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The detour matrix (DD) of a graph has for its (i,j) entry the length
of the longest path between vertices i and j. The sum of all entries
above the main diagonal gives the detour index dd. Distinct graphs
that have the same detour index have been reported in the litera-
ture. We examined such graphs and others that we have found and
report on some of their regularities. We noticed that many graphs
have not only the same detour index but also the same detour ma-
trix. We considered in particular graphs for which the elements of
the detour matrix are maximal. Such graphs are called saturated

graphs. The detour matrix of a saturated graph is the same as that
of the complete graph having the same number or vertices.

INTRODUCTION

The detour matrix was introduced in graph theory some time ago by F.
Harary1 for describing the connectivity in directed graphs. The detour ma-
trix, in contrast to the distance matrix that records the length of the short-
est path between vertices, records the length of the longest distance be-
tween each pair of vertices. The detour matrix has recently received some
attention in the chemical literature.2¿6 The revival of interest in the detour
matrix reflects recent efforts to construct novel topological indices obtained
by extracting invariants from new graph matrices.7¿14 Among the most popu-
lar graph invariants (for non-negative matrices which are of particular in-
terest in chemical applications) are the average matrix element15¿23 and the

CROATICA CHEMICA ACTA CCACAA 71 (1) 53¿68 (1998)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/33272319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


leading eigenvalue of the matrix.10,12,24¿26 The average matrix element is
equivalent to the sum of matrix elements above the main diagonal; the two
differ only in the normalization factor. In the case of the graph distance ma-
trix the sum of the matrix elements above the diagonal gives the well-known
Wiener number (W). This graph invariant was introduced in structure-
property studies in 1947 by H. Wiener.15 The detour matrix (for which we
will use symbol (DD) is yet another matrix associated with graphs the ele-
ments of which are given by graph theoretical distances between the verti-
ces, though now one is searching for the longest, rather then the shortest
paths. Ami} and Trinajsti}2 were first to consider the detour index defined
as the sum of matrix elements above the main diagonal of the detour ma-
trix, for which we will use symbol dd.

Use of the detour index in quantitative structure-activity relationship
(QSAR) studies has been investigated by Lukovits.5 In correlation with sev-
eral other indices, he tested this index on the correlation of the boiling points
of alkanes and cycloalkanes. A multiple regression analysis has shown that
a combination of W and dd may give correlations for selected molecular prop-
erties which are size-dependent (as boiling points of alkanes). However, if
one restricts attention to molecules of the same size (e.g., isomers of octane
and cyclic alkanes having eight carbon atoms) the index dd and its combina-
tions with the other indices considered to not show such a good correlation.
Hence, it yet remains to be seen if the detour index will become useful mo-
lecular descriptors of importance in QSAR.

The detour index certainly carries some interesting structural informa-
tion for cyclic compounds. For acyclic structures the distance matrix and the
detour matrix are the same and yield the same index, since there is only a
single possible path connecting any pair of vertices. The construction of the
distance matrix (from which the Wiener index follows) particularly for
larger graphs is not trivial.27¿33 Construction of the detour matrix (from
which the detour index w follows) is even more involved. According to Ha-
rary (Ref. 1, p. 203);

»There is no efficient method for finding the entries of the detour ma-
trix. This problem is closely related to several other long-standing algo-
rithmic questions of graph theory, such as finding spanning cycles and solv-
ing salesman problems«.1

Lukovits outlined a procedure for obtaining dd by using cut points,15

while Nikoli} and Trinajsti}34 outlined an algorithm for construction of the
detour matrix based on screening spanning trees of a cyclic graph. Both
these algorithms are consistent with the assertion that calculation of dd is a
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1 » ... The traveling salesman problem asks for an algorithm for finding a walk in a network
whereby the salesman can visit each point and return to the starting point while traversing
arcs with the minimal cost«.



NP-complete problem.35 Our initial interest was on the problem of construc-
tion of graphs which have the same detour index. Finding such graphs and
their properties may point to the limitations of this particular index.

GRAPHS WITH THE SAME TOPOLOGICAL INDEX

As is well known, topological indices show degeneracy, that is, two or
more non-isomorphic graphs may have identical numerical values for an in-
dex. Sometimes this happens already for small graphs, sometimes for graphs
of intermediate size. It is of interest for any graph invariant to find the size
of the smallest graphs that show degeneracy. This indicates the limitations
of the particular index (invariant descriptor) to differentiate structural varia-
tions among similar compounds. In Table I we list for a number of topologi-
cal indices the size of the smallest graph for which the degeneracy occurs.
The size of the graphs is given by n, the number of vertices. The last column
in Table gives N, the total number of trees having n vertices. As we see the
discrimination power of the Wiener index,15 the Hosoya index,36 and the
connectivity index,37 all of them being widely used in QSAR, is rather low.
This, as is known, does not affect their performance in QSAR, because simi-
lar structures (that have overlapping topological indices) as a rule have also
similar properties.38,39

The Balaban index40,41 was one of the earlier indices which has shown
greater discrimination power. It was followed by the molecular ID num-
ber,16,42 and in particular the prime ID numbers17 (the number in which the
relative weights of different bonds were weighted with different prime num-
bers in order to maximize the numerical diversity of the bond contribu-
tions). An index EA (derived from an extended adjacency matrix) was pro-
posed that shows high discrimination.43 It was tested on all trees with n = 16
or less and no duplicate trees have been found. However, when tested
against cyclic graphs with multiple bonds (which is a more stringent test to
which many other indices were not tested), some duplicates have been de-
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TABLE I

The discrimination power of various topological indices: n the largest tree for
which no duplicates occur; N the total number of trees

Topological Index Symbol n N

Connectivity index c 7 22
Balaban index J 11 309
Identification number ID 14 3,324
Prime number ID PID 19 251,731
Extended adjacency index EAID 22 3,807,434



tected. Recently, a new index (EID) was designed that surpassed both EA

and prime-number ID. This index, derived from a modification of the ex-
tended adjacency matrix is a somewhat convoluted manner, was tested for
all trees with n = 22 and has not as yet showed degeneracy.44

Simple indices, including the Wiener index, the Hosoya index, and the
connectivity index, show low resolution, give good correlations and have a
direct structural interpretation. More involved indices, like Balaban’s J, mo-
lecular ID number, and in particular the latest index of Hu and Xu,43 show
very high resolution but have more convoluted structural interpretation. Is
it possible to have a relatively simple index that can show an impressive dis-
crimination power? Search for indices of high resolution and simple struc-
tural interpretation will continue. The novel branching index25,26 based on
the leading eigenvalue of paths may become one of the desired indices of
this new class of indices that show higher resolution power and yet main-
tain relatively simple interpretation.

GRAPHS WITH THE SAME DETOUR INDEX

A number of graphs having the same detour index were reported by
Ami} and Trinajsti},2 and by Lukovits.5 Those reported by Ami} and Tri-
najsti} are illustrated in Figure 1 and Figure 2. The graphs of Figure 1 have
the same detour index but different detour matrices, while those of Figure 2
have the same detour index because they also have identical detour matri-
ces (assuming that the labeling of the vertices in the two graphs are pre-
served).

Let us examine the cases illustrated in Figure 1. The smallest graphs
having the same detour index have five vertices. As we see from Figure 1
there are two such pairs: (G1, G2) and (G3, G4). The first pair corresponds to
the molecular graphs of ethylcyclopropane and dimethylcyclopropane. The
corresponding detour matrices are, respectively;
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Because the detour matrix is symmetrical we have shown only the elements
above the main diagonal. The detour index dd, given by the sum of these
elements is in both cases dd = 24. The partition of w by adding the
contributions of the atoms separated by one bond, then the contributions of
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atoms separated by two bonds, then those separated by three bonds, and so
on, gives:

ethylcyclopropane dd = 8 + 12 + 4 = 24

dimethylcyclopropane dd = 8 + 8 + 8 = 24

The other pair of pentanes whose graphs have the same w are 1-
methylcyclobutane and spiropentane (G3 and G4, Figure 1). Their detour
matrices are:
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Figure 1. Three pairs of smaller graphs having the same detour index dd.



with the partitions:

1-methylcyclobutane dd = 13 + 12 + 3 = 28

spiropentane dd = 12 + 16 = 28

Graphs G5 and G6 have the same detour index dd = 37 but are of differ-
ent size. There are additional such examples. Such pairs are of lesser inter-
est since the graphs can be easily differentiated by their size. Both G5 and
G6 have the same number of edges, but there are cases of graphs having the
same detour index which have neither the same number of edges nor the
same number of vertices. One such example is the following set of graphs
with dd = 40:
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Figure 2. Three pairs of smaller graphs having the same detour matrix DD.



In Figure 2 we show graphs which have not only the same detour index
but also the identical detour matrix (assuming that the labeling of vertices
between the two graphs is suitably selected). Ami} and Trinajsti} appar-
ently overlooked or choose not to pay attention to this fact. The occurrence
of identical matrices for non-isomorphic graphs represents a novel and in-
teresting situation not previously encountered for other graph matrices. We
will examine more closely this interesting novelty in a later section of this
report. As one can see upon inspection of Figure 2 the graphs having the
same detour matrix are closely related. They have the same connectivity,
except for the presence of a single additional edge in one of the two graphs.
We may refer to graphs G10 and G14 (and graphs that can be obtained from
these graphs by introducing additional edges) as replete graphs, because in-
troduction of additional edges do not generate different detour matrix.

We now proceed to consider the following questions;
(1) What structural factors introduce the degeneracy of the detour ma-

trix?
(2) How can one construct graphs showing identical detour index?

REGULARITIES OF THE DETOUR INDEX

We have examined additional graphs in order to find the structural fac-
tors causing the graphs to have the same detour index. The smallest pair of
polycyclic graphs having the same detour index (but distinct detour matrix)
and not having pending bonds are illustrated in Figure 3. The correspond-
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Figure 3. The smallest polycyclic graphs having no pending bonds and having the
same detour matrix.



ing detour indices are 67 and 69 respectively. The first pair of graphs has
the same number of vertices and the same number of edges, while the sec-
ond pair has the same number of vertices but different number of edges.

Several regularities for the detour index dd can be observed from the re-
ported smaller graphs having the same detour index, some of which are
shown in Figures 1¿3. Often by adding an edge to a graph the index dd in-
creases by one, particularly when the added edge is a diagonal of a four
member cycle. In Figure 4 we selected few graphs from the paper of Luko-
vits which have identical detour index and show a similar bonding pattern.
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Figure 4. Structurally related graphs having the same detour index.



One may anticipate that graphs obtained by further enlarging the ring will
also have the same detour index. We verified that this is the case on few ad-
ditional examples. Is there a general route to find graphs having the same
detour index, beside a brute-force search for such graphs?

CONSTRUCTION OF GRAPHS WITH THE SAME DETOUR INDEX

We start this section by exhibiting the detour matrices for the two graphs
in the center of Figure 4, both of which have detour index 45. For each de-
tour matrix we also form the row sums.
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Notice now that if we attach a new vertex to an existing vertex i of a graph
of detour index dd, the addition

(a) Will not change any element of the detour matrix not involving the
new vertex;

(b) Will add a new last row (and last column) containing as off-diagonal
elements the corresponding elements of row (or column) i but with each en-
try augmented by unity, and zero as the new diagonal element;

(c) The new detour index d,d', will be dd + row sum (i) + n, where n is
the number of vertices before enlargement.

It is thus apparent that if a graph has two symmetry non-equivalent
vertices with the same detour-matrix sum, addition of a new vertex to ei-
ther will produce two graphs of identical detour matrix. In addition, if two
graphs of the same size and identical detour index each have a vertex with
the same row sum, attachment of a new vertex to each of these vertices will
produce new graphs of identical detour index. This process will fail only in
the exceptional case that the pair of vertex additions produce identical
graphs.

Extending the above analysis, we note the attachment of any graph to
each of the pair of vertices meeting the conditions of the proceeding para-
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Figure 5. Illustration of graphs having the same detour index constructed by attach-
ment of an edge to the vertices having the same row sum.

Figure 6. Illustration of graphs having the same detour index constructed by attach-
ment of a larger fragment (a ring) to the vertices having the same row sum.



graph will result in new graphs of identical detour matrix. This observation
continues to apply even if the new graph is attached to each identified ver-
tex by identical sets of multiple edges.

Using the graph in the center of Figure 4 as starting points, we note
that vertices 1 and 4 of G21 both have the row sum 17 and while not being
symmetrically equivalent. Also the vertex 1 of G22 graph has row sum 17. In
Figure 5 we illustrate graphs having the detour index 68 that are formed by
adding an edge to vertices 1 and 4 of G21 and vertex 1 of G22. Note that only
two of these three graphs are distinct. In Figure 6 we present sets �G27, G28,
G29� and �G30, G31, G32�, each set having an identical detour index. The
graphs are constructed by appending more complex fragment to the struc-
tures at the identified vertices having the same row sums.

SATURATED AND MAXIMALLY REPLETE GRAPHS

The detour matrix of the complete graph K5(which is at the same time
also the detour matrix of G11 and G12 in Figure 2) is:
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As we see all the matrix elements for the graph of K5 have the maximal
possible value for a graph having five vertices and the graph therefore has
the largest possible detour index for a graph of this size, namely 40. We re-
fer to a graph of maximum possible detour index for its size as saturated.
Because K5 (and also G12 have more edges than necessary to yield this de-
tour index, both are also replete (as that term was defined earlier). Since K5
has the largest possible number of edges among graphs of this size and de-
tour index, we can characterize it as maximally replete as well as saturated.

It may be of interest to ask how many edges can be removed from a maxi-
mally replete graph while retaining the property of saturation. It is conven-
ient to cast this question in terms of the minimum density at which a graph
can remain saturated, where the density may be defined as the ratio of the
number of edges (E) to the number of vertices (V), namely E/V.1 Some work-
ers44,45 have defined the density as the ratio E/E*, where E* is the number
of edges in the complete graphs having the same number of vertices. It may
be useful to note that there is not a unique correlation between density and
saturation, as illustrated by the following pair of graphs on eight vertices:
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Both these graphs have density E/V = 3/2, but the graph on the right is
saturated while the graph of a cube (on the left) is not. This observation is
indicative of the fact that density is a global property of a graph, while satu-
ration depends on the details of the connectivity and, hence, has local char-
acteristics.

ON CONSTRUCTION OF SATURATED GRAPHS

A route to the graphs having the maximal detour matrix is as follows;
Start with the complete graph Kn and consider graphs derived from the com-
plete graph by erasure of one or more edges, one at a time. How many bonds
we can erase from a complete graph Kn and still have the same (maximal)
detour matrix? When n = 4 not a single edge can be erased without chang-
ing the detour matrix. One can easily find that one can erase two edges
from K5 without changing the detour matrix. The derived has the density
E/V = 5. Further reduction in graph density would change the detour matrix
(and the detour index). In Figure 7 we also have illustrated graph G36 that
is derived from K6 by successive bond erasure. The density of G36 is E/V = 3/2.
In the case of K7 we can similarly construct several graphs with the same
detour matrix until we arrive at a graph obtained by erasing almost half of
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Figure 7. Graphs derived by erasing edges of K5 and K6 but having the same DD

matrix as K5 and K6 respectively.



the edges that still allows one to connect any pair of vertices by the longest
path possible (here dij = 6). The corresponding density is 11/7. This appears
to be an upper bound on the critical density for graphs having n = 7 vertices.
Removal of any additional edge would produce a bridging vertex, or bridg-
ing vertices (of degree two) the presence of which shortens the longest paths
for some pairs of vertices.

Such considerations can be extended to large Kn graphs. In Figure 8 we
illustrate steps in reducing K8 to the planar cubic graph related to trigonal
prism. It is not difficult to verify that each pair of vertices in the polyhe-
dral cubic graph are connected by the Hamiltonian path. In Table II we list
for each vertex one such Hamiltonian path. The cubic graphs with n = 6 and
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Figure 8. Reduction of K8 to cubic graph having the same DD matrix.

TABLE II

Hamiltonian paths for reduced graph having eight vertices

Vertices Hamiltonian paths Vertices Hamiltonian paths

1¿2
1¿3
1¿4
1¿5
1¿6
1¿7
1¿8

1¿3¿5¿7¿8¿6¿4¿2
1¿2¿4¿6¿8¿7¿5¿3
1¿2¿3¿5¿7¿8¿6¿4
1¿8¿7¿6¿4¿2¿3¿5
1¿3¿2¿4¿5¿7¿8¿6
1¿2¿3¿5¿4¿6¿8¿7
1¿2¿3¿5¿4¿6¿7¿8

2¿3
2¿4
2¿5
2¿6
2¿7
2¿8

2¿1¿8¿7¿6¿4¿5¿3
2¿3¿1¿8¿6¿7¿5¿4
2¿3¿1¿8¿7¿6¿4¿5
2¿3¿1¿8¿7¿5¿4¿6
2¿3¿1¿8¿6¿4¿5¿7
2¿1¿3¿5¿4¿6¿7¿8

3¿4
3¿5
3¿6
3¿7
3¿8

3¿2¿1¿8¿6¿7¿5¿4
3¿2¿1¿8¿7¿6¿4¿5
3¿2¿1¿8¿7¿5¿4¿6
3¿2¿1¿8¿6¿4¿5¿7
3¿2¿1¿4¿5¿7¿6¿8

4¿5
4¿6
4¿7
4¿8

4¿2¿3¿1¿8¿6¿7¿5
4¿5¿3¿2¿1¿8¿7¿6
4¿5¿3¿2¿1¿8¿6¿7
4¿2¿1¿3¿5¿7¿6¿8



n = 8 vertices can be generalized to similar graphs having even number of
vertices as illustrated in Figure 9 for K10, K12 and K14. The graphs of Figure
9, all of which have density E/V = 3n/2n = 3/2, represent the lowest possible
density for graphs on n vertices with the detour matrix same as Kn. Hence,
as n, the size of the graphs, increases, the number of graphs that have suffi-
cient density to produce the same detour matrix as Kn increases rapidly.
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Figure 9. Generalization of the graph of trigonal prism to larger graphs having DD

matrix as the corresponding complete graphs.
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SA@ETAK

Grafovi s istom matricom zaobila`enja

Milan Randi}, Luz M. DeAlba i Frank Harris

Matrica zaobila`enja (DD) grafa ima ulaz (i,j) duljinu najdu`e staze izmedju
~vorova i i j. Zbroj svih vrijednosti iznad glavne dijagonale daje indeks zaobila`enja
dd. U literaturi su zabilje`eni razli~iti grafovi koji imaju isti indeks zaobila`enja. Is-
pitav{i takove grafove kao i druge grafove koje smo prona{li, izvje{}ujemo o nekim
njihovim pravilnostima. Mnogi grafovi nemaju samo isti indeks zaobile`anja, ve} ta-
kodjer i istu matricu zaobila`enja. Posebno smo razmatrali grafove za koje su ele-
menti matrice zaobila`nja maksimalni. Takovi se grafovi zovu zasi}eni grafovi. Matri-
ca zaobila`enja zasi}enog grafa ista je kao i matrica zaobila`nja potpunog grafa koji
ima isti broj ~vorova.
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