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Abstract. A generalization of the well–known Fibonacci sequence is the k–generalized
Fibonacci sequence (F

(k)
n )n≥2−k whose first k terms are 0, . . . , 0, 1 and each term afterwards

is the sum of the preceding k terms. In this paper, we investigate k–generalized Fibonacci
numbers written in the form 1+2n1 +4n2 + · · ·+(2k)nk , for non–negative integers ni, with
nk ≥ max

1≤i≤k−1
{ni}.
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1. Introduction

The Fibonacci sequence denoted by (Fn)n≥0 is the sequence of integers given by
F0 = F1 = 1 and Fn+2 = Fn+1 + Fn, for all n ≥ 0.

The study of Fibonacci numbers having special representations has been of in-
terest to many researchers and has generated an extensive literature. We only name
a few of such studies. In 1963, Moser and Carlitz [16], and Rollet [22], proposed the
problem of finding all square Fibonacci numbers. This problem was solved one year
later by Cohn [4] and Wyler [25], independently. In 1965, Cohn [5] found all posi-
tive integer solutions (n, x) of the Diophantine equation Fn = 2x2. Later, Robbins
(see [18]) solved the equation Fn = px2 for all primes p ∈ [2, 10000] as well as for all
primes p such that p ≡ 3 (mod 4). In the subsequent work [19], he found all positive
integer solutions (n, x) of the Diophantine equation Fn = cx2 for all composite val-
ues of c ∈ [2, 10000]. Other studies concerning representations of Fibonacci numbers
by quadratic and cubic polynomials are dealt with the Diophantine equations

• Fn = k2 + k + 2, [10];

• Fn = x2 − 1 and Fn = x3 ± 1, [20];
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• Fn = px2 + 1 and Fn = px3 + 1, [21].

Recently, Bugeaud, Mignotte and Siksek [1] confirmed that the only perfect powers
(of exponent greater than 1) in the Fibonacci sequence are 0, 1, 8, and 144, which
was a famous problem. Shortly after that, together with Luca [2], the same authors
showed that the only Fibonacci numbers that are at distance 1 from a perfect power
are 1, 2, 3, 5, and 8.

Next we mention some results related to the problem discussed in this paper.
Pethő and Tichy [17] showed that if p is a fixed prime, then there are only finitely
many Fibonacci numbers of the form pa + pb + pc with integers a > b > c ≥ 0.
The proof of their result is ineffective in that it uses the finiteness of a number of
non-degenerate solutions of S−units equations. However, all solutions of such an
equation can be found using the theory of lower bounds for linear forms in logarithms
as in [6, 11, 23]. Regarding this type of representation, Luca and Szalay [13] and
Luca and Stănică [12] showed that each of the Diophantine equations Fn = pa±pb+1
and Fn = pa ± pb has only finitely many positive integer solutions (n, p, a, b), with p
prime being also a variable. Marques and Togbé [14] found all Fibonacci numbers
of the form 2a + 3b + 5c, with c ≥ max{a, b} ≥ 0. Note that 2, 3, 5 are F3, F4, F5,
respectively. In the same paper, the authors claim to have found all Fibonacci num-
bers of the form ya + yb + yc, with positive integers a, b, c and integer y ∈ [2, 9].

Let k ≥ 2 be an integer. One of many generalizations of the Fibonacci sequence,

which is sometimes called the k-generalized Fibonacci sequence (F
(k)
n )n≥−(k−2), is

given by the recurrence

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k, for all n ≥ 2,

with the initial conditions F
(k)
2−k = F

(k)
3−k = · · · = F

(k)
0 = 0 and F

(k)
1 = 1. We refer to

F
(k)
n as the nth k-generalized Fibonacci number or k-Fibonacci number. Note that

for k = 2, we have F
(2)
n = Fn, the well-known nth Fibonacci number. For k = 3,

such numbers are called Tribonacci numbers. They are followed by the Tetranacci
numbers for k = 4, and so on.

A curious fact about the k–generalized Fibonacci sequence is that the k values
after to the k initial values are powers of two. Indeed,

F
(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F

(k)
k+1 = 2k−1. (1)

That is, F
(k)
n = 2n−2, for all 2 ≤ n ≤ k + 1. Solutions of Diophantine equations on

k−generalized Fibonacci numbers involving its first k+1 values will be called trivial
solutions. The first k−generalized Fibonacci number that is not a power of two is

F
(k)
k+2 = 2k − 1. Bravo and Luca showed in [3] that F

(k)
n < 2n−2 for all n ≥ k + 2

and that except for trivial cases, there are no powers of two in any k–generalized
Fibonacci sequence for k ≥ 3, and that the only nontrivial power of two in the
Fibonacci sequence is F6 = 8.

In this paper, we find all k–generalized Fibonacci numbers of the form 1+2n1 +
4n2 + · · · + (2k)nk , in non-negative integers ni, with nk ≥ max

1≤i≤k−1
{ni}. In other
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words, we look at the Diophantine equation

F (k)
m = 1 + 2n1 + 4n2 + · · ·+ (2k)nk . (2)

This equation is inspired by the work of Marques and Togbé [14] on the equation
Fn = F a

3 + F b
4 + F c

5 with c ≥ max{a, b}. Also, for every fixed k, equation (2) has
only at most finitely many solutions (m,n1, . . . , nk) even without the restriction that
nk ≥ max

1≤i≤k−1
{ni}. These solutions can be computed using the theory of linear forms

in logarithms of algebraic numbers because {F (k)
n }n≥1 is a non-degenerate linearly

recurrent sequence whose dominant root has the property that is multiplicatively
independent over the number 2 (see [23] and [11]). We do not know, however, how
to prove a finiteness result when k is also a variable without the above size restriction
on nk. We prove the following theorem.

Main Theorem. The only nontrivial solution of the Diophantine equation (2) in
non–negative integers m, k, n1, . . . , nk with k ≥ 2, m ≥ 2k + 3, nk ≥ 2 and nk ≥
max

1≤i≤k−1
{ni}, is (m, k, n1, n2) = (8, 2, 2, 2). That is,

F8 = 1 + 22 + 42.

Before getting to the details, we give a brief description of our method. We first
use lower bounds for linear forms in logarithms of algebraic numbers to bound m
polynomially in terms of k. When k is small, we use the theory of continued fractions
by means of a result of Dujella and Pethő to lower such bounds to cases that allow
us to treat our problem computationally. When k is large, we use the fact that the
dominant root of the k–generalized Fibonacci sequence is exponentially close to 2, to
substitute this root by 2 in our calculations with linear form in logarithms obtaining
in this way a simpler linear form in logarithms, which allows us to bound k and then
complete the remaining calculations.

2. Some results on k−Fibonacci numbers

The characteristic polynomial of the k–generalized Fibonacci sequence is

Ψk(x) = xk − xk−1 − · · · − x− 1.

The above polynomial has just one root α(k) outside the unit circle. It is real and
positive so it satisfies α(k) > 1. The other roots are strictly inside the unit circle.
In particular, Ψk(x) is irreducible in Q[x]. Lemma 2.3 in [9] shows that

2(1− 2−k) < α(k) < 2, for all k ≥ 2. (3)

This inequality was rediscovered by Wolfram [24]. We put α := α(k). This is called
the dominant root of Ψk(x) for reasons that we present below. Dresden [7] gave the

following Binet-like formula for F
(k)
n :

F (k)
n =

k∑
i=1

α(i) − 1

2 + (k + 1)(α(i) − 2)
α(i)n−1

, (4)
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where α = α(1), . . . , α(k) are the roots of Ψk(x). Dresden also showed that the
contribution of the roots which are inside the unit circle to the right–hand side of
(4) is very small. More precisely, he proved that∣∣∣∣F (k)

n − α− 1

2 + (k + 1)(α− 2)
αn−1

∣∣∣∣ < 1

2
, for all n ≥ 1. (5)

Other properties relevant to our work are the following. The inequality

αn−2 ≤ F (k)
n ≤ αn−1 (6)

holds for all n ≥ 1 and k ≥ 2 (see [3]). Further, the sequences

(F (k)
n )n≥1, (F (k)

n )k≥2 and (α(k))k≥2 (7)

are non decreasing. Particularly, α ≥ ϕ := (1 +
√
5)/2 for all k ≥ 2.

We consider the function

fk(z) :=
z − 1

2 + (k + 1)(z − 2)
, for k ≥ 2.

If z ∈ (2(1−2−k), 2), a straightforward verification shows that ∂zfk(z) < 0. Indeed,

∂zfk(z) =
−k + 1

(2 + (k + 2)(z − 2))2
< 0, for all k ≥ 2.

Thus, from inequality (3), we conclude that

1/2 = fk(2) ≤ fk(α) ≤ fk
(
2(1− 2−k)

)
=

2k−1 − 1

2k − k − 1
≤ 1,

for all k ≥ 2. Furthermore, one can check that the upper bound 1 on the right–
hand side above can be replaced by 3/4 for all k ≥ 3. Since we also have that
f2((1+

√
5)/2) = 0.72360 . . . < 3/4, we deduce that fk(α) ≤ 3/4 holds for all k ≥ 2.

On the other hand, if z = α(i) with i = 2, . . . , k, then |fk(α(i))| < 1 for all k ≥ 2.
Indeed, as |α(i)| < 1, then |α(i) − 1| < 2 and |2+ (k+1)(α(i) − 2)| > k− 1. Further,
f2((1−

√
5)/2) = 0.2763 . . .

Finally, in order to replace α by 2 in the final stage of our argument, we use an
argument that is due to Bravo and Luca [3]. Namely, if 1 ≤ r < 2k/2, then

αr = 2r + δ and fk(α) = fk(2) + η,

with |δ| < 2r+1/2k/2 and |η| < 2k/2k. Thus,

∣∣fk(α)αr − 2r−1
∣∣ < 2r

2k/2
+

2r+1k

2k
+

2r+2k

23k/2
.

Furthermore, if k > 10, then 4k/2k < 1/2k/2 and 8k/23k/2 < 1/2k/2. Hence,

∣∣fk(α)αr − 2r−1
∣∣ < 2r+1

2k/2
. (8)
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3. Preliminary considerations

Let us suppose that (m, k, n1, . . . , nk) is a solution of (2). Since ni ≥ 0 for all

i = 1, 2, . . . , k, we conclude that F
(k)
m ≥ k + 1 ≥ 3 and so m ≥ 4.

We make some considerations on nk. If nk = 0, then F
(k)
m = k + 1. Thus, either

k = 2 and m = 4, or k ≥ 3 and m ≤ k + 1, obtaining that in this case the solutions
are given by

(m, k, n1, . . . , nk) = (4, 2, 0, . . . , 0) or (t+ 2,Mt, 0, . . . , 0),

where Mt is the tth Mersenne number and t ≥ 2. If nk = 1, then m ≤ k + 3, which

follows from the fact that F
(k)
m ≤ 2k+1 − 1 < F

(k)
k+4 = 2k+2 − 8 for all k ≥ 2 together

with (7). But, for m ≤ k + 2 this leads to a contradiction:

2k + k ≤ 1 + 2n1 + 4n2 + · · ·+ 2k = F (k)
m ≤ 2k − 1.

If m = k + 3, then by (2)

2k+1 − 3 = 1 + 2n1 + 4n2 + · · ·+ (2k−1)nk−1 + 2k ≤ 2k+1 − 1.

A simple deduction involving binary expansions shows that our equation is not
possible for ni = 0 or 1 and k ≥ 2. Thus, when nk = 1, equation (2) has no
solutions.

The above argument also shows that for nk ≥ 2, equation (2) has no trivial
solutions. In fact,

4k < F (k)
m < 2m−2,

so m > 2k+2. In this way, our problem is reduced to studying Diophantine equation
(2) in integers k ≥ 2, m ≥ 2k + 3 and

nk ≥ max{2, ni : 1 ≤ i ≤ k − 1}.

To conclude this section, we present an inequality relating to m, nk and k. By
equation (2), we obtain

2knk < 1 + 2n1 + 4n2 + · · ·+ (2k)nk = F (k)
m < 2m−2.

Moreover, by inequality (6),

αm−2 ≤ F (k)
m = 1 + 2n1 + 4n2 + · · ·+ (2k)nk ≤ 2(k+1)nk − 1

2nk − 1

<
2(k+1)nk

2nk−1
= 2knk+1

Thus,
knk + 2 < m < 1.5knk + 3.5. (9)

Here, we used the fact that log 2/ logα ≤ log 2/ log ϕ < 1.5. Estimate (9) is essential
for our purpose.
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4. An inequality for m in terms of k

¿From now on, k ≥ 2, m ≥ 2k + 3 and nk ≥ 2 are integers satisfying (2). We see
easily that m ≥ 7. In order to find an upper bound for m, we use a result of E.
M. Matveev on the lower bound for nonzero linear forms in logarithms algebraic
numbers.

Let γ be an algebraic number of degree d over Q with the minimal primitive
polynomial over the integers

f(X) := a0

d∏
i=1

(X − γ(i)) ∈ Z[X],

where the leading coefficient a0 is positive. The logarithmic height of γ is given by

h(γ) :=
1

d

(
log a0 +

d∑
i=1

logmax{|γ(i)|, 1}

)
.

We use the following theorem of Matveev [15].

Theorem 1. Let K be a number field of degree D over Q, γ1, . . . , γt positive real
numbers of K, and b1, . . . , bt rational integers. Put

Λ := γb1
1 · · · γbt

t − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(γi), | log γi|, 0.16} be real numbers, for i = 1, . . . , t. Then, assu-
ming that Λ ̸= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At).

By using formula (4) and estimate (5), we can write

F (k)
m = fk(α)α

m−1 + ek(m), where |ek(m)| < 1/2. (10)

Hence, equation (2) can be rewritten as

fk(α)α
m−1 − 2knk = 1 + 2n1 + 4n2 + · · ·+ (2k−1)nk−1 − ek(m). (11)

Dividing both sides of equation (11) by 2knk and taking absolute values, we get

∣∣fk(α)αm−12−knk − 1
∣∣ < 2knk − 1

2knk(2nk − 1)
+

1

2knk+1
<

3

2nk
. (12)

We apply Theorem 1 with the parameters t := 3, γ1 := fk(α), γ2 := α, γ3 := 2,
b1 := 1, b2 := m − 1, b3 := knk. Hence, Λ := fk(α)α

m−12−knk − 1 and from (12),
we have that

|Λ| < 3

2nk
. (13)

The algebraic number field K := Q(α) contains γ1, γ2, and γ3 and has degree k over
Q; i.e., D = k. We show that Λ ̸= 0. Otherwise, we get the relation fk(α)α

m−1 =
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2knk . Conjugating this relation by an automorphism σ of the Galois group of Ψk(x)
over Q with σ(α) = α(i) for some i > 1, we get that 2knk = fk(α

(i))(α(i))m−1. Then
|fk(α(i))| > 16, which is impossible. Hence, Λ ̸= 0.

Knowing that Q(α) = Q(fk(α)) and |fk(α(i))| ≤ 1 for i = 1, . . . , k and k ≥ 2,
we obtain that h(γ1) = (log a0)/k, where a0 is the leading coefficient of the minimal
primitive polynomial over the integers of γ1. Put

gk(x) =
k∏

i=1

(
x− fk(α

(i))
)
∈ Q[x]

and N = NK/Q(2 + (k + 1)(α − 2)) ∈ Z. We conclude that N gk(x) ∈ Z[x] vanishes
at fk(α). Thus, a0 divides |N |. But

|N | =

∣∣∣∣∣
k∏

i=1

(
2 + (k + 1)(α(i) − 2)

)∣∣∣∣∣ = (k + 1)k

∣∣∣∣∣
k∏

i=1

(
2− 2

k + 1
− α(i)

)∣∣∣∣∣
= (k + 1)k

∣∣∣∣Ψk

(
2− 2

k + 1

)∣∣∣∣
=

2k+1kk − (k + 1)k+1

k − 1
< 2kkk.

Hence, h(γ1) < log(2k) ≤ 2 log k for all k ≥ 2. Further, h(γ2) = (logα)/k and
h(γ3) = log 2. Thus, we can take A1 := 2k log k, A2 := 0.7 and A3 := 0.7k. Finally,
from (9), we can take B := m− 1.

Theorem 1 gives the following lower bound for |Λ| :

exp
(
−1.4× 306 × 34.5k2(1 + log k)(1 + log(m− 1))(2k log k)(0.7)(0.7k)

)
,

which is by inequality (13) smaller than 3/2nk . Taking logarithms on both sides and
performing respective calculations, we get that

nk <
log 3

log 2
+

1.4× 306 × 34.5 × 0.72 × 2× 2.5× 1.5

log 2
k4(log k)2 logm

< 7.6× 1011k4(log k)2 logm, (14)

where we used the fact that 1 + log k < 2.5 log k and 1 + log(m− 1) < 1.5 logm for
all k ≥ 2 and m ≥ 7.

By inequality (9), m < 1.5knk + 3.5, and inserting this bound into (14), we
conclude that

m < 1.5k(7.6× 1011k4(log k)2 logm) + 3.5

< 1.2× 1012k5(log k)2 logm,

or, equivalently,
m

logm
< 1.2× 1012k5(log k)2. (15)
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Now, as the function x 7→ x/ log x is increasing for all x > e, we can easily show that

the inequality
x

log x
< A yields x < 2A logA, whenever A > 3. Applying this

argument to inequality (15), with A := 1.2× 1012k5(log k)2 and x := m, we obtain

m < 2(1.2× 1012k5(log k)2) log(1.2× 1012k5(log k)2)

< 1.2× 1014 k5(log k)3,

where we have used that log(1.2× 1012k5(log k)2) < 48 log k holds for all k ≥ 2. We
record what we have just proved.

Lemma 1. If (m, k, n1, . . . , nk) is a solution of (2), with k ≥ 2, m ≥ 2k + 3 and
nk ≥ 2, then the inequality

knk + 3 ≤ m < 1.2× 1014 k5(log k)3 (16)

holds.

5. The case of small k

Here, we treat the case k ∈ [2, 182] showing that in such range equation (2) has a
solution only when k = 2 and the only solution then is

F8 = 1 + 22 + 42.

We make use of the following result due to Dujella and Pethő which is a gene-
ralization of a result of Baker and Davenport (see [8]). Our aim here is to reduce
the upper bound of m obtained for each k ∈ [2, 182] by using inequality (16) and
afterwards conclude by performing a computational search.

For a real number x, we put ||x|| = min{|x − n| : n ∈ Z} for the distance from
x to the nearest integer.

Lemma 2. Let M be a positive integer and p/q a convergent of the continued fraction
of the irrational γ such that q > 6M , and let A,B, µ be some real numbers with
A > 0 and B > 1. Let ϵ := ||µq|| −M ||γq||. If ϵ > 0, then there is no solution to
the inequality

0 < mγ − n+ µ < AB−m,

in positive integers m and n with log(Aq/ϵ)/logB ≤ m ≤ M.

In order to apply Lemma 2, we let

Γ := (m− 1) logα− knk log 2 + log fk(α).

Returning to Λ given by expression (12), we see that eΓ − 1 = Λ. We note that Γ is
positive since Λ is positive, which can be deduced by looking at the right-hand side
of equation (11).

Thus,

0 < Γ < eΓ − 1 <
3

2nk
.
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Replacing Γ by its formula and dividing both sides by log 2, we get

0 < (m− 1)

(
logα

log 2

)
− knk +

log fk(α)

log 2
<

3

2nk log 2
< 5× 2

2.5
1.5k (2

1
1.5k )−(m−1), (17)

where we used that nk > (m − 3.5)/(1.5k), which follows from inequality (9). We
put

γk :=
logα

log 2
, µk :=

log fk(α)

log 2
,

and
Ak := 5× 3.181/k, Bk := 1.581/k.

The fact that α is a unit in OK ensures that γk is an irrational number. Even
more, γk is transcendental by the Gelfond-Schneider theorem. Inequality (17) can
be rewritten as

0 < (m− 1)γk − knk + µk < AkB
−(m−1)
k . (18)

Now, we take M := ⌊1.2 × 1014k5(log k)3⌋ which is an upper bound on m by ine-
quality (16), and apply Lemma 2 to inequality (18) for each k ∈ [2, 182].

By means of computer search with Mathematica we found the values of

mk := ⌊log(Akq/ϵ)/ logBk⌋

(see Table 1) which corresponds to upper bounds on m− 1, according to Lemma 2.
Thus, gathering all the information obtained and considering inequality (9), our

problem is reduced to search solutions for (2) in the following range:

k ∈ [2, 182], m ∈ [2k + 3,mk + 1], nk ∈ [2, (mk − 1)/k]. (19)

k mk k mk k mk k mk k mk k mk k mk

2 17 28 3506 54 8365 80 15507 106 32374 132 51132 158 72554
3 285 29 3756 55 8505 81 15827 107 32932 133 51328 159 73451
4 392 30 3796 56 8844 82 19241 108 33587 134 51949 160 74389
5 542 31 3947 57 9143 83 19668 109 34297 135 53259 161 75502
6 632 32 4076 58 9847 84 20161 110 34838 136 53814 162 76422
7 753 33 4232 59 9979 85 20928 111 35627 137 54368 163 77243
8 923 34 4405 60 10475 86 21146 112 37020 138 55179 164 78246
9 1041 35 4522 61 10674 87 21633 113 36772 139 56083 165 79259
10 1108 36 4649 62 10857 88 22511 114 37453 140 56820 166 80211
11 1251 37 4861 63 11298 89 23176 115 38230 141 57614 167 81368
12 1393 38 4962 64 11659 90 23190 116 38909 142 59817 168 82173
13 1483 39 5164 65 12178 91 23840 117 39475 143 59259 169 83163
14 1617 40 5352 66 12347 92 24284 118 40263 144 60383 170 84215
15 1791 41 5420 67 12739 93 25063 119 40850 145 61012 171 85231
16 1866 42 5548 68 13113 94 25375 120 41805 146 61844 172 86208
17 2069 43 5592 69 13501 95 25884 121 42310 147 62723 173 87505
18 2358 44 5873 70 13895 96 26539 122 43101 148 63756 174 88219
19 2340 45 6033 71 14365 97 27020 123 43706 149 64660 175 89398
20 2448 46 6068 72 14745 98 27551 124 44413 150 65364 176 90235
21 2527 47 6190 73 15135 99 28121 125 45164 151 66187 177 91424
22 2760 48 6548 74 15593 100 28696 126 46300 152 67133 178 92302
23 2870 49 6937 75 15993 101 29292 127 46835 153 68067 179 93492
24 2973 50 7041 76 16490 102 29916 128 47351 154 69035 180 94399
25 3061 51 7335 77 19875 103 30482 129 48169 155 70523 181 95778
26 3295 52 7921 78 17471 104 31111 130 48930 156 70810 182 96654
27 3391 53 7917 79 17777 105 31683 131 49718 157 71599

Table 1: Reducing m on k
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Finally, we note that if (m, k, n1, . . . , nk) is a solution of the equation (2) and s
is the number of ni’s which are zero, then 0 ≤ s ≤ k− 1 (nk ≥ 2), and the following
hold:

i) F
(k)
m − s is odd;

ii) k divides the greatest exponent of 2 in the binary representation of F
(k)
m − s;

iii) F
(k)
m − s has k + 1 − s digits of 1 in base 2 and the remaining digits equal to

zero.

Hence, we search for all k−Fibonacci numbers F
(k)
m , with k and m in the range

given by (19), which satisfy the above conditions. A new computational search with
Mathematica revealed that s = 0 and

k 2 6 14 30 62 126
m 8 15 31 63 127 255

.

Comparing the representation in base 2 of each F
(k)
m with the shape of the right–hand

side of equation (2), we conclude that the only nontrivial solution of the equation
(2) is that given by the Main Theorem. With this, we completed the analysis of the
case when k is small.

6. The case of large k

We now assume that k > 182 and show that the equation (2) has no nontrivial
solutions. From (16) we have that

m < 1.2× 1014k5(log k)3 < 2k/2.

Then, combining inequality (8) with r = m − 1, equality (11) and the fact that
nk ≥ 2, we conclude that

|2m−2 − 2knk | < |2m−2 − fk(α)α
m−1|+ |fk(α)αm−1 − 2knk |

<
2m

2k/2
+

2knk

3
+

1

2
.

Now, dividing both sides by 2m−2, we get

|1− 2knk−(m−2)| < 4

2k/2
+

1

3× 2m−2−knk
+

1

2m−1
. (20)

On the other hand, by (9), the left–hand side in (20) is greater than or equal to 1/2.
So, in summary, from (20) and the previous observation, we have that

4

2k/2
+

1

3× 2m−2−knk
+

1

2m−1
>

1

2
. (21)

However, inequality (21) is impossible, given that k > 182, m ≥ 7 and m−2−knk ≥
1.

Thus, we have shown that there are no solutions (m, k, n1, . . . , nk) to Diophantine
equation (2) with k > 182, m ≥ 2k + 3 and nk ≥ 2, which completes the proof of
our Main Theorem.
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