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Introduction

Mathematical optimization has become an im-
portant supply chain management tool for any con-
temporary enterprise. Increasing profit margins 
through better design, planning, and operative deci-
sions across the supply chain represents a huge op-
portunity in the more than ever competitive eco-
nomic market, especially in a global scale. 
Industrial and academic researchers have been 
working intensively in the process systems engi-
neering area, and several advancements have been 
made in the optimization field, from new mathe-
matical models, more efficient solution algorithms, 
use of more powerful computing machines and with 
parallel capabilities, and the development of differ-
ent optimization frameworks.

A supply chain is composed of the following 
elements: procurement and storage of raw materi-
als, facilities and processes to transform the raw 
materials into intermediate and final products, stor-
age of these products and its distribution to ware-
houses or to the final customers. Operating the 
complete supply chain structure in the best possible 
manner (i.e. maximizing profit or minimizing cost) 
involves making decisions at different levels along 
the supply chain network. Production planning de-
termines the production targets of each different 

product along a defined planning horizon (usually 
ranging from a few months to 2 years), for the en-
tire supply chain, for each different production fa-
cility, or for each production line or unit. Produc-
tion scheduling determines the best operating 
sequences and the best operating conditions to 
achieve the inventory and production targets deter-
mined by the production plan. Scheduling is done 
on smaller time horizons (e.g. days or weeks), and 
includes more operational rules and constraints than 
planning models. Fig. 1 shows how the length of 
the time horizon and model accuracy changes, de-
pending on the spatial or time scale, under a hierar-
chical production planning framework.
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a)  spatial scale, and b) time scale [Adapted from 
Castillo and Mahalec17]
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Computation of optimal production plans is 
usually based on linear programming (LP) or suc-
cessive linear programming (SLP) models2,3,4 since 
these approaches have proven to be robust and pro-
vide good answers under a variety of circumstanc-
es. Production planning models are constructed by 
dividing the time horizon in a number of periods, 
the length of which is usually set equal to some cal-
endar unit (e.g. monthly, or quarterly periods). Such 
approach leads to models which grow in size linear-
ly with the number of periods. If the models are 
nonlinear, the likelihood of encountering conver-
gence problems increases significantly as the prob-
lem size increases. However, formulation of plan-
ning models with nonlinearities is becoming more 
spread in practice4,5,6,7 in order to compute more ac-
curate solutions and increase profitability. Schedul-
ing is in many cases a NP-complete8,9 or NP-hard10 
problem, which means that there is no polynomi-
al-bounded algorithm to solve it, even if the under-
lying supply chain models are linear. Process plants 
are nonlinear but the usual practice for scheduling 
is to approximate the system behavior by linear 
models.2,11,12,13 Recent advances have made it possi-
ble to use nonlinear models for some scheduling 
problems.14,15

MPIP-C algorithm1 enables use of nonlinear 
models to solve scheduling problems for plants 
which produce multiple products by switching from 
producing one product to another. An example of 
such system is gasoline blending. The first step is to 
compute an approximate scheduling solution which 
imposes some constraints on the detailed schedul-
ing problem, thereby simplifying it and reducing 
the number of integer variables: it also enables fast-
er solution of detailed scheduling problems by pro-
viding additional constraints. MPIP-C algorithm 
uses inventory-pinch based two-level approach to 
solve the approximate scheduling problem16,17 based 
on nonlinear blending models. The algorithm:

(i) Computes an approximate schedule based 
on a nonlinear blend model, such that the there is a 
minimum number of optimal blend recipes along 
the planning horizon,

(ii) Minimizes the total number of blend in-
stances, and

(iii) Allocates swing tankage.
Solution of the approximate planning model 

provides additional constraints for the 3rd level con-
tinuous-time scheduling problem. If the 3rd level 
scheduling problem is infeasible, the algorithm re-
solves a modified approximate scheduling problem, 
and iterates until a feasible optimal solution is 
found. We use gasoline blending as an example of 
the algorithm application. This paper is organized 
as follows: First, a brief review on prior work on 
blend planning and scheduling, then we present the 

problem statement, which is followed by the de-
scription of our decomposition approach, the math-
ematical models used, the MPIP-C algorithm steps, 
numerical results and conclusions.

Related prior work

In this section, a brief summary of previous 
works on blend planning and scheduling is present-
ed.

Mendez et al.3 presented an algorithm to sched-
ule blending operations including blend recipe de-
termination. In order to approximate nonlinear qual-
ity constraints, they use linear constraints with 
correction factors. The algorithm iterates until the 
correction factors converge. The sequencing prob-
lem is avoided since it is assumed that each blender 
produces only one particular gasoline grade.

Li et al.18 developed a continuous-time mixed 
integer linear programming (MILP) model with a 
common global time grid for all units. The model 
includes blend recipe optimization, and operational 
features found in industrial practice such as parallel 
non-identical blenders, multipurpose tanks, invento-
ry constraints, blender capacity constraints, and or-
der delivery scheduling. Li and Karimi13 extended 
the model from Li et al.18 in order to incorporate 
blender setup times and consider the case for simul-
taneous receipt and delivery by product tanks. Li 
and Karimi13 used a unique time grid for the time 
slots of each unit (i.e. tanks and blenders). Solving 
these models for real-life scale problems (e.g. 8-day 
horizon, three blenders, and more than 25 orders) to 
optimality requires large execution times (more 
than 12 hours for their case studies).

Kolodziej et al.15 formulated a discrete-time 
mixed integer nonlinear programming (MINLP) 
model to solve the pooling problem including in-
ventory, flow, and quality constraints. They devel-
oped three different procedures to solve the MINLP 
problem to global optimality. Two of those algo-
rithms use a radix-based discretization technique to 
discretize one variable in the bilinear terms and ob-
tain MILP relaxations, and one of them computes 
better solutions and in less time than commercial 
MINLP solvers such as BARON and GloMIQO, for 
their case studies and despite the increment in the 
number of binary variables in the model.

Glismann and Gruhn19 developed a two-level 
method to solve the blend scheduling problem. 
First, a discrete-time NLP model computes blend 
recipes and production targets. Then a discrete-time 
MILP scheduling model, based on a re-
source-task-network representation, is solved. If the 
MILP is infeasible, the algorithm re-computes the 
blend recipes by re-solving the NLP model with ex-
tra constraints.
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Thakral and Mahalec20 presented an iterative 
algorithm that optimizes blend recipes using a 
multi-period MILP planning model, then minimizes 
blender switches through the use of a genetic algo-
rithm, and subsequently detects infeasibilities via 
agent-based simulation. The algorithm is repeated 
until a feasible solution is found.

Inventory pinch analysis in production planning 
and scheduling

Singhvi and Shenoy21 presented a pinch analy-
sis approach to solve an aggregate production plan-
ning problem. They constructed composite curves 
for the demand and production amounts in order to 
locate the pinch as the point where both curves 
touch. The idea is to determine the composite pro-
duction curve that meets the demand and the given 
inventory policy. Production targets are determined 
directly from the composite curves and imposed as 
constraints into a MILP model that minimizes the 
material, inventory, and labor costs, subject to ma-
terial balance equations and production capacity 
constraints. Singhvi et al.22 extended the work from 
Singhvi and Shenoy21 in order to handle multiple 
products and solve the product sequencing problem 
based on some heuristic rules and assuming that the 
demand is met only at the end of the horizon. Lud-
wig et al.23 applied the pinch analysis of Singhvi 
and Shenoy21 to a process with seasonal supply, and 
they included the constraint that the composite pro-
duction curve must not cross either the composite 
demand curve or the composite supply curve. Foo 
et al.24 implemented the algebraic technique equiva-
lent to the graphical pinch methodology from Sing-
hvi and Shenoy21 for a single product process, and 
included minimum and maximum product invento-
ry constraints and the capability of scheduling a 
plant shut down.

Castillo et al.16 defined an inventory pinch as 
the point in time where the composite total demand 
(CTD) curve touches the composite average total 
production curve (CATP). The CATP curve can be 
defined as the concave envelope of the CTD curve, 
with the difference that the CATP curve starts at the 
total initial product inventory. Fig. 2 shows an ex-
ample with two inventory pinch points. In contrast 
with previous approaches to solve planning prob-
lems using composite curves, the CATP curve does 
not represent the actual production rates; it is only 
used to locate the pinch points, as well as the mini-
mum production volumes to satisfy the demand in 
each interval delineated by pinch points. The idea is 
that between pinch points, the same optimal blend 
recipes can be used to generate a feasible blend 
plan. This is not always the case due to other oper-
ational constraints, and Castillo et al.16 developed an 
iterative approach to eliminate such infeasibilities.

Castillo et al.16 introduced a two-level invento-
ry pinch-based decomposition approach to solve 
multi-period gasoline blend planning models with 
nonlinear blending rules. The blend recipes are 
computed at the first level by solving a discrete-time 
NLP model which only considers the material bal-
ance equations around the blenders and storage 
tanks, the linear and nonlinear quality equations, the 
minimum and maximum inventory and production 
capacity constraints, and product quality specifica-
tions. Then, these recipes are fixed at the second 
level which consists of a discrete-time MILP model. 
The integer variables are required to enforce mini-
mum production thresholds at each time period. The 
number of time periods at the first level is delineat-
ed by the inventory pinch points, and changes in the 
quality and price of blend components, while the 
number of time periods at the second level is deter-
mined by the planner/scheduler. For the case studies 
presented by Castillo et al.16, this approach com-
putes solutions that are optimal or close to the opti-
mum, and with rapid execution times compared 
with MINLP solvers. Castillo and Mahalec17,25 ex-
tended the algorithm from Castillo et al.16 to solve 
blend scheduling problems by introducing a third 
level to solve the scheduling problem using a dis-
crete-time MILP model. Most recently, Castillo and 
Mahalec1 developed a continuous-time model to 
solve the third level more efficiently.

Problem statement

Given a scheduling horizon [0, H], a blending 
system constituted of storage tanks and blenders 
(see Fig. 3 for an example), and sets of blend com-
ponents, products, and delivery orders which must 
be fulfilled during specific time delivery windows 
along the horizon, the objective is to minimize the 
total cost which consists of the cost of the blended 
materials (i.e. the blend cost) and the switching 
costs comprised of the number of different blend 
runs, product changeovers in the storage tanks, and 

F i g .  2  – Two inventory pinch points on the cumulative curves
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number of deliveries from different tanks to the 
same order. The cost, quality properties, initial in-
ventories, and flow rates into the system of the 
blend components are known. Minimum and maxi-
mum product quality specifications are given. Ini-
tial product inventories are known and on speci
fication. Blend components have dedicated storage 
tanks. Storage tanks for the finished products can 
be  dedicated tanks or swing tanks (i.e. they can 
store different products, but not at the same time). 
Product changeover times are negligible for swing 
tanks. All storage tanks have minimum and maxi-
mum capacity constraints. Parallel non-identical 
blenders are considered, with minimum and maxi-
mum blending capacities. Minimum blend size, 
minimum blend length, and minimum setup time 
constraints are assumed for each blender and they 
are product-dependent. Perfect mixing is assumed 
to occur in the blenders and a blender can only 

feed one product tank at any time, since this is in-
dustrial practice. Each order involves only one 
product (one original order involving different 
products can be broken into orders of each specific 
product).

It is required to determine the blend recipes, 
the production sequence of each blender, the blend-
ing rates of each blend run, the delivery sequence of 
each product tank, the start and end times of the 
blend runs and delivery runs, the product allocation 
of swing tankage, and the inventory profiles of all 
tanks along the horizon.

Decomposition strategy

In this work we use the decomposition frame-
work from Castillo and Mahalec1,25. It is assumed 
that a long-term (e.g. twelve months) production 
planning model has been optimized for the refinery 
or the gasoline blend system. In addition, it is as-
sumed that the long-term plan determines which 
feedstocks are to be processed, which products are 
produced, and the total amount for each of them, 
respectively. Results of the long-term plan are used 
to optimize a short-term discrete-time multi-period 
approximate scheduling model (e.g. thirty days), 
which in turn provide constraints for a continu-
ous-time scheduling model (see Fig. 4).

Approximate scheduling

The purpose of the approximate scheduling 
model is to minimize the production costs or to 
maximize the profit for a given selection and quan-

F i g .  3  – Sample blending system

F i g .  4  – Three-level decomposition approach
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tities of the feedstocks. In addition, the approximate 
scheduling model:

–– Determines how much to produce of each 
product and each time period.

–– Manages allocation of the swing storage ca-
pacities; it is assumed that a swing storage capacity 
can be re-allocated only at the beginning of each 
period.

–– Minimizes the number of instances of differ-
ent operating modes for each multi-mode unit, e.g. 
maximum gasoline or maximum diesel for an FCC 
unit, or number of different grade gasoline blenders 
for a gasoline blender. In order to eliminate instanc-
es of minute production for any operating mode, a 
minimum threshold production constraint is speci-
fied for each production unit.

Another difference between approximate 
scheduling and detailed scheduling models is that 
tasks and resources are still aggregated in some way 
at the short-term planning level. Therefore, solution 
of approximate scheduling determines a production 
and inventory profile which is feasible only at the 
period boundaries (e.g. end of each day).

Objective function at this level includes in gen-
eral case the costs of carrying the inventories and 
the switching costs associated with the discrete 
variable (decisions). Cost of raw materials plus op-
erating costs computed at this level are the same as 
at the top level, since the operating modes and the 
total feed amounts are fixed by the top level.

Detailed scheduling

Detailed scheduling model allows only one 
task in any production unit at any given time, thus 
guarantying a feasible solution along the entire 
horizon. Objective function at the scheduling level 
includes only the switching costs and in general 
case the costs of transitions from one mode of oper-
ation to another. Solution of the approximate sched-
uling model (i.e. approximate scheduling model) 
leads to a neighborhood where the optimal schedule 
is located. This neighborhood is described to the de-
tailed scheduling task in terms of target inventories 
at the end of each day, operating modes at which 
each process unit needs to operate during each day, 
etc. From these data, computation of the best sched-
ule can proceed in several different ways, for exam-
ple:

a) Determine operating sequence with a mini-
mum number of switches via some evolutionary al-
gorithm and verify its feasibility via simulation (e.g. 
Thakral and Mahalec20).

b) Use fine-grid discrete-time MILP scheduling 
model (e.g. Castillo and Mahalec25).

c) Solve a continuous-time MILP scheduling 
model (e.g. Castillo and Mahalec1).

In this work, we use option c), since the contin-
uous-time model has a smaller size than its corre-
sponding discrete-time version, thus allowing solv-
ing of problems in less time. When using the 
constraints imposed by the approximate scheduling 
level, the detailed scheduling level is solved much 
faster. However, due to the consequent reduction in 
the feasible solution set, optimality of the computed 
schedule with respect to the original problem (i.e. 
no constraints from the approximate scheduling lev-
el) is not guaranteed, although the optimality gap is 
expected to be very small. One way to improve this 
solution is to use it as a starting point for the sched-
uling model that includes quality constraints and 
allow the blend recipes to differ from those previ-
ously computed at the short-term planning level. 
The disadvantage is that the resulting MILP or 
MINLP model may require prohibitive execution 
times in order to close the optimality gap. Future 
work will be dedicated to address this issue and 
compute proven optimal solutions with respect to 
the original problem.

Mathematical models

In this section, the mathematical models are 
described. Due to the large number of equations, 
only the nonlinear equations for Reid vapor pres-
sure (RVP) used in this work are here shown. 
The  reader is encouraged to look at the referen
ces where the complete models are described in de-
tail.

1st level model17 (discrete-time LP or NLP)

The 1st level determines the optimal blend reci-
pes that will be fixed at the next levels. The time 
periods of this model are the L1-periods. The objec-
tive function minimizes the blend cost and the cost 
associated with slack variables. Slack variables are 
included in the inventory balances and their penalty 
coefficients in the objective function are greater 
than the cost coefficients of the blend components. 
Therefore, if a problem has a physically feasible 
solution, the slack variables will be equal to zero. If 
a problem has no physically feasible solution, the 
solver will compute a numerical feasible solution 
with some non-zero slack variables. The values of 
the blending capacity, component supply, and prod-
uct demand are the corresponding aggregated val-
ues for each of the L1-periods. In addition, individ-
ual product tanks are aggregated into product pools, 
and individual blenders are lumped into a single 
one.



430	 V. MAHALEC and P. CASTILLO CASTILLO, Nonlinear Blend Scheduling via…, Chem. Biochem. Eng. Q., 28 (4) 425–436 (2014)

– Blend recipe optimization –

min BlendCostL1 + SlackCostL1
s.t.
Inventory balances (component tanks, product pools)
Inventory constraints (component tanks, product pools)
Quality constraints (linear and nonlinear)
Maximum production capacity (lumped blenders)

The solution of the 1st level model is a lower 
bound of the global blend cost since the volumes to 
be blended in each L1-period are the minimum 
amount required to fulfill the demand.

The nonlinear quality constraints used in this 
work are presented next. Equation (1) and (2) de-
fine the blend recipes. Equation (3) was formulated 
based on the nonlinear blending rule used by Singh 
et al.26 Equation (4) represents the minimum and 
maximum product quality specifications for RVP 
property.
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2nd level model1,25 (discrete-time MILP)

The 2nd level computes the blend plan, delivery 
plan, and service allocation of swing tanks. The 
time periods of this model are the L2-periods. The 
blend plan determines how much to blend of each 
product, in which blender, and in each L2-period. 
The delivery plan defines how much product to 
send from each individual product tank to each spe-
cific order and in which L2-period. The allocation 
of swing tanks establishes which product can be 
stored in each individual product tank and in which 
L2-periods.

The 2nd level model is linear since the blend 
recipes from the 1st level are not computed at this 
level (i.e. the blend recipes of each L1-period are 
fixed in the corresponding L2-periods). Equations 
regarding individual product tanks and individual 
blenders are included. Moreover, constraints such 
as minimum blend size, minimum blend length, and 

minimum setup time are incorporated. The values 
of the blending capacity, component supply, and 
product demand are the corresponding aggregated 
values for each of the L2-periods. The individual 
blenders can produce more than one product in each 
L2-period. A swing tank can only store one specific 
product during a L2-period.

The 2nd level model is solved in two phases: 
feasibility of the blend recipes is checked first, and 
then a solution with minimum number of switches 
is computed. The reason to do this is to detect in-
ventory infeasibilities (i.e. non-zero slacks) rapidly.

The 2nd level model for feasibility check has 
slack variables in the inventory balances and the 
objective is to minimize such variables. If a feasible 
operation can be obtained using the blend recipes 
from the 1st level, inventory slack variables will be 
zero at the solution of the 2nd level; otherwise, the 
inventory slacks will show which specific products, 
by how much, and in which L2-periods they cannot 
be produced in the amounts required. In order to 
extend the use of a given blend recipe, the penalty 
coefficients for the slack variables must decrease 
along the time horizon as fast as possible and a sig-
nificant change must take place after each L1-peri-
od boundary.

– Feasibility check of blend recipes from 1st level –

min SlackCostL2
s.t.
Fixed recipes (from 1st level)
Product inventory targets (from 1st level)
Inventory balances (component tanks, product 

pools, product tanks)
Inventory constraints (component tanks, product 

tanks)
Maximum production capacity (individual blenders)
Minimum product-dependent blend size (individual 

blenders)
Minimum product-dependent run length (individual 

blenders)
Minimum product-dependent setup time (individu-

al blenders)
Maximum delivery rates of each individual product 

tank

When the solution of this phase has inventory 
infeasibilities, the algorithm will subdivide the re-
quired L1-period at the time corresponding to the 
end boundary of the L2-period with the first infea-
sibility. Then, the 1st level model is re-solved and a 
new set of blend recipes is computed.

The 2nd level model for minimizing switching 
costs (i.e. number of blend runs, number of product 
changeovers in the swing tanks, and number of de-
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livery runs from different tanks to the same order) 
does not include any slack variables.

– Computing blend plan, delivery plan, and swing 
tank allocation with minimum number of switches –

min SwitchingCostL2
s.t.
SwitchingCostL2 = SwitchBlenderCostL2 +  

+ SwitchTankCostL2 + SwitchDeliverCostL2
Fixed recipes (from 1st level)
Product inventory targets (from 1st level)
Inventory balances (component tanks, product 

pools, product tanks)
Inventory constraints (component tanks, product 

tanks)
Maximum production capacity (individual blenders)
Minimum product-dependent blend size (individual 

blenders)
Minimum product-dependent run length (individual 

blenders)
Minimum product-dependent setup time (individu-

al blenders)
Maximum delivery rates of each individual product 

tank

3rd level model1 (continuous-time MILP)

The 3rd level determines:
–– Start and end times of all tasks,
–– Production sequence of each blender,
–– Blending rates for each blend run,
–– Delivery sequence of all product tanks, and
–– Delivery rates for each delivery run.

The blend recipes from the 1st level, the swing 
tank allocation, and the delivery and blend plans 
from the 2nd level are fixed. Using information from 
the 2nd level decreases the search space and the 
model size at the 3rd level. The time slots are unit 
slots, meaning that each unit (i.e. component tanks, 
blenders, and product tanks) have their own specific 
time grid. From here on, the term time slot and unit 
slot will be used interchangeably. The 3rd level is 
formulated as a continuous-time model in order to 
have a smaller model size with less discrete vari-
ables than a corresponding discrete-time model. 
The 3rd level model is based on the continuous-time 
model presented by Li and Karimi13 which has been 
modified by modifying some constraints and adding 
new constraints in order to avoid infeasible solu-
tions1.

Only one specific product can be produced by 
a blender in a given time slot, as well as only one 
product can be stored in a swing tank. The 3rd level 
model includes slack variables in the inventory bal-

ances and demand constraints. The penalty profile 
for the slack variables decreases along the schedul-
ing horizon. For large-scale problems, the schedul-
ing horizon can be divided in various subintervals, 
denoted as L-intervals. Then, the 3rd level MILP 
model is solved sequentially for each L-interval. 
The boundaries of the L-intervals must coincide 
with the boundaries of some L2-periods to enable 
the inventory levels computed at the 2nd level to be 
fixed at the start and end boundaries of the L-inter-
vals.

Similarly as with the 2nd level, the 3rd level is 
solved in more than one phase. First, a feasibility 
check is carried out in order to determine if the 
blend recipes from the 1st level and the constraints 
from the 2nd level can produce a feasible schedule, 
and if the number of time slots can produce a feasi-
ble solution. When the feasibility check does not 
find a physically feasible schedule, the slack vari-
ables have non-zero values at the solution. If that is 
the case, the required L1-period is subdivided at the 
time corresponding to the end boundary of the 
L2-period associated with the time slot containing 
the first infeasibility. After a feasible solution is 
found, then an optimization phase computes the 
production and delivery sequences with minimum 
number of blend runs and delivery runs. Finally, 
with the production and delivery sequences fixed, 
blending rate variations are minimized. The 3rd level 
model for the feasibility phase is denoted as F-Sim-
RD-PlanTDBR-feas, the one for the optimization 
phase is referred to as F- SimRD-PlanTDBR-opt, 
and the model to reduce variations in the blending 
rates is designated as F-SimRD-PlanTDBR-adj. The 
letter F means fixed recipes, SimRD indicates that 
product tanks can receive and deliver material si-
multaneously, PlanTDBR signifies that the plan 
computed at the 2nd level is enforced, and the last 
word indicates if it corresponds to the feasibility 
phase (feas), optimization phase (opt), or the adjust-
ment phase (adj) to reduce blending rate variations.

– Feasibility check of blend recipes from 1st level 
and constraints from 2nd level –

Model F-SimRD-PlanTDBR-feas
min SlackCostL3

s.t.
Fixed recipes (from 1st level)
Product inventory targets (from 1st and 2nd levels)
Fixed swing tank allocation (from 2nd level)
Blend plan constraints (from 2nd level)
Inventory balances (component tanks, product 

tanks)
Inventory constraints (component tanks, product 

tanks)
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Maximum production capacity (individual blenders)
Minimum product-dependent blend size (individual 

blenders)
Minimum product-dependent run length (individual 

blenders)
Minimum product-dependent setup time (individual 

blenders)
Maximum delivery rates of each individual product 

tank

– Computing production and delivery sequences 
with minimum number of switches –

Model F-SimRD-PlanTDBR-opt
min BlendCostL3 + SwitchingCostL3 + SlackCostL3

s.t.
SwitchingCostL3 = SwitchBlenderCostL3 + Switch-

DeliverCostL3

Fixed recipes (from 1st level)
Product inventory targets (from 1st and 2nd levels)
Fixed swing tank allocation (from 2nd level)
Blend plan constraints (from 2nd level)
Inventory balances (component tanks, product 

tanks)
Inventory constraints (component tanks, product 

tanks)
Maximum production capacity (individual blenders)
Minimum product-dependent blend size (individual 

blenders)
Minimum product-dependent run length (individual 

blenders)
Minimum product-dependent setup time (individual 

blenders)
Maximum delivery rates of each individual product 

tank

– Minimizing blending rate variations on each 
blend run –

Model F-SimRD-PlanTDBR-adj
min BlendRateVariations
s.t.
BlendRateVariations = Σbl,n VolumeDifferenceL3(bl,n)
VolumeDifferenceL3(bl,n) ≥ AvgBlendRate(bl,n)· 

BlendLengthL3(bl,n) – VolumeBlendedL3(bl,n)
VolumeDifferenceL3(bl,n) ≥ VolumeBlendedL3(bl,n) 

– AvgBlendRate(bl,n)·BlendLengthL3(bl,n)
Fixed production sequence
Fixed delivery sequence
Fixed recipes (from 1st level)
Product inventory targets (from 1st and 2nd levels)
Fixed swing tank allocation (from 2nd level)
Blend plan constraints (from 2nd level)

Inventory balances (component tanks, product tanks)
Inventory constraints (component tanks, product 

tanks)
Maximum production capacity (individual blenders)
Minimum product-dependent blend size (individual 

blenders)
Minimum product-dependent run length (individual 

blenders)
Minimum product-dependent setup time (individual 

blenders)
Maximum delivery rates of each individual product 

tank

Description of the MPIP-C algorithm

The multiperiod inventory pinch algorithm 
with a continuous-time scheduling model at the 3rd 
level for scheduling of blend operations is described 
next. Although it was developed for gasoline blend-
ing, it can be used in any blending process where 
the quality properties of the blend components are 
known in advance.

Step 1) Determine the pinch point(s) location 
on the cumulative curves (CTD and CATP).

Step 2) Set the number of L1-periods. The 
boundaries of these time periods are delineated 
based on:

–– Inventory pinch points.
–– Changes in the quality of blend components.
–– Changes in the cost/price of components/

products.
Step 3) Set the number of L2-periods. The 

boundaries of these time periods are based on:
–– Boundaries of the L1-periods.
–– Variations in supply profile of blend compo-

nents.
–– Time delivery windows for the demand or-

ders.
–– Expected time that a swing tank remains in 

one specific service.
–– Time to produce the minimum allowed blend 

run.
Step 4) Solve the 1st level model. If slack vari-

ables have non-zero values at the solution, the prob-
lem is infeasible; otherwise, go to Step 5.

Step 5) Solve the 2nd level model for the feasi-
bility check.

Step 6) Continue to Step 8 if solution from 
Step 5 has all slack variables with zero values; oth-
erwise, go to Step 7.

Step 7) Determine the L2-period with the first 
non-zero slack variable along the horizon and use 
its end boundary to delineate a new boundary at the 
1st level. Return to Step 4.
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Step 8) Solve the 2nd level model for minimiz-
ing switching costs.

Step 9) Set the number of time slots (N) as-
signed to the scheduling horizon.

Step 10) Solve model F-SimRD-PlanTD-
BR-feas.

Step 11) If all slack variables are equal to zero, 
go to Step 13; otherwise, add more time slots and 
return to Step 10.

If the number of time slots exceeds the maxi-
mum limit, subdivide an L1-period and go back to 
Step 4.

Step 12) Solve model F-SimRD-PlanTDBR-opt.
Step 13) Fix the production and delivery se-

quences and compute the average blending rates of 
each blend run.

Step 14) Solve model F-SimRD-PlanTDBR-adj 
to minimize blending rates variations across a blend 
run constituted by more than one time slot.

Numerical results

All problems have been solved on DELL 
PowerEdge T310 (Intel® Xeon® CPU, 2.40 GHz, 
and 12 GB RAM) running Windows Server 2008 
R2 OS. The data for all problems appear in Castillo 
and Mahalec25. Table 1 shows the physical size of 
these problems, and Table 2 shows the size of the 
corresponding continuous-time MILP scheduling 
model used at the 3rd level. The 3rd level was solved 
in five L-intervals (i.e. subintervals of the schedul-
ing horizon, one model instance for each one), and 
Table 2 only shows the size of the largest model. 
For all case studies, the scheduling horizon is 14 

days, the first L-interval is constituted of the first 4 
days, the second L-interval spans day 5 to day 7, 
the third L-interval is composed of day 8 and 9, the 
fourth L-interval spans day 10 to day 12, while day 
13 and 14 constitute the fifth L-interval. The Reid 
vapor pressure is the only nonlinear quality proper-
ty considered.

Ta b l e  3 	–	Results from MPIP-C and MPIPa algorithms. Solvers: IPOPT and CPLEX 12.3

Case 
Study

Algorithm/ 
MINLP solver

# L-intervals 
at the 3rd level

Obj. Func. 
Value ($)

Blend 
cost ($)

# Blend 
runs

# Delivery 
runs CPU time (s) Gap (%)

  8
MPIP-C 5 38,483.4 37,943.4 17 40 298.4 0.79
MPIPa 7 38,498.4 37,943.4 17 43 981.0 0.82

  9
MPIP-C 5 39,304.2 38,754.2 18 38 124.0 0.79
MPIPa 7 39,394.2 38,754.2 21 44 3,477.0  0 1.03

10
MPIP-C 5 39,020.2 38,405.2 21 39 593.2 0.96
MPIPa 7 39,050.2 38,405.2 21 45 2,430.0  0 1.03

11
MPIP-C 5 38,935.2 38,405.2 17 38 139.3 0.74
MPIPa 7 39,035.2 38,405.2 20 46 5,106.0  0 1.00

12
MPIP-C 5 38,633.4 38,073.4 19 36   77.4 0.85
MPIPa 7 38,733.4 38,073.4 23 40 3,666.0  0 1.11

13
MPIP-C 5 38,384.5 37,784.5 20 40 341.5 0.93
MPIPa 7 38,519.5 37,784.5 25 47 1,923.0  0 1.29

14
MPIP-C 5 38,421.4 37,796.4 22 37 206.1 1.00
MPIPa 7 38,546.4 37,796.4 26 46 2,455.0  0 1.33

aMPIP scheduling algorithm from Castillo and Mahalec25

Ta b l e  1 	–	Attributes of the case studies

Case 
Study ID

# 
Blenders

# 
Orders

# Quality 
properties

# 
Products

# Product tanks 
(swing tanks)

  8 1 36 8 3 6 (3)
  9 1 36 8 3 6 (3)
10 1 37 8 3 6 (3)
11 2 37 8 3 6 (3)
12 2 35 8 3 6 (3)
13 2 37 8 3 6 (3)
14 3 37 8 3 6 (3)

Ta b l e  2 	–	Size of model F-SimRD-PlanTDBR-opt for the 
largest model at the 3rd level

Case 
Study

# Slots 
(Entire 

horizon)

# Slots 
(Largest 
model)

# 
Equations

# 
Continuous 
Variables

# 
Binary 

Variables
  8 47 11 3,755 2,267 215
  9 51 16 5,525 3,206 316
10 63 15 4,974 3,007 284
11 43 11 5,418 2,599 384
12 39 10 5,064 2,423 357
13 46 11 5,613 2,743 393
14 44 11 7,336 3,124 564
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Table 3 presents the results obtained by MPIP-C 
algorithm and compares them with those obtained 
by MPIP algorithm (from Castillo and Mahalec25) 
which uses a discrete-time MILP scheduling model 
at the 3rd level. It can be observed that MPIP-C al-
gorithm outperforms MPIP algorithm in both solu-
tion quality and execution time. This is due to the 

reduction in the model size by using a continu-
ous-time scheduling model, which allows subdivi-
sion of the scheduling horizon into larger L-inter-
vals and solving them more efficiently.

For illustration purposes, solution for case 
study 14 is presented. Fig. 5 and Fig. 6 show the 
production and delivery sequences, respectively.

F i g .  5  – Production sequence, MPIP-C solution for case study 14

F i g .  6  – Delivery sequence, MPIP-C solution for case study 14
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Conclusions

This work uses MPIP-C algorithm for schedul-
ing of multipurpose systems such as blending oper-
ations in petroleum refineries. MPIP-C scheduling 
algorithm decomposes the problem into three differ-
ent decision levels. By using information from the 
upper levels, good quality schedules can be com-
puted with short execution times.

The MPIP-C algorithm uses the inventory 
pinch concept to compute optimal blend recipes at 
the 1st level. This computation can be based on ei-
ther linear or nonlinear models. The 1st level uses 
aggregated representation of the system, i.e. all 
blenders are treated as a lumped capacity, all pro-
duction and demands are lumped across the time 
periods delineated by the inventory pinch points. 
Blend recipes computed at the 1st level are em-
ployed at the 2nd level to compute an optimal pro-
duction plan which includes allocation of swing in-
ventories and association of product deliveries with 
specific tanks. Scheduling of blend runs and deliv-
ery liftings is carried out at the 3rd level using a con-
tinuous-time MILP model. Solution from the upper 
levels provides additional information which helps 
reduce the model size and computational times to 
solve the 3rd level model.

Seven case studies were presented. MPIP-C 
computes better solutions and in less time than the 
previously published MPIP algorithm. The use of a 
continuous-time MILP scheduling model enables 
more efficient solving of larger subintervals (i.e. 
L-intervals) of the scheduling horizon compared 
with the corresponding discrete-time model.

N o m e n c l a t u r e

S e t s  a n d  i n d i c e s

E = {e}	 –	Quality properties (e.g. research and motor 
		  octane number)

I = {i}		 –	Blend components
J = {j}		 –	Product tanks
K = {k}	 –	L1-periods (time periods defined for the 

		  1st level discrete-time model)
L = {l}		 –	L-intervals (non-overlapping subintervals of  

		  the scheduling horizon for the 3rd level 
		  continuous-time model)

M = {m}	–	L2-periods (time periods defined for the 
		  2nd level discrete-time model)

N = {n | 0, 1, …, N} – Time slots assigned for the entire 
		  horizon (3rd level continuous-time model)

O = {o}	 –	All demand orders
P = {p}	 –	Different products

Pa r a m e t e r s

H		  –	Length of the entire scheduling horizon
, 1( , , )bc LQ i e k 	 –	Quality e of blend component i during 

L1-period k
min( , )prQ p e , max ( , )prQ p e  – Minimum and maximum spec-

ifications for quality property e and product p

C o n t i n u o u s  v a r i a b l e s

, 1( , , )pr LQ p e k 	 –	Quality e of product p during 
	 L1-period k

( , , )r i p k 	–	Continuous variable at the 1st level, but a pa-
rameter at the 2nd and 3rd levels. Blend recipe for 
product p in  L1-period k 

, 1( , )blend LV p k 		 –	Volume blended of product p during 
L1-period k 

, 1( , , )comp LV i p k 	 –	Volume of component i used in prod-
uct p during L1-period k

BlendCostL1	 –	Cost of the materials used in the blend 
(1st level solution)

BlendCostL2	 –	Cost of the materials used in the blend 
(2nd level solution)

BlendCostL3	 –	Cost of the materials used in the blend 
(3rd level solution)

SlackCostL1		 –	Penalty for the non-zero slack variables 
(1st level solution)

SlackCostL2		 –	Penalty for the non-zero slack variables 
(2nd level solution)

SlackCostL3		 –	Penalty for the non-zero slack variables 
(3rd level solution)

SwitchingCostL2	 –	Cost associated with the switching 
operations (2nd level solution)

SwitchingCostL3	 –	Cost associated with the switching 
operations (3rd level solution)

SwitchBlenderCostL2	 –	Cost associated with the blend 
runs (2nd level solution)

SwitchBlenderCostL3	 –	Cost associated with the blend 
runs (3rd level solution)

SwitchDeliverCostL2	 –	Penalty associated with de
livering the same order from different tanks (2nd 
level solution)

SwitchDeliverCostL3	 –	Penalty associated with de
livering the same order from different tanks (3rd 
level solution)

SwitchTankCostL2	–	Penalty associated with product 
changeovers in the swing tanks (2nd level solution)

BlendRateVariations	–	Term to minimize in order to re-
duce variations in the blending rate of a blend run

VolumeDifferenceL3(bl,n)	–	Volume difference in blender bl 
during slot n between the virtual blend run using the 
average blending rate and the actual blend run

AvgBlendRate(bl,n)	–	Average blending rate of a blend 
run in blender bl during slot n

BlendLengthL3(bl,n)	–	Duration of the blend in blender bl 
during slot n

VolumeBlendedL3(bl,n)	 –	Actual volume blended in 
blender bl in slot n
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