

2
T

s s s 1u M u u . (13) 

 
As shown in Eq.(13), the eigenvectors u1i are 
determined by the following factors: 1) the 
eigenvalues λ0i and eigenvectors u0i; 2) the first-
order perturbation of mass matrix and stiffness 
matrix (M1 and K1). The eigenvalues λ0i and 
eigenvectors u0i are determined by the structural 
characteristics of the original system. When the 
difference of unperturbed frequencies is small, the 
denominator λ0i – λ0s is a very small number. Then 
the first-order perturbation of the eigenvectors u1i is 
very large. The cumulative effect over n terms can 
then produce εu1i is no longer the first order of 

eigenvectors, as expected. A single-layer spherical 
reticulated shell structure is a physical system with 
high modal densities. A small change of structural 
parameters may result in that the eigenvectors 
change remarkably suffering strong mode 
localization.  
 
3 Modal analysis 
 
3.1  Numerical simulation 
 
The finite element approach is an important method 
for the vibration analysis of almost any complex 
engineering structure [15]. In this subsection, a 
single-layer spherical reticulated shell structure is 
considered and the mode localization phenomenon 
is discussed. The geometry of the reticulated shell 
structure is shown in Fig. 1. It consists of a number 
of circumferential ribs and longitudinal ribs. The 
geometric parameters and material parameters of the 
single-layer spherical reticulated shell are shown in 
Table 1 and Table 2, respectively. 
 

 
 

         a) Top view               b) Side view 
 
Figure 1. Schematic diagram of the single-layer 

spherical reticulated shell. 

 
Table 1. Geometric parameters of the single-layer spherical reticulated shell. 
 

Spherical radius [m] Height [m] Span [m] Sector-Number Circular-Number 
19.95 6.8 30 24 6 

Table 2. Material parameters of the single-layer spherical reticulated shell. 
 

Material 
Density 
ρ [kg·m-3] 

Elastic modulus 
E [MPa] 

Poisson ratio 
µ 

Yield strength 
σs  [MPa] 
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Q235 7850 2.06×105 0.3 235 

 
All the ribs are circular steel tubes with the 
following cross-section sizes:  159×8 for 
longitudinal ribs;  63.5×3 for circumferential ribs. 
All the ribs are treated as Beam188 elements which 
are defined in ANSYS. They are linear, or quadratic, 
or cubic two-node beam elements in 3-D. The 
element is based on the beam theory of Timoshenko 
which includes shear-deformation effects. It is 
suitable for analyzing slender to moderately stubby 
or thick beam structures. In the computational 
model, the nodes at which the fourth ring and the 
radial ribs intersect are treated as fixed ends as the 
marking shown in Fig. 1. 
In order to illustrate the effects of structural 
imperfections on the dynamic characteristics of the 
structure, the stiffness mistuning was introduced 
into the 24 sets of longitudinal ribs by altering their 
stiffness K (in Fig. 2) by an amount of ΔK/K.  
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Figure 2. Specific distribution of the stiffness 
mistuning of 24 sets of longitudinal ribs. 

 
Here, ΔK/K is a group of normally distributed 
random numbers with a mean of 0 and a standard 
deviation of σ. The serial numbers of the 24 sets of 
longitudinal ribs are shown in Fig. 1. The specific 
distribution of the stiffness mistuning used in 
generating the results in this work is shown in Fig. 2. 
The mode characteristics of the single-layer 
spherical reticulated shell were analyzed using FEA 
software-ANSYS. The natural frequencies and 
mode shapes are the important dynamic 
characteristics of structural systems, so the natural 

frequencies of the first fifty modes are extracted and 
their respective vibration mode shapes are analyzed. 

 
3.2 Results and discussion 

 
3.2.1 Frequency comparison of the tuned and 

mistuned structure 
 
In numerical simulations, the natural frequencies of 
the first fifty modes were extracted from both the 
tuned and mistuned models. The natural frequency 
comparisons of the first fifty modes between the 
tuned and mistuned structures are plotted in Fig.3. 
Due to space limitations, only the calculation results 
of the first ten order frequencies are listed in Table 3, 
where σ = 0 and σ = 0.25 represent the standard 
deviation of the stiffness mistuning parameters of 
the tuned and mistuned structures, respectively. 
As shown in Fig. 3, the first fifty order frequencies 
of the tuned and mistuned structures are intensive. 
The frequency difference between the tuned and 
mistuned structures is not obvious. The low 
frequencies of the tuned and mistuned structure are 
almost the same, which indicates that the small 
stiffness mistuning has minimal impacts on the 
natural frequencies of the structure. 
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Figure 3. Natural frequency comparison of the first 
fifty modes between the tuned and 
mistuned structure. 

 
In Table 3, there are repetitive frequency features in 
the first ten orders of the natural frequencies when σ 
= 0, i.e., in the tuned structure. 

Table 3. First ten order frequencies of the tuned and mistuned structure. 
 

Frequency 
[Hz] 

Mode 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
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σ=0 3.915 3.915 3.970 3.970 4.023 4.023 4.215 4.215 4.350 4.470 
σ=0.25 3.604 3.720 3.839 3.877 4.038 4.096 4.221 4.340 4.410 4.480 

Difference -0.311 -0.196 -0.131 -0.093 0.015 0.073 0.006 0.124 0.060 0.010 

It can be seen  that the first four pairs of data, i.e., 
those of the 1st and 2nd order, the 3rd and 4th order, 
the 5th and 6th order, the 7th and 8th order, are 
equal, respectively. The repetitive frequency of the 
tuned structure degenerates into two adjacent 
frequencies when σ = 0.25, i.e., in the mistuned 
structure.  
 
3.2.2 Mode comparison of the tuned and 

mistuned structure 
 
This system has very high modal densities. Previous 
studies showed that the dynamic system with close 
eigenvalues was likely to cause the occurrence of 
mode localization [3-11]. In order to study the 
characteristic of the mode shape of the structure, we 
extract the contour of displacement vector sums 
(DVSs) of the first four modes of the tuned and 
mistuned structure. It can seem from Fig. 4 and Fig. 
5 that the vibration of the first four modes of the 
structure is mainly concentrated in the outer ring 
bars.  
For a more detailed quantitative analysis of the 
calculated results, the modal displacements are 
normalized by the maximum DVS of the end-nodes 
of the 24 sets of the longitudinal ribs in the mistuned 
structure. The comparisons of the normalized 
amplitudes of the end-nodes between the tuned and 
mistuned structure are plotted in Fig. 6. The 
vibrations of the first four modes of the tuned 
structure are relatively uniform and have a regular 
form. The vibration of the mistuned structure is 
confined to very few longitudinal ribs of the 
structure, and the vibration displacements of the 
other ribs are almost zero, thus the mode is localized. 
When σ = 0, the variation of the normalized 
amplitudes of the rib end-nodes resembles a 
sinusoidal wave (Figs. 6a–d). This is determined by 
the periodicity of a single-layer spherical reticulated 
shell structure. As the distribution of the modal 
vibration energy is relatively uniform, the 
normalized amplitudes of the rib end-nodes of the 

24 sets of the longitudinal ribs are the tuned form of 
a trigonometric curve. 
 

        
a) The first mode          b) The second mode 

   

        
c) The third mode          d) The fourth mode 

 
Figure 4. Contour of normalized amplitudes of the 

first four modes of tuned structure. 
 

        
a) The first mode          b) The second mode 

 

        
c) The third mode          d) The fourth mode 

 
Figure 5. Contour of DVSs of the first four modes of 

the mistuned structure. 
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a) The first mode 
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b) The second mode 
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c )The third mode 
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d) The fourth mode 

 
Figure 6. Comparison of the normalized amplitude 

of the first four modes between the tuned 
and mistuned structure. 

 
When σ =0.25, the first four modes are different 
compared with those of the tuned structure. The first 
order vibration is only confined to the 4th and the 

5th sets of longitudinal ribs, the normalized 
amplitudes of the two rib end-nodes are 2.20 times 
and 2.38 times of that order of the tuned structure, 
respectively. 
Most of the normalized amplitudes of the other rib 
end-nodes are lower than the one-fifth of the 
maximum value, the localized effect of the first 
order is obvious (Fig. 6a). Although the second 
order and the third order modes of the mistuned 
structure have not such great change as the first 
order, more than half numbers of the normalized 
amplitudes of the two modes are still lower than the 
one-fifth of the maximum value. For the second 
order mode, the vibration is mainly confined to the 
16th to the 18th sets of longitudinal ribs. The 
normalized amplitude of the 17th sets of 
longitudinal ribs is the maximum one, and it is 4.27 
times of that of the tuned structure (Fig. 6b). For the 
third mode, the maximum normalized amplitude of 
the mistuned structure is 2.37 times of that of the 
tuned structure (Fig. 6c). The fourth order modal 
shape of the mistuned structure has changes 
compared with the tuned structure, but the vibration 
is considered to be extended, all the nodes have 
different levels of vibration, their normalized 
amplitudes are greater than the one-fourth of the 
maximum value. The maximum normalized 
amplitude of the mistuned structure is 2.04 times of 
that of the tuned structure (Fig. 6d). The localized 
effect of the first order is the most obvious in the 
former four modes. It was found out that the mode 
localization phenomenon also occurs in some higher 
order modes of the first fifty modes. Note that the 
different modes typically localize at different sets of 
ribs, the locations of the maximum normalized 
amplitude cannot be anticipated from a cursory 
inspection of the actual distribution of random 
mistuning, Fig. 2.  
As shown in Figs. 6a–d, the normalized amplitudes 
of the rib end-nodes of the first four modes of the 
mistuned structure have a great change compared 
with those of the tuned structure, and they no longer 
have the tuned form of trigonometric curves. We 
selected the normalized amplitudes of the rib end-
nodes for the first four modes in the tuned and 
mistuned structure as sample space. The amplitude 
standard deviations of the sample spaces were 
calculated to describe the dispersion of the rib end-
nodes of the longitudinal ribs in the tuned and 
mistuned structure, respectively. The formula of 
standard deviation is written as: 
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1

1
( )

n

d u j
j

p p
N




  , (14) 

  
where pj is the normalized amplitude of the j-th set 

of longitudinal ribs (j=1, 2…, 24), p is the mean of 

the normalized amplitudes of the 24 sets of 
longitudinal ribs. σu and σd represents the amplitude 
standard deviation of normalized amplitudes of the 
tuned and mistuned structure, respectively.  
As can be seen from Table 4, in the tuned structure, 
the amplitude standard deviations σu of the first two 
modes are equal to 3.286×10-4; those of the third 
and fourth order modes are equal to 1.492×10-4. 
Previous analysis shows that the frequencies of the 
1st and 2nd order, 3rd and 4th order are equal, 
respectively (Table 3). This shows that there is a 
correspondence between the frequencies and mode 
shapes. When mode localization occurs, the 
vibration energy is confined to a few ribs, the 
amplitude of vibration of these ribs increases, while 
that of the other ribs reduces correspondingly. As 
shown in Table 4, the standard deviation σd of the 
first four modes becomes larger compared with σu. It 
reflects that the first four modes have changed 
greatly compared with the tuned structure and the 
vibration energy is no longer uniformly distributed 
from one aspect. 
 
Table 4. Amplitude standard deviation. 
 

Amplitude 
standard 
deviation 

Mode 
1st 

(×10-4) 
2nd 

(×10-4) 
3rd 

(×10-4)
4th 

(×10-4)

u  3.286 3.286 1.492 1.492 

d  7.977 7.470 7.336 5.661 
 
3.2.3 Results with different stiffness mistuning 

parameters 
 

It is clear that from the results above, the strong 
mode localization does occur in the first three 
modes when σ is equal to 0.25. When σ changes 
from 0.05 to 0.25, the variations of the modal 
displacement with the rib number for the first four 
modes of the structure are plotted in Fig. 7.  
The modal mass matrix is independent of the 
stiffness mistuning parameters.  
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c) The third mode 
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d) The fourth mode 

 
Figure 7. Variations of the modal displacement with 

the rib number for the first four modes of 
the structure. 
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Modal displacements obtained in software are 
normalized with respect to the same mass matrix, so 
they are comparable. When σ varies from 0.15 to 
0.25, the localized phenomenon of the first three 
modes is relatively more obvious. The vibration of 
the mistuned structure is confined to very few 
longitudinal ribs of the structure, the modal 
displacements of more than half numbers of the 
longitudinal ribs are less than 0.01. The localized 
phenomenon of the fourth mode is not obvious 
compared with the former three modes. When  are 
equal to 0.05 and 0.10, the mode shapes of the first 
four modes are similar to those of the tuned 
structure and the mode localization is not obvious 
for all the former four modes. As the standard 
deviation σ decreases from 0.05 to 0.25, the 
maximum modal displacement is increased but the 
modal displacements of the other longitudinal ribs 
are decreased as shown in Figs. 7 a) – d). 
 
3.2.4 Amplitude significance coefficient 
 
For the purpose of discussing the results of 
numerical experiments and comparing the degree of 
mode localization of different modes, the amplitude 
significance coefficient Ri  is proposed here. 
For the i-th mode, the corresponding amplitude 
significance coefficient is 
 

 Ri = (Pimax – Mi2/3) / Mi2/3 , (15) 

 
where Pimax is the maximum modal displacements of 
all the longitudinal rib end-nodes for the ith mode of 
the mistuned structure, Mi2/3 is the mean of the first 
two-thirds of the minimum modal displacements of 
the longitudinal rib end-nodes for the i-th mode of 
the mistuned structure, respectively. 
According to the above conclusion of the contour of 
DVS, the degree of the mode localization of the first 
mode is the most obvious. As shown in Fig. 8, the 
amplitude significance coefficient Ri of the first 
mode is also greater than that of the other three 
modes when the standard deviation of mistuning 
parameters is equal to 0.25. The greater the 
amplitude significance coefficient Ri, the stronger 
the degree of the mode localization. It indicates that 
the amplitude significance coefficient denotes that 
the degree of the mode localization is sound.  
As the mode number increases, the amplitude 
significance coefficient gradually becomes smaller 
in Fig.8. It indicates that the degree of the mode 

localization of lower mode is more obvious than that 
of higher order modes in our model of this single-
layer spherical reticulated shell structure. When σ = 
0.25, the above analysis of subsection 3.2.2 shows 
that the localized phenomenon of the first three 
modes is relatively more obvious and in Fig.8 the 
amplitude significance coefficient Ri of the first 
three modes is greater than 8. For the fourth order 
mode, the mode localization phenomenon was not 
obvious and the amplitude significance coefficient 
Ri was smaller than 8. Preliminary analysis found 
that the mode can be considered as strongly 
localized when the amplitude significance 
coefficient is greater than 8. Once this critical value 
has been given, checking the degree of the mode 
localization phenomenon becomes easy. When the 
stiffness mistuning parameters vary with the 
standard deviation from 0.05 to 0.25, not every 
order mode is strongly localized. Due to limited 
space, the corresponding contour of DVSs of the 
mistuned structure is here no longer given. 
 

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

A
m

pl
it

ud
e 

si
gn

if
ic

an
ce

 c
oe

ff
ic

ie
nt

Mode number (1,2,3,4)

 

 

=0
=0.05
=0.10
=0.15
=0.20
=0.25

 
 

Figure 8. Curve of amplitude significance 
coefficient.  

 
4 Conclusions  

 
In this paper, the mode localization of a single-layer 
spherical reticulated shell has been studied with the 
matrix perturbation method and FEM simulations. 
The conclusions are summarized as follows: 
1) The analysis of the matrix perturbation method 

indicated that a slight variation of the stiffness 
matrix or mass matrix can cause the eigenvectors 
of closely spaced modes to change remarkably, 
leading to the mode localization phenomenon. 

2) The results of numerical simulation prove that 
the mode localization can occur in some 
particular mode of the mistuned single-layer 
spherical reticulated shell. As the mistuning 
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parameter amplitude increases, the maximum 
modal displacement of the longitudinal rib end-
nodes becomes correspondingly larger. 

3) The proposed amplitude significance coefficient 
Ri can effectively describe the degree of the 
mode localization. 

4) The results indicate that the localized 
phenomenon of lower order modes is more 
evident than that of higher order modes and not 
every mode has discernable mode localization 
phenomenon. Our analysis found that the mode 
could be considered as localized when Ri >8. 

Currently, mode localization is still a research area 
not well studied in structural dynamics. Practical 
applications of localization have not been fully 
explored yet, for example, how to make use of the 
localization characteristic to control the vibration 
level of the important substructure and how to 
improve the sensitivity of the periodic structure with 
a random mistuning. Thus, further studies are 
needed to determine the mode localization 
phenomenon for spherical reticulated shells. 
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