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Abstract. In this paper, we consider the isoptic curves in 2-dimensional geometries of
constant curvature E2, H2, E2. The topic is widely investigated in the Euclidean plane
E2, see for example [1] and [15] and the references given there. In the hyperbolic and
elliptic plane (according to [18]), there are few results in this topic (see [3] and [4]). In this
paper, we give a review of the known results on isoptics of Euclidean and hyperbolic curves
and develop a procedure to study the isoptic curves in the hyperbolic and elliptic plane
geometries and apply it to some geometric objects, e.g. proper conic sections. For the
computations we use classical models based on the projective interpretation of hyperbolic
and elliptic geometry and in this manner the isoptic curves can be visualized.
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1. Introduction

Let G be one of the constant curvature plane geometries, the Euclidean E2, the
hyperbolic H2, and the elliptic E2. The isoptic curve of a given plane curve C is the
locus of points P ∈ G, where C is seen under a given fixed angle α (0 < α < π).
An isoptic curve formed by the locus of tangents meeting at right angles is called
orthoptic curve. The name isoptic curve was suggested by Taylor in [14].

First, we consider the Euclidean plane geometry (G = E2). The easiest case is
where C is a line segment, then the set of all points for which a line segment can be
seen at angle α contains of two circular arcs with central angle 2α symmetric with
respect to the segment. In the special case of α = π

2 , we get exactly one circle called
Thales circle (without the endpoints of the given segment) with the center in the
middle of the line segment.

In [1] and [2], the isoptic curves of the closed, strictly convex curves are studied,
using their support function. Papers [16] and [17] deal with curves having a circle
or an ellipse for an isoptic curve. Further, curves appearing as isoptic curves are
well studied in Euclidean plane geometry E2, see e.g. [6, 15]. Isoptic curves of
conic sections have been studied in [5] and [12]. A lot of papers concentrate on the
properties of the isoptics, e.g. [8, 7], and the reference given there.
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There are a lot of possibilities to give the equations of the isoptics of conic sections
(see e.g [6]), for instance, they can be determined by the construction method of the
tangent lines from an outer point. We have illustrated this procedure (see [13]) in
the following figure:

Figure 1: Tangent lines from outer point K

To get the isoptics, we have to solve the system of equations generated by two
circle equations (ellipse, hyperbola) or a circle and a line equation (parabola) and
using the scalar product we have to fix the angle of the tangent lines. In the case of
the hyperbola, there is no proper touching point, if the outer point is contained by
one of its asymptotes, but the asymptotes are the tangent lines at the curve’s ideal
points. From this method, we get the following equations for the isoptic curves (see
[6]):

Ellipse : cosα = − a2 + b2 − x2 − y2√
(−a2 + b2 + x2)

2
+ 2y2 (a2 − b2 + x2) + y4

,

where the ellipse is given by its equation x2

a2 + y2

b2 = 1,

Hyperbola : cos2 α =
(−a2 + b2 + x2 + y2)2

(a2 + b2 − x2)
2
+ 2y2 (a2 + b2 + x2) + y4

,

where the hyperbola is given by its equation x2

a2 − y2

b2 = 1,

Parabola : cosα = − y√
(p− y)2 + x2

,

where the axis x is the directix, and the focus equals (0, p).

Remark 1.

1. In the case of a hyperbola, the two asymptotes split the space into four domains,
two of them contain a hyperbola branch (focal domains), the other ones are
empty. Let P be an outer point of the hyperbola. If P is in a focal domain,
then the tangent lines touch the same branch of the hyperbola, else they touch
both of the branches. In these cases, the isoptic angles are complementary to
each other, i.e. they sum up to π. Therefore, we take the square of the equation
and thus we obtain both types of isoptic curves.
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2. The numerator is greater than zero for every (x, y) if b > a. Therefore, the
isoptic curves do not exists in the interval(

arccos

(
b2 − a2

b2 + a2

)
, arccos

(
a2 − b2

a2 + b2

))
if the condition b > a holds. Otherwise, the isoptic curve exist for every
α ∈ (0, π).

We have illustrated the isoptic curves of some conic sections in Euclidean plane
E2 in Figures 2-3:
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Figure 2: Isoptic curve to the Euclidean ellipse (left) and hyperbola (right) with parameters: a = 4,
b = 1, 5, α = π/6, and a = 5, b = 3, α = π/3
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Figure 3: Isoptic curve to the Euclidean hyperbola (left) and parabola (right) with parameters:
a = 5, b = 3, α = π/2, and p = 1/2, α = π/3

In the case of hyperbolic planar geometry there are only a few results. The
isoptic curves of the hyperbolic line segment, ellipses and parabolas are determined
in [3] and [4].

As far as we know, there are no results in elliptic geometry E2, but we conjecture
that there might exist a few in spherical geometry.

In this paper, we develop a method based on the projective interpretation of
hyperbolic and elliptic geometry to determine the isoptic curve of a given plane
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curve C and we apply our procedure to the hyperbolic hyperbola with proper foci,
elliptic line segments and elliptic conic sections. Moreover, we visualize them for
some angles.

2. The projective model

We use homogeneous coordinates x = (x0 : x1 : x2) and u = (u0 : u1 : u2) in order
to represent points X as well as straight lines u in projective space P3. Sometimes
we write X = xR in order to express that the point X is determined by a certain
vector x ∈ R3 and its non-trivial scalar multiples, similarly u = uR for lines. A
point X = xR and a straight line u = uR are incident if x · uT = 0 with · denoting
usual matrix multiplication.

Constant curvature plane geometries can be represented in projective space P3

using the bilinear form

⟨x,y⟩ = ϵx0y0 + x1y1 + x2y2, (1)

where ϵ = 0,−1,+1, respectively, Euclidean, hyperbolic and elliptic geometries.
Now we consider hyperbolic and elliptic planes, therefore ϵ = ±1.

Hyperbolic and elliptic distances and angles can be computed with the help of
the bilinear form (1), see [10]. The distance d(X,Y ) of two points X = xR and
Y = yR is given by

C(s) =
ϵ⟨x,y⟩√

⟨x,x⟩⟨y,y⟩
, (2)

where C(s) is cosine in elliptic geometry, and hyperbolic cosine in hyperbolic geom-
etry.

Further, we find the angle α(u, v) enclosed by two straight lines u = uR and
v = vR, respectively, with

cosα =
ϵ⟨u,v⟩√

⟨u,u⟩⟨v,v⟩
. (3)

3. Isoptic curve of the line segment on the hyperbolic and
elliptic plane

In this section, we examine the hyperbolic and elliptic cases together.

Let two points A and B be given in the plane. Without loss of generality, we can
assume that their homogeneous coordinates are A = (1 : a : 0) and B = (1 : −a : 0),
where (a ∈]0, 1]). We consider two straight lines u and v, where u = (1 : u1 : u2)

T

passes trough points A and P , and v = (1 : v1 : v2)
T passes through points B and
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P . By the incidence formula we get the following equations:

A ∈ u ⇔ (1, a, 0)

 1
u1

u2

 = 0 ⇔ u1 = −1

a
,

B ∈ v ⇔ (1,−a, 0)

 1
v1
v2

 = 0 ⇔ v1 =
1

a
.

(4)

P ∈ u ⇔ (1, x, y)

 1
u1

u2

 = 0 ⇔ u2 = −a− x

ya
, y ̸= 0,

P ∈ v ⇔ (1, x, y)

 1
v1
v2

 = 0 ⇔ v2 = −a+ x

ya
, y ̸= 0.

(5)

The angle α between the above straight lines can be determined by the for-
mula (3):

cos(α) =
ϵ(ϵ+ u1v1 + u2v2)√

(ϵ+ u2
1 + u2

2)(ϵ+ v21 + v22)

with ϵ = ±1 if G is elliptic or hyperbolic. Substituting coordinates from (4) and (5)
into the above equation, we obtain:

Theorem 1. Let us suppose that a line segment is given by A = (1 : a : 0) and
B = (1 : −a : 0). Then for a given α(0 < α < π), the α-isoptic curve of AB in the
hyperbolic and elliptic plane has an equation of the form:

cos(α) =
ϵ(ϵ− 1

a2 + a2−x2

y2a2 )√
(ϵ+ 1

a2 + (a−x
ya )2)(ϵ+ 1

a2 + (a+x
ya )2)

, (6)

where ϵ = ±1 if G is either the elliptic or the hyperbolic plane.

Remark 2.

1. We obtain the orthoptic curve Gπ/2 if α = π/2 with the equation:

x2

a2
+

y2

a2

1−ϵa2

= 1. (7)

This is an ellipse (without endpoints of the given segment) in the Euclidean
sense, and it can be called the Thales curve.

In the hyperbolic plane, if we increase the parameter a, then the Thales curve
tends to a hypercycle (or an equidistant curve). That means the hypercycle is
a special type of orthoptic curves

x2 + 2y2 = 1.
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2. In the hyperbolic plane, if a → 1, then equation (6) converges to the following
equation

x2 +

(
y

cos
(
α
2

))2

= 1.
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Figure 4: The isoptic curve to hyperbolic (left) and elliptic (right) line segment with parameters:
hyperbolic: a = 0.4, α = π/6, elliptic: a = 0.8, α = 8π/18

4. The general method

The procedure above can be used to develop a more general method to determine
the isoptic curves. Let a conic section C and one of its point P be given. Using the
implicit function theorem and the equation of C, we can determine the equation of
the tangent line in this point. After that, a system of equations to the coordinates
of the tangent point from an exterior point K can be given. This point has to satisfy
the equation of the given curve and the tangent lines to this point have to contain
K. This system can be solved for every K = (1 : x0 : y0) outer point with respect
to the parameters x0, y0. In the general case, the formulas of the solutions are
complicated. Now, we have to follow the upper method using the coordinates of the
tangent points. The equation of the tangent lines from K can be determined by
solving a system of equations for its coordinates. Finally, we have to fix the angle
of the straight lines and we get the equation of the isoptic curve.

4.1. On the hyperbolic plane

4.1.1. Equation of the hyperbolic ellipse and hyperbola

Now, we define the proper central conic sections and give their equations.

Definition 1. The proper hyperbolic ellipse is the locus of all points of the hyperbolic
plane whose distances to two proper fixed points add to the same constant 2a.

Definition 2. The proper hyperbolic hyperbola is the locus of points where the ab-
solute value of the difference of the distances to the two proper foci is a constant 2a.
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We discuss the ellipse and the hyperbola together. We can suppose that the two
foci are equidistant from the origin O, both located on the axis x with coordinates
f1R = F1 = (1 : f : 0) and f2R = F2 = (1 : −f : 0) where 0 < f < 1. Let
pR = P = (1 : x : y) ∈ H2 a point of the conic section. Using (2) we obtain

ϵ1 cosh
−1

(
−⟨p, f1⟩√
⟨p,p⟩ ⟨f1, f1⟩

)
+ ϵ2 cosh

−1

(
−⟨p, f2⟩√
⟨p,p⟩ ⟨f2, f2⟩

)

= 2a ⇔ ϵ2 cosh
−1

(
−(−1− xf)√

(−1 + x2 + y2)(−1 + f2)

)

= 2a− ϵ1 cosh
−1

(
−(−1 + xf)√

(−1 + x2 + y2)(−1 + f2)

)
,

where ϵ1,2 = ±1 and ϵ1 + ϵ2 ≥ 0. Applying the hyperbolic cosine to both sides, we
get the following equations:

1 + xf√
(−1+x2+y2)(−1+f2)

= cosh(2a)
1− xf√

(−1+x2+y2)(−1+f2)

−ϵ1 sinh(2a) sinh

(
cosh−1

(
1− xf√

(−1+x2+y2)(−1+f2)

))
.

The next equation is obtained by applying the formula sinh
(
cosh−1(t)

)
=

√
t2 − 1

and by multiplying both sides by
√
(−1 + x2 + y2)(−1 + f2).

1 + xf = cosh(2a)(1− xf)− ϵ1 sinh(2a)
√
(1− xf)2 − (1− x2 − y2)(1− f2).

Now, if we simplify this equation and take its square, there is no ϵ therein.
Finally, we get the following equation:(

x

tanh(a)

)2

+
y2

1 + 1
(f2−1) cosh2(a)

= 1. (8)

If the distance between the two foci is less than 2a, it is an ellipse; if it is greater,
then it is a hyperbola since we have

2a <> d(F1, F2) ⇔ cosh(2a) <> cosh(d(F1, F2)) =
−⟨F1, F2⟩√

⟨F1, F1⟩ ⟨F2, F2⟩
=

1 + f2

1− f2

⇔ 2 cosh2(a)− 1 <>
2

1− f2
− 1 ⇔ 1 <>

1

cosh2(a)(1− f2)

⇔ 1 +
1

cosh2(a)(f2 − 1)
<> 0.

Therefore, the hyperbolic ellipse and hyperbola are also an ellipse and a hyperbola
in the model.
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4.1.2. Isoptic curve of hyperbolic ellipse and hyperbola

Now, we will use the above described method to determine the isoptic curves to
hyperbolic ellipses and hyperbolas.

The first step is to determine the equation of the tangent lines (y ̸= 0):

y′ = −x

y

(
1 +

f2

sinh2(a)(f2 − 1)

)
. (9)

The equation above converges continuously to x2 = tanh2(a), if y → 0. After that,
we have to solve the following system of equations for X̃i = (1 : x̃i : ỹi), (i = 1, 2),
where X = (1 : x : y) is a point in the Cayley-Klein model:

− x̃

ỹ

(
1 +

f2

sinh2(a)(f2 − 1)

)
(x− x̃) + ỹ = y

(
x̃

tanh(a)

)2

+
ỹ2

1 + 1
(f2−1) cosh2(a)

= 1.

(10)

It is not so hard to determine the roots, but because of the complexity of the
result, we ignore it. Now we need u = (1 : u1 : u2)

T and v = (1 : v1 : v2)
T straight

lines, fits on P , X̃1 and P , X̃2, respectively.
Using that (x̃i, ỹi) is known, we get the following system of equations:

1 + u1x+ u2y = 0

1 + u1x̃1 + u2ỹ1 = 0,
(11)

1 + v1x+ v2y = 0

1 + v1x̃2 + v2ỹ2 = 0.
(12)

Solving these systems, we can determine the tangent lines for all X[x] outside of
the conic section. The last step in the method of the previous section is to fix the
angle. We summarize our results in the following theorem:

Theorem 2. Let a hyperbolic ellipse or hyperbola be centered at the origin in the
projective model given by its semimajor axis a and foci F1 = (1 : f : 0), F2 = (1 :
−f : 0), (0 < f < 1) such that 2a > d(F1, F2) or 2a < d(F1, F2) holds. The α
and (π − α)-isoptic curves (0 < α < π) of the considered ellipse or hyperbola in the
hyperbolic plane has the equation

cos2(α) =

((
f2 − 1

)
cosh(2a)

(
x2 + y2 − 1

)
+ f2x2 − 1

)2
−2 (f2 − 1) y2 (f2 + x2) + (f2 − x2)

2
+ (f2 − 1)

2
y4

, (13)

where x2 + y2 ≤ 1 holds.

Remark 3.

1. The orthoptic curves of hyperbolic hyperbola exist if

f ≤

√
1− 1

cosh(2a)
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and it is an ellipse, similarly to the hyperbolic ellipse, with the following equa-
tion (

1− f2
)
cosh(2a)

(
−1 + x2 + y2

)
+ f2x2 = 1.

2. We remark here, without any calculations, that the isoptic curve of the hyper-
bolic ellipse does not exist in the following interval:

α ∈

(
arccos

((
f2 − 1

)
cosh(2a) + 1

f2

)
, arccos

((
1− f2

)
cosh(2a)− 1

f2

))
,

if
(

1
1−f2 + 1

)
sech2(a) > 2.
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Figure 5: The isoptic curve to a hyperbolic ellipse (with a = 0.7, f = 0.59, α = π/6; left) and a
hyperbola (with a = 0.35, f = 0.55, α = π/6; right)

4.1.3. The equation and the isoptic curve of the hyperbolic parabola

In this section, we define the proper hyperbolic parabolas and give their equations.

Definition 3. The hyperbolic proper parabola is the set of points (X = xR = (1 :
x : y)) in the hyperbolic plane that are equidistant to a proper point (the focus F )
and a proper line (the directrix e) (s = d(X;F ) = d(X; e)).

Without loss of generality, we can assume that the directrix (e) is the axis x and
the coordinates of the focus point are F = (1 : 0 : p).

We remark that the coordinates of the foot pointX ′ of the perpendicular dropped
form X to the x-axis are X ′ = (1 : x : 0). Using formula (2) we find

cosh(s) =
1− py√

1− x2 − y2
√
1− p2

=
1− x2√

1− x2 − y2
√
1− x2

. (14)

The equation of the proper hyperbolic parabola is obtained by (14):

x2 +
(1− py)2

1− p2
= 1. (15)
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Using the above method, we have to solve the folloving system of equations for
coordinates x̃, ỹ:

x̃(1− p2)

p− ỹp2
(x− x̃) + ỹ = y

x2 +
(1− py)2

1− p2
= 1.

(16)

In accordance with the method, we have to solve the system of equations (11),
(12). Now, the following theorem holds:

Theorem 3. Let a proper hyperbolic parabola be given in the projective model by
its focus fR = F = (1 : 0 : p) and its directrix e which coincides with the x-axis.
The α-isoptic curves of this parabola (0 < α < π) in the hyperbolic plane have the
equation:

cos(α) =
y(py − 1)√

(x2 − 1)((p2(x2 − 1) + 2py + y2 − x2)
. (17)

Remark 4. The orthoptic curve of the hyperbolic parabola is a straight line; y = 0.
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Figure 6: The isoptic curve to a hyperbolic parabola with parameters p = 0.25, α = π/3 (left),
p = 0.25, α = 2π/3 (right)

4.2. On the elliptic plane

In this section, we will discuss the equations of the conic sections and their isoptics
in the elliptic plane E2.

We remark that in the elliptic plane the maximum distance between two points
is less than π

2 ; therefore, in some cases the given curve cannot be seen under an
arbitrarily small angle.

4.2.1. Equation of the elliptic ellipse and hyperbola

We will follow the deduction process detailed in the previous section to determine
the equation of the elliptic ellipse and hyperbola, having the following definitions:
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Definition 4. The elliptic ellipse is the locus of all points of the elliptic plane whose
distances to two fixed points add to the same constant 2a.

Definition 5. The elliptic hyperbola is the locus of points where the absolute value
of the difference of the distances to the two foci is a constant 2a.

Let us suppose that the two foci are symmetric with respect to origin O, both
fits on the axis x. Then their coordinates are F1 = (1 : f : 0) and F2 = (1 : −f : 0),
where (0 < f < π/2). Let P = (1 : x : y) ∈ E2 a point of the conic section.

Using (2) we obtain the following equation:

ϵ1 cos
−1

(
⟨p, f1⟩√

⟨p,p⟩ ⟨f1, f1⟩

)
+ ϵ2 cos

−1

(
⟨p, f2⟩√

⟨p,p⟩ ⟨f2, f2⟩

)

= 2a ⇔ ϵ2 cos
−1

(
(1− xf)√

(1 + x2 + y2)(1 + f2)

)

= 2a− ϵ1 cos
−1

(
(1 + xf)√

(1 + x2 + y2)(1 + f2)

)
,

where ϵ1,2 = ±1 and ϵ1 + ϵ2 ≥ 0.
Repeating the procedure described in the previous section, we get the equation(

x

tan(a)

)2

+
y2

1
(1+f2) cos2(a) − 1

= 1. (18)

If the distance between the two foci is less than 2a, it is an ellipse, else it is a
hyperbola.

2a <> d(F1, F2) ⇔ · · · ⇔ 1− 1

cos2(a)(1 + f2)
<> 0

We have to take the implicit derivative of (18) and solve the system of equations
for the tangent points X̃i = (1 : x̃i : ỹi), (i = 1, 2),

− x̃

ỹ

(
1− f2

sin2(a)(1 + f2)

)
(x− x̃) + ỹ = y

(
x̃

tan(a)

)2

+
ỹ2

1
(1+f2) cos2(a) − 1

= 1.

(19)

By solving the system of equations (11), (12) to these roots X̃1,2 we get the
following.

Theorem 4. Let an elliptic ellipse or hyperbola be centered at the origin of the
projective model given by its semimajor axis a and its foci F1 = (1 : f : 0), F2 = (1 :
−f : 0), (0 < f < 1) such that 2a > d(F1, F2) or 2a < d(F1, F2) holds. The α-isoptic
and (π − α)-isoptic curves (0 < α < π) of the considered ellipse or hyperbola in the
elliptic plane have the equation

cos2(α) =

((
1 + f2

)
cos(2a)

(
x2 + y2 + 1

)
+ f2x2 − 1

)2
2 (1 + f2) y2 (f2 + x2) + (f2 − x2)

2
+ (1 + f2)

2
y4

. (20)
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Remark 5.

1. The orthoptic curve of the elliptic ellipse and hyperbola is an ellipse with the
following equation:(

1 + f2
)
cos(2a)

(
x2 + y2 + 1

)
+ f2x2 = 1.

2. The isoptic curve of the elliptic hyperbola exists if the following formula holds
true (

cosα ≤ max

(
1− (1 + f2) cos(2a)

f2
, f2 + (1 + f2) cos(2a)

))
∧

(
a ≥ π

6
∨

(
f ≤

√
1

cos(2a)
− 1

)
∨ (α /∈ I)

)
,

where

I =

(
arccos

(
(1 + f2) cos(2a)− 1

f2

)
, arccos

(
1− (1 + f2) cos(2a)

f2

))
.
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Figure 7: The isoptic curve to an elliptic ellipse (with a = 0.7, f = 0.8; α = π/3; left) and a
hyperbola (with a = 0.7, f = 1; α = π/2; right)

4.2.2. The equation and the isoptic curve of elliptic parabola

Similarly to the hyperbolic case, we define the elliptic parabolas and give their equa-
tions.

Definition 6. An elliptic parabola is the set of points (X = (1 : x : y) ∈ E2) in the
elliptic plane that are equidistant to a proper point (the focus F ) and a proper line
(the directrix e) (s = d(X;F ) = d(X; e)).

Without loss of generality, we can assume that the directrix (e) is the axis x and
the coordinates of the focus point are F = (1 : 0 : p). The distances d(X;F ) and
d(X; e) can be computed by the formula (3):

cos(s) =
1 + py√

1 + x2 + y2
√
1 + p2

=
1 + x2√

1 + x2 + y2
√
1 + x2

. (21)
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From (21) we obtain the equation of the elliptic parabola:

−x2 +
(1 + py)2

1 + p2
= 1. (22)

Using the same method, we can solve the foloving system of equations for (x̃, ỹ):

x̃(1 + p2)

p+ ỹp2
(x− x̃) + ỹ = y

−x2 +
(1 + py)2

1 + p2
= 1.

(23)

Finally, we have to solve the system of equations (11), (12). Now, the following
theorem holds

Theorem 5. Let an elliptic parabola be given in the projective model by its focus
F = (1 : 0 : p) and its directrix e which coincides with an x-axis. The α-isoptic
curve of this parabola (0 < α < π) in the elliptic plane has the equation

cos(α) =
y(py + 1)√

(x2 + 1)((p2(x2 + 1)− 2py + y2 + x2)
. (24)

Remark 6. The orthoptic curve of the elliptic parabola contains two straight lines
y = 0 and y = − 1

p .

Remark 7. The figures of the isoptic curves also confirm the fact that in elliptic
geometry there is only one class of conic sections. However, in the affine model of
the projective plane used, these can be considered separately.
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Figure 8: The isoptic curve to an elliptic parabola with parameters p = 0.25; α = π/3 (left),
p = 1.5, α = 2π/3 (right)

In this paper, we consider the hyperbolic conic sections with proper foci, the
problem is actual for the general types of conic section types in the hyperbolic plane
(see [9]). Moreover, similar questions are interesting for other plane geometries, e.g.
in the Minkowski plane.
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