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Abstract:
Visual interpretation of electromyograms is common, but its accuracy is unknown. This study compared 

the accuracy curves of inexperienced observers in detecting muscular contractions from variable, simulated 
surface electromyogram signals. Accuracy was assessed both without feedback (unsupervised practice) and 
with feedback (supervised practice) to determine whether a training effect existed. Six observers performed 
manual segmentation in 300 simulated waveforms using a phenomenological model with a variable number of 
contractions (n=1, 2 or 3), smooth changes in amplitude, marked on-off timing, and a variable signal-to-noise 
ratio (0-39 dB). Segmentation was organized in two one-day sessions with 15 blocks of 20 signals each for 
the unsupervised and supervised practices, respectively. Supervised practice was provided by an immediate 
visual feedback on the manual segmentation. The accuracy curve showed no significant linear regressions for 
either unsupervised (R2=.104, p=.241) or supervised practices (R2=.153, p=.150). No significant difference in 
accuracy was observed between the unsupervised and supervised practices (85% [77; 99] and 88% [73; 97], 
respectively; p=.295). Unsupervised practice yielded low accuracy for one muscular contraction (AUC=.43; 
cut-off=12.8 dB) and increased with supervised practice (AUC=.63; cut-off=9.5 dB). Unsupervised practice 
resulted in high accuracy for two contractions (AUC=.88; cut-off=6.9 dB) and was similar to the supervised 
practice (AUC=.81; cut-off=6.3 dB). Supervised practice using visual feedback improved the accuracy of 
inexperienced observers in the segmentation of one muscular contraction in simulated electromyograms and 
did not influence the accuracy of two muscular contractions.
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Introduction
The shape-varying waveform exhibited by sur-

face electromyograms (SEMG) remains a challenge 
for the scientific assessment of muscle functioning 
in either daily-living activities or dynamic sports. 
SEMG waveforms are related to the neural strat-
egies for motor units’ recruitment during muscle 
contractions and they therefore depend on the motor 
task being executed (Farina, Merletti, & Enoka, 
2004; Merletti & Parker, 2004). The understand-
ing of muscle function requires an accurate estima-
tion of parameters related to its activity, which in 
turn depends on how accurately the SEMG is seg-
mented into separated contractions (Ferreira, Gui-
marães, & Silva, 2010). On the one hand, automat-
ed methods are fast and accurate for detecting the 
on-off timing of contractions of SEMG exhibiting 

nearly constant amplitude as obtained during maxi-
mal isometric voluntary contractions (Abbink, van 
der Bilt, & van der Glas, 1998; Bonato, D’Alessio, 
& Knaflitz, 1998; Micera, Vannozzi, Sabatini, & 
Dario, 2001; Wilen, Sisto, & Kirshblum, 1999). On 
the other hand, they present poor performance in 
cases of shape-varying SEMG due to superposed 
activation patterns of motor units in more complex 
motor tasks (Staude & Wolf, 1999).

Manual segmentation of SEMG by visual in-
spection is a valid alternative method to automated 
segmentation; it can be used for screening the sig-
nal in order to judge whether the SEMG represent 
meaningful physiological activity (Di Fabio, 1987). 
In spite of being an off-line and time-consuming 
method (Di Fabio, 1987; Staude & Wolf, 1999), 
manual segmentation still has important applica-
tions in movement sciences (Ferreira, et al., 2010) 
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and other fields such as gynecology (Marques, Ter-
rien, Rihana, & Germain, 2007; Moslem, Khalil, 
Marque, & Diab, 2010) and neurology (De Marchis, 
Schimd, & Conforto, 2012), where it is necessary 
to identify separated muscular contractions. Few 
studies investigated the accuracy of observers for 
manual segmentation of SEMG, with most of them 
analyzing the accuracy for on-off timing identifi-
cation (Jesunathadas, Aidoor, Keenan, Farina, & 
Enoka, 2012). Our research group initiated a project 
aimed at assessing the accuracy of observers and 
automated methods for the detection of SEMG. The 
phase-I study (Ferreira, Guimarães, Magalhães, & 
Silva, 2013) investigated the accuracy and learning 
curves of observers for the segmentation of SEMG 
contractions using a phenomenological model de-
veloped to generate shape-varying SEMG signals. 
The results showed that inexperienced observers 
presented high accuracy – approximately 87% – 
for correct identification of muscular contractions 
on shape-varying simulated SEMG, and that their 
performance was faster but not more accurate in un-
supervised practice. However, it remains uninves-
tigated whether supervised practice improves the 
accuracy of this signal processing in shape-varying 
SEMG signals.

Determination of the effects of supervised prac-
tice on accuracy curves of observers performing 
manual segmentation of SEMG might contribute to 
the establishment of practice parameters to achieve 
their optimal level of accuracy. Therefore, the aim 

of this phase-II study was to compare the accura-
cy curves of inexperienced observers to detect the 
number of muscular contractions in shape-varying 
SEMG under the unsupervised and supervised 
practice conditions, the latter being characterized 
by an immediate visual feedback. It was hypoth-
esized that supervised practice might improve the 
accuracy of observers for the detection of SEMG 
contractions.

Methods
Participants

Six inexperienced participants (four women; 
30±14 years) were recruited from the undergradu-
ate and graduate academic community. They stud-
ied SEMG signals during graduation and post-
graduation courses, but did not perform any manual 
segmentation of signals prior to this study. All par-
ticipants were informed about the procedures and 
gave their written consent. The institutional ethics 
committee approved this study before its execution 
(CAAE-0011.0.307.000-11).

Simulation of shape-varying surface 
electromyograms

The computational procedure for SEMG sim-
ulation was fully described in a previous study 
(Ferreira et al., 2013) and is summarized here in 
Figure 1. The discrete raw SEMG(i) presenting a 
variable number of muscular contractions, smooth 

Figure 1. Steps for simulation of surface electromyograms (signal #229). A: Gaussian pattern representing an isometric 
contraction; B-D: three Gaussian patterns representing smooth muscle activity truncated by square patterns; E: simulated surface 
electromyogram; F: simulated surface electromyogram with additive noise used for manual segmentation.
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2012). The large range of SNR was also selected for 
comparison to other studies on SEMG simulation 
(5) and to generate muscular contractions that are 
either easy or difficult to find, so the performance 
of the observers could be distinguished. All compo-
nents of the simulated SEMG – r(i), gn(i), sn(i), and 
e(i) – were stored as ASCII files in a database and 
are available upon request to the authors.

Manual segmentation in the unsupervised 
and supervised practices

Manual segmentation of SEMG signals was or-
ganized in two one-day sessions – unsupervised 
and supervised practices, respectively – separated 
by a two-week interval for washout. The session 
comprised 15 blocks of 20 signals each for analy-
sis and the same 300 signals were evaluated during 
both practices, thus allowing a paired comparison 
of participants’ accuracy.

Observers were instructed to take the necessary 
time for analyses and were informed that each sig-
nal might present up to three muscular contractions. 
The detection procedure started with the observers 
selecting the current block of signals and running 
a dedicated, user-friendly algorithm to open-read-
display the SEMG signal in the same sequence as 
stored in database. It is worth noticing that only the 
composite SEMG(i) was displayed on the screen 
so observers were blinded to simulation patterns 
(Figure 2). The screen for signal segmentation con-
tained buttons for representing the number of con-
tractions and corresponding pairs of movable cur-
sors to separate them all. Observers were asked 
to accurately detect the number of contractions 
by visual inspection and to mark the correspond-
ing button on the screen. Subsequently, the algo-
rithm displayed pairs of cursors for each visually 
detected muscular contraction to allow observers 
to accurately mark separate on-off timings for each 

Figure 2. Computer screen for manual segmentation of simulated surface electromyograms. The observer marked the number of 
pairs of cursors for delimiting each muscular contraction (#2 in this example) and moved the on-off cursors for the corresponding 
locations of each contraction.

changes in amplitude, marked on-off timing, and 
variable signal-to-noise ratio (SNR) is represented 
by equations 1-2:

(1) SEMG(i) = y(i) + e(i)

(2) 

where: i = sample number (1, 2,…, 2,000); n = mus-
cular contraction (1, 2, or 3); y(i) = noiseless SEMG 
for the ith sample; e(i) = background noise modeled 
as a band-limited (80-120 Hz, first-order Butter-
worth filter) pseudorandom pattern; r(i) = isometric 
contraction modeled as a band-limited Gaussian-
distributed pseudorandom pattern with standard 
deviation σr; gn(i) = n profiles of muscle activity 
modeled as n Gaussian functions with standard de-
viations σn and random amplitude factors in range 
[.1; 1]; and sn(i) = on-off periods modeled as n square 
patterns with time support αn and unitary ampli-
tude. Power-line interference and motion artifacts 
were not included since they could be satisfactori-
ly removed before segmentation using other signal 
processing techniques (De Luca, Gilmore, Kuznet-
sov, & Roy, 2010; Lu, et al., 2009; Mewet, Reynolds, 
& Nazeran, 2004; Reaz, Hussain, & Mohd-Yasin, 
2009). The SNR ratio per muscular contraction was 
calculated as the 10·log10(σ2

y /σ2
e), where σ2

y and σ2
e 

represent calculated variances of y(i) and e(i), re-
spectively.

Three hundred SEMG signals were simulated 
using sets of uniformly distributed random values 
for σn (single contraction duration in range between 
50 and 150 ms), αn (1 to 2.5), and SNR (0 to 39 dB). 
All signals were simulated with a sampling fre-
quency of 1.0 kHz and no further signal processing 
was performed before manual segmentation. The 
duration of contractions was chosen to match those 
observed in tremor detection (De Marchis, et al., 

y(i) = r(i)  ☐ gn(i)  ☐ sn(i)n=1

3 3

n=1
∏∑
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contraction. When a block of signals was completed, 
the number of contractions of each signal and their 
respective on-off timing were digitally stored as 
ASCII files for comparative analysis per block 
and per observer. A five-minute rest was allowed 
between sequential blocks. Total session time was 
approximately between two and three hours inclu-
ding the rest period.

Unsupervised practice was performed as fol-
lows. When the observer completed the manual seg-
mentation of each signal, the software window was 
manually closed and the next signal in the block was 
automatically displayed. No information regarding 
the previous segmentation was provided to the ob-
server before the next SEMG signal was presented 
for analysis.

Supervised practice was characterized by an 
immediate visual feedback after the observer closed 
the window. In such practice, the same window was 
automatically opened after manual segmentation 
showing the same SEMG signal just analyzed and 
the correct number of muscular contractions and 
respective on-off times. After manually closing the 
feedback window, the observer automatically re-
ceived the next signal in the block for segmentation 
until finishing the block.

Statistical analysis
Descriptive values are presented as medians 

[minimum; maximum]. Graphs display group-
average values and error bars represent ±SD. Sig-
nals were considered as correctly identified if the 
number of muscular contractions marked by the 
observer matched the number estimated from the 
Boolean OR comparison of sn(i) signals (the gold-
standard of the activation pattern). Accuracy for 
quantification of events was computed as the pro-
portion between the total of signals correctly iden-
tified to the total of signals per block. The accura-
cy curve per observer under the unsupervised and 
supervised practice conditions were modeled by 
a linear regression model (H0: ß =0; intercept=0) 
and tested for difference between sessions using 
the Wilcoxon’s test. P values and 99% confidence 
interval (99% CI) of nonparametric tests were esti-
mated by bootstrap procedure by using Monte Carlo 
method with 800 samples. Statistical significance 
was considered at p<.05 (two-tailed; H0: there is no 
difference in accuracy estimated during supervised 
or unsupervised practices).

Receiver-operating characteristic (ROC) curves 
(Hanley & McNeil, 1982) were used to determine 
the accuracy, sensitivity, specificity, and cut-off 
for SNR to a successful detection (binary variable: 

correct=1). The AUC as surrogate measure of ac-
curacy varied from 0 to 1 and can be likewise in-
terpreted from no apparent accuracy (AUC≤.5) to 
perfect accuracy (AUC=1). The group-median area 
under the ROC curve (AUC), sensitivity, specificity, 
and cut-off values for SNR were estimated sepa-
rately for signals that were simulated with one and 
two muscular contractions (249 and 49 signals, re-
spectively).

Computational resources
Two computers with the same configuration 

(Intel® Core 2 Duo, Windows® XP) were used 
in this study and observers used the same com-
puter throughout the study. Algorithms for SEMG 
simulation and manual segmentation by observers 
were implemented in LabVIEW 8.0 (National In-
struments, Texas, USA) and were fully automat-
ed. Statistical analyses were conducted in SPSS 17 
(SPSS Inc., Illinois, USA) and LabVIEW 8.0 (Na-
tional Instruments, Texas, USA).

Results
Figure 3 presents the group-average accuracy 

curves obtained from the unsupervised and super-
vised practices. The accuracy curve showed a pos-
itive trend in accuracy throughout the session for 
both practices, but without significant linear regres-
sions for either the unsupervised (r=.323, R2=.104, 
p=.241) or supervised practice (r=.391, R2=.153, 
p=.150).

Figure 4 exhibits the group-median accuracy 
per block for comparison between practices. No 
significant difference (p=.595 [.550; .640]) in accu-
racy was observed between the unsupervised (85% 
[77; 99]) and supervised practices (88% [73; 97]) 
(Figure 2).

The ROC curves are displayed in Figure 5 and 
present distinct behaviors considering the quantity 
of simulated contractions under both practice con-
ditions. Regarding the signals for one contraction, 
unsupervised practice yielded no apparent accuracy 
and was largely affected by SNR (AUC=.43; sen-
sitivity=45%; specificity=39%; cut-off=12.8 dB), 
although the accuracy increased with supervised 
practice and was less affected by SNR (AUC=.63; 
sensitivity=62%; specificity=62%; cut-off=9.5 dB). 
Regarding the signals for two contractions, unsu-
pervised practice resulted in high accuracy that was 
even less affected by the SNR (AUC=.88; sensitiv-
ity=81%; specificity=80%; cut-off=6.9 dB) and was 
similar to supervised practice (AUC=.81; sensitiv-
ity=72%; specificity=73%; cut-off=6.3 dB).
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Figure 3. Accuracy curves for manual segmentation of simulated surface electromyograms under unsupervised (left) and supervised 
(right) practices. Circles and errors bars are represented as group-average±SD values per block.

Figure 4. Comparison between accuracy for manual segmentation of simulated surface electromyograms under unsupervised 
(light grey) and supervised (dark grey) practices. Bars and errors bars represent group-averages±SD values.
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Discussion and conclusions
This study compared the accuracy curves, seg-

mented by inexperienced observers, obtained under 
unsupervised and supervised practices to detect the 
number of contractions in shape-varying simulat-
ed SEMG. The results of this study confirm our 
hypothesis that supervised practice improves the 
accuracy of observers for detection of SEMG con-
tractions only in specific conditions, but not for all 
signals. More specifically, immediate visual feed-
back improved manual segmentation of one mus-
cular contraction, although it did not change the 
accuracy when two contractions were present in 
the SEMG. To the best of our knowledge, this is 
the first study to quantify the accuracy curve of in-
experienced observers for manual segmentation of 
shape-varying SEMG with supervised practice. In 
contrast to the phase-I study (Ferreira, et al., 2013), 
there was no learning curve investigation and the 
observers were informed about their performance 
immediately after the segmentation of the signal.

The group-average accuracy curves suggest-
ed that observers performed manual segmentation 
progressively better in each block of signals until 
the plateau of performance was achieved. This im-
provement in accuracy may be attributed to famil-
iarization with the procedure, best use of equip-
ment, or to the discovery of ‘shortcuts’ to complete 
the procedure (Anzanello & Fogliatto, 2007). How-
ever, the learning effect may be considered as negli-
gible for one session of SEMG, since no significant 
linear trend was observed. The level of accuracy 
observed in this study using manual segmentation 
under variable SNR is similar to that reported in 
recent studies using manual segmentation (Ferreira, 
et al., 2013; Malone, Meldrum, Gleeson, & Bolg-
er, 2011), and therefore the results of this study are 
considered as representative.

During unsupervised practice, observers were 
not aware of their accuracy in segmenting previ-
ous signals. Such a lack of feedback on their per-
formances does not simulate a real scenario (i.e. 

Figure 5. Receiver operating characteristic curves for accuracy estimated for quantification of n=1 (left panels) and n=2 (right 
panels) contractions as obtained from unsupervised (top panels) and supervised practices (bottom panels). Lines represent each 
observer.
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real SEMGs do not have gold-standards), but it also 
tests whether inexperienced observers can intuitive-
ly learn how to detect muscular contractions better. 
In contrast, during supervised practice the feed-
back available from the previous signal provided 
an opportunity to the observers to extract relevant 
information from SEMG to significantly improve 
their accuracy and learn from their performance. 
Although the absence of significant differences be-
tween unsupervised and supervised practices rein-
forces the former case, it was sufficient to improve 
the accuracy for detection of one but not two mus-
cular contractions.

In-deep analysis of ROC curves showed that 
observers exhibited low statistical performance for 
detection of one contraction at a high SNR but per-
formed better for detection of two muscular con-
tractions at lower SNR under both practices. Most 
importantly, these results suggest that the perfor-
mance for detection of one contraction can improve 
after supervised practice. The results from the ROC 
curves with two muscular contractions were the 
most stable and may be explained by the experimen-
tal procedure; signals with two contractions may 
have induced the observers to miss a contraction 
with a smaller amplitude despite previous experi-
ence on the possible existence of other contractions. 
On the contrary, signals simulated with one con-
traction do not have other high-amplitude muscu-
lar contractions to confound the observers. This ex-
planation is reinforced by the improvement in both 
AUC and accuracy for detection of one contrac-
tion during supervised practice. For comparison, 
the double-threshold method (Bonato, et al., 1998) 
exhibited high accuracy (>95%) for detection of er-
roneous transitions in on-off timing for SNR only 
above 10 dB for one contraction. Moreover, auto-
mated methods for on-off timing in general showed 
systematic degradation of accuracy with acceptable 
results at 6 dB (De Marchis, et al., 2012; Staude, 
Flachenecker, Daumer, & Wolf, 2001). Therefore, 
the accuracy of manual segmentation obtained in 
this study is considered comparable to those ex-
hibited by automated methods using simulated or 
real SEMG signals. This SNR could be the major 

confounder to the lack of improvement with super-
vised practice because some signals may simply 
be too poor for interpretation. Future studies need 
to investigate the effect of SNR, as there may be a 
threshold below which visual detection is not suf-
ficiently accurate, consequently rendering the EMG 
signal of little value in clinical practice.

Some limitations of this study are worth notic-
ing. The generalizability of the observed results to 
clinical practice might be limited by the lack of a 
consistent, statistically significant effect of super-
vised training. Also, this study has a small sample 
size of observers and results could be different or 
less variable with a larger sample size drawn from 
a wider pool of possible inexperienced observers. 
Nevertheless, the results of this study have impor-
tant implications. Firstly, the lack of practice in 
manual segmentation may affect the accuracy of 
observers, particularly for shape-varying signals 
with one muscular contraction. Most importantly, 
this study recommends that inexperienced observ-
ers train manual segmentation with the same soft-
ware for at least 300 signals under supervised prac-
tice before they are able to do this with the highest 
level of accuracy.

This project will be continued to phase-III study 
to compare the accuracy of inexperienced observ-
ers and computational methods for automated seg-
mentation of SEMG. In this phase, the experimen-
tal procedure will include the implementation of 
most-commonly used algorithms for SEMG pre-
processing (e.g. linear envelope, windowed RMS) 
and segmentation (e.g. single- and double-threshold 
detectors) to segment the SEMG for comparison 
with the manual method. In contrast to the phase-I 
and phase-II studies, not only the number of con-
tractions will be analyzed, but also the on-off tim-
ing of each contraction, as well as its dependency 
on the SNR.

Supervised practice using visual feedback im-
proves the accuracy of inexperienced observers to 
segment one contraction in shape-varying simulat-
ed surface electromyograms without the influence 
on the accuracy for detection of two contractions.
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