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The overall set of acyclic hydrocarbons CnH2m with classical valen-

ce structures is considered, the structural isomers are enumerated,

and the results displayed in the form of a »periodic table« with the

C atom count n and H atom half-count m respectively identifying

rows and columns. Asymptotic n � � behaviors of these enumera-

tions are developed, first for fixed degree u � n+1–m of unsatura-

tion and second for fixed number 2m of H-atoms. The first-set iso-

mer classes increase in size exponentially fast with n, whereas

with the second set, the isomer-class sizes increase sub-exponen-

tially, as a power of n.

Key words: acyclic hydrocarbons, asymptotic behavior, enumeration,

isomer classes

1. INTRODUCTION

Chemical isomerism was recognized in a general way in the first part of

the nineteenth century when substances with the same overall molecular

formula were found though they exhibited different properties, a brief his-

tory of such being found in Ref. 1. Starting in the 1860s structural isomer-

ism was recognized (as in Ref. 2) when it provided a crucial piece of evi-
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dence for the validity of classical structural formulas and the existence of

structured molecules. Following Cayley’s formal enumeration3 of isomers

for the case of alkanes, the area of combinatoric enumeration continued into

the twentieth century as a topic of interest,4 particularly with the group of

Henze5 (in Texas) making several enumerations, for alkanes and homolo-

gous sequences of various derivatives. In 1936 Polya’s6 powerful combinato-

rial techniques introduced a new era, with a systematic enumeration sche-

me for a variety of types of substitutional isomers on fixed skeletons. And

following Polya there has been further (often very formal) refinements for

this chemical problem in numerous (i.e., perhaps more than 100) papers,

with a nice review of the work up to 1986 being given by R. C. Read7 where

also there is given a translation (by D. Aeppli) of Polya’s foundational paper.

Much of the work since Polya emphasizes the generality of the method in

dealing with additional systems beyond alkanes, but often is directed to the

enumeration of substitutional isomers. The book8 of Harary and Palmer

concerns more purely mathematical graph-theoretic applications of Polya’s

theory. The review of Balasubramanian9 focuses on chemical enumerative

problems, especially involving non-identity irreducible representations of

the concerned symmetry groups, typically for counts other than for isomers.

The more recent book10 of S. Fujita considers in detail many recent theoreti-

cal extensions, primarily concerning chirality and symmetry questions, for

isomers and also for reaction processes. The even more recent book11 of Tri-

najsti} et al. reviews Polya’s approach and extends previous enumerations.

C.-Y. Yeh12 and S. J. Cyvin and co-workers13 have repeatedly noted that

much of Polya’s general mathematical formalism can be foregone in many

specific isomer enumerations. And indeed a similar point seems to be made

in a slightly different more purely mathematical context by Polya in Ref. 14.

That is, whole chapters often occurring in standard combinatorics texts con-

cerning formalities of permutation groups, general »cycle-index« functions,

»pattern inventories«, etc. need not be gone through (in a general formal

manner) for a number of specific cases.

We seek to make extensions of such theoretical work, here in application

to the set of all acyclic hydrocarbons with classical valence structures. We

adopt the straight-forward point of view of Refs. 12 and 13 to make enu-

merations, with details of the generating-function approach described in

section 2. Since earlier isomer-enumeration work beyond that on alkanes

has tended to focus on substitutional isomers, the present problem (with dif-

ferent arrangements of multiple bonds) seems to have been little considered

in previous articles, with the exception by Read,15 where isomer classes of
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acyclic hydrocarbons are partitioned up in accordance with the numbers of

double and triple bonds and the enumerations are made to only about 10

carbons. In our present work here exact enumerations are pursued to much

higher numbers of carbons. Further we report our results in the form of a

»formula periodic table« for isomer classes of acyclic hydrocarbons. That is,

the acyclic structural-isomer count for CnH2m (for all possible collections of

bond types) appears in the nth row and mth column of such a »periodic ta-

ble«, and as such this may be viewed as analogous to Dias’16 formula peri-

odic table of polycyclic aromatic hydrocarbon isomer classes. Different char-

acteristics and trends appearing in the table as a whole then are of interest,

though here we focus primarily on one characteristic, that of (structural)

isomer counts, including their asymptotic behavior. In section 3 attention is

directed to the large n � � behavior of these enumerations as one proceeds

along a diagonal with the degree of unsaturation u � n+1–m fixed. Large-n

asymptotics for isomer enumerations have been made only occasional-

ly,6,17–20 and then primarily for alkanes. For our acyclic hydrocarbon prob-

lem it is found that just as for the alkanes, the numbers of isomers in these

isomer classes increase exponentially with n as one proceeds down the con-

stant-unsaturation diagonals. And indeed the »growth-constants« for these

diagonal sequences are argued all to be exactly the same as for the alkanes,

the asymptotic behaviors only varying in less dominant terms, which also

are here characterized to the extent that the relation between adjacent di-

agonals is made. Sections 4 and 5 concern the behavior of the isomer counts

in proceeding vertically down columns of the periodic table. Such a sequence

presents variations in C-atom number while the number of H-atoms is

fixed, so that here the degree of unsaturation scales with system size. Then

in any such (columnar) sequence a multiple bond ultimately occurs attached

to most C-atoms in any (large-n) isomer. Section 4 gives precise analytic re-

sults for all n for the first »non-trivial« column, i.e., for the species CnH4.

Section 5 presents an argument to establish that for a general CnH2m col-

umn the n � � asymptotic form for the isomer-count is sub-exponential,

with leading order apparently �n4(m–1). Variations in the remnant proportio-

nality depending on the column (as labelled by m) are also elucidated, and

further the inter-relation between different columns is characterized. Over-

all our »periodic table« is advocated as a potentially useful tool for the con-

sideration of the general class of acyclic hydrocarbons – and the present

considerations of isomer counts for the table is a first step in its characteri-

zation and utilization.
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2. ENUMERATION FOR ALL ACYCLIC HYDROCARBONS

The enumeration may be viewed as corresponding to a step-wise con-

structive generation of the acyclic hydrocarbons. The molecular structures

are represented in a »hydrogen-deleted« form where only the carbon atoms

and the C – C, C�C, and C�C bonds are explicitly represented. Contraction

of the usual symbols C in such formulas leads to what we here call graphs,

though often in the literature they are termed »multi-graphs« (as multiple

bonds are allowed). These resulting acyclic graphical structures are termed

trees (though sometimes they might be termed »multi-trees«). Initially the

treatment considers »radicals«, or graph-theoretically speaking, rooted

trees, each of which is defined as a tree with a distinguished site called a

root, which represents the radical site with a dangling bond – the (dangling

bond) root may have different degrees: single, double, or triple. Now with

the valence of carbon being 4, an n-site rooted tree with a root of degree d

may be obtained from up to 4-d smaller rooted trees, whose site numbers

add up to n-1: the smaller trees are to be adjoined at the new root via the

process indicated in Figures 1, 2, and 3, for trees with roots of respective de-

grees 1, 2, or 3. Once the various rooted trees are obtained they are then
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Figure 1. A diagrammatic representation for the recursive manner of building up

single-bond rooted hydrocarbon trees (which can be termed radicals).



joined together to form non-radical acyclic hydrocarbons as indicated in Fig-

ures 4 or 5. In these constructions it is of use to attend to the length of

chains, as can be done for the rooted trees in terms of generation number g

identifiable as the number of carbon sites in a longest path from the root.

Exactly what is done with these general ideas depends on just what type of

isomer one wishes to consider.
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Figure 2. Diagrammatic representation for the recursion for double-bond rooted hy-

drocarbon trees (such being viewable as a special type of diradical).

Figure 3. Diagrammatic representation for the recursion for triple-bond rooted hy-

drocarbon trees (such being viewable as a special type of triradical).

Figure 4. Diagrammatic representation for the generation of odd-diameter hydrocar-

bon trees.



The earliest classical considerations were in terms of structural isomers,

as we now also consider, initially for »radicaloid« rooted trees. Let #'
, ,g n m ,

#''
, ,g n m and #'''

, ,g n m denote the numbers of g-generation rooted trees with n C-

atoms, 2m (implicit) H-atoms, and roots of degrees 1, 2, and 3, respectively.

The corresponding generating functions are

�g g n m
n m

n

t u t u*
, ,

* *( , ) # , ', ' ', ' ' '� �
�

� 2

0

(2.1)

where t and u are »dummy« variables. The constructions of Figures 1, 2, and

3 lead to (coupled) recursions for the corresponding generating functions

� � � � � �g g g g g gt u t Z Z Z t� 	 	� 
 � 
 �1 2 2 3
' ( , ) ' ' ' ' '{ } {[ ] [ ] + [ ] � � � � �g g g g gt'' ' ' '' '''
 � 
	 	 }+

� � � � �g g g g gt u t Z t� 	� 
 � �1 2
'' ( , ) ' ' ' ''{ }[ ] (2.2)

� �g gt u t� �1
''' ( , ) '
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Figure 5. Diagrammatic representation for the generation of even-diameter hydro-

carbon trees.



where the auxiliary functions are

� � �	 � 	� �g g gt u t u t u1
* * *( , ) ( , ) ( , )

Z f f t f t /2
2 2 2[ ] {[ ] }� �( ) ( ) (2.3)

Z f f t f t f t f t /3
3 2 33 2 6[ ] {[ ] + }� �( ) ( ) ( ) ( )

Z f f t f t f t f t f t f t +4
4 2 2 3 2 26[ ] {[ ] [ ] + 8 [ ]� �( ) ( ) ( ) ( ) ( )+ 3 ( ) 6 244f t /( )} .

If p different sub-structures each with associated generating function

f(t) were combined together such that no two were to be symmetry equiva-

lent, then a factor [f(t)]p/p! would be involved in our f generating functions.

But if several of these p sub-structures are mutually equivalent, then this

equivalence symmetry would imply that the corresponding combination

structure would be constructed fewer than p! times in the product {f(t)}p,

and this symmetry-mediated manner of redundancy (which is generally dif-

ferent for different combinations) is taken into account by the Zp�f;t�. (Here a

term involving f(tp) is accounting for circumstances with p equivalent sub-

structures.) Indeed these Zp�f;t� are Polya’s6,7,8,11 »cycle-index« functionals

(for the special case of symmetric groups Sp), but their form and effect (most

easily for smaller p) can be understood in detail in a less general context, as

in Refs. 12 and 13.

Next the rooted trees are to be joined together to form the non-radicaloid

hydrocarbons, involving particular longest chain lengths. The chain lengths

are attended to in terms of the diameter of a carbon network of one of these

acyclic hydrocarbons, such diameter of an acyclic network being definable

as the length of the longest path between two sites of the network. Let

PD(t,u) be the generating function for acyclic hydrocarbons of diameter D –

i.e., the coefficient of tnu2m in PD(t) is the number of such diameter-D hydro-

carbons having n C-atoms and 2m H-atoms. Then the constructions of Fig-

ure 4 lead to the odd-diameter PD(t,u), while those of Figure 5 lead to the

even-diameter PD(t,u),

P2g–1(t,u) = Z2�fg
' � + Z2�fg

''� + Z2�fg
'''� (2.4)

P2g(t,u) = t{Z4�fg
' � + f	 g

' Z3�fg
' � + Z2�f	 g

' � Z2�fg
' �}

� � �	 	t Z Z tZg g g g g g g g{ [ ] [ ] } [f f f f f f f f'' ' ''' ' '' ' ' ''
2 2 2+ ]� t g gf f' ''' .

And finally the overall generating function is

P(t,u) = P t uD
D

( , )
�

�
0

. (2.5)
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That is, the coefficient of tnu2m in P(t,u) is the desired number #n,m of acyclic

structural isomers with n C-atoms and 2m H-atoms.

The recursions of equations (2.2), (2.3), (2.4), (2.5) may be used to build

up numerically these power series, and yield exact structural-isomer counts

#n,m for n and m not overly large. To so use the recursions one begins with

low-order initiating generating functions

f f f0 0 00 0' '' '''( , ) , ( , ) ( , )t u u t u and t u� � � . (2.6)

The numerical results we have so generated are given in Table I. This

table represents our »Formula Periodic Table for the Isomer Classes of Acyc-

lic Hydrocarbons«. The empty upper right portion of this table (where m >

n+1) is all filled with 0s, since here the maximum saturation achievable in a

connected classical structure is exceeded. The right-most (0 unsaturation)

diagonal is for the alkanes, and the next one just to the left (with degree of

unsaturation 1) is for the alkenes. The third diagonal (of unsaturation de-

gree 2) consists of a combination of alka-dienes and alkynes. From a casual

inspection of the table the isomer counts seem to increase geometrically in

proceeding down (constant unsaturation) diagonals, whereas the isomer

counts down (constant H-count) columns seem possibly to show (at least for

lower m) a somewhat slower rate of increase. The asymptotic behaviors for

these progressions are considered more quantitatively in the next three sec-

tions.

3. ISOMER-COUNTS AT CONSTANT UNSATURATION

The alkanes all lie in the first diagonal at the right, the alkenes in the

second diagonal from the right, and the third diagonal involves the alkadie-

nes and alkynes. Thence it is natural to consider behaviors along these di-

agonals, each of which may be labelled by the degree of unsaturation u �
n–m+1, which counts the number of -bonds in a CnH2m structure. Of course

the alkanes have long been studied (back to Cayley2 in 1874), and the as-

ymptotic behavior has been empirically observed18 to be exponentially in-

creasing. Indeed asymptotically for alkanes the counts have been19 fit to a

form

#n,n+1 � n–5/2kn{A+Bn–1+Cn–2} (3.1)

with
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k � 2.81546003329 (3.2)

A � 0.6570 B � – 0.068 C � 6.2 .

The form excepting the B- and C-terms has been established rigorously,5,17

and the method19 for determining k is such that all excepting perhaps the

last of the 10 digits given in (3.2) should be exact. The constants A, B, C

have been obtained by least-squares fitting against exact counts for values

of n up to around 50.

Now one can make a heuristic argument relating the count in one diago-

nal to that in an adjacent diagonal (so that from the knowledge of the al-

kane diagonal the asymptotic forms of all other diagonals follow). We imag-

ine comparing the count for CnH2m with that for CnH2(m+1). Evidently to

obtain a CnH2m structure from a CnH2(m+1) structure one should delete two

H-atoms and add one -bond someplace, there being n-1 �-bonds at which

one might conceive of adding this -bond. But whenever there is no H-atom

attached to the C-atoms at each end of a particular �-bond in a particular

CnH2(m+1) structure such an addition is not permissible. And further some-

times additions at two different (permissible) �-bonds may yield the same

CnH2m structure, as when the two �-bonds are equivalent (under the auto-

morphism group for the graph of the particular CnH2(m+1) structure under

consideration). Thence rather than n-1 new CnH2m structures from each

CnH2(m+1) structure we should to leading order expect something proportio-

nal only to n, with the proportionality factor a (strictly) between 0 and 1.

But yet another factor which influences the number of �-bonds at which a

-bond may be added is any occurrence of -bonds in the initial CnH2(m+1)

structure. That is, we expect the number of ways of adding a -bond to give

distinct CnH2(m+1) structures to be � (an-bu) with 0 < a < 1 and 0 < b < 1. Fi-

nally of these different structures obtained from one CnH2(m+1) structure

each may in general be obtained from other CnH2(m+1) structures – indeed

there are u others, corresponding to just which -bond is last added, to ob-

tain the target CnH2m structure. Thus we anticipate that

#n,m � (an-bu)u–1 #n,m+1 (3.3)

with less-dominant-order terms (say involving n–1, un–1, and u2n–1) also pos-

sibly occurring in the proportionality. For the alkene (u=1) case Polya8 notes

a rigorous deduction which gives agreement with our leading n-dependence,

regarding the identification of the power of n and the value of k being the

same as for the alkanes.
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An empirical test of the surmised general asymptotic relation of (3.3)

may be made. To this end we plot

u#n,m/ #n,m+1 vs. n (3.4)

for several different values of u in Figure 6. Evidently this is anticipated to

give for each u a straight line y = an – bu, and the plots tend to confirm this:

straight lines are approached with the slopes for each value of u seemingly

approaching the same value (a), and to somewhat less accuracy the differ-

ent lines seem to be approach equal displacements (b) from one another.

This second feature involving b is more fully tested by making plots for dif-

ferent u of

(u+1)#n,m–1/ #n,m–u#n,m/ #n,m+1 vs. 1/n (3.5)

as in Figure 7. Evidently the anticipation is that the n–1 � 0 limit should for

each u approach the same value (b), and the plots are seen to confirm this,

at least in the large-n limit. Notably »higher-order« corrections are apparent

before this limit is reached.
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Figure 6. Plot of (n+1–m)#n,m/ #n,m+1 versus n to test the surmised asymptotic form

for the isomer counts down diagonals.



Finally, being convinced of the form of the leading u-dependence, one

may make high-accuracy fits including even some less dominant than those

displayed in (3.3). We fit to a form

#n,n-u � {an–bu+c+(d+eu+fu2)n–1 }u–1 #n,n-u+1 (3.6)

via a standard least-squares minimization. Using the data for n and u in

the ranges 20 � n � 40 and 1 � u � 7, we find

a � 0.59283 b � 0.2823 c � 0.235 (3.7)

d � –10.1 e � 6.42 f � – 0.99 .

As a (partial) test of the resulting overall formula (from (3.1), (3.2), (3.6),

and (3.7)) one might compare their predictions to our exact enumeration re-

sults at some n where these exact results are available. The per-cent errors

%errn,u for actual counts #n,n+1–u as compared to the result following from

our asymptotic formulas turn out at n = 40 to be

%err40,0 � 0.005 %err40,1 � 0.021 %err40,2 � 0.029

%err40,3 � 0.021 %err40,4 � 0.008 %err40,5 � 0.029 (3.8)

%err40,6 � 0.021 %err40,7 � 0.037
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Figure 7. Plot of �n+1–m � �(n+2–m)#n,m–1/ #n,m– (n+1–m)#n,m/ #n,m+1� versus 1/n.



Evidently this seems to give a fairly accurate relation for the asymptotics

down diagonals in our periodic table, as desired.

4. ISOMER-COUNT FOR CnH4

Exact analytic counts are possible for the columns furthest to the left in

our acyclic hydrocarbon periodic table. The counts for the first column with

m = 1 are trivial, involving poly-yne chains of even length with one H-atom

on each end. The second column with m = 2 is less trivial, and is the focus of

this section, the ideas involved in treating this being conceivably analyti-

cally extendable to a few further columns, though in the next section these

ideas are utilized only in a heuristic manner to deal only approximately

with further columns.

Our initial key step in treating the acyclic CnH4 structures entails not-

ing that there can be no more than 4 terminal (i.e., primary) C-atoms, since

at each such end there must occur (at least) one H-atom. That is, a sort of

generic underlying CnH4 structure is as indicated in Figure 8, where the

curves there represent not simply �-bonds but rather strings of �-bonds. In-

deed this figure encompasses all possible CnH4 structures if we understand

that H-atoms are to occur solely at the end of each string and we allow

strings of 0-length. Then the four strings with a terminal C-atom must all

be of even length (being poly-ynic, consisting of alternating triple and single

bonds, still allowing 0 such alternating pairs). The central string (with no

terminal C-atom) is either of length 0 or else-wise of any positive length

with every bond along this string being double. That is, decoration of these

strings with these allowed lengths leads to a unique label for each possible
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Figure 8. Generic string structure for CnH4 acyclic hydrocarbons. Here the labels a,

b, c, d, e may be viewed to identify the numbers of carbon-carbon �-bonds along each

of the »strings« so labelled. The poly-ynic a,b,c,d strings are to be of even length,

whereas the cumulenic e string can be of either even or odd length.



CnH4 structure, so long as equivalent labellings (involving permutation of

equivalent string positions) are taken into account. Thus we can represent

each possible CnH4 structure by a code (a,b : e : c,d) corresponding to this

string structure. Here since the string structures are to be equivalent under

a (order-8) permutation group P, which in correspondence with the label-

lings of Figure 8 we might indicate thusly

P = {I, (a,b)} {I, (c,d)} {I, (a,c)(b,d)} (4.1)

(with I the identity). And in the special case when e = 0, the four terminal

strings are all mutually equivalent (for any permutation of the four), so that

the invariance group is the full symmetric group

S4 = P�(a,c) P�(a,d) P . (4.2)

Thence for the code (a,b : e : c,d) one may choose

a � b and a � c � d

if a = c, then b � d (4.3)

if e = 0, then b � c .

Examples of this code and the associated acyclic structures are indicated

in Figure 9.

With these geometro-topological ideas for construction of CnH4 structu-

res in mind one may build up an explicit generating function for the enu-

meration of the structural isomers (or also the geometric isomers if so

wished). The overall generating function F(t) is to be built up from auxiliary

generating functions f (t) for the adjoined pairs of terminal strings – this

overall construction being indicated in Figure 10. These generating func-

tions are viewed to be power series in a variable t, with the coefficient of tL

counting the number of structures with a total length L of �-bonds between

C-atoms. The generating function f (t) in turn is given in terms of that for a

single terminal string, this evidently being given as

1+t2+t4+t6+t8+... = (1–t2)–1 . (4.4)

Then for the radicaloid terminal-string-pair

f (t) = {(1–t2)–2+(1–t4)–1}/2 . (4.5)
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The auxiliary generating function for the central (non-terminal) string if

of non-zero length is

t+t2+t3+t4+... = t(1–t)–1 . (4.6)

Then Z2�f (t);t�t(1–t)–1 is sufficient to count all the CnH4 species where

the central internal string is of non-zero length. For the case that the cen-

tral internal string is of length 0, then all the terminal strings are more
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Figure 9. Acyclic CnH4 hydrocarbon structures and corresponding codes for species

of up to n = 7 carbons. The asterisked sites identify those at the ends of the internal

cumulenic string. Note that when the cumulenic string is of length 0 the two aste-

risks coincide, so that only one is seen.



fully equivalent, such that Z4�(1–t)–1;t� generates this subclass of species.

Thus for all CnH4 species the total generating function is

F(t) = Z4�(1–t)–1;t� + t(1–t)–1 {�f (t)�2 + f (t2)}/2 (4.7)

as desired. It is again emphasized that in this section the power of t counts

the total length of �-bonds. If instead one wishes a generating function with

the power of t counting C-atoms, this is simply given as tF(t).

Now granted this comparatively simple generating function one may

make the indicated expansions and collect together the different terms to

obtain the isomer-counts as the coefficients of the different powers of t. The

coefficient of tl result is the number #n,4 of CnH4 isomers with a total C–C

�-bond length of l, so that n = l+1, and the substitutions when made (rather

tediously albeit straightforwardly) lead to

� �# ( ) ( ) / ( ),4 4
3 3 2

1

2

1

36

1

36
1

1

6
2

1

2

1

6
1

1
k g k k k k k� � � � � � � � �� � � �

3
2 3

1

6
k k/ .� d even

#4k–1,4 =
1

2
g(k) (4.8)

� �# ( ) ( ) ( ) ( ) /– ,4 2 4
3 2

1

2

1

9
1

1

6
1

1

3
2 1 3

1
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where � �x denotes the greatest integer less than x, where dk.even is 1 or 0 as k

is even or odd, and where
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 �( ) ( ) ... ( )1 2 (4.9)
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Figure 10. Construction scheme for joining two terminal string-pairs and one inter-

nal string (in boldface) together to form acyclic CnH4 structures.



Notably this resultant formula of (4.8) agrees with our earlier independ-

ently generated results in the m = 2 column of our periodic table. And next

we turn to the asymptotics of this and especially larger-m columns of our

periodic table.

5. ASYMPTOTICS FOR ISOMER COUNTS DOWN COLUMNS

A heuristic argument can be given for the asymptotic forms for isomer

counts in proceeding down columns of our acyclic-hydrocarbon periodic ta-

ble. From the derivation in the preceding section the isomer count in the

CnH4 column evidently is (to leading order) ~n4. The reason for this is basi-

cally that this is the scaling behavior for partitioning n–1 into 5 non-nega-

tive parts (a, b, c, d, and e, with a, b, c, and d even) – that is, there are ~n4

choices for a, b, c, d with the last string length e being specified as e = n – 1

– (a+b+c+d). And evidently one can imagine much this same argument ex-

tended to the case for the CnH6 species, there now being a new generic

string structure, as in Figure 11. Here the two strings shown in bold are to

consist of (cumulenic) double bonds, so that these strings may be of either

even or odd length; whereas the remaining (non-bold) strings are comprised

of alternating single- and triple-bonds, so that these strings are of even

length (including the possibility of 0 length). Since there are a net of 9

strings, the isomer counts should asymptotically scale as �n8. For CnH8

there are however 2 generic string structures, also shown in Figure 11,

again with bold strings being all double bonds, and the net number of

strings (for either generic string structure) being 13, so that the CnH8 iso-

mer counts should scale as ~n12. In proceeding to CnH2m columns with a

higher value of m there may be several generic string structures (incidently

being in correspondence with acyclic polyene structures). But all such string

structures for a given m exhibit the same number 4m–3 of strings. [This in-

variance of string number at fixed m is seen because: first, each string

structure has 2m terminal positions, whereat the H-atoms occur; second,

any such string structure, having the form of a tree with only degree-1 and

degree-3 sites, must have 2m–2 nodes where three strings come together;

and third, again because of the tree-like nature of the string structure, the

number of strings being one more than twice the number of nodes is given

as 2 
 (2m–2) + 1 = 4m – 3�. Thus the number of CnH2m isomers should scale

as ~n4(m–1) in proceeding down the mth column of our periodic table. Notably

the form of this dependence is qualitatively different than the exponential

dependence along the diagonals.
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The heuristic arguments of the preceding paragraph may be further re-

fined to suggest the m-dependence of the proportionality constants to the

scaling factors n4(m–1). If we define #(N,p) to be the number of ways into

which N can be broken up into p non-negative (distinguishable) contribu-

tions, then evidently there is a recursion

#(N,p) = #( , ) ,N q p p
q

N

� � �
�

� 1 2
0

(5.1)

with #(N,1) = 1. The solution to this is

#(N,p) = ( ) / / ( ) !( )N i i N pp

i

p

� � �� �

�

�

� 1

1

1

1 (5.2)

where we have introduced the ascending power notation, and the veracity of

the solution may be checked by substitution in (5.1). But generally there is

some degree of equivalence between different strings (as for m = 2 between

the a and b strings and between the c and d strings of section 4), so that the

number of inequivalent ways to break up N is reduced, on the average by

division by an average number � of equivalent ways to break up N. For our
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Figure 11. The generic string structure for acyclic CnH6 species, and the two generic

string structures of acyclic CnH8 species. The terminal (non- boldface) poly-ynic

strings are of even length, the (internal) cumulenic boldface strings are of arbitrary

length, and the poly-ynic internal non-boldface strings are of odd length.



string-structure problem the 2m terminal strings frequently come in equi-

valent pairs, so that (for large n) there arise break-up equivalence classes

with many (~2 to a power often proportional to m) members – and there

may be additional equivalences beyond that of such pairs. That is, � should

be some average order of the automorphism group of the string structures

with 2m terminal strings (2m–2 tertiary nodes, and 2m–3 internal strings),

and we might reasonably guess that for large m it is

� ~m m�
m . (5.3)

Further in dealing with our string problem with a breaking of n–1 into

4m–3 parts, most of these parts are required to be of even length, so that it

seems a little more appropriate to think of the number of unconstrained

ways to partition the integer part � �n / 2 of n/2 into 4m–3 parts. But not

quite all of the strings need be even (as when they are composed of all dou-

ble bonds), so that in place of n/2 something like n/c might be better with c

just a bit less than 2. In fact, m–1 of the total of 4m–3 strings are not so re-

stricted (and can be either odd or even), so that we might take an average

value

c � {(m–1) 
 1 + �(4m–3) – (m–1)� 
 2}/(4m–3) � 7/4 . (5.4)

That is, in accounting for the parity restrictions on the string structures,

our proposed asymptotic refinement to count CnH2m isomers is

#n,m ~ {(N/c)�(p–1)/�} {average # string structures} . (5.5)

Now this average number of conceivable generic string structures (al-

ready noted to be 1 for m = 2, as in Figure 6, and 1 and 2 for m = 3 and 4, as

in Figure 11) is just a Polya-count for ordinary (alkane) trees with only pri-

mary and tertiary sites. But if one imagines clipping off the terminal

strings, one notes that each generic string structure devolves to what is evi-

dently in correspondence with a unique conjugated polyene (with the ordi-

nary and bold-face strings respectively corresponding to single and double

C-C bonds in the conjugated polyene). Thus the generic string structures for

CnH2m are in one-to-one correspondence with the 2m–2-site conjugated poly-

ene structural isomers. Then noting that the count for these polyenes paral-

lels the form for alkane enumeration, we conclude that the number of string

structures should be proportional to a form

� m m��h2 2� . (5.6)

350 L. BYTAUTAS AND D. J. KLEIN



Thus collecting together different constants involved in similar functional

dependences (e.g., the growth constants µ and h are imagined collected to-

gether in a single growth constant � � ��4), we suggest an overall form

#n,m � C mg lm 
 (n/c)�4(m–1)/(4m–4)! (5.7)

as appropriate for going down columns of our acyclic-hydrocarbon table.

This surmised functional form of (5.7) may be tested. In particular at a

fixed value of m one may make a plot of

log
# ( / )

# ( / )
. /

,
( – )

,

n m
m

n m
m

n c

n c
vs n

�
�

�

�
�
�

�
�
�

1
4 1

4
1 (5.8)

which from (5.7) should approach a fixed intercept at 1/n = 0. In Figure 12

this plot is made for m values from 2 to 9, and indeed our expectation of a

fixed intercept is bourne out. A quantitative value for this intercept 	m is

obtained by making least-squares fits for the curves of this plot to a short

power series in 1/n. This is done using the data for n from 30 � 120 with

terms in the power series being retained up through a power p – it being

found that as one varies p from 3 to 9 intercepts 	m varying slowly with m
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Figure 12. A plot as explained in Eq. (5.8) for different m = 2�9.



result. Next the remaining m-dependences manifested in the various 	m

may be addressed, by making a plot

	m + log�4m(4m-1)(4m-2)(4m-3)� vs. 1/m (5.9)

which from (5.7) should approach a straight line with slope 
 and intercept

log (�). In Figure 13 this plot is made, whence it is seen that our expec-

tations are bourne out to a high degree of accuracy. A least squares fit yields


 � –2.423 and � � 3.935 (with only the last digits varying with a weighting of

the square errors by 1, m, or m2). We make a rational choice for the ex-

ponent of 
, then fit the factor �, to obtain


 = – 63/26 and � � 3.9351 . (5.10)

The considered m values seem somewhat distant from the m�� limit

(and for larger-m columns the large-n region of n>>4m is farther down the

columns), so that additional non-leading-order terms in the coefficient C of

(5.7) are desirable, say as an inverse power series in m. Thence with the ex-

trapolated intercepts of Figure 12 along with the accurate results of section

5 for m=2 we obtain estimates to

C
m

m n cn

n m

m m
�

�


�� � �lim
# ( ) !

( / )

,

( )

4 4

4 1g
l

(5.11)

which then are shown in Figure 14 plotted versus 1/m. Also shown there is

a curve which results from a least-squares fit
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Figure 13. A plot of 	m+log�4m(4m-1)(4m-2)(4m-3)� vs. 1/m.



C = 0.01327 + 0.01421 m–1 + 0.01961 m–2 (5.12)

of the data points. Overall it seems we have in hand correct leading asymp-

totics.

Now a final attempt at a numerical fit can be made, including yet higher

order terms. We use the values of (5.10) and (5.12) and amend the form of

(5.7) with some terms higher order in n, thusly

#
( / )

( ) !,

( )

n m

m mm n c

m
C a

m

n
b

n
c

mn
a

m
�

�
� � � �

� �g
l 4 1

1 1 1 2

2

4 4

1 1

n
b

m

n
c

n2 2 2 2 2

1
� �

�
�
�

�
�
�
. (5.13)

Fitting with the data for n = 30�120 for m = 2�10, we obtain

a1 = – 0.19684 b1 = 0.08029 c1 = 0.70598 (5.14)

a2 = 0.45082 b2 = 0.37568 c2 = – 0.62989 .

Then as a check the per cent errors %errn,m at n = 120 carbons may be

noted

%err120,2 � 10 %err120,3 � 37 %err120,4 � 6

%err120,5 � 9 %err120,6 � 16 %err120,7 � 18 (5.15)

%err120,8 � 18 %err120,9 � 16 %err120,10 � 12 .
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Figure 14. Estimated C � C(m) values of (5.11) plotted versus 1/m.



Evidently the errors are disappointingly large, despite our efforts. This

presumably is due to some difficulty with the form of the higher corrections

(involving the aj, bj, and cj) as assumed in (5.13) – the difficulty might be ra-

tionalized as being due to the data considered in going down columns not

meeting so well the presumed asymptotic criteria 1<<4m<<n as does the da-

ta considered in going along diagonals (where the presumed asymptotic cri-

terion is u<<n). Still our theoretical arguments for the leading form of (5.7)

seem well-founded, and the arguments are nicely supported from the tests

of the preceding paragraph and the associated Figures (12, 13, and 14).

That is, we still seem to have correctly identified at least the leading form of

the asymptotic behavior.

6. CONCLUSION AND PROSPECTS

A formula »periodic table« for the isomer classes of all acyclic hydrocar-

bons has been proposed, with rows and columns respectively specifying

numbers of C- and H-atoms. The numbers of structural isomers in each iso-

mer class has been calculated, with isomer counts for species CnH2m up to a

few dozen C- and H-atoms being given exactly. An analytic formula has

been obtained for all species CnH4, and presumably with some additional te-

dious work such formula could be extended to m = 6 and perhaps a little far-

ther. More generally asymptotic n� � isomer-counts are developed, first fo-

cusing on fixed degree u � n+1–m of unsaturation, and second focusing on a

fixed number of H-atoms. These first sequences of isomer counts at fixed u

are found to increase exponentially fast with n. Indeed the geometric

growth factor is found to be independent of the diagonal u, with the counts

for the diagonals differing in a systematic sub-exponential manner de-

scribed in section 3. In contrast the isomer counts for the second type of se-

quence with fixed number 2m of H-atoms are found to increase as a power

(4m–4) of n. Though the numbers of such near maximally unsaturated hy-

drocarbons then are typically substantially less than that of the alkanes

with the same number of C-atoms, it seems that usually smaller fractions of

these interesting unsaturated species have actually been synthesized (espe-

cially when the species are more highly branched).

It may be noted in passing that some of the qualitative aspects concern-

ing asymptotics should remain the same if instead of enumerating structu-

ral isomers one enumerates geometric isomers, where cis- and trans-isomer-

ization across double bonds is taken into account. In particular with these
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modifications being confined to double bonds, the asymptotic forms of equa-

tion (3.1), (3.3), and (5.7) should remain unchanged. Indeed all that should

change are the values of the parameters a and b in (3.3) and of 
, �, and C in

(5.7).

Beyond enumeration various properties of the different isomer classes

may be surmised to vary in a systematic manner with position in the peri-

odic table. Such systematic property variation is already generally qualita-

tively understood for our table’s alkane diagonal sequence, which is studied

in some quantitative detail in three other works.19 A similar study20 has been

made for property variations of fully conjugated acyclic polyenes. The iso-

mer counts reported here constitute a first step in such a more extensive

study of the whole of the current periodic table for acyclic hydrocarbons,

with the second step21 concerning distributions of graph invarinants within

an isomer class. A third step22 concerns similar distributions for »cluster-ex-

pansion« approximants for selected molecular properties.
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SA@ETAK

Periodi~ka tablica za izomerne klase acikli~kih ugljikovodika –
Prebrojavanje i asimptotske karakteristike

Laimutis Bytautas i Douglas J. Klein

Razmatrani su acikli~ki ugljikovodici CnH2m i njihove klasi~ne valentne struk-

ture. Prebrojavani su njihovi strukturni izomeri, a rezultati su prikazani u obliku

»periodi~ke tablice« u kojoj su redovi i stupci odre|eni brojem ugljikovih (n) i vodiko-

vih atoma (m). Prou~avano je asimptotsko pona{anje (n��) tih prebrojavanja, naj-

prije za stalan stupanj nezasi}enosti (u � n+1–m), a zatim za stalan broj vodikovih

atoma (m). Prvi skup izomernih klasa raste eksponencijalno brzo s brojem ugljikovih

atoma (n), a drugi skup raste podeksponencijalno s potencijom broja ugljikovih ato-

ma (n).
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