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Aim To estimate the impact of high fat diet and estrogen 
deficiency on the oxidative and antioxidative status in the 
liver of the ovariectomized rats, as well as the ameliorat-
ing effect of physical activity or consumption of functional 
food containing bioactive compounds with antioxidative 
properties on oxidative damage in the rat liver.

Methods The study was conducted from November 2012 
to April 2013. Liver oxidative damage was determined by 
lipid peroxidation levels expressed in terms of thiobarbitu-
ric acid reactive substances (TBARS), while liver antioxida-
tive status was determined by catalase (CAT), glutathione 
peroxidase (GPx), glutathione S-transferase (GST), glutathi-
one reductase (GR) activities, and glutathione (GSH) con-
tent. Sixty-four female Wistar rats were divided into eight 
groups: sham operated and ovariectomized rats that re-
ceived either standard diet, high fat diet, or high fat diet 
supplemented with cereal selenized onion biscuits or high 
fat diet together with introduction of physical exercise of 
animals.

Results High fat diet significantly increased TBARS content 
in the liver compared to standard diet (P = 0.032, P = 0.030). 
Furthermore, high fat diet decreased the activities of CAT, 
GR, and GST, as well as the content of GSH (P < 0.050). GPx 
activity remained unchanged in all groups. Physical ac-
tivity and consumption of cereal selenized onion biscuits 
showed protective effect through increased GR activity in 
sham operated rats (P = 0.026, P = 0.009), while in ovariec-
tomized group CAT activity was increased (P = 0.018) in rats 
that received cereal selenized onion biscuits.

Conclusion Feeding rats with high fat diet was accompa-
nied by decreased antioxidative enzyme activities and in-
creased lipid peroxidation. Bioactive compounds of cereal 
selenized onion biscuits showed potential to attenuate the 
adverse impact of high fat diet on antioxidative status.
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Reactive oxygen species (ROS) are common by-products 
of many oxidative biochemical and physiological process-
es, and are also involved in numerous physiological and 
pathophysiological processes. While in low concentrations 
they may be beneficial in processes such as intracellular 
signaling and defense against microorganisms, higher 
concentrations cause cell damage via oxidative modifica-
tion of proteins, lipids, and DNA, and thus play a major role 
in the pathogenesis of a variety of human diseases (1). The 
balance between production and neutralization of ROS is 
maintained by antioxidant defense system. The system in-
cludes antioxidant enzymes such as superoxide dismutase 
(SOD), catalase (CAT), glutathione peroxidase (GPx), gluta-
thione reductase (GR), and glutathione S-transferase (GST), 
and a number of low mass non-enzymatic molecules that 
are scavenging ROS, such as glutathione (GSH) (2,3). An im-
balance between ROS production and the cellular antioxi-
dant defense system leads to oxidative stress, which results 
in lipid peroxidation (LPO) and increased tissue injury (4,5). 
In liver tissue, this process leads to fibrosis, chronic inflam-
mation, and apoptosis (6).

It has been postulated that oxidative processes and anti-
oxidant defense can be sex-related (7). Such sex-related 
differences may be due to gonadotropic hormones, pri-
marily estrogens (8). Estradiol and its derivatives are strong 
endogenous antioxidants that reduce LPO levels in the 
liver and serum (9,10). Also, estrogens can up-regulate 
the expression of antioxidative enzymes, such as GPx and 
SOD (10-12). There is evidence that imbalance in oxidative 
and antioxidative status is present in women during post-
menopausal life (13). The lack of protective action of es-
trogens is known to cause serious metabolic disturbances, 

and oxidative stress is thought to be one of the suspected 
mechanisms (14). Ovariectomy in rats is a commonly used 
animal model for elucidating the impact of estrogen insuf-
ficiency and metabolic consequences (15,16). Estrogen in-
sufficiency is often associated with increased food intake 
and body weight, therefore high fat diet (HFD)-induced 
obesity could be an additional problem in menopausal 
women, and it could affect the levels of oxidative stress in 
the liver.

Feeding rats with HFD was proved to be a useful model of 
effects of dietary fat in humans (17). HFD is considered as 
a major risk factor for a numerous diseases, including met-
abolic disorders and cardiovascular diseases (CVD). Feed-
ing a HFD for a long time results in the occurrence of non-
alcoholic fatty liver disease (NAFLD) (18). Recent studies 
have suggested that a fundamental role in development 
of these disorders is played by oxidative stress (19). Oxida-
tive stress, being one of the key pathophysiological mech-
anisms in liver disease associated with obesity, may also 
serve as a predictor of CVD (18,20). Due to its significant 
role in disease development, increased oxidative stress re-
mains a potential attractive target for prevention and ther-
apy of adverse HFD and ovariectomy effects. The impact 
of HFD and estrogen deficiency on oxidative stress can be 
reduced by regular physical activity (21,22) and intake of 
phytochemical-rich foods or supplements (19,23). Recent-
ly, numerous in vitro and animal studies have provided evi-
dence that polyphenols may be protective against oxida-
tive-triggered pathologies (24,25).

The aim of this study was to estimate the effect of HFD on 
the oxidative and antioxidative status in the liver of ovariec-

FIGuRE 1. Study flow diagram. Gray squares represent the final eight groups of the animals. The final number of rats per group was 
7-8, because some animals were excluded from the study, due to abdominal infections and development of axillary tumor.
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tomized (OVX) rats, and to investigate the possible ame-
liorating effect of lifestyle modifications, such as physical 
activity or consuming functional foods – cereal selenized 
onion biscuits (SOB) with bioactive complex – on oxidative 
damage in the liver.

MATERIAlS And METHOdS

Animals and study design

All experiments were conducted in accordance with the 
current legislation on the use of experimental animals in 
Slovakia and with the approval of the Ethics Committee for 
Animal Experiments of the Slovak Medical University and 
of the State Veterinary and Food Authority of the Slovak 
Republic. All experimental procedures were carried out in 
animal facility in compliance with the standard operating 
procedures of the Department of Toxicology of the Slovak 
Medical University and the European Convention for the 
Protection of Vertebrate Animals used for Experimental 
and other Scientific Purposes. The study was conducted 
from November 2012 to April 2013.

Sixty-four female Wistar rats were obtained from Charles 
River Wiga GmbH (Sulzfeld, Germany). Rats were ~ 4 weeks 
old,weighed 130-150 g, and were housed in an air-condi-
tioned room (humidity 55 ± 5%, temperature 22 ± 2°C) un-
der a 12:12 hours light/dark cycle with ad libitum food and 
water access. After one-week acclimation period, the rats 
were randomly divided into two dietary groups: 16 rats 
received a standard diet (StD; M3, Bonagros.r.o., Blazovice, 
Czech Republic), while 48 rats received a HFD (D12451 /I/ 
mod. 45 kJ% fat, ssniff Spezialdiätten GmbH, Soest, Ger-
many). Following the eight-week dietary intervention, rats 
from both dietary groups were subjected to either ova-
riectomy (OVX rats) or sham surgery (SH rats) (Figure 1). Bi-
lateral ovariectomy was performed on 32 rats (8 from StD 
group, 24 from HFD group) using a single dorso-lateral ap-
proach (26,27), while the remaining 32 rats from both di-
etary groups (8 from StD group, 24 from HFD group) were 
subjected to sham surgery. After the two week recovery 
period, all animals continued with StD or HFD for the fol-
lowing 8 weeks. In addition, HFD group of animals was fur-
ther randomly divided into three equal groups as follows: 
the first sub-group of rats (8 OVX and 8 SH) continued to 
receive HFD only, the second (8 OVX and 8 SH) received 
food supplements to their HFD in the form of cereal SOB. 
The SOBs contained bioactive compounds such as sele-

nium in organic form, quercetin, curcumin, and cate-
chins (28). The third sub-group of rats (8 OVX and 8 

SH) was additionally subjected to physical activity (PA rats) 
in the form of exercise on a 4-channel treadmill (Harvard 
Apparatus, Holliston, MA, USA). The exercise consisted of 
a 2-week accommodation phase with increasing exercise 
intensity (first week: 15-18 m/min for 10-30 minutes, sec-
ond week: 18-20 m/min for 30-60 minutes), followed by 
an eight-week constant training period (20 m/min for 60 
minutes). Before each training session (5 times a week, al-
ways between 8.00 and 9.00 am), all running animals had a 
5-minute warm-up phase with a slowly increasing speed. 
Animals from sedentary groups were placed for the same 
period on a turned-off treadmill. Due to abdominal infec-
tions and development of axillary tumor, some animals 
were excluded from the study; therefore the number of 
animals in some groups was seven. The final groups of ani-
mals were as follows:

Sham operated rats:

1) SH-StD – rats fed a StD (n = 7)

2) SH-HFD – rats fed a HFD (n = 8)

3) SH-HFD-PA – rats fed a HFD and subjected to PA (n = 8)

4) SH-HFD-SOB – rats fed a HFD supplemented with SOB 
(n = 8)

Ovariectomized rats:

5) OVX-StD – rats fed a StD (n = 8)

6) OVX-HFD – rats fed a HFD (n = 8)

7) OVX-HFD-PA – rats fed a HFD and subjected to PA 
(n = 7)

8) OVX-HFD-SOB – rats fed a HFD supplemented with SOB 
(n = 7)

Sample collection

By the end of the experimental period, all rats were sacri-
ficed, and the livers were collected by manual dissection, 
washed twice with ice-cold saline, and blotted on filter-pa-
per. Immediately after, tissue samples were flash-frozen in 
liquid nitrogen and stored at -80°C until analysis.

Preparation of tissue extracts

Frozen tissue samples were grounded in a pestle and mor-
tar with liquid nitrogen and the powder was aliquoted 
into four tubes and weighed. Aliquoted tissue powder was 
homogenized in an adequate solution using Ultra turrax 
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T10 homogenizer (1300 rpm; IKA, Königswinter, Germany) 
while kept on ice. For the LPO determination, tissue was 
homogenized in ice-cold 1.15% KCl solution (1:10, w/v). For 
determining the GSH levels, tissue was homogenized (1:10, 
w/v) in 5% 5-sulfosalicylic acid solution (SSA), then main-
tained on ice for 10-minute and centrifuged at 10 000 g for 
10-minute at 4°C. For GPx and GR activity assay, liver tissue 
was homogenized (1:10, w/v) in 50 mM phosphate buffer 
(pH 7.8) and for CAT and GST activity assay (1:10, w/v) in 
100 mM phosphate buffer (pH 7.0) containing 1 mM EDTA. 
Crude tissue homogenates were sonicated for 30 seconds 
while kept on ice in three 10 seconds-intervals, then cen-
trifuged at 20 000 g for 15-minute at 4°C. GSH content and 
LPO products in the liver homogenates were determined 
immediately following homogenate preparation, while 
aliquots of the resulting supernatant for determination of 
enzyme activities were stored in plastic tubes at -70°C un-
til assayed. The absorbance of LPO product, GSH content, 
and enzyme activity assay was recorded using a Lambda 2 
UV-Vis spectrophotometer equipped with UV WinLab soft-
ware package (Perkin Elmer, Wiesbaden, Germany).

determination of lipid peroxidation

The LPO levels in collected hepatic tissue were estimated 
by measuring the thiobarbituric acid reactive substances 
(TBARS), according to the method described by Ohkawa 
et al (29). This method is based on the formation of red 
pigment, generated by reaction of LPO breakdown prod-
ucts like malondialdehyde (MDA) with thiobarbituric acid 
(TBA) at an optimum pH of 3.5. Briefly, tissue homogenate 
(10%, w/v) was mixed with sodium dodecyl sulfate, acetate 
buffer (pH 3.5), and an aqueous solution of TBA. After heat-
ing at 95°C for 60-minute, the produced red pigment was 
extracted with n-butanol-pyridine mixture and estimated 
by the absorbance at 532 nm. The results were expressed 
as nmol/mg of fresh tissue (FW) according to a standard 
curve, which was prepared using 1,1,3,3-tetramethoxypro-
pane as a standard.

Measurement of total glutathione content

Total GSH content in the liver was determined using a ki-
netic method based on a continuous reduction of 5,5-di-
thiobis (2-nitrobenzoic acid) (DTNB) to 5-thio-2-nitrobenzo-
ic acid (TNB) by catalytic amounts of reduced glutathione, 
where the oxidized glutathione form is recycled by GR 
and NADPH (30). The formation of TNB was continuously 
recorded at 412 nm at 25°C. Briefly, after deproteinization 
with the SSA, the resulting supernatant was transferred to 

the reaction mixture that contained 100 mM phosphate 
buffer with 1 mM EDTA (pH 7.0), 0.031 mg/mL DTNB, and 
0.115 units/mL of GR in a final volume of 1.05 mL. The mix-
ture was incubated at 25°C for 5-minute and the reaction 
was initiated by adding NADPH at a final concentration of 
48 μM. The total amount of GSH was determined by a stan-
dard curve of reduced GSH, and the results were expressed 
as nmol/mg of FW.

Antioxidant enzyme activities assay

GST (EC 2.5.1.13) activity was determined by measuring 
the conjugation of 1-chloro-2,4-dinitro benzene (CDNB) 
with reduced glutathione that produced a dinitrophenyl-
thioether, which was accompanied by an increase in ab-
sorbance at 340 nm (31). The assay mixture consisted of 
100 mM phosphate buffer with 1 mM EDTA (pH 6.5), 2.5 
mM GSH, and 1 mM CDNB, in a final volume of 1.5 mL. One 
unit conjugates 1.0 μmole of 1-chloro-2,4-dinitrobenzene 
with reduced glutathione per minute at pH 6.5 and 25°C. 
GST activity was calculated using molar extinction coeffi-
cient of glutathione-1-chloro-2,4-dinitrobenzene conju-
gate (ε = 9.6 mM/cm) and expressed as U/mg protein.

GR (EC 1.6.4.2) was determined by the measurement of the 
consumption of NADPH during the reduction of GSSG, as 
demonstrated by a decrease in absorbance at 340 nm. The 
assay mixture consisted of 1 mM GSSG and 0.1 mM NADPH 
in 100 mM phosphate buffer containing 1 mM EDTA (pH 
7.5). One unit reduces 1.0 μmol of oxidized glutathione per 
minute at pH 7.5 and 25°C. GR activity was calculated using 
molar extinction coefficient for NADPH (ε = 6.220 mM/cm) 
and expressed as U/g protein (32).

CAT (EC 1.11.1.6) activity was estimated spectrophotomet-
rically using H

2O2 as a substrate (33). The reaction mixture 
consisted of 10 mM H2O2 in 50 mM phosphate buffer pH 
(7.0). Changes in absorbance in the reaction mixture were 
measured at 240 nm during 30 seconds after adding the 
sample. One unit of activity corresponds to the loss of 1 
μmol of H2O2 per minute. CAT activity was calculated us-
ing molar extinction coefficient (ε = 0.04 mM/cm) and ex-
pressed as U/mg protein.

GPx (EC 1.11.1.9) activity was measured according to a 
modified method described by Wendel (34), using H2O2 
as a substrate. According to this method, GPx activity was 
determined indirectly by measuring the rate of NADPH 
oxidation to NADP+, accompanied by a decrease in ab-
sorbance at 340 nm. The assay mixture consisted of 
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50 mM phosphate buffer with 0.4 mM EDTA and 1 mM so-
dium azide (pH 7.0), 0.12 mM NADPH, 3.2 units of GR, 1 
mM glutathione, and 0.0007% (w/w) hydrogen peroxide in 
a total volume of 1.55 mL. One unit catalyzes the oxidation 
by H2O2 of 1.0 μmole of reduced glutathione to oxidized 
glutathione per minute at pH 7.0 and 25°C. GPx activity 
was calculated using molar extinction coefficient for NA-
DPH (ε = 6.220 mM/cm) and expressed as U/mg protein.

determination of protein concentration

Total soluble protein concentration in protein extracts was 
estimated following the protocol described by Bradford 
(35), using bovine serum albumin as a standard.

Statistical analyses

The data are presented as mean ± standard deviations (SD) 
for 7-8 animals in each group and analyzed using STATISTI-
CA 8.0 software package (StatSoft Inc., Tulsa, OK, USA). Dif-
ferences among groups were assessed by a one way anal-
ysis of variance (ANOVA), followed by a post hoc analysis 
using Duncan’s multiple range test. A mean difference was 
significant at the 0.05 level. Correlation between the ana-

lyzed parameters was evaluated using Pearson correlation 
coefficient with the level of significance <0.05.

RESulTS

Effect of HFd, PA, and SOB on TBARS content in the liver 
of OVX rats

HFD significantly increased TBARS content in both, SH and 
OVX rats, compared to the control groups that received StD 
(SH-StD, P = 0.032; OVX-StD, P = 0.030). The TBARS content in 
OVX-HFD group was 27% higher and in SH-HFD group was 
25% higher than in the corresponding control groups. Nei-
ther PA nor SOB supplements induced significant changes 
in TBARS content in SH and OVX group that received HFD. 
Ovariectomy did not affect LPO levels; no significant differ-
ences were observed in the TBARS content between the 
OVX and the corresponding SH groups (Figure 2).

Effect of HFd, PA, and SOB on GSH content in the liver 
of OVX rats

HFD reduced GSH levels in both SH and OVX rats com-
pared to the groups that received StD (SH-StD, P = 0.010; 

FIGuRE 2. Thiobarbituric acid reactive substances (TBARS) 
content in the liver of sham-operated (SH) and ovariectomized 
(OVX) rats fed with standard diet or high fat diet (SH-Std, SH-
HFd, OVX-Std, OVX-HFd), SH and OVX rats that received HFd 
and were subjected to physical activity (SH-HFd-PA, OVX-HFd-
PA), and SH and OVX rats that received HFd supplemented 
with selenized onion biscuits (SH-HFd-SOB, OVX-HFd-SOB). 
Results are presented as means ± standard deviation. different 
letters denote significant differences between the groups 
(P < 0.05), while letters shared in common indicate no signifi-
cant difference between the groups.

FIGuRE 3. Glutathione (GSH) content in the liver of sham-op-
erated (SH) and ovariectomized (OVX) rats fed with standard 
diet or high fat diet (SH-Std, SH-HFd, OVX-Std, OVX-HFd), 
SH and OVX rats that received HFd and were subjected to 
physical activity (SH-HFd-PA, OVX-HFd-PA), and SH and OVX 
rats that received HFd supplemented with selenized onion 
biscuits (SH-HFd-SOB, OVX-HFd-SOB). Results are presented 
as means ± standard deviation. different letters denote signifi-
cant differences between the groups (P < 0.05), while letters 
shared in common indicate no significant difference between 
the groups.
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OVX-StD, P = 0.026). The GSH content in OVX-HFD group 
was 27% lower and in SH-HFD group was 29% lower than 
in the control groups. Neither PA nor SOB supplements in-
duced significant changes in GSH content in SH and OVX 
group that received HFD. In addition, there were no signifi-
cant differences in the GSH levels between OVX and the 
corresponding SH group (Figure 3).

Effect of HFd, PA, and SOB on GST activity in the liver of 
OVX rats

HFD significantly reduced GST activity in the OVX rats, as 
well as in SH rats compared to the control groups that re-
ceived StD (OVX-StD, P < 0.001; SH-StD, P = 0.035). In SH-HFD 
group, GST activity was 17% lower and in OVX-HFD group 

it was 26% lower than in the corresponding control groups. 
However, no significant differences in GST activity were ob-
served between OVX and the corresponding SH groups. 
Neither PA nor SOB induced significant changes in GST ac-
tivity in SH and OVX rats that received HFD (Figure 4A).

Effect of HFd, PA, and SOB on GR activity in the liver of 
OVX rats

HFD significantly reduced GR activity in SH-HFD rats for 
27% and in OVX-HFD rats for 18%, compared to the con-
trol groups that received StD (SH-StD, P < 0.001; OVX-StD, 
P < 0.001). No significant difference between the OVX and 
SH rats that received StD was found, while OVX rats that 
received HFD showed significantly higher GR activity than 

FIGuRE 4. Glutathione S-transferase (GST) (A), glutathione reductase (GR) (B), catalase (CAT) (C), and glutathione peroxidase (GPx) 
(D) activity in the liver of sham-operated (SH) and ovariectomized (OVX) rats fed with standard diet or high-fat diet (SH-Std, SH-HFd, 
OVX-Std, OVX-HFd), SH and OVX rats that received HFd and were subjected to physical activity (SH-HFd-PA, OVX-HFd-PA), and SH 
and OVX rats that received HFd supplemented with selenized onion biscuits (SH-HFd-SOB, OVX-HFd-SOB). Results are presented 
as means ± standard deviation. different letters denote significant differences between the groups (P < 0.05), while letters shared in 
common between the groups indicate no significant difference.
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SH-HFD group (P = 0.008). PA induced significant increase 
of 15% (P = 0.026) in GR activity in SH-HFD-PA rats com-
pared to the SH-HFD group, while no difference in OVX 
group was found. Also, SOB significantly increased GR ac-
tivity in SH-HFD-SOB group for 19% compared to the SH-
HFD group (P = 0.009). On the other hand, supplement bis-
cuits did not affect GR activity in OVX group (Figure 4B).

Effect of HFd, PA, and SOB on CAT activity in the liver of 
OVX rats

As was the case with other antioxidative enzymes, HFD re-
duced the CAT activity in both SH and OVX rats, compared 
to the control groups that received StD (SH-StD, P = 0.040 
OVX-StD, P = 0.007). In SH-HFD group, CAT activity was 19% 
lower and in OVX-HFD group it was 27% lower than in the 
corresponding control groups. No significant changes 
were observed between OVX rats that received HFD and 
StD and SH rats that received HFD and StD. SH and OVX 
rats that received HFD and were additionally subjected to 
PA did not show any changes in CAT activity when com-
pared to the SH-HFD and OVX-HFD groups. SOB signifi-
cantly increased CAT activity in OVX-HFD-SB group (32%, 
P = 0.018) compared to the OVX-HFD group. On the other 
hand, supplement biscuits did not affect CAT activity in SH 
rats (Figure 4C).

Effect of HFd, PA, and SOB on GPx activity in the liver of 
OVX rats

Although there were no significant differences in GPx ac-
tivity between all experimental groups (Figure 4D), there 
was a positive correlation between GPx activity and oth-
er antioxidative enzymes (GST, r = 0.407, P = 0.001; CAT, 
r = 0.418, P = 0.002; GR, r = 0.407, P = 0.001).

dISCuSSIOn

Impact of ovariectomy and HFd on oxidative/
antioxidative status in the rat liver

The present study showed higher TBARS levels in OVX and 
SH animals that received HFD. Elevated TBARS levels in the 
liver are an evident manifestation of excessive formation of 
free radicals and activation of LPO. Furthermore, our results 
revealed a significant decrease in the hepatic GST, GR, and 
CAT activities, as well as a decrease in hepatic GSH level in 
OVX and SH rats that received HFD. Therefore, feeding rats 

with HFD resulted in increased hepatic tissue oxidative 
stress, which is characterized by reduced antioxidant 

defense mechanisms and increased LPO in liver tissues of 
both SH and OVX rats. Although different antioxidative re-
sponse to HFD of SH and OVX animals was expected, there 
was no influence of ovariectomy on oxidative status and 
no interaction effect between HFD and ovariectomy.

It is well known that ovariectomy results in general chang-
es in metabolism, which are detected in the liver (14). The 
influence of estrogen insufficiency and metabolic distur-
bances on the liver is important from the clinical point of 
view because it may play a role in developing liver diseases 
through the generation of ROS (36,37). The lack of protec-
tive action of estrogens is reflected in alterations in antioxi-
dative/oxidative balance in the rat liver (14). Kankofer et al 
(14) showed an increase in LPO intensity, GPx activity, and 
total antioxidant capacity in OVX rats, suggesting higher 
demands for antioxidative protection from ROS. Topcuo-
glu et al (38) demonstrated an elevation of plasma and 
tissue oxidative stress markers as a result of ovariectomy. 
In addition, hormone replacement therapies decreased 
oxidative stress markers in plasma and tissue of the OVX 
rats, suggesting a protecting effect of estrogens within the 
antioxidant defense systems (36). Contrary to the above 
mentioned studies, our results showed no impact of ova-
riectomy itself on the antioxidative and oxidative status in 
the rat liver. There were no significant differences in TBARS 
and GSH levels, as well as in the activity of antioxidative 
enzymes between OVX and SH rats. Other studies found 
contradictory results regarding the impact of ovariectomy 
on LPO and antioxidative enzyme activities (39,40). These 
differences may be ascribed to the use of different tissues, 
different ages of animals, and different times of ovariecto-
my, since Kankofer et al (14) showed dynamic changes in 
oxidative and antioxidative parameters during early devel-
opment of estrogen insufficiency.

In our study, the response of hepatic oxidative stress mark-
ers to HFD was in accordance with that reported by Noe-
man et al (41), who showed significant increase in LPO and 
protein carbonyl levels, as well as a decrease in GSH levels 
and activity of GST and GPx enzymes in the liver of rats with 
HFD-induced obesity. In other reports, long-term feeding 
of a high-saturated fat diet induced oxidative stress, since 
it significantly attenuated the hepatic enzyme antioxi-
dant system and increased the levels of LPO products in 
the liver (42). As shown in our study and the above men-
tioned studies (41,42), HFD causes a significant increase in 
biochemical indicators of liver damage, such as LPO. This 
could probably contribute to the additional progression of 
obesity-related problems (18,41). Feeding a HFD for long 
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periods of time results in the occurrence of NAFLD, and 
hepatic lipid accumulation and oxidative stress are key 
pathophysiological mechanisms in this disease (18).

Impact of PA and SOB on oxidative/antioxidative status 
in the liver of OVX rats fed with HFd

In our study, a special goal was also to examine the pos-
sible ameliorating effect of lifestyle modifications, such as 
PA and functional food containing bioactive compounds 
with enhanced antioxidative properties, on oxidative dam-
age in the rat liver. Oxidative stress represents a potential 
attractive target for prevention and therapy of obesity-in-
duced diseases. The training program used in this study 
did not attenuate oxidative damage caused by HFD in OVX 
and SH rats. PA did not induce any significant changes in 
TBARS and GSH levels, as well as in the activities of GPX, 
CAT and GST in the liver of SH and OVX animals. Although 
prolonged exercise may be protective due to activation 
and enhanced synthesis of antioxidants and antioxidant 
enzymes (43-45), results similar to ours were obtained by 
Rodrigues et al (46). Resistance training program used in 
their study did not attenuate the liver oxidative damage 
caused by ovariectomy and increased the hepatic oxida-
tive stress (46).

Previous studies have described many health-beneficial 
effects of each bioactive compound (selenium in organ-
ic form, quercetin, curcumin, catechins) present in cereal 
SOB (47). Selenium up-regulates the major component 
of the antioxidant defense mechanism by controlling the 
GSH pool and some antioxidative enzymes (48). Antioxi-
dant polyphenols (quercetin and catechins) can increase 
the antioxidant capacity of the body against obesity-in-
duced oxidative stress directly, through scavenging ROS 
and chelating redox-active transition metal ions, and in-
directly through inhibition of prooxidant enzymes and in-
duction of antioxidant enzymes (49). In our study, SOB did 
not reduce negative impact of HFD on LPO and GSH levels, 
as well as on most of the antioxidative enzymes in the rat 
liver. SOB showed protective effect through increased GR 
activity in SH rats, and in OVX rats through increased GR 
activity. Also, SOB showed a tendency to increase GSH lev-
els in rats. This impact of SOB on GSH levels and GR activity 
could be attributed to selenium. The role of GR in reduc-
tion of oxidized glutathione back to the GSH is to main-
tain the level of intracellular GSH. Therefore, GR indirect-
ly participates in protection of the cells against oxidative 
stress. It is also known that GR activity could be stimulated 
by the estrogens (50). Accordingly, it seems that estrogens 

together with bioactive compounds from SOB (selenium) 
were responsible for the increased GR activity in SH rats. In 
OVX rats, SOB increased CAT activity, while in SH rats CAT 
activity was also increased, but not significantly. The im-
pact of SOB on increased CAT activity could be ascribed to 
quercetin and catechins. Flavonoids can bind to the heme 
moiety or a protein region of CAT and thus contribute to 
the enhancement of CAT activity (51). Madaric et al (28) 
found a beneficial effect of the same biscuits on cardio-
vascular risk markers in healthy population. The reduction 
of total cholesterol, LDL-cholesterol, atherogenic index, ho-
mocysteine, and asymmetric dimethylarginine was found 
after two months of biscuit consumption. Further studies 
should be performed in order to determine the possible 
therapies aimed at reducing oxidative damage induced by 
HFD and OVX.

No interaction effect on oxidative/antioxidative status was 
observed between HFD and ovariectomy. Feeding HFD 
was accompanied by decreased antioxidative enzymes 
activities and increased LPO in both OVX and SH rats. De-
creased antioxidant defense suggests lowered oxidative 
stress resistance, which could be reflected in oxidative 
damage of the rat liver and metabolic disorders. Chang-
es detected in the liver may reflect antioxidative/oxidative 
status of the whole body and the blood. Bioactive com-
pounds of SOB showed a potential to attenuate the ad-
verse impact of HFD by increasing activities of some anti-
oxidative enzymes.
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