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Diethylaluminium azide has been used as a highly regio- and ste-

reo-selective reagent for the ring opening of valine-derived, steri-

cally hindered epoxyalcohols. This reagent has enabled extending a

previously described synthesis of diaminodiol dipeptide isosteres

(P1-��CH(OH)-CH(OH)�-P1') also to isosteres with branched resi-

dues in position P1'. The new methodology is compatible with Boc

and Cbz protection of the starting aminoacid and has been applied

to the synthesis of a C2-symmetric diaminodiol Val-Val dipeptide

isostere 11, starting from the methyl ester of L-valine, in 25% over-

all yield over seven (for Boc protection) or six (for Cbz protection)

passages. A C2-symmetric di-MEM protected diaminodiol 17 and a

mono-Boc protected, desymmetrized derivative 10 have also been

obtained by the same approach. Compounds 10, 11 and 17 can be

used as core units of C2-symmetric and non-symmetric peptido-

mimetic inhibitors of aspartic proteases and as intermediates for

the synthesis of cyclic urea inhibitors of HIV-protease.

Key words: diethylaluminium azide, epoxyalcohol, diaminodiol di-

peptide isostere, ring opening.
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INTRODUCTION

In the last two decades, the important biological role of aspartic proteas-

es has come into clear focus. In particular, it is now established that enzy-

mes of this class are involved in several pathologies such as, for example,

AIDS, cancer, Alzheimer's disease, hypertension, malaria, Candida infec-

tions.1 Aspartic proteases have thus become important therapeutic targets

and inhibitors of these enzymes show great promise in the treatment of the-

se diseases.1,2a Among these, inhibitors of the human immunodeficiency vi-

rus protease (HIV-1 PR) have proved to be efficient in anti-AIDS therapies

and have rapidly become available as drugs.3

Peptidomimetic inhibitors of the general structure Pn
�P2-�(P1-P1')-

P2'
�Pn', in which a non-cleavable isostere �(P1-P1') replaces the scissile cen-

tral dipeptide P1-P1' in a short peptide sequence that is recognized by the

enzyme, are efficient inhibitors of most aspartic proteases.1,2a,4 The struc-

ture of the dipeptide isostere �(P1-P1') is designed to provide optimal inter-

actions with the protease active site, while the flanking residues Pn
…P2 and

P2'
…Pn' provide additional interactions with the corresponding enzyme sub-

sites and can be adjusted so as to improve the bioavailability and other

pharmacological properties of the inhibitor. Hydroxy-containing isosteres,

such as the hydroxyethylamine group �-CH(OH)CH2N-�, the dihydroxy-

ethylene group �-CH(OH)CH(OH)-� and the monohydroxyethylene group

�-CH(OH)CH2-� are among the most efficient replacements for the scissile

amide bond.2a,5 These groups simulate the tetrahedral transition state of

amide bond hydrolysis and the incorporation of such analogs into a substra-

te sequence has resulted in very efficient inhibitors, with an up to 104-fold

increment of affinity for the enzyme, with respect to the substrate.5,6

The spread of AIDS in the late 80's and early 90's has led to a rapid de-

velopment of new approaches to designing specific inhibitors for the HIV-1

PR. One of the most elegant and original approaches exploits the C2 symme-

try of the native enzyme.2a,5 Diaminodiols 1 have thus been developed as di-

peptide isosteres and have been inserted between identical side chains. The

resulting C2-symmetric inhibitors display excellent affinity for HIV-PR,

with Ki in the nM range, and lower.7 However, until recently, the develop-

ment of this class of inhibitors has been somewhat prevented by the lack of

stereoselective synthetic methodologies which would give access to the dif-

ferent stereoisomers of 1. All the synthetic work published until 1996 re-

ferred to C2 symmetric (S,R,R,S) diaminodiols 1, which were the only

stereoisomers readily available at the time. Even if several HIV-PR inhibi-

tors containing (S,S,R,S) and (S,S,S,S) diaminodiols as central cores had

been synthesized and their biological activity had been evaluated,8 these

diastereoisomers were obtained either as by-products from homo-coupling
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reactions or by inversion of the configuration of the main (S,R,R,S) pro-

duct.9 Difficult separations or further synthetic steps were thus required.

In 1997, we described a direct and stereoselective approach to homochi-

ral (S,S,S,S) diaminodiols of the general structure of 2.10 Our synthesis of

diaminodiols 2 was based on the epoxyalcohol 3. Ring opening of this inter-

mediate with ammonia or azide takes place regioselectively at C4, giving

diaminodiols 2 either directly or by reduction of the azide. In our synthesis,

the two amino terminals can be orthogonally protected and the synthesis is

not restricted to identical R1 and R1' residues, as in 1. These properties con-

siderably expanded the scope of synthetic approaches to HIV-PR inhibitors

in terms of stereocontrol and versatility. A number of peptidomimetic inhibi-

tors based on diaminodiols 2a and 2b were thus synthesized and their bio-

logical activity was studied, in several cases showing IC50 values in the low

nM range.11

The approach however has a limitation: the ring opening of the epoxide

is efficient and regioselective only when the R1' residue is not bulky. Thus

dipeptide isosteres 2 with branched residues in R1', corresponding for exam-

ple to Val or Ile in P1', were not available by this method. This drawback has

now been overcome by the use of aluminium reagents for the ring opening

step and the new methodology is illustrated here by the synthesis of a previ-

ously non accessible C2-symmetric Val-Val dipeptide isostere.

RESULTS AND DISCUSSION

The synthesis of the Val-Val diaminodiols 10 and 11 (Scheme 2) starts

from valine, which provides the first asymmetric centre from which chira-

lity is then transferred by induction to the other three asymmetric carbons.

Treatment of N-Boc valine methyl ester 4a with an excess of lithiated me-

thyldimethylphosphonate12 gave the known phosphonoketone 5a in 90%

yield.10 Horner-Emmons olefination of crude 5a with isobutyraldehyde was

carried out with potassium carbonate in dry ethanol13 and gave the trans
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enone 6a. The trans geometry of the enone was confirmed by the 16 Hz cou-

pling constant between the vinylic protons in its 1H NMR spectrum. The

enone was then stereoselectively reduced with sodium borohydride in meth-

anol to give the allylic alcohol 7a in 95% d.e.

The (5R,6S) configuration of this alcohol was demonstrated by conver-

sion into the corresponding oxazolidinone 12 (Scheme 3). NOE experiments

showed a 11% enhancement between H4 and H5, indicating a syn configura-

tion for 12. In order to confirm the assignment, the corresponding anti dia-

stereoisomer 14 was also obtained, as shown in Scheme 2. The N-Boc allylic

aminoalcohol 7a was treated with methanesulfonyl chloride and triethyla-

mine, at 0 °C in dichloromethane, to give mesylate 13, which immediately

reacted via an intramolecular SN2 displacement with the Boc carbonyl oxy-

gen acting as the nucleophile, leading to the formation of oxazolidinone 14
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with an inversion of configuration.14 In this compound only a 3% NOE was

measured between H4 and H5, in agreement with the proposed stereo-

chemistry for compounds 12 and 14.

The stereochemical course of the reduction is in agreement with both

the Cram and Felkin-Anh models (Scheme 4), since there is strong evidence

that in �-amino ketones derived from aminoacids the side chain and the

Boc-protected amino group are the large and medium residues, respec-

tively.10,15 A cyclic-Cram model, resulting from H-bonding or chelation be-

tween the carbonyl and the protected amino group (c, Scheme 4), would also

lead to the same prediction, in agreement with the observation that the re-

duction of this and other �-amino ketones is generally insensitive to the na-

ture of the solvent and reducing agent.10
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It is well known that peracid epoxidation of acyclic allylic alcohols leads

preferentially to threo epoxyalcohols.16 Accordingly, when we treated the al-

lylic alcohol 7a with m-chloroperoxybenzoic acid (Scheme 2), we obtained

the syn epoxyalcohol 8a as the only product, while no traces of the corre-

sponding product of anti-epoxidation were detected. The very high level of

stereocontrol of this reaction is remarkable, as the stereoselectivity is often

poor in the epoxidation of trans allylic alcohols,17 and confirms previous re-

sults on structurally similar substrates.10

Having obtained this intermediate, it was now necessary to introduce

the second amino group via ring opening of the epoxide 8a with a suitable

nucleophile. The first attempt was carried out with sodium azide in the pre-

sence of ammonium chloride as a catalyst.18 Attack of the nucleophile, how-

ever, was hindered by the large isopropyl group; as a result, the reaction

was sluggish and yielded a 2:1 mixture of regioisomers 9a and 15 (Scheme

5).

Trimethylsilyl azide, in the presence of catalytic titanium tetraisopropo-

xide or aluminium triisopropoxide,19 also failed to afford the required prod-

uct 9a, leading instead to the loss of the Boc protecting group, with the for-

mation of an oxazolidinone. It is likely that the basic alcoxide ligands

promote the cyclization of the hydroxy group on the carbonyl of the Boc pro-

tecting group, with the loss of tert-butoxide, in a reaction similar to the cy-

clization of the allylic alcohol 7a (Scheme 3). An attempt with trimethylsilyl

azide and diethylaluminium chloride20 was also unsuccessful, since this re-

agent gave a mixture of regioisomeric azido-diols 9a, 15 and the correspond-

ing chlorodiols.

Our choice fell eventually on diethylaluminium azide. This reagent was

prepared and studied already in the 60’s,21 but only recently its use in the

regioselective ring opening of 2,3-epoxyalcohols has been reported.22 In

agreement with the expectations, treatment of the epoxyalcohol 8a (Scheme

2) with diethylaluminium azide, prepared in situ from diethylaluminium

chloride and sodium azide in toluene,20 gave azidodiol 9a with complete re-

gioselectivity and inversion of configuration. Finally, azide 9a was catalyti-
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cally hydrogenated to give the monoprotected diaminodiol 10, in 24% overall

yield from 4a.

The stereochemistry of 10 was confirmed by deprotection to the free dia-

mine 11. 1H and 13C NMR spectra clearly showed that 11 is a symmetric

structure. Since the configuration of C3, which corresponds to the �-carbon

of the starting L-aminoester (Scheme 2), must necessarily be S, four configu-

rations are possible for a symmetric species, namely (S,S,R,R), (S,R,S,R),

(S,R,R,S) and (S,S,S,S). The first and second possibilities can be excluded

because they correspond to meso structures, while 11 is chiral (���D
25 -3.0°).

The third configuration (S,R,R,S) is not consistent with the preferred anti

approach of the nucleophile to the trans epoxide 8a in the ring opening step

(Scheme 2). Therefore, the configuration of 11 must necessarily be (3S,4S,

5S,6S).

An identical synthetic sequence was applied to the Cbz-protected amino

ester 4b (Scheme 2) through the same series of steps as described above,

obtaining azide 9b with comparable yields and stereocontrol. In this case,

catalytic hydrogenation of the azide leads directly to the free diaminodiol

11, avoiding one step with respect to the Boc-protected compound, if differ-

entiation of the two amino terminals is not required. In addition (Scheme 6),

the hydroxy groups of azide 9b can be protected as di-MEM derivative (16),

leading, after hydrogenation, to the symmetric, protected diaminodiol 17.

The C2-symmetric structure of this compound is again confirmed by the

NMR spectra and optical rotation (���D
25 –44°), which excludes a meso struc-

ture. OH-Protected diaminodiols such as 17 are useful intermediates in the

synthesis of symmetric cyclic ureas 18, which, in turn, have been shown to

possess excellent activity as inhibitors of HIV-1 PR.23

In summary, the introduction of Et2AlN3 as the reagent of choice for the

ring opening of epoxyalcohols (Scheme 2) allows considerable expanding of

the scope of our previously described stereoselective approach to all-S dia-

minodiol dipeptide isosteres. The use of the in situ generated reagent is par-
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ticularly convenient as the procedure is fast and does not lead, in this case,

to the formation of by-products. The utility and versatility of this route is

demonstrated by the synthesis of three diaminodiol isosteres of the Val-Val

dipeptide: the unprotected, C2-symmetric diaminodiol 11, the non-symmet-

ric (desymmetrized) mono-Boc-protected compound 10 and the di-MEM-pro-

tected C2-symmetric compound 17. Compounds 10, 11 and 17 can be sub-

jected to further couplings and modifications in order to produce either

symmetric or non–symmetric peptidomimetic aspartic protease inhibitors.

EXPERIMENTAL

Moisture sensitive reactions were carried out in oven-dried vessels under a posi-

tive argon pressure. THF was pre-dried over KOH, fractionated and redistilled from

sodium benzophenone before use. Dichloromethane was dried over CaCl2 and frac-

tionated.

Flash column chromatography was performed on silica gel 60 (230–400 mesh);

silica gel 60 F254 coated plastic sheets were used for TLC and developed with I2 or

with aqueous KMnO4/H2SO4.

Melting points were determined in an open capillary apparatus and are uncor-

rected.
1H NMR spectra (400 MHz) and 13C NMR spectra (100.4 MHz) were recorded for

CDCl3 solutions containing Me4Si as an internal standard. Mass spectra were obtained

by electron impact (MS) and/or electrospray ionization (ES-MS). Optical rotations

were determined with a Perkin-Elmer 241 polarimeter in a 1 dm cell; c in g/100 mL.

Elemental analyses were obtained at the in-house facility of the Department of

Chemical Sciences.

Phosphonate 5a was obtained as described in Ref. 10.

Dimethyl �(3S)-�N-(benzyloxycarbonyl)amino�-4-

methyl-2-oxopentyl�phosphonate (5b)

70 mL of a 2.5 M BuLi solution in hexane (175 mmol) was added portionwise, at

–78 °C, to a stirred solution of 21.7 g (175 mmol) of dimethylmethylphosphonate in

dry THF under argon. After 10 min, a solution of 8.49 g of 4b (31.8 mmol) in THF

was added dropwise. The mixture was stirred at –78 °C for 2 h and at –30 °C for 1 h

and then neutralized with a 20% aqueous citric acid solution. The aqueous phase

was extracted twice with ethyl acetate and the combined organic phases were

washed with saturated NaHCO3 solution and brine and dried over sodium sulfate.

The solvent was rotary evaporated to furnish crude 5b as a colorless oil (10.2 g, 90%)

which was used without further purification. ���D
25 –16° (c 0.2, MeOH); IR (film)

�max/cm–1: 3270 (NH), 1700 (C=O), 1210 (P=O); 1H NMR �/ppm: 0.80 (d, 3H, CH3; J =

6.8 Hz), 1.01 (d, 3H, CH3; J = 6.8 Hz), 2.32 (m, 1H, CH), 3.09 (dd, 1H, CH2P; J =

14.4, 22.0 Hz), 3.29 (dd, 1H, CH2P; J = 14.4, 22.7 Hz), 3.74 (d, 3H, OCH3; J = 8.4 Hz),

3.77 (d, 3H, OCH3; J = 8.4 Hz), 4.42 (dd, 1H, CHNH; J = 4.2, 9.2 Hz), 5.12 (s, 2H,

CH2Ph), 5.78 (d, NH; J = 9.2 Hz), 7.33 (m, 5H, Ph); 13C NMR �/ppm: 16.5 (CH3), 19.7

770 F. BENEDETTI ET AL.



(CH3), 29.1 (CH), 38.6 (d, CH2P; J = 131.4 Hz), 53.0 (CHNH), 65.4 (OCH3), 66.9

(CH2Ph), 127.9 (Ar), 128.0 (Ar), 128.4 (Ar), 136.2 (C1 Ar), 156.4 (C=O), 200.7 (d,

C=O; J = 6.4 Hz); ES-MS m/z: 358 �MH�+.

(6S)-2,7-Dimethyl-6-�N-(tert-butoxycarbonyl)amino�-3-octen-5-one (6a)

Oven–dried K2CO3 (3.66 g, 26.5 mmol) was added in small portions, over 15 min,

to a stirred solution of phosphonoketone 5a (8.57 g, 26.5 mmol) and isobutyralde-

hyde (2.10 g, 29 mmol) in absolute ethanol (50 mL), at 25 °C. After 3 h, the reaction

mixture was filtered and the solution was neutralized with glacial acetic acid. The

solvent was rotary evaporated and the residue was partitioned betweeen ethyl ace-

tate and saturated aqueous NaHCO3. The aqueous phase was extracted with ethyl

acetate, and the combined organic phases were washed with brine and dried over so-

dium sulfate. The solvent was rotary evaporated, and the crude, oily product was pu-

rified by flash chromatography with diethyl ether/petroleum ether 1:1 as eluent

(5.71 g, 80%). ���D
25 +3.6° (c 0.4, MeOH); IR (neat) �max/cm–1: 3427, 3335 (NH), 1716,

1693 (C=O), 1626 (C=C); 1H NMR �/ppm: 0.71 (d, 3H, CH3, J = 7.0 Hz), 0.93 (d, 3H,

CH3, J = 6.6 Hz), 1.01 (d, 6H, CH3, J = 6.6 Hz), 1.37 (s, 9H, t-Bu), 2.04 (m, 1H, CH),

2.42 (m, 1H, CH), 4.46 (dd, 1H, CHNH, J = 4.0, 8.8 Hz), 5.22 (d, NH, J = 8.8 Hz),

6.08 (d, 1H, CH=CH-CO, J = 15.7 Hz), 6.88 (dd, 1H, C=CH-CH(CH3)2, J = 6.6, 15.7

Hz); 13C NMR �/ppm: 16.6 (CH3), 19.8 (CH3), 21.1 (2 � CH3), 28.2 (t-Bu), 30.9 (CH),

31.2 (CH), 61.9 (CHNH), 79.4 (t-Bu), 124.7 (CH=CHCO), 155.3 (CH=CH-CH(CH3)2),

155.9 (Boc), 198.7 (C=O); ES-MS m/z: 270 �MH�+, 214 �MH-C4H8�+, 170 �MH-Boc�+.

(6S)-2,7-Dimethyl-6-�N-(benzyloxycarbonyl)amino�-3-octen-5-one (6b)

Phosphonate 5b (5 g, 14.0 mmol) and isobutyraldehyde (1.5 g, 21 mmol), using

the same procedure as described for 6a, gave 6b as a colorless oil (3.48 g, 82%). ���D
25

+13.5° (c 0.5, MeOH); IR (film) �max/cm–1: 3340 (NH), 1690 (C=O), 1610 (C=C); 1H

NMR �/ppm: 0.78 (d, 3H, CH3; J = 7.0 Hz), 1.02 (d, 3H, CH3; J = 6.8 Hz), 1.08 (d, 6H,

2 � CH3; J = 6.8 Hz), 2.14 (m, 1H, CH), 2.48 (m, 1H, CH), 4.60 (dd, 1H, CHNH; J =

4.0, 8.6 Hz), 5.10 (s, 2H, CH2Ph), 5.58 (d, NH; J = 8.6 Hz), 6.15 (dd, 1H, =CHCO; J =

1.0, 15.8 Hz), 6.96 (dd, 1H, =CH; J = 6.7, 15.8 Hz), 7.33 (m, 5H, Ph); 13C NMR �/ppm:

16.6 (CH3), 19.8 (CH3), 21.1 (2 � CH3), 30.9 (CH), 31.2 (CH), 62.4 (CHNH), 66.8

(CH2Ph), 124.6 (=CHCO), 127.9 (Ar), 128.0 (Ar), 128.4 (Ar), 136.3 (C1 Ar), 155.6

(=CH), 156.4 (C=O), 198.1 (C=O); ES-MS m/z: 304 �MH�+.

(5R,6S)-2,7-Dimethyl-5-hydroxy-6-�N-(tert-butoxycarbonyl)amino�-3-octene (7a)

NaBH4 (563 mg, 14.8 mmol) was added in small portions over 10 min, at 0 °C, to

a stirred solution of enone 6a (4.00 g, 14.8 mmol) in methanol (50 mL). After 1 h at 0

°C, the solution was neutralized with glacial acetic acid, the solvent was rotary evap-

orated and the residue was partitioned betweeen ethyl acetate and saturated aque-

ous NaHCO3. The aqueous phase was extracted with ethyl acetate, and the com-

bined organic phases were washed with brine and dried over sodium sulfate. The

solvent was rotary evaporated to give the crude product, which was recrystallized

from isopropyl ether (2.69 g, 67%); m.p. 105–106 °C; ���D
25 –31.5° (c 0.5, MeOH); IR

(nujol) �max/cm–1: 3365 (OH, NH), 1684 (C=O, C=C); 1H NMR �/ppm: 0.89 (d, 3H,

CH3, J = 6.9 Hz), 0.92 (d, 3H, CH3, J = 6.8 Hz), 0.94 (d, 6H, CH3, J = 6.8 Hz), 1.37 (s,

9H, t-Bu), 1.71 (m, 1H, CH), 2.24 (m, 1H, CH), 2.61 (bs, OH), 3.46 (m, 1H, CHNH),
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4.07 (m, 1H, CHOH), 4.38 (d, NH, J = 9.5 Hz), �5.34 (ddd, J = 15.4, 7.0, 1.1 Hz), 5.64

(dd, J = 15.4, 5.5 Hz), 2H, CH=CH�; 13C NMR �/ppm: 18.2 (CH3), 20.1 (CH3), 22.2

(2 � CH3), 28.3 (t-Bu), 28.9 (CH), 30.8 (CH), 60.4 (CHNH), 73.6 (CHOH), 79.4 (t-Bu),

125.4 (CH=CHCHOH), 141.1 �CH=CH-CH(CH3)2�, 157.0 (C=O); ES-MS m/z: 272

�MH�+, 216 �MH-C4H8�+, 172 �MH-Boc�+.

Anal. Calcd. for C15H29NO3: C 66.4, H 10.8, N 5.18%; found: C 66.9, H 11.1, N

5.27%.

(5R,6S)-2,7-Dimethyl-5-hydroxy-6-�N-(benzyloxycarbonyl)amino�-3-octene (7b)

Reduction of 6b (2.5 g, 8.24 mmol), as above, gave alcohol 7b (2.09 g, 83%); m.p.

53–55 °C, from diisopropyl ether; ���D
25 –26° (c 0.3, MeOH); IR (CCl4) �max/cm–1: 3450

(NH, OH), 1695 (C=O); 1H NMR �/ppm: 0.90 (d, 3H, CH3; J = 6.8 Hz), 0.96 (m, 9H, 3

� CH3), 1.83 (m, 1H, CH), 2.27 (m, 1H, CH), 2.57 (bs, OH), 3.59 (m, 1H, CHNH), 4.14

(dd, 1H, CHOH; J = 6.6 Hz), 4.75 (d, NH; J = 10.1 Hz), 5.08 (s, 2H, CH2Ph), 5.39 (dd,

1H, =CH; J = 7.0, 15.4 Hz), 5.68 (dd, 1H, =CH; J = 6.6, 15.4 Hz), 7.33 (m, 5H, Ph);
13C NMR �/ppm: 17.9 (CH3), 20.1 (CH3), 22.2 (2 � CH3), 28.6 (CH), 30.7 (CH), 60.7

(CHNH), 66.8 (CH2Ph), 73.4 (CHOH), 125.3 (=CH), 127.8 (Ar), 127.98 (Ar), 128.02

(Ar), 128.3 (Ar), 128.4 (Ar), 136.3 (C1 Ar), 141.3 (=CH), 157.2 (C=O); MS m/z: 305

(0), 244 (1), 206 (8), 162 (16), 108 (31), 99 (53), 91 (100).

Anal. Calcd. for C17H27NO3: C 70.8, H 8.91, N 4.60%; found: C 70.8, H 9.07, N

4.62%.

(3R,4R,5S,6S)-2,7-Dimethyl-3,4-epoxy-5-hydroxy-6-

�N-(tert-butoxycarbonyl)amino�octane (8a)

60% m-Chloroperoxybenzoic acid (3.17 g, 11.1 mmol) was added to a stirred solu-

tion of alkene 7a (2.5 g, 9.21 mmol) in dichloromethane. After 24 h at room tempera-

ture, the solution was washed with 10% aqueous sodium metabisulfite, saturated

aqueous NaHCO3 and brine and dried over sodium sulfate. The solvent was rotary

evaporated and the crude product was purified by flash chromatography eluting

with ethyl acetate/dichloromethane mixtures (1.72 g, 65%). Analytical samples were

obtained by recrystallization from isopropyl ether/hexane; m.p. 80–81 °C; ���D
25 +11.5°

(c 0.7, MeOH); IR (nujol) �max/cm–1: 3371 (NH, OH), 1686 (C=O); 1H NMR �/ppm: 0.84

(d, 3H, CH3, J = 7.0 Hz), 0.89–0.93 (m, 9H, 3 � CH3), 1.37 (s, 9H, t-Bu), 1.49 (m, 1H,

CH), 2.02 (m, 1H, CH), 2.49 (bs, OH), �2.70 (m, 1H), 2.85 (m, 1H), epoxide�, 3.43 (m,

1H, CHOH), 3.61 (m, 1H, CHNH), 4.54 (d, NH, J = 10.3 Hz); 13C NMR �/ppm: 16.0

(CH3), 17.3 (CH3), 17.9 (CH3), 19.1 (CH3), 27.3 (t-Bu), 27.6 (CH), 29.0 (CH), 57.2

(CHNH), 57.6, 61.0 (epoxide), 70.0 (CHOH), 78.4 (t-Bu), 155.2 (C=O); ESI-MS m/z:

288 �MH�+, 232 �MH-C4H8�+, 188 �MH-Boc�+.

Anal. Calcd. for C15H29NO4: C 62.7, H 10.2, N 4.87%; found: C 62.5, H 10.3, N

4.90%.

(3R,4R,5S,6S)-2,7-Dimethyl-3,4-epoxy-5-hydroxy-6-

�N-(benzyloxycarbonyl)amino�octane (8b)

Epoxidation of 7b (1.78 g, 5.82 mmol), as described above, gave 8b (1.12 g, 60%);

m.p. 109–111 °C, from isopropyl ether/hexane; ���D
25 +2.4° (c 0.3, MeOH); IR (CCl4)
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�max/cm–1: 3500, 3320 (NH, OH), 1700 (C=O); 1H NMR �/ppm: 0.89 (m, 6H, 2 � CH3),

0.98 (m, 6H, 2 � CH3), 1.50 (m, 1H, CH), 2.13 (m, 1H, CH), 2.64 (d, OH; J = 6.2 Hz),

2.72 (dd, 1H, CHO; J = 2.2, 6.8 Hz), 2.92 (dd, 1H, CHO; J = 2.2, 4.8 Hz), 3.48 (m, 1H,

CHNH), 3.75 (m, 1H, CHOH), 4.90 (d, NH; J = 10.3 Hz), 5.05 (d, 1H, CH2Ph; J = 12.2

Hz), 5.11 (d, 1H, CH2Ph; J = 12.2 Hz), 7.34 (m, 5H, Ph); 13C NMR �/ppm: 16.8 (CH3),

18.1 (CH3), 18.8 (CH3), 20.0 (CH3), 28.2 (CH), 29.9 (CH), 58.6 (CHNH), 58.7 (CHO),

62.1 (CHO), 66.9 (CH2Ph), 71.1 (CHOH), 128.0 (Ar), 128.2 (Ar), 128.5 (Ar), 136.2 (C1

Ar), 156.7 (C=O); MS m/z: 321 (0.05), 278 (0.1), 206 (6), 162 (14), 107 (19), 91 (100).

Anal. Calcd. for C18H27NO3: C 62.7, H 10.2, N 4.89%; found: C 62.3, H 10.2, N

4.83%.

(3S,4S,5S,6S)-2,7-Dimethyl-3-

�N-(tert-butoxycarbonyl)amino�-4,5-dihydroxy-6-azidooctane (9a)

1.9 mL of a 1.8 M solution (3.48 mmol) of Et2AlCl in toluene was added, under

argon, to a suspension of NaN3 (250 mg, 3.83 mmol) in the same solvent (5 mL). The

resulting suspension was stirred at room temperature for 4 hours and then cooled to

0 °C. A solution of epoxyalcohol 8a (500 mg, 1.74 mmol) in toluene was added drop-

wise. After stirring at 0 °C for 1 h, the mixture was allowed to warm up to room tem-

perature and was stirred overnight. Then the mixture was cooled to 0 °C and diluted

with ethyl acetate (15 mL). NaF (1.02 g, 24.4 mmol) and water (0.44 ml, 24.4 mmol)

were added portionwise and the resulting mixture was stirred for 30 min and fil-

tered through a short pad of anhydrous Na2SO4, which was washed with ethyl ace-

tate. The combined organic phases were rotary evaporated to furnish the crude prod-

uct, which was purified by flash chromatography with ethyl acetate/petroleum ether

as eluent. The white solid (455 mg, 79%) had m.p. 146–150 °C; ���D
25 –11° (c 0.2,

MeOH); IR (nujol) �max/cm–1: 3350 (OH, NH), 2104 (N3), 1695 (C=O); 1H NMR �/ppm:

0.78 (d, 3H, CH3; J = 6.8 Hz), 0.84 (d, 3H, CH3; J = 7.0 Hz), 0.93 (d, 3H, CH3; J = 7.0

Hz), 1.01 (d, 3H, CH3; J = 7.0 Hz), 1.37 (s, 9H, t-Bu), 2.20 (m, 1H, CH), 2,31 (m, 1H,

CH), 3.34 (m, 2H, CHOHCHN3 + CHNH), 3.40 (m, 1H, CHOHCHNH), 3.48 (dd, 1H,

CHN3; J = 2.6, 9.9 Hz), 4.51 (d, NH; J = 8.9 Hz); 13C NMR �/ppm: 15.0 (CH3), 15.2

(CH3), 20.4 (CH3), 20.6 (CH3), 26.2 (CH), 28.2 (t-Bu), 29.0 (CH), 56.6 (CHNH), 68.0

(CHN3), 69.1 (CHOH), 70.8 (CHOH), 80.6 (t-Bu), 158.1 (C=O); ES-MS m/z: 331

�MH�+, 288 �MH-NH3�+, 275 �MH-C4H8�+, 231 �MH-Boc�+.

Anal. Calcd. for C15H30N4O4: C 54.5, H 9.14, N 17.0%; found: C 55.0, H 9.28, N

16.7%.

(3S,4S,5S,6S)-2,7-Dimethyl-3-

�N-(benzyloxycarbonyl)amino�-4,5-dihydroxy-6-azidooctane (9b)

The oily product (371 mg, 82%) was obtained from epoxide 8b (400 mg, 1.24

mmol) and diethylaluminium azide (2.48 mmol), as described for the synthesis of 9a.

���D
25 +11° (c 0.3, MeOH); IR (film) �max/cm–1: 3400 (NH, OH), 2100 (N3), 1685 (C=O);

1H NMR �/ppm: 0.79 (d, 3H, CH3; J = 6.8 Hz), 0.90 (d, 3H, CH3; J = 6.8 Hz), 0.99 (d, 3H,

CH3; J = 6.8 Hz), 1.05 (d, 3H, CH3; J = 6.8 Hz), 2.21 (m, 1H, CH), 2.35 (m, 1H, CH),

2.54 (bs, OH), 3.37 (dd, 1H, CHOH; J = 5.4, 9.8 Hz), 3.51 (m, 3H, CHOH + CHN3 +

CHNH), 4.00 (d, OH; J = 5.4 Hz), 4.87 (m, NH), 5.01 (d, 1H, CH2Ph; J = 12.2 Hz),

5.20 (d, 1H, CH2Ph; J = 12.2 Hz), 7.33 (m, 5H, Ph); 13C NMR �/ppm: 15.3 (2 � CH3),

C2-SYMMETRIC VAL-VAL DIPEPTIDE ISOSTERES 773



20.3 (CH3), 20.5 (CH3), 26.5 (CH), 28.9 (CH), 57.3 (CHNH), 67.3 (CH2Ph), 68.2

(CHN3), 69.1 (CHOH), 70.5 (CHOH), 127.9 (Ar), 128.3 (Ar), 128.6 (Ar), 136.0 (C1 Ar),

158.3 (C=O).

(3S,4S,5S,6S)-2,7-Dimethyl-3-

�N-(tert-butoxycarbonyl)amino�-4,5-dihydroxy-6-aminooctane (10)

9a (200 mg, 0.60 mmol) in 5 mL MeOH were stirred overnight under H2 (1 atm),

in the presence of 10% Pd/C. The mixture was filtered through a pad of celite to af-

ford, after removal of the solvent, 176 mg (95%) of a white solid, m.p. 100–101 °C;

���D
25 –8.7° (c 0.2, MeOH); IR (CCl4) �max/cm–1: 3450, 3367 (OH, NH), 1693 (C=O); 1H

NMR �/ppm: 0.78 (d, 3H, CH3; J = 7.0 Hz), 0.86 (m, 6H, 2 � CH3), 0.92 (d, 3H, CH3; J

= 6.6 Hz), 1.36 (s, 9H, t-Bu), 1.90 (m, 1H, CH), 2.24 (m, 1H, CH), 2.94 (m, 1H,

CHNH2), 3.55 (m, 3H, 2 � CHOH + CHNH), 4.52 (bs, 4H, 2 � OH + NH2), 4.59 (d, NH;

J = 8.8 Hz); 13C NMR �/ppm: 15.1 (CH3), 18.6 (CH3), 19.6 (CH3), 20.2 (CH3), 26.0

(CH), 28.2 (t-Bu), 28.6 (CH), 56.0 (CHNH2), 60.3 (CHNH), 68.1 (CHOH), 70.5 (CHOH),

80.1 (t-Bu), 157.7 (C=O); ES-MS m/z: 305 �MH�+, 249 �MH-C4H8�+, 205 �MH-Boc�+,

188 �MH-Boc-NH3�+, 170 �MH-Boc-NH3-H2O�
+
, 152 �MH-Boc-NH3-H2O-H2O�+; MS m/z:

304 (0.01), 286 (0.3), 243 (0.3), 231 (0.6), 187 (1), 172 (0.5), 132 (7), 116 (12), 72 (100),

57 (22).

Anal. Calcd. for C15H32N2O4: C 59.2, H 10.6, N 9.24%; found: C 58.7, H 10.7, N

9.04%.

(3S,4S,5S,6S)-2,7-Dimethyl-3,6-diamino-4,5-dihydroxyoctane (11)

Method A: 100 mg (0.33 mmol) of 10 was suspended in a 6 M HCl solution and

heated at 90 °C until dissolution (about 10 min). After 10 min, the solution was neu-

tralized with saturated NaHCO3 solution; then an equal volume of brine was added

and the mixture was extracted three times with dichloromethane. The solution was

dried over Na2SO4 and rotary evaporated to obtain white crystals (68 mg, 100%).

Method B: 220 mg (0.60 mmol) of 9b in 5 mL MeOH were stirred overnight un-

der 1 atm H2 and in the presence of 10% Pd/C, to afford 123 mg (100%) of a white

solid, m.p. 72–73 °C; ���D
25 –3.0° (c 0.4, MeOH); IR (nujol) �max/cm–1: 3300 (OH, NH2);

1H NMR �/ppm: 0.87 (d, 6H, 2 � CH3; J = 6.4 Hz), 0.93 (d, 6H, 2 � CH3; J = 6.4 Hz),

1.80 (m, 2H, 2 � CH), 2.79 (dd, 2H, 2 � CHNH2; J = 3.7, 8.6 Hz), 3.45 (bs, 4H, 2 �

NH2), 3.86 (m, 2H, 2 � CHOH); 13C NMR �/ppm: 19.69 (2 � CH3), 19.72 (2 � CH3), 29.0

(2 � CH), 61.3 (2 � CHNH2), 70.3 (2 � CHOH); ES-MS m/z: 205 �MH�+, 188

�MH-NH3�+, 170 �MH-NH3-H2O�+, 152 �MH-NH3-H2O-H2O�+; MS m/z: 204 (0), 184 (3),

132 (26), 102 (20), 72 (100), 55 (70).

Anal. Calcd. for C10H24N2O2: C 58.7, H 11.8, N 13.8%; found: C 58.3, H 11.5, N

13.7%.

(4S,5R)-4-Isopropyl-5-(1'-isopropyl-vin-2'-yl)-1,3-oxazolidin-2-one (12)

147 mg of 60% NaH (3.68 mmol) in mineral oil was added portionwise to a solu-

tion of 7a (500 mg, 1.84 mmol) in dry THF (10 mL) at room temperature under an

argon atmosphere. The mixture was stirred overnight, then it was quenched with 2

volumes of a saturated NH4Cl solution, under stirring for 30 min. The aqueous layer

was extracted twice with ethyl acetate and the combined organic layers were washed

with brine and dried over anhydrous Na2SO4. The solvent was rotary evaporated
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and the oily product (290 mg, 80%) was purified by flash chromatography: ���D
25 +40°

(c 0.2, MeOH); IR (film) �max/cm–1: 3250 (NH), 1748 (C=O); 1H NMR �/ppm: 0.86 (d,

3H, CH3, J = 6.6 Hz), 0.98 (d, 3H, CH3, J = 6.6 Hz), 1.01 (m, 6H, CH3), 1.79 (m, 1H,

CH), 2.36 (m, 1H, CH), 3.56 (m, 1H, CH-N), 4.95 (m, 1H, CH-O), 5.56 (dd, 1H, =CH,

J = 8.5, 15.6 Hz), 5.83 (dd, 1H =CH, J = 6.6, 15.6 Hz), 6.31 (bs, NH); 13C NMR �/ppm:

19.0 (CH3), 19.2 (CH3), 21.9 (CH3), 28.3 (CH), 30.9 (CH), 62.4 (CH-N), 81.3 (CH-O),

119.6 (=CH), 144.9 (=CH), 160.0 (C=O); ES-MS m/z: 198 �MH�+.

(4S,5S)-4-Isopropyl-5-(1'-isopropyl-vin-2'-yl)-1,3-oxazolidin-2-one (14)

To a solution of 500 mg (1.84 mmol) of 7a in dichloromethane (10 mL), 712 mg

(5.52 mmol) of DIPEA and 316 mg (2.76 mmol) of methanesulfonyl chloride were ad-

ded at 0 °C. After 2 h, the solution was diluted with one volume of dichloromethane,

washed with ice-cold water, ice-cold 10% HCl solution, saturated NaHCO3 solution

and brine. After drying over anhydrous Na2SO4, the solvent was rotary evaporated

to afford a crude product which was purified by flash chromatography (ethyl ace-

tate/petroleum ether mixtures) (236 mg, 65%); ���D
25 –91° (c 0.2, MeOH); IR (film)

�max/cm–1: 3261 (NH), 1751 (C=O); 1H NMR �/ppm: 0.92 (d, 3H, CH3, J = 6.8 Hz), 0.96

(d, 3H, CH3, J = 6.6 Hz), 1.01 (m, 6H, CH3), 1.76 (m, 1H, CH), 2.32 (m, 1H, CH), 3.29

(m, 1H, CH-N), 4.63 (m, 1H, CH-O), 5.47 (ddd, 1H, =CH, J = 1.3, 7.7, 15.4 Hz), 5.80

(dd, 1H, =CH, J = 6.6, 15.4 Hz), 6.78 (bs, NH); 13C NMR �/ppm: 17.9 (CH3), 18.1

(CH3), 21.8 (CH3), 30.6 (CH), 32.2 (CH), 64.2 (CH-N), 81.3 (CH-O), 124.3 (=CH),

143.0 (=CH), 159.6 (C=O); ES-MS m/z: 198 �MH�+.

(3S,4S,5S,6S)-2,7-Dimethyl-3-�N-(benzyloxycarbonyl)amino�-4,5-di-�2'-

(methoxy)ethoxymethoxy�-6-azidooctane (16)

MEMCl (0.94 mL, 8.2 mmol) and DIPEA (1.43 mL, 8.2 mmol) were added to a so-

lution of 8b (300 mg, 0.82 mmol) in 3 mL dry dichloromethane. After 6 days, the sol-

vent was rotary evaporated and the residue partitioned between ethyl acetate and

5% aqueous NaHCO3. The organic phase was washed with brine and dried over so-

dium sulfate. The solvent was rotary evaporated and the oily product was purified

by flash chromatography with ethyl acetate/petroleum ether as eluant (381 mg,

86%). ���D
25 –10.4° (c 0.8, MeOH); IR (film) �max/ cm–1: 3330 (NH), 2100 (N3), 1700

(C=O); 1H NMR �/ppm: 0.96 (m, 9H, CH3), 1.07 (d, 3H, CH3; J = 6.8 Hz), 1.90 (m, 1H,

CH), 2.04 (m, 1H, CH), 3.30 (s, 3H, OCH3), 3.35 (s, 3H, OCH3), 3.36–3.60 (m, 5H),

3.68–3.78 (m, 6H), 3.95 (dd, 1H, CHO; J = 2.1, 5.6 Hz), 4.82 (m, 2H, OCH2O), 4.89

(m, 2H, OCH2O), 5.03 (d, 1H, CH2Ph; J = 12.2 Hz), 5.12 (d, 1H, CH2Ph; J = 12.2 Hz),

5.95 (d, NH; J = 10.4 Hz), 7.33 (m, 5H, Ph); 13C NMR �/ppm: 16.7 (CH3), 18.8 (CH3),

20.2 (CH3), 21.2 (CH3), 29.0 (CH), 29.3 (CH), 57.0 (CHNH), 58.8 (2 � OCH3), 66.3

(CH2Ph), 68.1 (CH2), 68.2 (CH2), 68.7 (CHN3), 71.5 (CH2), 71.6 (CH2), 76.3 (CHO),

78.1 (CHO), 96.0 (OCH2O), 97.8 (OCH2O), 127.8 (Ar), 127.9 (Ar), 128.2 (Ar), 136.9

(C1 Ar), 156.8 (C=O).

(3S,4S,5S,6S)-2,7-Dimethyl-3,6-diamino-4,5-di-�2'-(methoxyethoxy)-

methoxy�-octane (17)

A suspension of 12 (0.37 g, 0.68 mmol) in 5 mL MeOH was stirred overnight at

room temperature under 1 atm H2 and in the presence of 10% Pd/C, to afford, after
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filtration over celite and removal of the solvent, 243 mg (96%) of oily diamine 17.

���D
25 – 44° (c 1.0, MeOH); IR (film) �max/cm–1: 3350 (NH); 1H NMR �/ppm: 0.78 (d, 6H,

2 � CH3; J = 6.8 Hz), 0.89 (d, 6H, 2 � CH3; J = 6.8 Hz), 1.42 (bs, 4H, 2 � NH2), 1.90 (m,

2H, 2 � CH), 2.71 (dd, 2H, 2 � CHNH2; J = 2.6, 8.2 Hz), 3.28 (s, 6H, 2 � OCH3), 3.44

(m, 4H), 3.59–3.74 (m, 6H), 4.71 (d, 1H, CH2Ph; J = 7.2 Hz), 4.79 (d, 1H, CH2Ph; J =

7.2 Hz); 13C NMR �/ppm: 15.0 (CH3), 20.8 (CH3), 27.3 (CH), 56.2 (CHNH2), 58.8 (OCH3),

67.9 (CHO), 71.4 (CH2O), 80.0 (CH2O), 96.7 (OCH2O); ES-MS m/z: 558 �M+NH4�+,

541 �MH�+, 437 �MH-MEM�+.
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Priprava C2-simetri~nih Val-Val dipeptidnih izostera otvaranjem
prstena u epoksialkoholima djelovanjem dietilaluminijeva azida

Fabio Benedetti, Stanislav Miertus i Stefano Norbedo

Opisana je primjena visoko regio- i stereo-selektivnog reagensa dietilaluminije-

va azida za otvaranje prstena u steri~ki ometanim epoksialkoholima izvedenima iz

valina. Taj je reagens omogu}io pro{irenje ranije opisane sinteze diamindioldipep-

tid-izosteraze (P1-��CH(OH)-CH(OH)�-P1') na izosteraze s razgranatim ostatcima u

polo`aju P1'. Nova metodologija sukladna je Boc i Cbz za{titi po~etne aminokiseline,

a primijenjena je za pripravu C2-simetri~nog diamindiola dipeptidne izostere Val-Val

11 iz metilestera L-valina uz 25% iskori{tenje u 7 (za Boc za{titu), odnosno u 6 stup-

njeva za Cbz za{titu.

Istim su pristupom pripravljeni i C2-simetri~ni di-MEM-za{ti}eni diamindiol 17
i mono-Boc-za{ti}eni, disimetri~ni derivat 10. Spojevi 10, 11 i 17 osnovne su jedinice

simetri~nih i nesimetri~ni peptidomimeti~kih inhibitora aspartatnih proteaza i me|u-

produkti u sintezi cikli~kih urea-inhibitora HIV-proteaza.
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