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In this paper two simple improvements over traditional mark-sweep collector are proposed. The core idea
is placing small objects of the same type in buckets. The buckets are organised in such way to eliminate the
internal fragmentation, sweeping, and freeing inside them. The measured improvement of garbage collection time
over traditional mark-sweep is 19%. Another proposed improvement ismore general and is applicable to other
garbage collection algorithms as well. It uses heuristics to control the heapgrowth. The regularities in behaviour of
objects of particular types are used to determine whether the collection should be performed or avoided in favour of
immediate heap expansion. The heap expansion algorithm reduces garbage collection time over traditional mark-
sweep for 49% while keeping the heap size approximately the same.
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Algoritam za zbrinjavanje memorije s označavanjem i smanjenim oslobādanjem. U ovomčlanku opisana
su dva jednostavna poboljšanja algoritma označi-oslobodi. Osnovna ideja jest smještanje malih objekata istog tipa
u pretince. Pretinci su organizirani tako da se u njima ne pojavljuje unutarnja fragmentacija, a uklanja se i potreba
za oslobādanjem blokova zauzetih nedohvatljivim objektima. Vrijeme provedeno u zbrinjavanju manje je za 19% u
odnosu na klasični algoritam oznǎci-oslobodi. Drugo poboljšanje je općenitije i mogúce ga je primijeniti i na druge
algoritme za zbrinjavanje memorije. U njemu rastom gomile upravlja heuristički algoritam koji koristi pravilnosti
u ponašanju objekata različitih tipova. Na temelju njih, algoritam odlučuje hóce li gomila biti zbrinuta ili odmah
proširena. Heuristička inǎcica algoritma smanjuje vrijeme provedeno u zbrinjavanju u odnosu na tradicionalni
algoritam oznǎci-oslobodi za 49%, a da pri tome zahtijeva približno istu količinu memorije.

Klju čne riječi: oznǎci-oslobodi, zbrinjavanje memorije, dimenzioniranje gomile, upravljanje memorijom

1 INTRODUCTION

The basic tracing algorithms for garbage collection
(GC) are mark-sweep, copying, and mark-compact. They
visit live objects by tracing pointers in the heap, starting
from a set of root-pointers. While tracing pointers, mark-
sweep marks all live objects and in the second phase it
sweeps the heap sequentially freeing the unmarked objects.
Mark-sweep is non-moving algorithm so free and used
memory blocks are scattered throughout the heap. Like
any other GC algorithm, mark-sweep (MS) is not ideal,
yet it is still widely used in some of its numerous variants,
either as a standalone collector or more often as a part of
advanced algorithms like generational, conservative, or in-
cremental collectors (e.g. in JRockit, Dalvik, and Hotspot).

In this work the aim is to investigate some new ideas
for improvements of MS in order to speed up execution
but without increasing memory consumption too much.

All the proposed changes are very simple and they do
not require any modifications in operating system (OS) or

run-time environment, other than changes in memory man-
agement, of course. Also, the proposed algorithm does not
rely on any kind of static analysis and/or profiling of pro-
grams, neither does it rely on any user-defined parameters.
The only assumption is that the GC is precise rather than
conservative (conservative marking traces everything that
looks like a pointer so it can retain some dead memory ob-
jects in a heap). We feel that simple changes have more
chances to be accepted in practice than complex mecha-
nisms regardless of good results they may achieve.

In the proposed modification of MS we classify ob-
jects as large and small, depending on a threshold size.
Small objects are allocated in memory areas named buck-
ets. Large objects encompass the buckets themselves, ar-
rays of any size, and all other objects larger than the thresh-
old. The large objects are allocated by using any standard
allocation algorithm. The buckets are sized to contain 32
small objects of the same type or class. This completely
eliminates the internal fragmentation for small objects (ex-
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ternal fragmentation is addressed later in the paper). The
buckets are organised so that small objects never need to
be swept and therefore we named the proposed algorithm
“Mark-Without-Much-Sweep” (MwmS). Another benefit
of our bucket organization is entirely eliminated overhead
of freeing small objects. Also, the allocation of small ob-
jects is simplified and, consequently, made faster. With the
proposed changes the GC time (cumulative time spent by
garbage collector during the program run) is on average
reduced by 19% over traditional MS.

GC increases the programmer’s productivity but de-
creases performance of applications in comparison to ex-
plicit memory management. GC’s impact on performance
highly depends on a heap size and therefore we pay at-
tention to heap expansion as well. Increasing the heap
is not the right answer (at least not always) in reducing
performance impact of GC. For example, if the heap be-
comes larger than the available physical memory, paging
will occur and the execution will slow down. In embedded
and mobile systems the memory resources are limited and
swap space usually does not exist so the heap cannot al-
ways grow. Besides, heap that is too large can create mem-
ory pressure that can slow down other applications. Moti-
vated by all these difficulties, we propose a simple heuris-
tic algorithm for heap expansion. The algorithm is bal-
anced in order to improve the execution time while keeping
the heap as small as possible. In short, if a program cre-
ates long-lived objects, the heap is expanded immediately
rather than doing a collection after which the heap will be
expanded anyway. On the other hand, if created objects
are short-lived, the GC is preferred. The MwmS with the
heuristic heap expansion reduces GC time by 37% in com-
parison to the basic MwmS. In relation to traditional MS,
the speedups are even better (49%) and the heap size re-
mains approximately the same.

Two main contributions of this paper are: (1) novel
organisation of small objects in buckets with integrated
bitmaps, which improves allocation time and internal frag-
mentation, and avoids the sweep phase and freeing inside
buckets; (2) simple yet effective heap expansion algorithm
that adapts to the application behavior in order to reduce
the execution time without too much heap expansion.

2 BACKGROUND

Allocation. GC can use a general purpose allocator built
in the system libraries. In that case GC and allocator have
separate headers. The allocator headers typically contain
block size and used/free bits, while the GC headers may
contain a mark-bit, counter, or pointer etc. – depending on
the GC algorithm. MS needs only one mark-bit which can
usually be placed into the allocator header.

Allocators may use bitmaps where each bit is mapped
to several bytes in the heap. Each bit denotes whether its

associated bytes are free or used. On allocation request the
allocator scans the bitmaps in search for sufficiently long
sequence of zeroes. To free the block, all its related bits
should be cleared so the block size has to be known [1,2].

Two-level allocators alleviate the fragmentation prob-
lems and are therefore often used with MS algorithms. At
the lower level the allocation is performed in blocks. At
the higher level small objects (of the same size or type) are
allocated inside the blocks [1–5].

Moving algorithms have a contiguous free space and
they use bump allocation which is simple and fast (blocks
are allocated simply by moving a so called bump pointer
which points to the beginning of the free space). MS usu-
ally requires an underlying allocator based on free lists
which is slower than bump allocation. The allocator causes
internal and external fragmentation and needs space for
headers. However, MS needs less memory than copying
algorithms although more than compacting algorithms. By
using state-of-the-art allocator, the fragmentation can be
reduced and allocation speed can be increased [6].

Mark phase. The simplest variant of mark phase is re-
cursive marking. Its numerous function calls produce
overhead and may cause system stack overflow. Explicit
marking-stack is often used since its overflow is handled
much easier and it avoids the function calls [1,4,7,8].

Mark-bits organization. A mark-bit can be placed in-
side an object header or in a separate part of memory in
bitmaps (not to be confused with an allocator’s bitmap).
Bitmaps are typically used for conservative GC which can
falsely identify a part of memory as a live object but must
not change it. If regions of memory hold the same sized
objects, each bit can denote an entire object, which simpli-
fies bitmap operations and reduces space overhead. When
objects of different sizes are held together in a heap, each
bit in a bitmap denotes each possible starting location of
an object [2].

Accessing bits in bitmaps needs mapping (determina-
tion of bit position according to the object address) which
is slower than accessing header bit. Marking in bitmaps
has better locality than using header bits. This can com-
pensate mapping duration and can make bitmaps faster.
However, when the whole tracing loop is taken into ac-
count, together with object scanning, the performances of
header bits and bitmaps are very similar [9].

Sweep phase. Collection pauses can be reduced with
lazy sweep (also called mark-and-don’t sweep). Lazy
sweep is performed on allocation requests but incremen-
tally – only few objects are swept, just enough to complete
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the allocation. Alternatively, a certain amount of the heap
can be swept. Lazy sweep can also reduce the overall GC
time due to less coalescing of free objects. It also improves
locality because the swept area is small and will probably
be immediately used by an allocator and mutator (user pro-
gram is called mutator because it mutates the connections
between objects) [2,4,10].

Heap sizing. In small heaps GCs are frequent which
slows an execution. A total execution can be faster in larger
heaps where GCs are less frequent (although each of them
may last longer). If a heap outgrows the available memory,
paging will occur which will degrade performance signif-
icantly. Heap size optimization is hard because it depends
on many dynamic factors. The heap can be reduced when
using moving collectors, since their free space is contigu-
ous and the unused end of the heap can be returned to an
OS. The heap cannot be reduced when using non-moving
collectors, like MS, because their heap contains scattered
live objects. A virtual memory manager may swap out
nearly empty and rarely used pages, but only until the next
collection when they will be touched again [11]. There-
fore, for non-moving collectors the heap should grow more
sparingly than for the moving collectors.

The heap sizing algorithms can use various data when
deciding whether to resize the heap. These data can in-
clude total memory size, heap size, GC efficiency, cur-
rent memory footprint, real memory usage, memory pres-
sure, empirically collected data about program behaviour,
etc. Some of the algorithms rely on empirically tuned val-
ues [12, 13] or on data collected by running benchmarks
[11, 14]. Other algorithms require changes in VM or OS
or both [15]. Some approaches do not require user partici-
pation or OS modifications but only dynamically loadable
kernel module [16].

3 THE IDEA OF MARK-WITHOUT-SWEEP

Here we present a simplified idea of MS algorithm
improvements. We propose the integration of two-level
bitmap allocator and bitmap based MS collector, where
bitmaps are the key integration point. In MS, mark-bits
are set during marking phase for all reachable objects and
used during sweep phase to distinguish between live ob-
jects and garbage. In bitmap allocator bits in bitmaps are
used to distinguish between used and free memory blocks.

To understand the possibility for integration, let us
imagine an environment which uses built-in bitmap allo-
cator and naïve MS collector. Now suppose that all objects
are of exactly the same size, hence all allocator blocks will
also be of equal size. Each block will hold exactly one ob-
ject. In this allocator 1:1 mapping between bits in bitmap
and memory blocks is possible – each bit denotes exactly

one memory block and hence exactly one object. In this
simplified environment one set of bits can be used for both
allocation and garbage collection.

The above concept can be generalized as shown by Al-
gorithm 1, which is the pseudo-code for allocation of a
memory block using a single set of bits. When allocation
of memory block is requested the bitmap is searched for
the first free block which is returned if available. The cor-
responding bit in the bitmap is set which denotes that the
block is used and the object is reachable. When there are
no free memory blocks for further allocation, the bitmap
is cleared (only the bitmap is changed in this step, without
sweeping the heap objects). After that all live objects are
traversed and marked in the bitmap (like in mark phase of
MS). At the end of marking all memory blocks with unset
bits are populated by garbage and may be allocated again.

func new()
if ( NULL == ( addr=find_empty_block() ) )
clear_bitmap()
mark()
if ( NULL == ( addr=find_empty_block() ) )
abort()

set_bit(addr)
return (adr)

Algorithm 1. Allocation of memory block.

By closely integrating bitmap allocator with mark
phase of MS collector through common use of bits, we ren-
dered the sweep phase unnecessary. Therefore, the com-
plexity is reduced compared to traditional MS collector
and is proportional only to the amount of live data.

4 MARK-WITHOUT-MUCH-SWEEP

We utilize and further develop the presented idea of
bitmap integration in the design of a new algorithm that we
call mark-without-much-sweep (MwmS), since it still has
to sweep some objects. We did not use other known tech-
niques like lazy sweep or non-recursive marking, because
they are orthogonal to our algorithm and we also wanted
to isolate the effects of the proposed changes in relation to
traditional MS algorithm.

4.1 Objects Categories

The objects are categorised as small and large. The
large objects include arrays of any size, buckets, and all
other objects larger than the threshold size. The large ob-
jects are held directly in the heap, whereas the small ob-
jects are held in the buckets.

The threshold size can be adjusted with a command
line parameter. In this research we have used 120B as the
threshold value. In all used benchmarks all objects, except
some arrays, were smaller than the chosen threshold value.
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Fig. 1. Bucket organisation.

MwmS uses two-level allocator. At the lower level
large objects (including buckets) are allocated by using any
general purpose allocator. Higher level allocator allocates
small objects in the buckets.

For low level allocation we have used Doug Lea’s al-
locator [17]. Lea’s allocator is well balanced with respect
to fragmentation and execution speed, and is often used as
part of the researches similar to ours [5,6,18].

4.2 Organisation and Allocation of Small Objects

The buckets implement the idea of mark-without-
sweep on a small scale. Small objects of the same class are
allocated using bitmaps inside buckets. They consist of a
header containing bitmap and space used for placement of
objects. Figure1 shows bucket organisation. Each bucket
is sized to hold 32 objects thus it has a 32-bit bitmap.
The larger or smaller buckets can be implemented, but we
choose 32 objects in order to fit the bitmap in one machine
word of 32 bits. Buckets of the same type are linked to-
gether in doubly-linked list (*prev and *next). The list
header is located in the class descriptor. The bucket header
also includes a pointer to the class descriptor (*root).

Each small object has one word header which holds
index of the object in the bucket and its offset from the
bucket header. These values are used during marking to
access the bitmap and generate the appropriate bit-mask
for the bitmap. The index and offset can be derived from
each other by knowing the object size. To avoid the com-
putation we store both values. This does not incur space
penalty since both values are stored inside single word.

It is worth noting that this organisation of buckets elim-
inates internal fragmentation in small objects. The inter-
nal fragmentation exists only at the lower level allocation.
External fragmentation is different in comparison to tradi-
tional MS, because lower level allocator now handles big-
ger blocks of memory.

A roving pointer together with bitmap scanning is em-
ployed for higher level allocation (Algorithm2). The rov-
ing pointer points to the bucket in which the last object of
the corresponding class was allocated. When a new object
is about to be created, the allocator first scans the bitmap
of the bucket pointed to by the roving pointer. If all bits
are set, roving pointer proceeds to the next bucket of the
same type, after which bit scanning is carried out again.

If scanning fails for the last bucket, the new bucket is re-
quested from the lower level allocator. If this fails, the GC
is performed after which all roving pointers are reset to
the beginning of their corresponding bucket lists. The GC
may free small objects and large objects including entire
buckets. The higher level allocator then retries to allocate
the small object and if this fails, the lower level alloca-
tor retries to allocate the new bucket. If the new bucket
allocation fails, the heap is expanded by using sbrk() and
the new bucket is created. The heap expansion fails when
maximum heap is reached (this is not shown on simplified
pseudo-code). Finally, allocation request is satisfied by re-
turning an address of the first block in the new bucket.

func alloc_small_object(class)
if ( NULL == ( object=alloc_in_bucket(class) ) )
if ( NULL == ( bucket=create_bucket(class) ) )
gc ()
if ( NULL == ( object=alloc_in_bucket(class) ) )
if ( NULL == ( bucket=create_bucket(class) ) )
sbrk ()
bucket = create_bucket(class)

object = alloc_in_bucket(class)
else
object = alloc_in_bucket(class)

return (object)

Algorithm 2. Small object allocation.

Rather than by shifting and masking, bitmap is more
efficiently scanned by using GCC built in function which
counts trailing zeroes [19]. It is supported on a number of
architectures (e.g. Intel, AMD, ARM, Power, etc.). On
our platform (Intel)__builtin_ctz compiles to single
assembly instruction (bsf).

4.3 Organisation and Allocation of Large Objects

As already mentioned, the large objects are allocated
by the lower level allocator. They use header bit for mark-
ing, which is stored in allocator header. During GC, the
large objects are traced together with small objects, but the
sweep phase scans only the large ones.

4.4 Bitmaps and Header Bits

During the mutator run, bitmap bits are used for al-
location. The set bits denote used memory blocks which
hold either reachable or non-reachable objects. In order
to use the same bits for marking, they have to be cleared
before GC (in traditional MS bits are already cleared by
previous sweeping). We wanted to avoid an additional
pass for clearing the bitmaps in buckets prior to marking
phase. Hence, each bitmap is cleared when the bucket is
accessed for the first time during marking (at the same time
the mark-bit of the bucket is normally set, which is also an
indication that the bitmap is cleared).
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After marking is completed, all live objects (including
buckets which contain reachable small objects) will have
their associated mark-bits set. The sweep phase scans allo-
cator headers of large objects, frees all unmarked memory
blocks and clears mark-bits of marked ones.

4.5 Generality of MwmS

Standard improvements used in MS are applicable to
MwmS as well. Large objects in MwmS can be swept
lazily. The benefit would not be as significant as in MS
since small blocks (which are in majority) are not swept
at all. Different marking schemes (using explicit marking-
stack with or without FIFO [9]) or various scanning tech-
niques [20] are orthogonal to MwmS and could be freely
employed in marking phase. Of course, marking of small
objects should also clear bitmap and set mark-bit of the
bucket, as described in the previous section.

MwmS can be used as a mature space collector in
generational collection instead of traditional MS (like in
e.g GenMS in MMTk which is regarded as high perfor-
mance collector [5]). During promotion of objects from
the younger generation into mature space, object should be
allocated using MwmS two-level allocator, and their con-
tent copied as usual. Also, MwmS can be used as a backup
tracer for cycles in reference counting.

However, to be used as a conservative collector, MwmS
should be adapted. This is due to the fact that conservative
GC can falsely identify a part of memory as a live object
but must not change it [2]. Therefore, conservative GC
uses bitmaps for marking. The large objects in MwmS
have header mark-bits which should be displaced in sep-
arate bitmaps stored aside. The same should be done with
bitmaps of small objects.

5 HEURISTIC HEAP EXPANSION

When a program starts, operating system assigns it a
part of memory, of which some is used as a heap. In the
presence of GC, the heap is traditionally expanded in the
following way: if an allocation request was unable to find
sufficiently large free block, the GC cycle is performed;
if the GC was also unsuccessful (i.e. if it was unable to
find and free enough dead objects in order to satisfy the
preceding allocation request), the heap will be expanded.

Heap size impacts performance: if it is too small,
garbage collection will occur more frequently and degrade
system performance; on the other hand, if it is too large,
the performance will be degraded by page swapping. Heap
sizing policy is often hard-coded in a virtual machine and
based on trial-and-error experiments [14]. In this research
we developed heap expansion policy based on objects’ be-
haviour rather than on values such as time taken for GC or
current amount of live data in the heap.

In MwmS, objects of the same classes are held in the
same type of buckets. Therefore the algorithm can easily
keep track of behaviour and profile each class of objects
during program runtime.

Ramps, peaks and plateaus are three patterns of mem-
ory usage observed in variety of programs [21]. These
patterns represent: constant allocation, allocation followed
by freeing, and equal rate of allocation and freeing, re-
spectively. The phase behaviour of programs is also well-
known and exploited in GC algorithms (e.g. [11, 15]).
Peaks, ramps, and ramps combined with peaks are found
in the benchmarks that we used (explained in Section6).
The behaviour of the DaCapo benchmarks is quite similar
with the addition of a few plateaus [22].

For GC algorithms the worst case is ramp phase be-
cause collections are fruitless and they are followed by im-
minent heap expansion.

In the used benchmarks we observed that in ramp
phases the majority of created objects are long-lived and
belong to only few classes (often only one). When col-
lection is called during the ramp phase the space is rarely
freed, and is often not large enough to hold a new bucket.
Therefore we concluded: (1) during ramp phases the GCs
should be avoided, and (2) ramp phases can be recognized
when no long-lived objects of prolific classes are freed in
the collection.

Based on these observations we propose the following
simple heuristics. If a program keeps creating long-lived
objects of a certain class (objects are classified as long-
lived if they survive the previous GCs), the corresponding
bucket list should be expanded immediately rather than do-
ing a GC after which the bucket list will be expanded any-
way. To create the new bucket in a ramp phase, after the
unsuccessful allocation, the heap has to be expanded. On
the other hand, if objects of certain class are short-lived,
the GC is preferred.

In our research we developed several variants of above-
mentioned algorithm with heuristic behaviour. Each vari-
ant shows different results but basically it all boils down
to space vs. speed trade-off. In this paper we present the
variant which shows the best balance between extra heap
required and speed gained due to the shorter collection.

The heuristic heap expansion (Algorithm3) uses coun-
ters for each class of objects (and also for arrays) to keep
the track of a number of unsuccessful garbage collections
and a number of consecutive heap expansions. Initially
both counters are set to zero. The counters are updated for
the class that triggered the collection. When the heap is
exhausted for the first time, garbage collection is called.
Collection is successful if it frees a memory block suffi-
cient to fulfil the allocation request (short-lived objects).
This means the collection will be the preferred method
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of gaining space for the object of that class the next time
when the heap is full. On the other hand, if the collection
is not successful, the next time when the heap fills it will
be expanded instead (long-lived objects). This may be re-
peated several times. The number of repeats is determined
by the number of unsuccessful collections and heap expan-
sion factor. The heap expansion factor increases the effect
of unsuccessful collections on the number of heap expan-
sions. The factor may be set by a user (all results presented
later are obtained with default value of one).

if ( 0 < class -> number_of_heap_expansions )
class -> number_of_heap_expansions --
sbrk ()

else
gc ()
if (NULL == ( object = alloc_object(class) )
class -> number_of_unsucessful_GCs +=

heap_expansion_factor
class -> number_of_heap_expansions =

class -> number_of_unsucessful_GCs
sbrk ()

else
if ( 0 < class -> number_of_unsucessful_GCs )
class -> number_of_unsucessful_GCs --

Algorithm 3. Heuristic heap expansion.

Finally, we should comment the fact that our heap siz-
ing algorithm never decreases the heap size. It is a direct
consequence of MS being non-moving algorithm. For the
benchmarks used in this research, we examined the graphs
where heap occupancy is plotted against time expressed in
bytes. No single benchmark exhibits behaviour where a
high peak is followed by significant drop of memory usage
that remains at the low level for longer period. When the
memory usage drops, the next phase quickly occurs with
the peak of similar or even greater size. In DaCapo [22]
the comparable behaviour is exhibited by all benchmarks
except one (eclipse). This does not mean that the heap re-
duction is useless because some programs will certainly
behave differently than the benchmarks (e.g. interactive
programs that sequentially process data of different size,
servers that occasionally receive “large” request, etc.).It
only means that heap reduction would not be recognized
as beneficial by using the aforementioned benchmarks.

6 METHODOLOGY

6.1 AGCS Simulator

Results presented in this paper are obtained with AGCS
[23]. AGCS is trace-driven simulator intended for com-
parison of GC and allocation algorithms. Numerous types
of results can be obtained: total time of memory-related
events, allocation-time, GC-time, time of particular phases

in GC and allocation algorithms, number of GCs and al-
locations, memory consumption, estimation of fragmenta-
tion, memory objects profile, stack depth and usage etc.
AGCS is composed of several modules, each of which de-
scribes a part of a memory system such as heap, stack,
memory allocator, garbage collector, etc. For each algo-
rithm a separate module is written in C and compiled. Sim-
ulation implies execution of selected modules, i.e. algo-
rithms for GC and allocation which are investigated.

There are several advantages of AGCS. It has very
low dispersion of results (we explain this in more details
shortly). The real organisation of heap and objects are
replicated in memory and real GC/allocation algorithms
are executed during simulation. It also means that the real
cache and virtual memory mechanism are used and mea-
sured. AGCS can simulate GC and allocator which do
not depend on particular language (e.g. Java) or runtime
environment (e.g. JVM). Memory related events (object
creation and deletion, reference assignments, stack-frame
creation and deletion) are simulated and isolated which
enables easier observation of behaviour of memory ob-
jects. Finally, AGCS is platform independent (providing
that GCC compiler is present).

AGCS also has some disadvantages. Due to simulation
of memory related events only, the rest of a mutator is not
simulated so the total execution time cannot be evaluated.
The influence of GC and allocator on the locality of the
mutator cannot be evaluated for the same reason (with the
exception of pointer assignments). Furthermore, the simu-
lation is slower than the execution of real benchmarks and
trace-files are very large (up to hundred gigabytes).

A trace-file contains memory-related events. It has a
well-defined structure and is language independent, hence
trace-files may be obtained by executing any program on
instrumented version of any runtime environment (for this
research we use Java benchmarks and instrumented Kaffe
VM [ 24]). Precision of the simulation depends on the pre-
cision of the traced-events.

6.2 Benchmarks

We used three suites of benchmarks: all ten bench-
marks of jOlden set [25, 26], four benchmarks of
SPECjvm98 [27], and 12 benchmarks of JavaGrande [28].
We do not perform standard benchmarking. Instead, we
use the benchmarks only as a source of trace-files with
memory related events for simulation.

The first section of JavaGrande benchmarks is not used
due to trivial memory behaviour. We did not used three
benchmarks of SPECjvm98 (jess, jack, mpegaudio) due to
the number of warnings in a simulation. AGCS checks all
events from a trace-file, and reports a warning if it finds
any inconsistency. Inconsistencies are result of imperfect
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Fig. 2. Normalized GC time relative to Mark-Sweep (for all benchmarks).

tracing of some events related to operand stack in the in-
strumented Kaffe. We discard all benchmarks which have
more than 1% of warnings (except DB of SPECjvm98). In
all used benchmarks the number of warnings is much less
than 0.1% of total simulated events, except in DB (6%).

Finally, for this research we used 26 benchmarks. Un-
fortunately, we could not use DaCapo benchmarks [22]
since the instrumented version of Kaffe is older than
needed for execution of DaCapo. However, the compar-
ison of MS and MwmS could be scaled to larger bench-
marks (like DaCapo) since GC and total times are propor-
tional to the number of objects (except in case of cache
misses and paging).

6.3 Environment

All simulations were performed on a system with
Intel Core i3 (3.3GHz) and 4GB of memory, running
Ubuntu GNU/Linux 13.04 distribution with and Linux ker-
nel 3.8.0-31-generic (with word length of 32 bits).

6.4 Measurements

In this paper we measure and present three performance
characteristics: garbage collection time, total time (time
needed for the simulation of all memory-related events)
and heap size. We chose the average number of proces-
sor cycles as the metric to measure the performance of
the first two. Time was measured by reading time-stamp
counter register with RDTSC/RDTSCP instructions [29].
To reduce the impact of other processes, simulations were
performed in a single user mode. The dispersion of the
obtained results is very small – relative standard deviation
(coefficient of variation) is typically less than 1%. Very

rarely, a result is obtained with greater dispersion due to the
measurement of short time intervals and due to the multi-
tasking nature of Linux kernel (even in single-user mode).
Such results are discarded and simulation is repeated.

7 RESULTS

We now evaluate the effectiveness of MwmS, with and
without heuristic heap expansion, and relate it to tradi-
tional MS (our own implementation in AGCS). Evaluation
is performed by comparing the three performance charac-
teristics obtained by simulating memory-related events of
aforementioned benchmarks.

All results are presented in graphs where performance
characteristics achieved by traditional MS collector are
used as a baseline (value 1.00), and results achieved by our
algorithms are expressed relative to MS. Results for each
benchmark are given and computed as arithmetic mean
across ten runs. The dispersion of the results is not shown
because relative standard deviation is typically less than
1% and always less than 3%.

All simulations are performed with the same initial
heap size of 1M and the heap increment value of 256K. Six
benchmarks (BH, MST, Power, Series, MolDyn, and Ray-
Tracer) have highest watermark lower than 1M, therefore
they can be executed in heaps with size smaller than initial
1M. Three of them (MST, Series, MolDyn) have total al-
location requests less than 1M, hence they do not perform
GC. We included them in the results anyway, in order to
see the effect of allocation on total time.

At the end of this section we give the measurement re-
sults for time related to fixed heap sizes.
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Fig. 3. Normalized total time relative to Mark-Sweep (for all benchmarks).

7.1 Garbage Collection Time

As show in Fig. 2, MwmS reduces the time spent in
garbage collection for majority of benchmarks compared
to traditional MS. Exceptions are Em3d, Compress, LU-
Fact, SOR and Euler. However, by introducing heuristics
in heap expansion policy (label HH in graphs – Heuristic
Heap expansion), the time spent in collection compared to
MS reduces for all benchmarks except for Euler.

Majority of objects and arrays in Euler are short-lived.
At the beginning of benchmark run arrays are allocated
whilst the allocation of objects starts later. MS places
small objects easily in between arrays. Therefore, in MS
collections occur with longer intervals leaving the objects
enough time to die. In MwmS much larger buckets have to
be placed in the heap and at that moment the free holes are
too small. When collection is called it creates only small
amount of free space because the objects and arrays did
not have enough time to die. Thrashing [2] repeats which
results in increased number of frequent collections and in
turn with longer GC time in comparison to MS. Since ma-
jority of collections manage to free some space in each cy-
cle, heap is almost never expanded and heuristics never
picks up. For that reason the results for both of our algo-
rithms are similar.

In some benchmarks (Em3d, Compress, LUFact, SOR)
MwmS degrades GC time. Since these benchmarks
demonstrate ramp behaviour, the heuristic variant of
MwmS recognizes ramps, avoids collections and expands
the heap, which reduces GC time.

Significant improvement of GC time between the two
variants of our algorithms is evident in benchmarks which
create large number of same types of objects during ramp

phase. Typical example is TreeAdd which creates more
than 1M objects of class TreeNode. In the concrete ex-
ample of TreeAdd, MwmS spent 52% less time in GC
than MS. Version with heuristic heap expansion reduces
GC time by 90% in comparison to MwmS. This gives total
of 95% improvement of heuristic version of MwmS when
compared to traditional MS.

On average, MwmS improves GC time by 19% (31%
geometric mean). Heuristic MwmS is even better. It re-
duces average GC time by 49% (60% geometric mean) in
comparison to MS. When calculating arithmetic and geo-
metric means we excluded benchmarks which have zero
GC time (MST, Series, MolDyn).

7.2 Total Time

Figure3 shows total time (time needed for simulation
of all memory-related events) relative to MS. The total time
is reduced across all benchmarks and with both versions of
MwmS (exception being Euler which has doubled GC time
for reasons explained earlier).

Reduced total time is partially attributed to speedup
gained in allocation which is fast due to it’s simplicity (as
explained earlier). The other reason for speedup is faster
GC (on average) when using MwmS. However, the contri-
butions of allocation and GC speedups are still insufficient
to explain the entire improvement of total time. We can
only assume that it can be attributed to better cache local-
ity of reference assignments. This is also indicated by the
number of minor page faults which is always somewhat
greater in MS.

MwmS improves total time by 20% on average (16%
geometric mean), whereas Heuristic versions improves it
by 22% (21% geometric mean).
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Fig. 4. Normalized heap size relative to Mark-Sweep (for allbenchmarks).

7.3 Maximum Heap Size

Although the reduced internal fragmentation is one of
the advantages of MwmS, we do not measure it directly.
There are several definitions which summarize the frag-
mentation for the whole application and neither one is ideal
[6]. It would be impractical to measure the fragmentation
at every point of allocation/freeing. Even then, the frag-
mentation causes problems only when allocation requests
are adverse. Therefore, we measure the maximum heap
size that is achieved during benchmark run, because this
value shows the total effect of fragmentation on the mem-
ory consumption. Maximum achieved heap size relative to
MS for each benchmark is shown in Fig.4.

There are only three benchmarks (Health, Voronoi,
JavaC) in which the heap is noticeably larger (20% or
more) when using either version of our algorithm in com-
parison to MS. The reason is external fragmentation (in
traditional MS all objects are placed together in a heap,
so big arrays and smaller objects are interleaved giving
smaller external fragmentation). Solution would involve
implementation of compaction mechanism for MwmS.

For several benchmarks (e.g. Em3d, Perimeter,
TreeAdd, MonteCarlo) the heuristic version has reduced
the GC time in comparison to MwmS. Although it may
seem counterintuitive, this does not enlarge the heap be-
cause the heap is expanded more aggressively to the re-
quired size earlier in the course of the execution. This re-
duces the number of GCs and in turn GC time.

There are benchmarks in which heuristics enlarges
heap more than needed (e.g. Compress which has three
ramp phases). This happens when the benchmark creates
and keeps one class of objects alive during part of the pro-
gram run but it renders them unreachable at the end of a

ramp phase. In that particular case heuristic picks up the
pace with object allocation and expands heap. The more
objects are created and kept alive, the more aggressively
heap is expanded. Algorithm does not recognize the ex-
act point when objects start to die, which results in a few
redundant expansions before switching back to collection.

Finally, there are several benchmarks where maxi-
mum achieved heap is smaller when using either version
of our algorithm in comparison to MS (e.g. TreeAdd,
BiSort, Perimeter, etc.). In these benchmarks relatively
small number of arrays is created (e.g. 0.04% in case
of TreeAdd), whilst large number of class instances are
dominant (e.g. BlackNode, WhiteNode and GrayNode
make up for 99.73% of all created objects in Perimeter).
Small objects are packed together in buckets within mem-
ory blocks of exact size thus eliminating internal fragmen-
tation and reducing the memory footprint, which results in
the smaller maximum heap size.

Overall, the heap size is kept within reasonable limits
having the same size as in traditional MS in most cases, and
being somewhat better or worse in equal number of cases.
Average differences are negligible, about 1 or 2 percent.

7.4 GC and Total Time Depending on Heap Size

Similarly to related researches, Figs.5 and6 plot GC
and total time as a function of heap size. Time is measured
for five benchmarks (BH, Health, Power, Raytrace and
JavaC) which have relatively low ratio of high-watermark
and total requested memory (6.5%, 10.8%, 11.7%, 29.8%,
and 30.0% respectively). There is no point of measuring
these results for benchmarks with higher ratio since they
will fit completely in larger heaps resulting in GC time
equal to zero. The five benchmarks shown here are more
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Fig. 5. Normalized GC time for MS and MwmS for selected
benchmarks.

similar to DaCapo than the other benchmarks we use, al-
though DaCapo benchmarks are “bigger” and their ratio of
high-watermark and total requested memory is even lower.
The y-axis expresses time normalized to the fastest time.
The x-axis expresses heap size as a multiple of the small-
est heap size in which the benchmarks execute.

The results for heuristic variant are not included be-
cause the heap size is fixed and the same results would be
measured with or without the heuristics.

For the minimum heap size MwmS shows 70% reduc-
tion of GC time in comparison to traditional MS. GC time
decreases for both algorithms as heap grows, however for
all sizes MwmS shows better results. At worst, GC time
for MwmS is 52% better in comparison to traditional MS
(63% on average).

In comparison to MS, the total time in MwmS is re-
duced by cca. 25% across all heap sizes.

8 RELATED WORK

Zorn’s generational collector for LISP uses MS inside
each generation which has its bitmap and two regions di-
vided in areas. The areas in fixed-size region hold one type
of objects. Size of the areas is predetermined so they store
various numbers of objects. The variable-size region holds
bodies and separate headers of variable-size objects. Two-
level allocator holds free areas in a free list. A free area
can be assigned to a type that maintains its areas in a list.
When collection starts, the bitmap is cleared and marking
proceeds as usual while sweeping is lazy [10].

Boehm-Demers-Weiser (BDW) conservative MS is
suitable for C/C++. Small objects of the same size and

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5

N
o

rm
a

li
ze

d
 t

o
ta

l
!

m
e

Heap size rela!ve to minimum heap size

MS MwmS

Fig. 6. Normalized total time for MS and MwmS for se-
lected benchmarks.

kind are stored in memory chunks with typical size of one
page. Large objects are bigger than half a chunk. They
are placed in several grouped chunks. Due to conservative
marking, the mark-bits are outside objects and organized in
bitmaps. The bitmaps are placed in page headers which are
stored separately in a list for better locality. Two-level allo-
cator uses free lists segregated by size and kind (for small
objects) and by several sizes (for large objects). Sweep is
lazy in order to increase the locality of sweep and subse-
quent allocation [4].

Colnet et al. also use MS and divide memory into typed
chunks for Eiffel. Objects have GC header with mark-bit.
Bump-like allocation is used in chunks but each type has its
free-list. Resizable objects of moderate size are stored in
typed chunks of bigger size. Very large objects are treated
like chunks with one object. Mark and sweep phases use
customized functions optimized for a particular type [3].

In IMMIX the heap is divided into blocks (32KB)
which are further divided into lines (128B). Several small
objects are allocated in lines by using fast bump-like al-
locator. When objects are marked, the lines occupied by
them are also marked. Sweep phase is made very fast by
sweeping only lines instead of all objects. Fragmented
blocks are occasionally defragmented by copying objects
into target blocks. This also improves locality and reduces
cache misses giving better total application time [5].

In aforementioned algorithms (Zorn, BDW and Col-
net) and in MwmS objects are grouped by type, while IM-
MIX holds objects of different types together. However,
in MwmS variable sized buckets hold fixed number of ob-
jects, in contrast to the other algorithms where memory
blocks have fixed size and hold variable number of ob-
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jects. While MwmS does not sweep small objects at all,
BDW and Zorn sweep lazily and use free list for small ob-
ject allocation. Colnet et al. have bump-like allocation,
but they nevertheless use free lists segregated by type. IM-
MIX is similar in restricting the sweep to lines only (lines
typically hold 1-4 objects), while in MwmS sweeping is re-
stricted to the buckets only. All algorithms sweep the large
(or variable sized) objects in traditional way.

9 FUTURE WORK
In some benchmarks (namely, Euler) heuristic MwmS

does not achieve expected improvements. This can be ad-
dressed by extending heuristics rules. GC efficiency can
be taken into account and if it is too low, the heap could be
expanded immediately. We make some preliminary mea-
surements and the results are promising. For example, if
heap grows from 8M to 9M in Euler, the GC time is re-
duced for more than 50% in comparison to MS.

Possible direction for future research involves introduc-
tion of compacting mechanism both for arrays (e.g. with
two semi-spaces) and small objects (e.g. two-finger com-
paction). Although compaction will increase collection
time, it will reduce external fragmentation and allow heap
reduction.

Yet another possibility is to develop an incremental ver-
sion (e.g. utilising tricolour marking) and generational ver-
sion of the algorithm to reduce collection pauses.

10 CONCLUSION
Mark-sweep collectors are still competitive especially

in tight heaps but the simple modifications proposed here
can further improve their performance. We introduced
buckets which hold small objects segregated by type (i.e.
class) and we integrated the collector bitmap and alloca-
tor bitmap. This novel organisation completely avoids the
sweep phase and freeing of dead objects in buckets, thus
improving the performance of GC in most of benchmarks.
Further improvement of performance has been achieved by
using simple heuristics to control heap expansion. The fi-
nal algorithm outperforms the traditional MS in all but one
benchmarks and it is significantly better in half of them.
The allocation time is also reduced which improves the
mutator time. Since the heap sizes of our algorithms are
similar to traditional MS, the goal of keeping the heap in
reasonable limits is achieved as well. Hence, the new al-
gorithm is not only a good base for further investigation
but also an excellent candidate for combination with other
known techniques which can be expected to improve its
performance even more.
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Croatia osiguranje d.d.
Miramarska 22, HR-10000, Zagreb, Croatia
email: dorian.ivancic@gmail.com

Prof. Nikica Hlupi ć, Ph.D.
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Received: 2014-05-07
Accepted: 2014-11-18

525 AUTOMATIKA 55(2014) 4, 514–525


