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To identify the major determinants of the DNA binding specificity
of nuclear transcription factors, the Comparative Binding Energy
(COMBINE) analysis has been performed for two datasets. In To-
mié et al.,! COMBINE QSAR models were derived for a set of 320
complexes of DNA and glucocorticoid receptor mutants. Here, we
derive COMBINE QSAR models for a set of 32 complexes. This set
differs from the larger one in two aspects. The complexes have ad-
ditional mutation sites in the DNA binding domain and, instead of
just activity measurements, both activity and binding affinity mea-
surements are available. Models of better predictive ability were
obtained with the smaller, but experimentally better characterized,
dataset.

The parameters important for determining binding specificity are
nevertheless similar for both datasets: the electrostatic interaction
energies between the mutated nucleotides and mutated residue(s)
as well as some charged amino acid residues (Arg-447, Arg-470,
Arg-477), and the solvation free energies of the mutated base(s).
However, the relative importance of these parameters is different
in the two datasets.

Key words: Quantitative Structure-Activity Relationship (QSAR),
COMBINE analysis, molecular modeling, gene regulation, molecu-
lar mechanics.
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INTRODUCTION

DNA transcription is crucial for gene regulation. In some cases, tran-
scription occurs only upon the binding of a protein, the so-called transcrip-
tion factor, to DNA. In this work, we study the specificity of the binding of
nuclear receptor transcription factors, namely glucocorticoid and estrogen
receptors, to DNA. The glucocorticoid receptor (GR) and the estrogen recep-
tor (ER) are steroid hormone receptors and ligand-inducible transcription
factors. After the ligand (steroid) binds to the C-terminal ligand binding do-
main, the conformation of the receptor changes and the DNA binding do-
main (DBD) becomes exposed and shows a large affinity towards DNA.2 The
GR DBD binds to the glucocorticoid response element (GRE) as a homo-
dimer. The nuclear receptor transcription factor DBDs are highly conserved
in sequence and structure and consist of two zinc-fingers (Figure 1a). On
binding, part of the recognition o-helix is inserted into the major groove of
the DNA. Glucocorticoid and estrogen response elements (ERE) are partially
palindromic repeats, consisting of two hexameric half sites with a three-base-
pair spacing in-between. They differ from each other in the two central base
pairs of each half-site (Figure 1b).

Zilliacus et al.?* studied how mutations of a few residues of the GR DBD
to residues specific for the ER DBD modulate DNA binding affinity. In Zil-
liacus et al.,* they mutated Gly-439 in the GR DBD to the remaining 19 nat-
ural amino acid residues and measured the interaction of these 20 DBDs
with 16 different response elements by a transactivation assay. We used
COMBINE and Free-Wilson analysis! to derive QSARs for these 320 com-
plexes. Predictive models were derived by both methods and the COMBINE
QSAR model provided insight into the physico-chemical factors determining
binding specificity.

Here we describe the COMBINE QSAR models for a different set of 32
complexes studied by Zilliacus et al.? This dataset consists of 8 different
DBDs bound to 4 different response elements and both activity and binding
affinity measurements are available. Another difference between these two
datasets is the number of variable positions. Instead of only one mutation
site in the DBD, there are three mutation sites in the DBD in the smaller
dataset. Namely, one to three specificity determining residues in the GR
DBD are mutated to the corresponding residues in the ER (Gly-439 to Glu,
Ser-440 to Gly and Val-443 to Ala) (Figure 1a).

The aim of this work is to compare the physical parameters determined
with the 32-object dataset with those determined earlier! with the 320-object
dataset, as well as to determine the dependence of prediction quality on the

data size, type of experimental measurements and the number of mutation
sites in DBD.
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Figure 1. (a) Amino acid sequence of the human GR DBD. Arrows show the amino
acid substitutions introduced into the mutant protein. The introduced residues are
characteristic of the ER DBD; (b) Sequences of the glucocorticoid and estrogen re-
sponse elements (RE) and their mutants (GRE2 and EREZ2), for which the specificity
of binding of native and mutated GR DBDs was measured.?

COMPUTATIONAL METHODS

COMBINE Analysis

The COMBINE approach is described in detail elsewhere.!>¢ The main aim of
this method is to approximate the binding free energy (AG), in this case the AG of
DBD-DNA binding, with the sum of n selected, residue based, terms A"

AG = iwiAufel+C (D)

i=1
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The expression used in this work as an approximation of the DBD-DNA binding
affinity is:

"'DNA'DBD i 'DNA'DBD ) Npep hyd 4 hyd
_ vdw ele 1y Ly
AG = wyug + wiug + E w,AAG [ + 2 w,AAG Y, +
i=1 j=1 i=1 j=1 Jj=1 k=1

AEpna + AEpgp + D (w; ASA P + w; ASA *P) + " w; ASA; (2)
=

j i=1

where u;; is the intermolecular interaction energy between group i in the DNA and
group j in the DBD; AE, (X = DNA, DBD) is the change of the potential energy of the
corresponding molecule upon binding; AAG; and AAG,,, , are the change of relative
free energy of solvation of the side chain of residue j and of the mutated base (mb) %,
respectively; ASA,; is the change of the solvent accessible surface of nucleotide i;
ASAP and ASA;™ are the changes of the polar and nonpolar solvent accessible sur-
face of the amino acid residue j, respectively; npya and npgp are the number of
groups in DNA and DBD, respectively, and Npy, and Npgp are the number of resi-
dues and nucleotides in the DBD and DNA hexameric half-site, respectively.

The change of the solvent accessible surface per residue upon binding (ASA) was
calculated using the NACCESS program.”® For the calculation of the relative free
energy of hydration, empirical values relative to glycine in the pentapeptide AcGG-X-GG®
were used for amino acids while values relative to thymine were used for bases.!?
The calculation details for individual terms were given in our previous work.! The
weight, w, of each term in Equation 2 was determined by PLS analysis.

Building DNA-DBD Complexes

In the study, systems consisting of the 73 residue mutated GR DBD (Figure 1a)
bound to a 6-base pair (bp) mutant of the GR RE were used (Figure 1b). The struc-
tures of the mutated complexes were derived from the crystallographically deter-
mined structure of the rat GR DBD-DNA complex.!! The mutants were modeled as
follows. One to three of the residues, Gly-439, Ser-440 and Val-443 in the specifically
bound protein monomer (DBD1) of the crystal structure, were replaced with the cor-
responding amino acid side chains from the ER, Glu-439, Gly-440 and Ala-443. The
base pairs in the central positions (3 and 4, Figure 1b) of the GR RE were subse-
quently mutated to those of the ER RE. In this way, 32 different complexes (8 differ-
ent DBDs bound to 4 REs) were obtained for which experimental data were avail-
able.?

Modeling was performed with the all-atom AMBER molecular mechanics force
field.!? The parameters for Zn?* were derived from the results of MOPAC 6.0 AM1!3.14
computations and are given in our previous work.! The conformation of each DBD,
DNA and their complex was minimized with the AMBER 6.0 program!® using a dis-
tance dependent dielectric constant. Four datasets were considered: 32—-300, geome-
try optimized 300 steps with the backbone restrained by a harmonic force, £ = 210
kdJ mol! A‘Z; 32-300-30, 32—-300-300 and 32—-300-700 datasets obtained when the
32-300 dataset was further energy minimized without restraints by 30, 300 or 700
steps, respectively. Partition of interaction energies into parts was performed using
the ANAL module in the AMBER program. The interaction energy was split into in-
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teraction terms between groups: for each amino acid residue, except for the first one,
the interaction was split into side-chain and backbone interactions, and each nucleo-
tide interaction into base, phosphate and sugar interactions. The following intermole-
cular interactions were considered: side chain-base interaction, backbone-base interac-
tion, side chain-phosphate interaction, backbone-phosphate interaction, side chain-sugar
interaction, backbone-sugar interaction for each amino acid and nucleotide pair.

To improve the model, the changes of the free energy of solvation of amino acid
side chains and of the mutated bases were considered along with the changes of the sol-
vent accessible surface area per residue and nucleotide as terms contributing to
binding affinity. Further, the decomposed intramolecular interaction energy of the
complex was also included in the analysis, since it was previously found that it has
good predictive abilities.!

Data Preparation for Chemometric Analysis

The final matrix of X variables (energy terms) contained 32 rows and 10526 col-
umns: 1-5148 for the van der Waals interaction energies between the groups defined
as explained above (u;), 5149-10296 for the electrostatic interaction energies between
the groups (u;); 10297-10367 for AAG, per amino acid residue; 10368-10371 for AAG
per mutated base; 10372-10513 for ASA? and ASA;"?; 10513-10524 for the change of
solvent accessible surface per nucleotide; 10525-10526 for the change of potential
energy of the DBD and DNA upon binding. In some models, the change of the con-
formational energy (AE_,) of the DBD and DNA upon binding was also considered.
However, since the latter two terms do not increase the predictive ability of the mod-
els, they are not considered any further. When both inter- and intra-molecular inter-
actions were considered, the final matrix of X variables contained 31862 columns.

The 1D Y matrix consists of 32 logarithmic (—log;,) values of the measured bind-
ing affinities® (ba), where ba equals the amount of protein (ng) needed to bind 30% of
the total DNA probe; when 50 ng of protein bound less than 30% of the total DNA
probe, ba = 50 or 100, for binding more or less than 10% of the probe, respectively.

The data were subjected to PLS'® and the principal components (PC) analysis
with the GOLPE program.!”!® The following models are distinguished according to
the input X-variables: a) 10-only intermolecular interaction energies; b) G-only dif-
ferences of the free energies of solvation of amino acid residue side chains and mu-
tated bases; ¢) SA-only changes of the protein and DNA surface area upon binding
(used as an approximation of the desolvation free energy); d) ISA-intermolecular in-
teraction energies and the surface area changes upon binding; e) IG-intermolecular
interaction energies and the differences in free energies of solvation; f) IGSA inter-
molecular interaction energies as well as the differences in free energies of solvation
and the changes of surface area upon binding. An additional model, which besides
intermolecular interactions, also includes intramolecular interaction energies, is de-
signated: II0.

Chemometric Analysis

i) Data pretreatment. The X-variables were pretreated using different procedu-
res: zeroing, minimum standard deviation cutoff and block scaling (X-matrix is di-
vided into % blocks of related data, with blocks scaled so that the same total weight
is given to each); for a detailed description see Tomié et al.
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ii) PLS statistical analysis!® was performed to derive models and determine the
variables that are most important for the specificity of binding.

iii) Principal component analysis (PCA) was performed in order to determine the
internal structure of X-variables, and to classify the complexes by their distribution
in the PC-plots.

iv) The quality of the models was evaluated by checking their predictive abili-
ties. For this purpose, internal and external validation was performed. For internal
validation: leave one out (LOO) and random groups cross validation using 5 random
groups and 20 randomizations were performed. The predictive ability of a model is
described with SDEP and Q?:

sopp - [y 017 @
_Y'")?
w=2324L (4)

> - (Y)”

where Y is the experimental, Y' is the predicted and <Y> is the average experimental
value (-log;o(ba)), and N is the number of DBD-DNA complexes.

External validation was performed by dividing the data sets into two: a training
set and a test set. In addition, the predictive ability of the models was checked in
computations with scrambled Y-values.

v) In order to extract the most predictive X variables, selection was performed by
the fractional factorial design FFD strategy as implemented in the GOLPE program.'8

RESULTS

In this work, we consider a set of 32 DBD-DNA complexes and 28- and
27-object subsets of the complete dataset. The subsets were used in order to
check how much the training set reduction influences the derived models
and to evaluate their external predictive ability.

In order to determine which of the four differently optimized datasets
(see Computational Methods) would be the best for the COMBINE analysis,
the model with intermolecular interaction energy terms (I0) was derived for
all four. The best models were obtained with the 32-300 and 32-300-30 data-
sets (Table I). With the LOO validation procedure, a saddle point was no-
ticed in the @2 curve for LV = 2 in both cases. After a single FFD variable
selection for the two-dimensional model, the model obtained for the 300-30
dataset had better fit and predictive ability (R? = 0.68, @2 = 0.52) than that
for the 300 dataset (R? = 0.56, @2 = 0.41). Therefore, the structures of the
300-30 dataset were used for all further analyses.
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TABLE I

Predictive performance of the I0-COMBINE model for the 32-object dataset
optimized to different extents

Optimization steps® Y LV® SDEP @ SDEC R?

300 L 4 0.34 0.54 0.26 0.74
300 + 30 L 5 0.34 0.54 0.25 0.76
300 + 300 L 5 0.35 0.51 0.26 0.74
300 + 700 L 2 0.39 0.38 0.32 0.59

% Numbers refer to the number of steps of restrained and unrestrained energy optimization,
respectively.

b Binding affinity, L = logarithmic (-log10) values of the measured binding affinity.
¢ Optimal number of LVs for the validation procedure used.
4 Results of validation performed using the random groups procedure (see Computational Methods).

COMBINE Models for the 32-and 27-Object Datasets

The 27-object data set was constructed by ordering the complexes by the
decreasing binding affinity and then removing each sixth complex. The 5 ex-
tracted objects served as a test set for the models derived from the 27 com-
plexes.

A number of different COMBINE models were derived for 32- and 27-object
datasets. Whenever different blocks of X-variables were combined, the block
scaling procedure was performed. The fitting and internal validation perfor-
mance parameters of equivalent models are similar for these two datasets
(Tables II and III), as is the structure of the models (Figure 2). Before the
fractional factorial design (FFD) variable selection, the II0 model (inter and
intra molecular interaction terms) has a predictive performance (SDEP; o =
0.33, LV = 4) comparative to the other models for both the datasets consid-
ered. On the other hand, after FFD variable selection, all models including
the intermolecular interaction energy terms only (10, IG, ISA, IGSA) have a
better predictive ability than the II0 model (SDEP; g, = 0.32, LV = 2).

10 Models (Intermolecular Energy Terms Only)

The internal and external predictive ability of the I0 model is good and
increases after FFD variable selection, reaching a maximum @Q? in 2-3 LVs,
see Tables II and III. The dominating X-variables in the model are the van
der Waals and electrostatic interactions between mutated nucleotides (3'
and 4'), mostly bases, and the side chains (SC) of mutated amino acid resi-
dues (SC439, SC440 and SC443). After FFD, the electrostatic interactions
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Figure 2. Normalized weighted coefficients for the most important X-variables in the
10 model for the 32- (filled) and the 27-object datasets (white) after the FFD variable
selection. Normalization is performed with respect to the highest coefficient for each
model.

B3'-SC443 and those between nucleotide 2' and the side chains of Arg-447,
Arg-470 and Arg-477 appear as very important X-variables (Figure 2).

The strong attractive interaction between B2' and Arg-447 as well as
those between Arg-470 and Arg-477 and the phosphate group of nucleotide
2' (as seen in Figure 3, they are hydrogen bonded) contribute negatively to
the relative binding affinity (Figure 2), i.e. higher attraction correlates with
lower affinity.

The attractive interaction between base 3' and the side chain of the amino
acid residue at position 443 (Figure 2) has a positive influences on binding
specificity. This interaction is the strongest in complexes with thymine (T) at
position 3' and Val at position 443 whose side chain comes close to nucleotide
at 3' upon binding, see Figure 3. Otherwise, it is about zero or slightly repul-
sive (in complexes with adenine at position 3' and Val at 443). Most of the
complexes with Val-443 and T3' have an above average binding affinity and
most of the complexes with Val-443 and A3' have a below average binding af-
finity. An exception is the ESVTT complex, which has a below average bind-
ing affinity.® The reasons for this are: about 2 kJ mol~! weaker attractive in-
teraction between S2' and the side chain of Arg-470 (due to the influence of
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Figure 3. 3D structures of the EGVTC complex. Amino acid residues of the DBD and
parts of nucleotides from the RE, which appeared to be the most important structural
regulators of protein-DNA binding in the data set considered, are displayed (amino
acid residues are labeled by number; parts of nucleotides, phosphate group: P, sugar:
S and base: B are designated). Mutated amino acid residues and nucleotides are rep-
resented by thicker sticks. Oxygen atoms are colored black, carbons light, and nitro-
gens dark gray. The protein and DNA backbones are given in ribbon representation
(solid and line, respectively).

serine at position 440 on Arg-470) and a slightly stronger repulsion between
the side chain of Glu-439 and phosphate group at 3' than in other T-3', Val-
443 complexes. On the other hand, the binding affinity of the EGVAC com-
plex is underestimated, probably due to insufficient data in the 32-object data
set to correctly predict the SC439-B4' interaction. Whereas in the 10 model
derived for the 320-object dataset the relative weight of this interaction is
about 10%, in the model derived for the 32-object dataset it is less than 1% of
the maximal weight. For the 320 dataset there are 20 different amino acid
residues at position 439 while in the 32-object dataset there are only two.

IG, G, ISA, SA, IGSA Models (Combinations of Intermolecular Energy
and Free Energy of Solvation and/or Solvent Accessible Surface Area
Terms)

The internal and external predictive abilities of these models with
block-scaled X-variables are similar to that of the I0 model (see Tables II
and III). In the IG model, important X-variables are almost identical to
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those of the 10 model. Besides intermolecular interaction energy terms, the
change of free energy of solvation of the amino acid residues 426 and 427 as
well as of the base pair 4-3' appear as important X-variables. After FFD
variable selection, the negative change of the free energy of solvation of the
base 3' (AAG3') is strongly correlated with the increasing binding affinity.
The model considering the free energy of solvation terms only has the best
external predictive ability after FFD variable selection (Table III). The dom-
inating X variables in this model are AAG3', AAG426, AAG427, AAG470, i.e.
X-variables which appear as important in the IG model as well. The com-
plexes with the highest binding affinity have thymine (T) at position 3'. Ap-
parently, the desolvation of thymine at position 3' is a driving force in com-
plex formation.

In the ISA and IGSA models, besides the intermolecular interaction en-
ergy terms (similar to those in the I0 model), the change of the solvent ac-
cessible surface area of residue 439 and the central nucleotides appear as
important X-variables. After FFD variable selection, the changes of the sol-
vent accessible surface area of residues Asp-426, Glu-427, Arg-470, Lys-471
and Arg-477 and the nucleotide pair 5-2' become more important. However,
the decrease of the free energy of hydration of the base at position 3' is an
important X-variable in the IGSA model, before and after variable selection.

0,8+
0,6
0,4

0,2+

0 T T T T T T T T T T T T
0,2
-0,4—

-0,6

0,8

V[B3"-BB440]
V[B4'-BB439)]
V[P2'-BB447]
[B3"-BB439]
e[P3'-SC427]
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¢[B4-BB443)]
e[B2"-BB447]
e[B3'-SC443]
e[P2'-SC470]
e[S2°-SC470]
AG3”
ASAS427
ASASAT1

Figure 4. Normalized weighted coefficients for the most important X-variables in the
IGSA model for the 32-object dataset after the FFD variable selection.
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The residues Asp-426, Glu-427, Arg-470, nucleotide 2' and Arg-477 are
connected by an H-bond network (Figure 3). Combined investigation of 10,
IG and IGSA models as well as 3D structure of the complexes makes the
physical explanation of the negative influence of some attractive interac-
tions on the binding affinity clear. Because of the interaction with Ser-440,
the side chain of residue 470 is differently oriented in DBDs with serine at
position 440 than in those with alanine. Substitution of serine at position
440 causes a twist of the side chain of Arg-470 and exposure of its polar part
to water in the free ESA and ESV DBDs (Figure 5).

Desolvation of an arginine is unfavorable and, consequently, the binding
of a DBD with Ser-440 to DNA is weakened. But, as the attractive interac-
tions between the phosphate 2' group and SCs of residues 470 and 477 in the

Figure 5. Backbone superimposed 3D structures of the EGA (black) and ESA (gray)
complexes. Only residues 439, 440, 470, and 477 are displayed.
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complexes with serine at 440 are about 4 kJ mol~! stronger than in those with
glycine at 440, they appear with negative weights. Different orientations of
the Arg-470 side chain cause differences in the SASA of the amino acid resi-
dues with which it is in an H-bond network: Asp-426, Glu-427, nucleotide 2'
and Arg-477. Consequently, these SASAs appear as important X-variables in
the SA, ISA and IGSA models. The model with SASA terms only has lower
predictive abilities than the other models (Tables II and III), but still reason-
able. In the analysis of intramolecular interactions, we noticed the destabi-
lizing effect of Ser-440 to DBD, resulting from its repulsive interactions with
cysteines at positions 438 and 441 of about 12 and 8 kJ mol~!, respectively.

Principal Component Analysis (PC)

Principal components analysis reveals the structure of X-variables. In the
score plot of the first and second PC of the 10 and IG models, the 32-com-
plexes are divided into four groups with respect to the amino acid residue at
position 439 and the nucleotide at position 4' (Figure 6). Distributions of the
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Figure 6. Loadings for the first two PCs of the ISA model.
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groups in the score plots of these two models are approximately mirror im-
ages on the y-axis.

The dominant X-variables in both cases are the electrostatic interactions
between: (a) the side chain of residue 443 and the base pair 3' 4, and (b) the
side chain of residue 439 and the central nucleotides. The electrostatic in-
teraction energy term, SC439-B4', positively describes the first PC in the 10
model, and negatively in the IG model. However, in the latter model, PC1 is
mostly described by the AAG439 term describing the free energy of
hydration of mutated residues (positively). The negative correlation of these
two X-variables in the IG model and the shift of the electrostatic SC439-B4'
interaction term from the right to the left side of the score plot could be the
reason why addition of the solvation free energy terms does not improve the
predictive ability of the I0 model.

In the score plot of the first and second PCs of the ISA model, the com-
plexes are grouped with regard to the amino acid residues at positions 439
and 443. The dominant X-variables are the change of the solvent-accessible
surface area of the mutated residues 439 (ASA?’. ) and 443(ASA™

P
439 4437

10 Model for 28-Object Datasets

Based on the PC analysis, 3 different 28-object datasets were con-
structed in such a way that one object from each group of the complexes de-
termined by the PC analysis in the I0 and IG models was randomly ex-
tracted and put into a 4-object test dataset.

The mean R? (SDEC) and @? (SDEP) of the I0 and IG models derived
with these datasets as well as external SDEP values are given in Table IV.
Prediction of the Y variable for the 12 external complexes (3x4) is, after the
FFD variable selection, very good (Table IV).

Similarly to models obtained for the whole 32-object dataset, the Y value
for the EGATC is overestimated (Figure 7). Important X-variables in these
models are similar to those derived when the 32 and 27 complexes are con-
sidered, namely the terms describing the van der Waals and electrostatic in-
teraction energy between mutated amino acid residues and mutated bases,
and the electrostatic interaction energy between the central nucleotides and
the side chains of residues Arg-447 and Arg-470.

Affinity Prediction for Novel Complexes

On the basis of the analysis of different COMBINE models derived for
the 32-object dataset, we tried to predict the sequences of DBDs that would
bind to the native GR RE (Figure 1b, central base pair being TT) with high
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Figure 7. Plot of the predicted against experimental negative log;, binding affinities
computed with the I0 model, after the fractional factorial design variable selection
was applied, derived with the three different 28-object datasets and applied to the
external three 4-object complement datasets.

affinity. Among the 8 new DBDs built, EGI, EGL, EGS, EGT, GGI, GGL,
GGS, and GGT, the highest binding affinity was predicted using the 10, IG
and G models for GGL, GGS and GGT binding domains. The mean binding
affinities (amount of protein in ng needed to bind 30% of total DNA probe)
determined for the GGLTT, GGSTT and GGTTT complexes with the 10, IG
and G models obtained after the FFD variable selection are 2.3+1.2, 2.5+1.4
and 2.4+1.1, respectively. The binding affinity for the native GR DBD and
GR RE is 19 while the highest binding affinity towards GR RE, among the 8
GR DBD mutants, is 4.5 for the GGV and GGA binding domains.3

DISCUSSION

In our previous work, we analyzed the binding specificity of transcrip-
tion factors of the nuclear receptor family to DNA for a set of 320 complexes
consisting of all possible combinations of 20 different DBDs with one variable
position binding to 16 different response elements with two variable posi-
tions.! Free-Wilson-like and COMBINE QSAR analyses were performed on
this set of 320 complexes using measured functional data from a transactiva-
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tion assay. In this work, we used a different dataset of 32-complexes (con-
sisting of 8 different DBDs with three variable positions binding to 4 different
response elements with two variable positions), for which binding affinities
were available. Using binding affinities, it was possible to derive models
with a better predictive ability, despite having fewer complexes in the train-
ing set.

The best @2 values for the 32 complexes dataset are about 0.7 whereas
those for the 320 complexes are about 0.5. The prediction abilities of the
smaller dataset are most likely due to the improved accuracy of the binding
affinity measurements compared to the functional assay.

The 10, ISA and IGSA models derived with these two different datasets
have many common important X-variables: the electrostatic energy terms
describing the intermolecular interaction between the mutated nucleotides
and the mutated residue 439. The terms including the nucleotide pair 5-2',
namely the electrostatic interactions of these nucleotides with the side
chain of the charged amino acid residues at positions 447, 470 and 477 and
the change of their solvent accessible surface area. Thymine at position 3'
enhances binding in both datasets because of the favorable desolvation of its
methyl group while in the complexes with Val at position 443 because of the
attractive CH---O interactions between B3' and the Val-443 side chain (Fig-
ure 3). However, all complexes from the 320-object dataset have alanine at
position 443. Not all attractive interactions improve binding specificity, e.g.
the electrostatic interactions B2'-SC447, P2'-SC470 and P2'-SC477 have a
negative influence on the relative affinity. Differences in these interactions
are mostly due to different bases at position 3' and amino acid residues at
position 440. Ser-440 enhances these attractive interactions and in this way
indirectly decreases the protein-DNA binding affinity. Mutation of this resi-
due to Gly improves binding affinity in most cases.

The best models with the 320-object dataset were the 110 and IGSA mod-
els. However, addition of the solvent accessible surface area and the free en-
ergy of solvation to X-variables does not enhance the predictive ability of
the 10 model with the 32-object dataset although the model, including the
free energy of solvation terms only, has a very good predictive ability (Tables
IT and III), especially external. The negative correlation between the free
energy of solvation of the amino acid residue at position 439 and the electro-
static interaction between SC439 and B4', revealed by the principal compo-
nents analysis, might be a possible explanation for this.

Despite the similarity of the I0 models derived for these two datasets, an
attempt to predict activities of the 320 complexes used in our previous work
by the model (I0) derived with the 32-object dataset failed. The two main
reasons for this failure of prediction are: (a) the different nature of Y-vari-
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able (binding affinity used in this work and functional activities in the pre-
vious work); (b) the different number of variable positions in DBD. Accord-
ing to the results obtained for the 32-object data set, it seems that all three
positions in DBD, 439, 440, and 443, are important for defining specificity
towards different response elements.

Based on the COMBINE models derived for 32 complexes, a few new
DBDs, expected to have a very high affinity towards native GR RE, have
been built.

CONCLUSION

The specificity of binding of transcription factors of the nuclear receptor
family to DNA is governed by a number of different processes: desolvation of
both proteins and DNA, their stability and intermolecular interactions,
mostly between charged amino acid residues and phosphate groups of DNA
and a few amino acid residues and nucleotides that come in close contact.
The specificity of binding can be predicted only within a similar class of
complexes (the same variable positions). However, such predictions are reli-
able (Tables III and IV) and give hints of how to improve binding affinity.

The COMBINE models with the best predictive abilities were derived
for the sets of DBD-DNA complexes optimized with a restrained backbone,
followed by a small number of unrestrained optimization steps (30 and 70).

In the 320-object dataset studied earlier, the II0 and IGSA models had
the best predictive ability. The model with the highest predictive ability (in-
ternal and external) for the dataset considered in this work is the 10 model.
Its structure is similar to that derived earlier for the 320-object dataset but
it has a much better predictive performance. Unlike the 320-object dataset,
ASASA and AAG™Y do not significantly improve the predictive ability of the
I0 model. Although the structures of the models derived earlier and in this
work differ, there are a number of important X-variables common to both
datasets, such as the electrostatic interactions between the bases at posi-
tions 3' and 4' and SC439, and base 2', and mutated bases, and the side
chains of charged amino acid residues at positions 427, 447, 470 and 477.

Decrease of the free energy of hydration of the B3' base was in both
cases found to be the driving force for the formation of the initial complex.
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SAZETAK

Analiza specifi¢cnosti vezanja nuklearnih receptora
za DNK COMBINE metodom: usporedba dvaju skupova

Sanja Tomié i Rebecca C. Wade

Da bi se utvrdile osnovne odrednice specifi¢nosti vezanja nuklearnih transkriptor-

skih faktora i DNK provedena je komparativna analiza veznih energija (COMBINE).

U prethodnom radu (vidi S. Tomié et al.') COMBINE QSAR modeli izvedeni su

za skup od 320 kompleksa DNK s mutantima glukokortikoidnih receptora. U ovom
radu modeli su izvedeni za skup od 32 kompleksa koji se od vecega razlikuje po tomu
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$to kompleksi imaju dodatno mjesto mutacije u domeni koja se veze za DNK, a pored
funkcionalne aktivnosti izmjereni su i afiniteti vezanja. Uporabom manjega, ali eks-
perimentalno bolje odredenog skupa, dobiveni su modeli s boljom pretkaznom moéi.
Specifi¢nost vezanja u oba je slucaja bila odredena sliénim parametrima, ali razlici-
tih relativnih vaznosti: energijama elektrostatske interakcije mutiranih nukleotida s
mutiranim i nekim nabijenim aminokiselinskim ostatcima (Arg-447, Arg-470, Arg-477),
te Gibbsovim slobodnim energijama otapanja mutiranih baza.



