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Abstract. The paper is devoted to singular calculus of variations problems with con-
straints which are not regular mappings at the solution point, i.e., its derivatives are not
surjective. We pursue an approach based on the constructions of the p-regularity theory.
For p-regular calculus of the variations problem we present necessary conditions for opti-
mality in a singular case and illustrate our results by a classical example of calculus of the
variations problem.
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1. Introduction

We investigate the following Lagrange problem

J0(x) =

∫ t2

t1

F (t, x(t), x′(t))dt → min (1)

subject to
H(t, x(t), x′(t)) = 0, M1x(t1) +M2x(t2) = 0, (2)

where x ∈ C2
n[t1, t2], H(t, x(t), x′(t)) = (H1(t, x(t), x

′(t)), . . . , Hm(t, x(t), x′(t)))T ,

Hi : R× R
n × R

n → R, i = 1, . . . ,m,

F : R× R
n × R

n → R,

t ∈ [t1, t2], M1, M2 are n × n matrices and Cl
n([t1, t2]) are Banach spaces of n-

dimensional l-times continuously differentiable vector functions with usual norms.
The system of equations (2) can be replaced by the following operator equation

G(x(·)) = 0,
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where

G : X → Y,

X = {x(·) ∈ C2
n[t1, t2] :M1x(t1) +M2x(t2) = 0},

Y = Cm[t1, t2]

and
G(x)(·) = H(·, x(·), x′(·)).

Let us define

λ(t) = (λ1(t), . . . , λm(t))T ,

λ(t)H = λ1(t)H1 + · · ·+ λm(t)Hm,

λ(t)Hx = λ1(t)H1x + · · ·+ λm(t)Hmx,

λ(t)Hx′ = λ1(t)H1x′ + · · ·+ λm(t)Hmx′ .

If ImG′(x̂) = Y, where x̂(t) is a solution to (1) - (2), then necessary conditions of
Euler-Lagrange

Fx + λ(t)Hx −
d

dt
(Fx′ + λ(t)Hx′) = 0

hold. Here, Fx, Hx, Fx′ , Hx′ are partial derivatives of F (t, x(t), x′(t)) and
H(t, x(t), x′(t)) with respect to x and x′, respectively.

In a singular (nonregular) case when ImG′(x̂) 6= Y, we can only guarantee that
the following equations

λ0Fx + λ(t)Hx −
d

dt
(λ0Fx′ + λ(t)Hx′ ) = 0 (3)

hold, where λ20 + ‖λ(t)‖2 = 1, i.e., λ0 might be equal to 0, and then we have not
constructive information of the functional F (t, x(t), x′(t)).

Example 1. Consider the problem

J0(x) =

∫ 2π

0

(x21(t) + x22(t) + x23(t) + x24(t) + x25(t))dt → min (4)

subject to

H(t,x(t), x′(t))

=

(
x′1(t)− x2(t) + x

p
3(t)x1(t) + x

p
4(t)x2(t)− x

p
5(t)(x1(t) + x2(t))

x′2(t) + x1(t) + x
p
3(t)x2(t)− x

p
4(t)x1(t)− x

p
5(t)(x2(t)− x1(t))

)

= 0,
(5)

xi(0)− xi(2π) = 0, i = 1, . . . , 5, p ≥ 2. Here

F (t, x(t), x′(t)) = x21(t) + x22(t) + x23(t) + x24(t) + x25(t), M1 = −M2 = I5,

where I5 is the unit matrix of size 5 and

G(x) =

(
x′1(·)− x2(·) + x

p
3(·)x1(·) + x

p
4(·)x2(·)− x

p
5(·)(x1(·) + x2(·))

x′2(·) + x1(·) + x
p
3(·)x2(·)− x

p
4(·)x1(·)− x

p
5(·)(x2(·)− x1(·))

)

= 0.
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The solution of (1) - (2) is x̂(t) = 0 and G′(0) is singular.
The corresponding Euler-Lagrange system of equations (see (3)) in this case is

as follows:

2λ0x1 + λ2 − λ′1 + λ1x
p
3 − λ1x

p
5 + λ2x

p
5 − λ2x

p
4 = 0

2λ0x2 − λ1 − λ′2 + λ1x
p
4 + λ2x

p
3 − λ1x

p
5 − λ2x

p
5 = 0

2λ0x3 + pλ1x1x
p−1
3 + pλ2x2x

p−1
3 = 0 (6)

2λ0x4 + pλ1x2x
p−1
4 − pλ2x1x

p−1
4 = 0

2λ0x5 − pλ1x
p−1
5 x1 − pλ1x2x

p−1
5 − pλ2x2x

p−1
5 + pλ2x1x

p−1
5 = 0

λi(0)− λi(2π) = 0, i = 1, 2.

(to simplify formulas we omit dependence of t here and further in the paper).
If λ0 = 0, we obtain the series of spurious solutions to the system (4) - (5):

x1 = a sin t, x2 = a cos t, x3 = x4 = x5 = 0,

λ1 = b sin t, λ2 = b cos t, a, b ∈ R.

2. Elements of p-regularity theory

Let us consider the equation
f(x) = 0, (7)

where f : X → Y and X, Y are Banach spaces, f ∈ Cp+1(X). Moreover, let us
assume that f ′(x̂) is singular, where x̂ is a solution of (7).

We describe the basic constructions of p-regularity theory (see e.g. [6]) which
are used for the investigation of singular problems.

Suppose that the space Y is decomposed into a direct sum

Y = Y1 ⊕ . . .⊕ Yp, (8)

where Y1 = Imf ′(x̂), Z1 = Y. Let Z2 be a closed complementary subspace to Y1 (we
assume that such closed complement exists), and let PZ2 : Y → Z2 be the projection
operator onto Z2 along Y1. By Y2 we mean the closed linear span of the image of
the quadratic map PZ2f

(2)(x̂)[·]2. More generally, define inductively

Yi = span ImPZi
f (i)(x̂)[·]i ⊆ Zi, i = 2, . . . , p− 1,

where Zi is a chosen closed complementary subspace for (Y1 ⊕ . . . ⊕ Yi−1) with
respect to Y, i = 2, . . . , p and PZi

: Y → Zi is the projection operator onto Zi along
(Y1 ⊕ . . . ⊕ Yi−1) with respect to Y, i = 2, . . . , p. Finally, Yp = Zp. The order p is
chosen as the minimum number for which (8) holds. Let us define the following
mappings

fi(x) = Pif(x), fi : X → Yi i = 1, . . . , p,

where Pi := PYi
: Y → Yi is the projection operator onto Yi along (Y1 ⊕ . . . ⊕

Yi−1 ⊕ Yi+1 ⊕ . . .⊕ Yp) with respect to Y, i = 1, . . . , p.
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Definition 1. The linear operator Ψp(x̂, h) ∈ L(X,Y1 ⊕ . . .⊕ Yp), h ∈ X, h 6= 0

Ψp(x̂, h) = f ′
1(x̂) + f ′′

2 (x̂)h+ . . .+ f (p)
p (x̂)[h]p−1,

is called the p-factor operator.

Definition 2. We say that the mapping f is p-regular at x̂ along an element h if
ImΨp(x̂, h) = Y.

Remark 1. The condition of p-regularity of the mapping f(x) at the point x̂ along
h is equivalent to

Imf (p)
p (x̂)[h]p−1 ◦Ker Ψp−1(x̂, h) = Yp,

where

Ψp−1(x̂, h) = f ′
1(x̂) + f ′′

2 (x̂)h+ . . .+ f
(p−1)
p−1 (x̂)[h]p−2.

Definition 3. We say that the mapping f is p-regular at x̂ if it is p-regular along
any h from the set

Hp(x̂) =

p
⋂

k=1

Kerkf
(k)
k (x̂) \ {0},

where

Kerkf
(k)
k (x̂) = {ξ ∈ X : f

(k)
k (x̂)[ξ]k = 0}

is the k-kernel of the k-order mapping f
(k)
k (x̂)[ξ]k.

For a linear surjective operator Ψp(x̂, h) : X 7→ Y between Banach spaces, by
{Ψp(x̂, h)}

−1 we denote its right inverse. Therefore,

{Ψp(x̂, h)}
−1 : Y 7→ 2X

and we have

{Ψp(x̂, h)}
−1(y) = {x ∈ X : Ψp(x̂, h)x = y} .

We define the norm of {Ψp(x̂, h)}
−1 via the formula

‖{Ψp(x̂, h)}
−1‖ = sup

‖y‖=1

inf{‖x‖ : x ∈ {Ψp(x̂, h)}
−1(y)}.

We say that {Ψp(x̂, h)}
−1 is bounded if ‖{Ψp(x̂, h)}

−1‖ <∞.

Definition 4. The mapping f is called strongly p-regular at the point x̂ if there
exists γ > 0 such that

sup
h∈Hγ

∥
∥
∥{Ψp(x̂, h)}

−1
∥
∥
∥ <∞,

where

Hγ =

{

h ∈ X :
∥
∥
∥f

(k)
k (x̂)[h]k

∥
∥
∥
Yk

≤ γ, k = 1, . . . , p, ‖h‖ = 1

}

.
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3. Optimality conditions for p-regular optimization problems

We recall the p-order necessary conditions for singular optimization problems (see
[2]-[5]) of the form:

minϕ(x) (9)

subject to

f(x) = 0, (10)

where f : X → Y , f ∈ Cp+1(X), ϕ : X → R, ϕ ∈ C2(X) and X, Y are Banach
spaces. We assume that x̂ is a solution of (9) - (10) and Imf ′(x̂) 6= Y .

Let us define the p-factor Lagrange function

Lp(x, λ, h) = ϕ(x) +

〈
p

∑

k=1

f
(k−1)
k (x)[h]k−1, λ

〉

,

where λ ∈ Y ∗, f
(0)
1 (x) = f(x) and

L̄p(x, λ, h) = ϕ(x) +

〈
p

∑

k=1

2

k(k + 1)
f
(k−1)
k (x)[h]k−1, λ

〉

.

The following basic theorems on optimality conditions in a nonregular case were
formulated and proved in [2].

Theorem 1 (Necessary and sufficient conditions for optimality). Let X and Y be
Banach spaces,

ϕ ∈ C2(X), f ∈ Cp+1(X), f : X → Y, ϕ : X → R.

Suppose that h ∈ Hp(x̂) and f is p-regular along h at the point x̂. If x̂ is a local

solution to problem (9) - (10), then there exist multipliers λ̂(h) ∈ Y ∗ such that

Lp′x(x̂, λ̂(h), h) = 0 ⇔ ϕ′(x̂) +
(

f ′
1(x̂) + · · ·+ f (p)

p (x̂)[h](p−1)
)∗

λ̂(h) = 0. (11)

Moreover, if f is strongly p-regular at x̂, there exist α > 0 and multipliers λ̂(h) such
that (11) is fulfilled and

L̄pxx(x̂, λ̂(h), h)[h]
2 ≥ α‖h‖2,

for every h ∈ Hp(x̂), then x̂ is a strict local minimizer to problem (9) - (10).

The next theorem also gives necessary and sufficient conditions for optimality
but it is more convenient for application (see [1]).

Theorem 2. Let X and Y be Banach spaces,

ϕ ∈ C2(X), f ∈ Cp+1(X), f : X → Y, ϕ : X → R, h ∈ Hp(x̂),
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and let f be p-regular along h at the point x̂. If x̂ is a solution to problem (9) - (10),
then there exist multipliers λ̄i(h) ∈ Y ∗

i , i = 1, . . . , p such that

ϕ′(x̂) + (f ′(x̂))
∗
λ̄1(h) + . . .+

(

f (p)(x̂)[h](p−1)
)∗

λ̄p(h) = 0, (12)

and (

f (k)(x̂)[h](k−1)
)∗

λ̄i(h) = 0, k = 1, . . . , i− 1, i = 2, . . . , p. (13)

Moreover, if f is strongly p-regular at x̂, there exist α > 0 and multipliers λ̄i(h),
i = 1, . . . , p such that (12) - (13) hold, and

(

ϕ′′(x̂) +
1

3
f ′′(x̂)λ̄1(h) + . . .+

2

p(p+ 1)
f (p+1)(x̂)[h]p−1λ̄p(h)

)

[h]2 ≥ α‖h‖2,

for every h ∈ Hp(x̂), then x̂ is a strict local minimizer to problem (9) - (10).

Proof. We need to prove only formula (13). From (11) we obtain

ϕ′(x̂) +
(

P1f
′(x̂) + · · ·+ Ppf

(p)(x̂)[h](p−1)
)∗

λ̂(h) = 0.

This expression can be transformed as follows

ϕ′(x̂) + f ′(x̂)∗P ∗
1 λ̂(h) + · · ·+

(

f (p)(x̂)[h](p−1)
)∗

P ∗
p λ̂(h) = 0.

Let λ̄k(h) := P ∗
k λ̂(h), k = 1, . . . , p. Then, for i < k, k = 1, . . . , p,

(

f (k)(x̂)[h](k−1)
)∗

λ̄(h) =
(

f (k)(x̂)[h](k−1)
)∗

P ∗
i λ̂i(h)

=
(

Pif
(k)(x̂)[h](k−1)

)∗

λ̂i(h) = 0,

which proves (13).

To apply the previous theorem to singular calculus of variations problems let us
define the p-factor Euler-Lagrange function

S(x) = F (x) +
〈

λ(t),
(

g1(x) + g′2(x)[h] + . . .+ g(p−1)
p (x)[h]p−1

)〉

= F (x) + λ(t)G(p−1)(x)[h]p−1,

where

G(p−1)(x)[h]p−1 = g1(x) + g′2(x)[h] + · · ·+ g(p−1)
p (x)[h]p−1,

λ(t) = (λ1(t), . . . , λm(t))T

and gk(x), for k = 1, . . . , p are determined for the mapping G(x) similarly to fk(x),
k = 1, . . . , p for the mapping f(x) in the construction of the p-factor operator, i.e.,
gk(x) = PYk

G(x), k = 1, . . . , p. Let us define

g
(k−1)
k (x)[h]k−1 =

∑

i+j=k−1

Ci
k−1g

(k−1)

kxi(x′)j (x)h
i(h′)j , k = 1, . . . , p,
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where
g
(k−1)
kxi(x′)j (x) = g

(k−1)

kx . . . x
︸ ︷︷ ︸

i

x′ . . . x′
︸ ︷︷ ︸

j

(x).

Definition 5. We say that problem (1) - (2) is p-regular at x̂ along

h ∈

p
⋂

k=1

Kerkg
(k)
k (x̂), ‖h‖ 6= 0

if

Im
(

g′1(x̂) + . . .+ g(p)p (x̂)[h]p−1
)

= Cm[t1, t2].

We consider the following theorem

Theorem 3. Let x̂(t) be a solution of problem (1) - (2) and assume that the problem
is p-regular at x̂ along

h ∈

p
⋂

k=1

Kerkg
(k)
k (x̂).

Then there exists a multiplier λ̂(t) = (λ̂1(t), . . . , λ̂m(t))T such that the following
p-factor Euler-Lagrange equation

Sx(x̂)−
d

dt
Sx′(x̂) = Fx(x̂) +

〈

λ̂,

p
∑

k=1

∑

i+j=k−1

Ci
k−1g

(k−1)
xi(x′)j (x̂)h

i(h′)j

〉

x

−
d

dt



Fx′(x̂)+

〈

λ̂(t),

p
∑

k=1

∑

i+j=k−1

Ci
k−1g

(k−1)
xi(x′)j (x̂)h

i(h′)j

〉

x′



(14)

= 0

holds.

The proof of this theorem is very similar to the one of the analogous result for
the singular isoperimetric problem, as in [1] or [4].

In problem (4) - (5) of Example 1, the mapping G is singular at
x̄ = (a sin t, a cos t, 0, 0, 0)T , a ∈ R. Indeed,

G′(x̄)(·) =

(
(·)′1 − (·)2
(·)′2 + (·)1

)

,

where

G′(x̄)x(t) =

(
x′1(t)− x2(t)
x′2(t) + x1(t)

)

.

If we replace

(
x′1 − x2
x′2 + x1

)

by x′ + Lx, where

L =

(
0 −1 0 0 0
1 0 0 0 0

)

,
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then G′(x̄)(·) = (·)′ + L(·) and

KerG′(x̄) = Span
{
(Φ1(t), 0, 0, 0)

T , (Φ2(t), 0, 0, 0)
T
}

⊕
{
(0, 0, x3(t), x4(t), x5(t))

T , xi ∈ C2[0, 2π], i = 3, 4, 5
}
,

where Φ1(t) = (sin t, cos t)T , Φ2(t) = (cos t,− sin t)T , and moreover,

ImG′(x̄) = (Ker(G′(x̄)∗)⊥ =

(

Ker(−
d

dt
(·)′ + LT (·))

)⊥

=
{
ξ ∈ C2[0, 2π] : 〈ξ, ψi〉 = 0, i = 1, 2, ψ1(t) = (sin t, cos t)T ,

ψ2(t) = (cos t,− sin t)T
}

6= C2[0, 2π].

It means that the mapping G(x) is non-regular at the points x̄. We obtain that Y2 =
{0}, . . ., Yp−1 = {0} and Yp = (ImG(p−1)(x̄))⊥ = Span{ψ1, ψ2}, where ψ

′
1 = ψ2,

ψ′
2 = −ψ1 and 〈Φi, ψj〉 = δij , 〈ζ, η〉 =

∫ 2π

0
ζ(τ)η(τ)dτ.

The projection operator PYp
is defined as

Pp

(
y1
y2

)

= Ppy = ȳ1ψ1 + ȳ2ψ2,

where y = (y1, y2)
T and

〈y − (ȳ1ψ1 + ȳ2ψ2), ψ1〉 = 0,

〈y − (ȳ1ψ1 + ȳ2ψ2), ψ2〉 = 0,

i.e.,
1

2π
〈y, ψ1〉 = ȳ1,

1

2π
〈y, ψ2〉 = ȳ2.

Let us point out that Pp(x1, ψ1 + x2ψ2) = x1ψ1 + x2ψ2.

Based on Remark 1, we can verify surjectivity of PpG
(p)(x̄)[h]p−1 only on

KerG(p−1)(x̄) for

h ∈ KerG′(x̄) ∩ · · · ∩KerpPpG
(p)(x̄),

h = (a sin t, a cos t, 1, 1, 1)T .

In order to calculate PpG
(p)(x̄)[h]p−1 let us determine G(p)(x̄) and

G(p)(x̄)[h]p−1 = p!a

(
0 0 hp−1

3 sin t h
p−1
4 cos t −hp−1

5 (cos t+ sin t)

0 0 hp−1
3 cos t −hp−1

4 sin t h
p−1
5 (sin t− cos t)

)

.

It is obvious that h = (a sin t, a cos t, 1, 1, 1)T belongs to KerG′(x̄)∩· · ·∩KerpG(p)(x̄)
and consequently to KerG′(x̄) ∩ · · · ∩KerpPpG

(p)(x̄). We have

G(p)(x̄)[hp−1, x] = p!a(x3 − x5)

(
sin t
cos t

)

+ p!a(x4 − x5)

(
cos t
− sin t

)

.
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It means that
PpG

(p)(x̄)[hp−1, x] = G(p)(x̄)[hp−1, x]

and
G(p)(x̄)[h]p ◦KerG′(x̄) = Span {Φ1,Φ2} = Yp.

Therefore, G(p)(x̄)[h]p−1 is surjection. Hence, G(x) is p-regular along h at the points
x̄ = (a sin t, a cos t, 0, 0, 0)T . Finally, we can apply Theorem 3 with λ0 = 1. We have
constructed an operator

G′(x̄) + PpG
(p)(x̄)[h]p−1 =

(
(·)′1
(·)′2

)

+

(
0 −1 p!a sin t p!a cos t −p!a(cos t+ sin t)
1 0 p!a cos t −p!a sin t p!a(sin t− cos t)

)

which corresponds to the following system (Fx′ = 0):

Fx(x̄) + (G′(x̄) + PpG
(p)(x̄)[h]p−1)∗λ = 0 ⇔

Fx(x̄) +G′(x̄)Tλ+
(

PpG
(p)(x̄)[h]p−1

)T

λ = 0.

It leads to the system of equations






2x̄1 + λ′1 − λ2 = 0
2x̄2 + λ′2 + λ1 = 0
2x̄3 + p!λ1a sin t+ p!λ2a cos t = 0
2x̄4 + p!λ1a cos t− p!λ2a sin t = 0
2x̄5 − p!λ1a(cos t+ sin t) + p!λ2a(sin t− cos t) = 0
λi(0)− λi(2π) = 0, i = 1, 2.

(15)

or






2a sin t+ λ′1 − λ2 = 0
2a cos t+ λ′2 + λ1 = 0
λ1 sin t+ λ2 cos t = 0
λ1 cos t− λ2 sin t = 0
−λ1(cos t+ sin t) + λ2(sin t− cos t) = 0,
λi(0)− λi(2π) = 0, i = 1, 2.

One can verify that the false solutions of (6)

x1 = a sin t, x2 = a cos t, x3 = x4 = x5 = 0

do not satisfy system (15) for a 6= 0. It means that x1 = a sin t, x2 = a cos t,
x3 = x4 = x5 do not satisfy the 2-factor Euler-Lagrange equation (14).

Let us consider the same problem with higher derivatives x′(t), . . ., x(r), r ≥ 2,

J(x) =

∫ t2

t1

F (t, x(t), x′(t), . . . , x(r)(t))dt → min, x(t) ∈ C2r
n [t1, t2],

subject to a subsidiary differential relation

H(t, x(t), x′(t), . . . , x(r)(t)) =





H1(t, x(t), x
′(t), . . . , x(r)(t))
· · ·

Hm(t, x(t), x′(t), . . . , x(r)(t))



 =





0
. . .

0



 ,
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Akx
(k)(t1) +Bkx

(k)(t2) = 0, where Ak, Bk are n× n matrices, k = 1, . . . , r. Let

G(x) = H(·, x(·), . . . , x(r)(·)), G : X → Y,

where Y = Cm([t1, t2]) and

X = {x(·) ∈ C2r
n [t1, t2] : Akx

(k)(t1) +Bkx
(k)(t2) = 0, k = 1, . . . , r}.

Moreover,

g
(k−1)
k (x)[h]k−1 =

∑

i1+···+ir=k−1

g
(k−1)

xi1 ···(x(r))ir
[h+ h′ + · · ·+ h(r)]k−1, k = 1, . . . , p,

and introduce the so - called p-factor Euler-Poisson function

K(x) = F (x) +
〈

λ(t),
(

g1(x) + g′2(x)[h] + . . .+ g(p−1)
p (x)[h]p−1

)〉

.

Theorem 4. Let x̂(t) be a solution of problem (1) - (2) and assume that this problem
is p-regular at x̂ along

h ∈

p
⋂

k=1

Kerkg
(k)
k (x̂).

Then there exists a multiplier λ̂(t) = (λ̂1(t), . . . , λ̂m(t))T such that the following
p-factor Euler-Poisson equation

Kx(x̂)−
d

dt
Kx′(x̂+

d2

dt2
Kx′′(x̂)− ...+ (−1)rKx(r)(x̂)

= Fx(x̂) +

〈

λ̂(t),

p
∑

k=1

g
(k−1)
k (x̂)[h]k−1

〉

x

−
d

dt

[

Fx′(x̂) +

〈

λ̂(t),

p
∑

k=1

g
(k−1)
k (x̂)[h]k−1

〉

x′

]

+ . . .+ (−1)(r)
dr

dtr

[

Fx(r)(x̂) +

〈

λ̂(t),

p
∑

k=1

g
(k−1)
k (x̂)[h]k−1

〉

x(r)

]

= 0

holds.

The proof of Theorem 4 is similar to the one the reader can find in [4] for an
isoperimetric problem.

Example 2. Consider the following problem

J(x) =

∫ π

0

(x21(t) + x22(t) + x23(t))dt → min (16)

subject to

H(t, x(t), x′(t), x′′(t)) = x′′1 (t) + x1(t) + x
p
2(t)x1(t)− x

p
3(t)x1(t) = 0, (17)
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xi(0)− xi(π) = 0, x′i(0) + x′i(π) = 0, i = 1, 2, 3, p ≥ 2, p = 2k, k = 1, 2, . . . .
Here A1 = −B1 = I3, A2 = B2 = I3, where I3 means the unit matrix of size 3.
The solution of (16) - (17) is x̂(t) = 0. The Euler-Poisson equation in this case

has the following form

λ0Fx + λ(t)Hx −
d

dt
(λ(t)Hx′ ) +

d2

dt2
(λ(t)Hx′′ ) = 0

or

2λ0x1 + λ+ λx
p
2 − λx

p
3 + λ′′ = 0

2λ0x2 + pλx
p−1
2 x1 = 0

2λ0x3 − pλx
p−1
3 x1 = 0,

λ(0)− λ(π) = 0, λ′(0) + λ′(π) = 0

and gives the series of spurious solutions x1 = a sin t, x2 = 0, x3 = 0, λ = b sin t,
λ0 = 0, a ∈ R. The mapping G(x) is singular at these points and G′(a sin t, 0, 0) is
not surjective. But G(x) is p-regular at x̄ = (a sin t, 0, 0) along h = (sin t, 1,−1)T .

Indeed, Y1 = {sin t}⊥, Y2 = {0}, . . ., Yp−1 = {0}, Yp = Span{sin t},

G′(x̄)h+ PYp
G(p)(x̄)[h]p = h′′1 + h1 +

2p!

π
sin t

∫ π

0

(hp2x̄1 − h
p
3x̄1) sin τdτ

= h′′1 + h1 +
2p!a

π
sin t

∫ π

0

(hp2 − h
p
3) sin

2 τdτ = 0.

It means that h ∈ KerG′(x̄) ∩ PYp
KerpG(p)(x̄) and

PYp
G(p)(x̄)[h]p−1(·) = 2

p!a

π
sin t

∫ π

0

(1p−1(·)2 − (−1)p−1(·)3) sin
2 τdτ.

We have

PYp
G(p)(x̄)[h]p−1





b sin t
m

n



 = 2
p!ab

π
sin t

∫ π

0

(m+ n) sin2 τdτ = Yp, b ∈ R, m 6= −n,

i.e., G is p-regular at x̄ = (a sin t, 0, 0) along h and at these points x̄ we can guarantee
that λ0 = 1 in the p-factor Euler-Poisson equation

2a sin t+ λ′′ + λ = 0

2
p!a

π
sin t

∫ π

0

sin2 τλ(τ)dτ = 0

−
p!a

π
sin t

∫ π

0

sin2 τλ(τ)dτ = 0

λ(0)− λ(π) = 0, λ(0) + λ(π) = 0.

The first equation has no solutions for a 6= 0 that satisfy the fourth equation.
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