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Formulas for calculating connectivity-based indices (Randi}-type

index calculated on vertices, c, and on edges, e, Zagreb index, M2,

and Bertz index, B ) and distance-based indices (Wiener , W, hy-

per-Wiener, WW, and Harary-type indices, HWe and HWp) in regu-

lar homogeneous dendrimers are derived. Values of the above topo-

logical indices for families of dendrimers, with up to 10 orbits, are

calculated. Mutual intercorrelation of these indices, in the consid-

ered dendrimers, is evaluated.
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INTRODUCTION

Dendrimers are hyperbranched molecules, synthesized mainly by two

procedures: (i) by »divergent growth«,1–3 when branched blocks are added

around a central core, thus obtaining a new, larger orbit or generation, and

(ii) by »convergent growth«,4–7 when large branched blocks , previously built

up starting from the periphery, are attached to the core. These rigorously

tailored structures show a spherical shape, which can be functionalized,8–11
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thus modifying their physico-chemical or biological properties. Excellent re-

views in the field are available.12–14

Topology of dendrimers is basically that of a tree (dendros in Greek means

tree). Some particular definitions in dendrimers are needed :

Vertices in a dendrimer, except for the external endpoints, are consid-

ered as branching points. The number of edges that enlarge the number of

points of a newly added generation is called the progressive degree, p.15–17 It

equals the classical degree (i.e., the number of all edges emerging from a

point), k, minus one: p = k – 1.

A regular dendrimer has all branching points with the same degree, oth-

erwise it is irregular.

A dendrimer is called homogeneous if all its radial chains ( i.e., the chains

starting from the core and ending in an external point) have the same length.12

In graph theory, they correspond to the Bethe lattices.18

A tree has either a monocenter or a dicenter19 (i.e., two points joined by

an edge). Accordingly, a dendrimer is called monocentric or dicentric. Exam-

ples are given in Figure 1. The numbering of orbits (generations)12 starts

with zero for the core and ends with r, which is the radius of the dendrimer

(i.e., the number of edges along a radial chain, starting from the core and

ending at an external node).

CONNECTIVITY INDICES

The vertex (atom) connectivity index was introduced by Randi}20 as a

measurement of the molecular branching in alkanes. It was subsequently

extended by Kier and Hall to account for heteroatoms and it was renamed as

the molecular connectivity index.21 The original Randi} index is calculated by

c c� �
�
�(G) (

G

k ki j
ij E

)– /

( ) ( )

1 2 (1)

where the summation is carried out over all pairs of adjacent vertices, in a

molecular graph, G, which is always a connected graph.
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Figure 1. Monocentric and dicentric regular dendrimers.



In order to calculate the vertex connectivity index for regular dendrimers,

we need to introduce some mathematical results that will be given below.

In a regular monocentric dendrimer graph, of degree k, the number of

vertices in the sth orbit or generation, ns, is given by:

ns � k(k – 1)s–1 ; s > 0 . (2)

In the case of a dicentric dendrimer, ns is obtained as follows:

ns � 2(k – 1)s ; s > 0 . (3)

A general expression to calculate the number of vertices in the sth orbit

of a regular dendrimer can be obtained from a combination of expressions

(2) and (3):

ns � (2 – z)(k � z – 1)(k – 1)s–1 ; s > 0 (4)

or using the progressive degree, p, one obtains:

ns � (2 – z)(p � z)ps–1 ; s > 0 (5)

where z = 1 for a monocentric dendrimer and z = 0 for a dicentric one.

The number of external vertices (i.e., endpoints) is given by:

nr � (2 – z)(p � z)pr–1 (6)

where r is the radius of the dendrimer and equals the number of its orbits.

The total number of vertices, N, in a dendrimer will be:

N – z z p z ps

s

r

� � �
�
�( ) ( )( ) –2 1

1

2 – (7)

which is equivalent to

N p zps r

s

r

�
�
�2

0

– . (8)

By developing the sum in Eq.(8), one obtains

� �

N
p

p
zp

r

r�
�2 1

1

1( – )

( – )
– . (9)

In order to calculate the c index, we can consider it as a combination of

two c indices, one of them cii calculated from contributions coming from in-
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ternal vertices in the dendrimer, i.e., those different from the end points,

and the other cie calculated from the end point contributions:

c � cii � cie . (10)

The cii index is calculated as:

� �c ii � �( – ) ( )–N pr

g

1
21 1 (11)

where Nr–1 is the number of internal vertices, i.e. those inside the r–1 orbit.

This number is obtained from the total number of vertices by subtracting

the number of endpoints, nr:

N N n
p

p
zpr r

r

r
–

( – )( – )
( – )

–
–1

1
2 1

1
� � ; r 	 1 . (12)

By substituting the expressions for N and nr in Eq. (12) and then that of

Nr–1 in Eq. (11), one obtains

� �c ii r

g
N n p� �( – – ) ( )1 1 2 (13)

and subsequently
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��


��
�

�2 1

1
2 1

1

1
( – )

–
– – ( – )( ) ( )

( )

( – )
p

p
zp z p z p p

r

r r 2 g . (14)

Following a similar procedure for cie, one obtains:

c ie � � � � �n p z p z p pr

g r g( ) ( – )( ) ( )–1 2 11 (15)

and the global index (see Eq. (10))

c= N– n – p n pr

g

r

g( 1 1 12)( ) ( )� � � (16)

or by expanding N and nr
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By making in Eq. (16) g = –1/2, the classical Randi} index, c–1/2, is ob-

tained

c� � � �1 2
1 21/ r rN n p n p( – ( )– /– 1)( + 1)–1 (18)
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When g = 1, the Zagreb Group index, M2,
22 can be obtained

M N n p n pr r2
21 1 1� � � �( – – )( ) ( ) (20)
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From Eq. (13), it is easy to calculate the Bertz index23 (see also the Platt

and Gordon-Scantlebury indices )23a of a dendrimer as
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which equals the number of connected pairs of edges in a regular dendri-

mer.

BOND (EDGE) CONNECTIVITY INDEX

The bond (edge) connectivity index,24 e, was introduced by Estrada as a

measurement of molecular volume in alkanes. It was subsequently extended

to molecules containing heteroatoms25 and to account for spatial26 (3D) fea-

tures of organic molecules. The e index is calculated by using the Randi}

graph theoretical invariant in which the vertex degree is substituted by edge

degree. Mathematically, the index is obtained as follows:

e e d d� �
�
�( ) )

( ) ( ( ))

G (
G

i j
ij E L

g
(23)

where the summation runs over all edges in the line graph, L(G), which is

derived from G by substituting edges by points and then connecting those

points whenever the edges which they represent are adjacent in G. In Eq.

(23), di is the degree of vertex i�V(L(G)) (i.e., the degree of the correspond-

ing edge in G):

di �pu + pv ; (u,v)�E(G) . (24)

Thus, an edge (i, j) �E(L(G)) corresponds to a subgraph of two adjacent

edges in G. The exponent g is taken to be –1/2, like for the Randi} index.

TOPOLOGICAL INDICES OF DENDRIMERS 371



In regular dendrimers, e can be calculated as a sum of three indices ac-

counting for contributions associated to pairs of internal-internal adjacent

edges, eii, pairs of internal-external adjacent edges eie, and pairs of extern-

al-external adjacent edges eee. One edge will be called internal if it is inside

the (r–2)th orbit and external if it is outside this orbit (i.e., if it is incident to

an external vertex). It is straightforward that the internal edges of the re-

gular dendrimer have the same degree, di = 2p, and the external ones have

the degree de = p, where p is the progressive degree of internal vertices in

the dendrimer. Now, the expression for the edge connectivity index can be

written as:

e e e e� � �ii ie ee . (25)

The eii index can be obtained as

e dii �
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�
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p
r

g

– ( )2

2
1

2 i (26)

where Nr–2 is the number of internal vertices inside the r–2 orbit (itself in-

cluded). It can be calculated by Eq. (8), when the summation runs till r–2.
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The internal edge connectivity index, �ii, is then calculated as
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The internal-external edge connectivity index, �ie, can be calculated by

e ie �nr i e

g( )� � (29)

which can be given as
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The eee index is calculated by
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where nr–1 is

nr–1 � (2 – z)(p � z)p(r–2) (32)

and next

e – / , –
– ( – )( ) ( – )( )
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1 2 1

1 2

2
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�
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�
� � �
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�
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p z p z p

p
r

r �
�
� ; r 	 2 . (33)

The edge connectivity index of regular dendrimers can be obtained by

combining Eqs. (28), (30) and (33) in expression (25). Tables I and II list val-

ues of the above presented connectivity indices, up to generation ten, in re-

gular dendrimers.

TOPOLOGICAL INDICES OF DENDRIMERS 373

TABLE I

Vertex and edge connectivity indices for regular dendrimers

having p = 2 and 3, and generations up to 10 orbits

N c
–1/2

e
–1/2 N c

–1/2
e

–1/2

r z = 1 z = 0

p = 2

1 4 1.732 1.500 6 2.643 2.414

2 10 4.464 4.371 14 6.285 6.328

3 22 9.928 10.243 30 13.571 14.157

4 46 20.856 21.985 62 28.142 29.814

5 94 42.713 45.471 126 57.284 61.127

6 190 86.426 92.441 254 115.568 123.755

7 382 173.851 186.382 510 232.135 249.010

8 766 348.703 374.265 1022 465.270 499.519

9 1534 698.405 750.029 2046 931.540 1000.539

10 3070 1397.810 1501.558 4094 1864.080 2002.577

p = 3

1 5 2 2.000 8 3.25 3.414

2 17 7 7.828 26 10.75 12.243

3 53 22 25.485 80 33.25 38.728

4 161 67 78.456 242 100.75 118.184

5 485 202 235.368 728 303.25 356.551

6 1457 607 714.103 2186 910.75 1071.654

7 4373 1822 2144.308 6560 2733.25 3216.962

8 13120 5467 6434.923 19680 8200.75 9652.885

9 39370 16400 19306.770 59050 24603.25 28960.655

10 118100 49210 57922.310 177100 73810.75 86883.966



WIENER-TYPE INDICES

The Wiener index,27 W, or the »path number« , in acyclic structures, can

be defined by

W W N Ni,(i, j)
i j E

j,(i, j)� �
�
�( )

( , ) ( )

G
G

(34)

where Ni,(i, j) and Nj,(i, j) denote the number of vertices lying on the two sides

of edge (i, j)� E(G), with E(G) being the set of edges in a connected graph, G.

The summation runs over all edges in G. The product Ni,(i, j) Nj,(i, j) is the num-

ber of external paths (i.e., the paths which contain edge (i,j) as a sub-path) and

represents the contribution of edge (i, j) to the global index, W. It is just the

(i, j)-entry ((i,j) �E(G)) in the edge-defined Wiener matrix28,29

�We�i, j �Ni,(i, j) Nj,(i, j) ; (i, j) � E(G) . (35)
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TABLE II

Bertz and Zagreb group indices for regular dendrimers

having p = 2 and 3, and generations up to 10 orbits

N B M
2 N B M

2

r z = 1 z = 0

p = 2

1 4 3 9 6 6 21

2 10 12 45 14 18 69

3 22 30 117 30 42 165

4 46 66 261 62 90 357

5 94 138 549 126 186 741

6 190 282 1125 254 378 1509

7 382 570 2277 510 762 3045

8 766 1146 4581 1022 1530 6117

9 1534 2298 9189 2046 3066 12261

10 3070 4602 18405 4094 6138 24549

p = 3

1 5 6 16 8 12 40

2 17 30 112 26 48 184

3 53 102 400 80 156 616

4 161 318 1264 242 480 1912

5 485 966 3856 728 1452 5800

6 1457 2910 11632 2186 4368 17464

7 4373 8742 34960 6560 13116 52456

8 13120 26238 104944 19680 39360 157432

9 39370 78726 314896 59050 118092 472360

10 118100 236190 944752 177100 354288 1417144



For non-adjacent vertices, (i, j) � E(G), the entries in We are zero. From

this, W can be calculated as the half sum of its entries

W We � (1/2)
i j� � �We�i, j . (36)

In the following, a subscript matrix symbol associated with the index

symbol will specify the matrix on which the index is calculated.

When (i, j) represents a path, (i, j) �P(G), with P(G) being the set of paths

in graph, then a relation similar to Eq. (34) will define the hyper-Wiener in-

dex,30 WW

WW WW N Ni,(i, j) j,(i, j)
i j P

� �
�
�( )

( , ) ( )

G
G

. (37)

The summation goes over all paths in G. Ni,(i, j) and Nj,(i, j) represent now

the number of vertices lying on the two sides of the path (i, j) � P(G). The

product Ni,(i, j)Nj,(i, j) equals the number of external paths that contain the

path (i, j) as a sub-path and is the contribution of the path (i, j) to the global

index, WW. It is the (i, j)-entry in the path-defined Wiener matrix28,29

�Wp�i, j �Ni,(i, j) Nj,(i, j) ; (i, j) �P(G) . (38)

From Wp, the index WW is calculated as the half sum of its entries

WW Wp � (1/2)
i j� � �Wp�i, j . (39)

In both We and Wp matrices, the diagonal entries are zero.

In cycle-containing graphs, Wiener matrices are not defined. Wiener in-

dices are here calculated by means of the distance-type matrices.

The distance matrix,19 De, collects the topological distances in the graph,

i.e., the number of edges, Ne,(i, j) �P(G) , which separate two vertices, i and j, on

the shortest path, (i, j) �P(G)

�De�i, j �
N i j i j

i j

e i j P, ( , ) ( ); ( , ) min,� � �

�

�
�
�

G if

if0
. (40)

The subscript e in the symbol of the distance matrix means that it is

edge-defined (i.e., its entries count edges on the path (i, j)). In Eq. (40), ( , )i j

is the cardinality of the path (i, j) taken as a set of subsequently connected

edges; it is just the length of the path (i, j). In case ( , )i j = min, it equals the

topological distance between i and j. The Wiener index is calculated as the

half sum of entries in De, meaning the number of all distances in G (i.e., the

number of internal edges contained in all shortest paths in the graph)
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W De � (1/2)
i j� � �De�i, j . (41)

A similar matrix31 can be constructed when paths, p, of length 1 � p �
( , )i j are counted in the path (i, j)

�Dp�i, j �
N i j i j

i j

p i j P, ( , ) ( ); ( , ) min,� � �

�

�
�
�

G if

if0
. (42)

It is a path-defined matrix and the number of paths, Np,(i, j)� P(G) , can be cal-

culated from the entries �De�i,j by

Np,(i, j)�P(G) �
[ ]De ij ��

�
�

�

�
�

1

2
= �(� De�i, j)

2 + �De�i, j�/2 . (43)

The half sum of entries in Dp yields the hyper-Wiener index31

WW Dp � (1/2)
i j� � �Dp�i, j (44)

whose meaning is the number of all internal paths (i.e., the paths internal

with respect to endpoints i and j) contained in all shortest paths in the graph.

In a connected graph, the number of internal paths equals the number of

external paths, (i.e., the paths containing the path (i, j) as a sub-path), as

stated by Klein, Lukovits and Gutman.32

By virtue of the equality of the sum of »external« and »internal« paths in

a tree graph, it is straightforward that: WDe = WWe and WWDp = WWWp (i.e.,

Wiener-type indices calculated on the distance-type and Wiener-type matrix,

respectively).

HARARY-TYPE INDICES

In chemical graph theory, the distance matrix accounts for the »through

bond« interactions of atoms in molecules. However, these interactions decre-

ase as the distance between atoms increases. This is the reason why the »re-

ciprocal distance« matrix, RDe(G) was recently introduced. Entries in this

matrix are defined by

�RDe�i,j � 1 / �De�i, j . (45)

RDe matrix allows the calculation of a Wiener index7 analogue, as the half

sum of its entries

H HD D i j i je e eG� � � �( ) ( / )
,

1 2 [ ]RD . (46)
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The resulting number was named,33–35 the »Harary index«, in the honor

of Frank Harary. Since topological matrices are considered »natural« sourc-

es in deriving graph descriptors, Diudea36 has extended the use of »recipro-

cal (topological) property« matrices in defining novel Harary-type indices, HM.

HM i i jj i i jje p/
( / ) / ( / ), ,� �� � � �1 2 1 1 2[ ] [ ]M RM (47)

the subscript M being the identifier for a square matrix M, which collects

some topological property. Note that the subscript e/p refers to the length of

the path (i, j) on which the matrix is defined: e means a path equal to one

edge (i.e., (i, j)� E(G)) while p denotes a path of length 1 � p � ( , )i j � P(G).

When the symbol of a topological index is associated with the subscript e, it

is an index but it becomes a hyper-index when associated with a subscript p.

Despite the equalities WDe = WWe and WWDp = WWWp, the Harary num-

bers calculated on distance-type and Wiener-type matrices, respectively, do

not obey such a relation (i.e., HWe � HDe and HWp � HDp ).

WIENER- AND HARARY-TYPE INDICES IN DENDRIMERS

The Wiener and hyper-Wiener indices have been calculated16,17 by for-

mulas derived via the layer matrix of cardinality,37 LC, which is related to

the distance matrix, De. In fact, formulas for calculating WDe and WWDp

have been derived.

In this paper, general formulas for evaluating WWe and WWWp and their

corresponding Harary indices, HWe and HWp, will be derived.

The procedure for evaluating the Ni,(i, j) and Nj,(i, j) numbers (cf. Eqs. (34)

and (37)) is based on the wedgeal enumeration of vertices in a dendri-

mer.16,38 A wedge is a fragment of the dendrimer (i.e., a subdendrimer)38

that results from deleting any edge, except those incident in an external,

nonbranching point, in a dendrimer. If the cut edge ends at the core, the

wedge is called maximal. The vertices of a wedge have the same degree as

the corresponding ones in the whole dendrimer, except the cut point, whose

degree is smaller by one. The number of vertices, Fi, in the wedge starting

at orbit i can be calculated by16

F p
p

pi
r s

r i

s i

r

� �
�

�
� ( – )

( – ) –

–

1 1

1
. (48)

Hyper-Wiener and hyper-Harary-type indices, TIp, in dendrimers can be

expressed as a sum of 'interactions' between the core and any vertex i, TI0,i,

between vertices lying on the same orbit, TIi,i, and between vertices i and j

located on different orbits, TIi,j

TOPOLOGICAL INDICES OF DENDRIMERS 377



TI TI TI TIp i i i i j� � �0, , , (49)

� � � �� �TI z p p N F F z N Fi
z i z
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g
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r

0 1
1

2 1 1 2,
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/� (50)
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z p p
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2 1
2 1

� �
F

p N F F
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g

j i

i j
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r

i
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�
�
�

#
�� ��

��
111

1

1 (52)

where N is the total number of vertices in the dendrimer (see Eq.(9)) and Fi

is the number of vertices in a wedgeal fragment starting at orbit i (see Eq.

(48)). When g = 1 the TI is WWWp while in case g = –1, the index is HWp.

A similar procedure leads to the edge-defined indices, TIe : WWe (g = 1)

and HWe (g = –1)

TI z
N

p p p N F

g

z z i
e �

�
�
� �

�
�

�

�
�

�

�
� � �( – ) ( ) ( ) –( – ) ( – )1

2
1 2

2

1 1 � �� �i i

g

i

r

F
�
�

1

. (53)

Values of the Wiener-type and Harary-type indices are collected in Ta-

bles III and IV.
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TABLE III

Wiener-Type indices for regular dendrimers having p = 2 and 3, and

generations up to 10 orbits

p r W WW

z = 0 z = 1 z = 0 z = 1

2 1

2

3

4

5

6

7

8

9

10

29

285

1981

11645

62205

312829

1510397

7084029

32518141

146825213

9

117

909

5661

31293

160893

788733

3740157

17310717

78661629

47

667

6195

46179

301251

1798531

10085123

53986819

278891523

1400838147

12

237

2535

20427

139923

863523

4958787

27022467

141535491

718754307
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p r W WW

z = 0 z = 1 z = 0 z = 1

3 1

2

3

4

5

6

7

8

9

10

58

1147

16564

207157

2392942

26310703

279816808

2905693033

29637785506

298120420579

16

400

6304

82336

975280

10897456

117191488

1226857792

12591244624

127267866832

97

2842

55546

885067

12486859

162614932

2001654484

23632595701

270225628693

3012581235310

22

862

18988

322684

4737346

63370330

795156568

9524050936

110124165742

1238679833686

TABLE III (continued)

TABLE IV

Harary-Type indices for regular dendrimers having p = 2 and 3, and

generations up to 10 orbits

p r H
We

H
Wp

z = 0 z = 1 z = 0 z = 1

2 1

2

3

4

5

6

7

8

9

10

0.91111

0.75700

0.67978

0.64248

0.62434

0.61544

0.61105

0.60886

0.60778

0.60724

1.00000

0.80952

0.70526

0.65479

0.63034

0.61840

0.61251

0.60959

0.60814

0.60742

8.24444

39.48428

171.93340

718.89205

2942.94684

11913.41433

47945.57042

192376.55943

770707.04503

3085243.85345

4.00000

21.00000

93.99806

398.36215

1642.52530

6674.41687

26914.25133

108099.91432

433297.01294

1734996.10484

3 1

2

3

4

5

6

7

8

9

10

0.91964

0.79410

0.75027

0.73578

0.73099

0.72941

0.72888

0.72870

0.72864

0.72862

1.00000

0.82692

0.76122

0.73939

0.73219

0.72980

0.72901

0.72875

0.72866

0.72863

17.41964

179.54978

1696.45922

15533.98437

140639.34503

1268302.06937

11422421.63083

102824974.44435

925494391.69444

832965848.383902

7.00000

77.12500

744.63142

6873.80590

62412.87700

563405.57044

5075774.57299

45697411.49634

411323103.15047

3702047217.72089



From Table IV one can see that the HWe values decrease as the radius

(i.e., generation) of the dendrimer increases. For the family of dendrimers

having the progressive degree 2, the limit of convergence is 0.6067 while for

the family with the progressive degree 3, the limit is 0.7286, irrespective of

whether they are mono- or dicentric-dendrimers. The convergence is a fea-

ture of HWe that differentiates this index from all the discussed indices.

Connectivity-type indices are highly intercorrelated (correlating coeffi-

cient, r > 0.9999) in the set of homogeneous dendrimers with the degree 3

and 4 and generation up to ten. When the distance-based indices are consid-

ered, the correlation of the connectivity-type indices lowers to about 0.97

and drops to about 0.05 vs. HWe. This behavior suggests that the distance-

based indices are more »structure-related« in comparison to the connec-

tivity-based ones. This is supported by the correlation vs. the number of ver-

tices (i.e., carbon atoms), which is about 0.97 for the distance-based indices,

except HWe and over 0.9999 for the connectivity-based indices. Index HWe is

practically orthogonal vs. all the other indices discussed herein. The above

results might be used in structure-property studies. Unfortunately, well de-

fined families of dendrimers are still difficult to obtain and characterize.
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SA@ETAK

Indeksi povezanosti i indeksi nalik na Wienerov i Hararyjev
za dendrimere

Mircea B. Diudea, Anton A. Kiss, Ernesto Estrada i Nicolais Guevara

Izvedene su formule za izra~unavanje razli~itih indeksa povezanosti za pravilne

homogene dendrimere (Randi}evi indeksi za ~vorove (c) i bridove (e), Zagreba~ki in-

deks (M2) i Bertzov indeks (B)) i razli~itih indeksa udaljenosti (Wienerov indeks, W,

hiper-Wienerov indeks, WW, Hararyjevi indeksi HWe i HWp). Razmotrene su me|u-

sobne korelacije tih indeksa.
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