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Computing coarse shape groups of solenoids
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Abstract. The coarse shape groups are new topological invariants which are (coarse) shape
and homotopy invariants as well. Their structure is significantly richer than the structure
of shape groups. They provide information (especially, about compacta) even better than
the homotopy pro-groups. Since nontrivial coarse shape groups, even for polyhedra, are
too large, it is difficult to calculate them exactly. Herein, we give an explicit formula for
computing coarse shape groups of a large class of metric compacta including solenoids.
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1. Introduction and preliminaries

The coarse shape theory (founded in [4]) functorially generalizes the shape theory.
A category frame for this theory is the (pointed) coarse shape category Sh∗ (Sh∗

⋆),
having (pointed) topological spaces as objects and having the (pointed) shape cat-
egory Sh (Sh⋆) as a subcategory. There exist metrizable continua having the same
coarse shape type and different shape types. The coarse shape preserves many
important topological and shape invariants (see [2]) as connectedness, movability,
strong movability, n-movability, shape dimension, triviality of shape, stability. There
are also several important algebraic coarse shape invariants. In [3], the functors
π̌∗
n : Sh∗

⋆ → Grp, n ∈ N (Grp denotes the category of groups) are introduced.
The functor π̌∗

n assigns to every pointed space (X,x0) the n-th coarse shape group
π̌∗
n (X,x0) having the n-th shape group π̌n (X,x0) as its subgroup. Therefore, the

coarse shape groups provide information on pointed spaces better than the shape
groups. For a pointed metric compact space (pointed compactum) (X,x0), unlike
shape groups, coarse shape groups fit into a long exact sequence (see [1]). Since we
know that the homotopy theory is inadequate for spaces with bad local properties,
the study of coarse shape groups of such spaces can be very useful, especially when
the corresponding shape groups vanish. Comparing the coarse shape groups of met-
ric compacta with corresponding homotopy pro-groups, one can notice that coarse
shape groups have many advantages. Namely, for a pointed compactum (X,x0),
pro-πk (X,x0) ≃ 0 is equivalent to π̌∗

k (X,x0) = 0, for every k ∈ N, but on the other
hand, pro-πk (X,x0) does not have an algebraic structure of a group while π̌∗

k (X,x0)
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does. However, the coarse shape groups are too ”massive” and it is not easy to com-
pute them for a concrete space (except a polyhedron). In the present paper, we
give an explicit formula for computing coarse shape groups of a pointed compactum
whose bonding homomorphisms of its homotopy pro-groups are monomorphisms.
This class of metric compactum includes many interesting spaces such as solenoids
which are specially considered in the last section of this paper.

Let us recall some basic notions about the coarse shape category (see [4]). An
S∗-morphism of inverse systems X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) in
some category C, (f, fn

µ ) : X → Y , consists of an index function f : M → Λ,
and of a set of C-morphisms fn

µ : Xf(µ) → Yµ, n ∈ N, µ ∈ M, such that, for
every related pair µ ≤ µ′ in M , there exists a λ ∈ Λ, λ > f(µ), f (µ′), and there
exists an n ∈ N so that, for every n′ > n, fn′

µ pf(µ)λ = qµµ′fn′

µ′ pf(µ′)λ. An S∗-
morphism (f, fn

µ ) : X → Y of inverse systems in C is said to be equivalent to
an S∗-morphism (f ′, f ′n

µ ) : X → Y denoted by (f, fn
µ ) ∼ (f ′, f ′n

µ ), provided every
µ ∈ M admits a λ ∈ Λ, λ > f(µ), f ′(µ), and an n ∈ N, such that, for every n′ > n,
fn′

µ pf(µ)λ = f ′n′

µ pf ′(µ)λ. The category pro∗-C has as objects all inverse systems X in
C and as morphisms all equivalence classes f∗ = [(f, fn

µ )] of S
∗-morphisms (f, fn

µ ).

Lemma 1. Let f∗ : (X)→ (Yi, qii+1,N) be a morphism of pro∗-C where (X) denotes
a rudimentary system (X1 = X, 1X , {1}) indexed by a singleton. Then f∗ admits a
representative (fn

i ) : (X) → (Yi, qii+1,N) such that there exists a strictly increasing
sequence µ = (mi, i ∈ N) in N such that m1 = 1 and, for every i > 1 and n ≥ mi,
fn
j = pjj′f

n
j′ holds, for every j < j′ ≤ i. The sequence µ is called a controlling

sequence of the S∗-morphism (fn
i ).

Proof. Let (fn
i ) be any representative of f∗. For every j < j′, let njj′ denote a

positive integer such that fn
j = pjj′f

n
j′ , for every n ≥ njj′ . We propose to define a

sequence (mi) by induction. Put m1 = 1 and let m2 = n1 2 + 1. For every i > 2, we
put

mi = max {max {njj′ | j < j′ ≤ i} ,mi−1}+ 1.

It is easy to check that (mi) is the desired sequence.

Remark 1. The essential idea of a controlling sequence of an S∗-morphism has
already appeared in [6]. In that paper, an S∗-mapping between any pair of inverse
sequences, is defined. For S∗-mappings a function called commutativity radius has
a similar role as a controlling sequence for S∗-morphisms.

Let us consider any pair of categories (C,D) where D is a full and pro-reflective
(i.e., dense) subcategory of C (see [5], I.2.2). Let p : X → X and q : Y → Y be
D-expansions of objects X and Y of C, respectively (see [5], I.2.1). A coarse shape
morphism F ∗ : X → Y is an equivalence class ⟨f∗⟩ represented by a morphism
f∗ : X → Y of pro∗-D (see [4]). The (abstract) coarse shape category Sh∗

(C,D)

for (C,D) has as objects all the objects of C, and its morphisms F ∗ ∈ Sh∗
(C,D)(X,Y )

are all equivalence classes ⟨f∗⟩ of morphisms f∗ : X → Y , with respect to any
choice of a pair of D-expansions p : X →X, q : Y → Y .

In this paper, C will be the pointed homotopy category HTop⋆. The restric-
tion of the class of objects to the pointed polyhedra yields the full subcategory
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HPol⋆ ⊆ HTop⋆. Recall that objects of the category HTop⋆ are all pointed spaces
(X,x0) and the morphisms are all homotopy classes (briefly H-maps) [f ] of map-
pings of pointed spaces, f : (X,x0) → (Y, y0). In this paper, the homotopy class
[f ] of a map f , i.e., a morphism of the category HTop⋆ or HTop⋆⋆, will be usually
denoted by omitting the brackets, whenever it cannot cause misunderstandings. It
is a well-known fact that HPol⋆ is a pro-reflective subcategory of HTop⋆ (see [5]).
This means that for every pointed space (X,x0) there exists an HPol⋆-expansion
of (X,x0) which is a morphism p = [(pλ)] : (X,x0)→ (X,x0) = ((Xλ, xλ) , pλλ′ ,Λ)
of pro-HTop⋆, where (X,x0) is an inverse system of pointed polyhedra. The con-
struction of the pointed coarse shape category Sh∗

⋆ follows now the general rule,
i.e., it is the category Sh∗

(HTop⋆,HPol⋆)
. Briefly, the objects of Sh∗

⋆ are all pointed

topological spaces (X,x0), while a morphism set Sh∗
⋆((X,x0), (Y, y0)) consists of all

equivalence classes F ∗ = ⟨f∗⟩ of morphisms f∗ =
[
(f, fn

µ )
]
: (X,x0) → (Y ,y0) of

pro∗-HPol⋆ ranging over the corresponding expansions. A morphism f∗ is repre-
sented by an S∗-morphism (f, fn

µ ) : ((Xλ, xλ) , pλλ′ ,Λ)→ ((Yµ, yµ) , qµµ′ ,M), where

fn
µ :
(
Xf(µ), xf(µ)

)
→ (Yµ, yµ) is a morphism of HPol⋆, for every µ ∈M, n ∈ N.

Recall that for every pointed space (X,x0) and for every k ∈ N0, the elements of
the k-dimensional homotopy group πk (X,x0) can be regarded as homotopy classes
of maps

(
Sk, s0

)
→ (X,x0), where Sk denotes the standard k-dimensional sphere.

For every k ∈ N, the functors π̌∗
k : Sh∗

⋆ → Grp and π̌∗
0 : Sh∗

⋆ → Set⋆ (Set⋆ denotes
the category of pointed sets and base point preserving functions) associate with
every pointed space (X,x0) the group π̌∗

k (X,x0) (for k = 0 pointed set) called
the k-th coarse shape group. Its underlying set is Sh∗

⋆

((
Sk, s0

)
, (X,x0)

)
, i.e.,

the elements of π̌∗
k (X,x0) are all pointed coarse shape morphisms A∗ :

(
Sk, s0

)
→

(X,x0). Notice that a representative [(anλ)] :
(
Sk, s0

)
→ ((Xλ, xλ) , pλλ′ ,Λ) of A∗

consists of anλ ∈ πk (Xλ, xλ), for all λ ∈ Λ, n ∈ N. The functor π̌∗
k associates with

every coarse shape morphism F ∗ : (X,x0) → (Y, y0) a homomorphism (for k = 0,
a base point preserving function) π̌∗

k (F
∗) : π̌∗

k (X,x0) → π̌∗
k (Y, y0) given by the

following formula:

π̌∗
k (F

∗) (A∗) = F ∗ ◦A∗, A∗ ∈ π̌∗
k (X,x0) .

2. The main result

Let us consider a pointed metric compactum (X,x0) and its HPol⋆-expansion

p : (X,x0)→ (X,x0) = ((Xi, xi) , pii+1,N) .

Let k ∈ N. Suppose that the homomorphism πk (pii+1) : πk (Xi+1, xi+1)→ πk (Xi, xi)
is a monomorphism, for every i ∈ N. Let us denote the group πk (X1, x1) by Gk

1 and
let Gk

i denote its subgroup πk (p1i) (πk (Xi, xi)), for i > 1. Let NN be the set of
all sequences in N and let M denote its subset consisting of all strictly increasing
sequences µ : N→ N such that µ (1) = 1.

For every µ = (mi) ∈M, consider the direct product

P k (µ) = Gk
1 × · · · ×Gk

1︸ ︷︷ ︸×
m2−1

Gk
2 × · · · ×Gk

2︸ ︷︷ ︸×
m3−m2

Gk
3 × · · · ×Gk

3︸ ︷︷ ︸×
m4−m3

· · ·
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which is the subgroup of
∏
n∈N

Gk
1 = Gk

1 ×Gk
1 × · · · .

For every µ = (mi) ∈M, consider the direct sum (or an external weak direct product
for k = 1, if G1

1 is not abelian)

Qk (µ) = Gk
1 ⊕ · · · ⊕Gk

1︸ ︷︷ ︸⊕
m2−1

Gk
2 ⊕ · · · ⊕Gk

2︸ ︷︷ ︸⊕
m3−m2

Gk
3 ⊕ · · · ⊕Gk

3︸ ︷︷ ︸⊕
m4−m3

· · · ,

which is a subgroup of
⊕
n∈N

Gk
1 = Gk

1 ⊕Gk
1 ⊕ · · · .

We define the union of subgroups P k (µ) of
∏
n∈N

Gk
1 , µ ∈M , by letting

P k =
∪

µ∈M

P k (µ) .

Let us prove that P k is the subgroup of
∏
n∈N

Gk
1 . It is sufficient to prove that for

every µ1, µ2 ∈ M there exists µ∗
(µ1,µ2) ∈ M such that P k

(
µ1
)
, P k

(
µ2
)
⊆ P k (µ∗) .

In order to find an algorithm for determining such sequence µ∗ let us consider the
direct product

P =
∏
n∈N

Pn

of the groups

Pn =

{
pn
(
P k
(
µ1
))

; for pn
(
P k
(
µ1
))
⊇ pn

(
P k
(
µ2
))

pn
(
P k
(
µ2
))

; for pn
(
P k
(
µ2
))
⊇ pn

(
P k
(
µ1
)) ,

where pn denotes a natural projection, for every n ∈ N. Since, for every n ∈ N, Pn

is one of the subgroups of the decreasing sequence
(
Gk

i

)
, Gk

1 ⊇ Gk
2 ⊇ · · · , Pn is well

defined. Consequently, P is the group, which contains P k
(
µ1
)
and P k

(
µ2
)
, and

for which there exits the sequence (di) in N such that

P = Gk
1 × · · · ×Gk

1︸ ︷︷ ︸×
d1

Gk
2 × · · · ×Gk

2︸ ︷︷ ︸×
d2

Gk
3 × · · · ×Gk

3︸ ︷︷ ︸×
d3

· · ·

Now, for the sequence µ∗ = (1, d1 + 1, d2 + d1 + 1, . . .) ∈ M, it is obvious that
P = P k (µ∗). In fact, it can be proven that µ∗ = max

{
µ1, µ2

}
.

Similarly, we define the union of subgroups Qk (µ) , µ ∈M , by putting

Qk =
∪

µ∈M

Qk (µ) .

As in the previous case, one can prove that this union makes a group, i.e., the
subgroup of

⊕
n∈N

Gk
1 .

We propose to prove that, for every k ∈ N,

π̌∗
k (X,x0) ∼= P k/Qk.
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First, we define a function

Φ : π̌∗
k (X,x0)→ P k/Qk

as follows. Notice that we may fix an arbitrary HPol⋆-expansion (X,x0) of (X,x0)
with the above mentioned property. Namely, by the construction of the functor π̌∗

k

we may identify the group π̌∗
k (X,x0) with the group{

a∗ | a∗ ∈ pro∗-HPol⋆
((
Sk, s0

)
, (X,x0)

)}
,

which is supplied with the standard additive operation defined in [3]. Let

A∗ ∈ π̌∗
k (X,x0) = Sh∗ ((Sk, s0

)
, (X,x0)

)
be a coarse shape morphism represented by an a∗ :

(
Sk, s0

)
→ (X,x0) . Let (ani )

be an S∗-morphism as in Lemma 1 representing a∗ and having µ = (mi) for its
controlling sequence. We define g = (gn) ∈ P k (µ), for n ∈ N, by putting

gn = p1ia
n
i :
(
Sk, s0

)
→ p1i ((Xi, xi)) ⊆ (X1, x1) ,

gn ∈ Gk
i , where i is the unique integer such that mi ≤ n < mi+1.

In order to complete the definition of the function Φ by letting Φ (A∗) = [g]
(where [g] is the class of g ∈ P k in P k/Qk) it remains to verify that neither Φ (⟨a∗⟩)
depends on the choice of representative of the morphism a∗ nor it depends on its
controlling sequence. Let (a′ni ) be another representative of a∗ having a controlling
sequence µ′ = (m′

i) and let g′ = (g′n) ∈ P k (µ′) ,

g′n = p1i′a
′n
i′ :

(
Sk, s0

)
→ p1i′ ((Xi′ , xi′)) ⊆ (X1, x1) ,

g′n ∈ Gk
i′ , n ∈ N, where i′ is the unique integer such that m′

i′ ≤ n < m′
i′+1. By using

the respective properties of the controlling sequences µ and µ′ one can easily check
that

gn = an1 and g′n = a′n1 , for every n ∈ N.

Indeed, by the definition of g = (gn) ∈ P k (µ) and g′ = (g′n) ∈ P k (µ′) , for n ∈ N, it
holds gn = p1ia

n
i and g′n = p1i′a

′n
i′ , where i and i′ are the unique integers such that

mi ≤ n < mi+1 and m′
i′ ≤ n < m′

i′+1, respectively. Now by Lemma 1 it follows
that an1 = p1ia

n
i and a′n1 = p1i′a

′n
i′ . Since (ani ) ∼ (a′ni ) implies that there exists an

n0 ∈ N such that, for every n′ ≥ n0, a
n′

1 = a′n
′

1 , one infers that gn′ − g′n′ = 0, for
every n′ ≥ n0. It follows

g − g′ ∈ Qk (µ∗) ⊆ Qk,

where the sequence µ∗(µ, µ′) is obtained applying the previously introduced algo-
rithm. This implies that

Φ (⟨[(ani )]⟩) = [g] = [g′] = Φ (⟨[(a′ni )]⟩) ,

which means that Φ is well defined.
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In order to prove that Φ is a homomorphism, suppose that A∗ and B∗ ∈
π̌∗
k (X,x0) are represented by a∗ = [(ani )] and b∗ = [(bni )] :

(
Sk, s0

)
→ (X,x0),

respectively, where (ani ) and (bni ) are S∗-morphisms having controlling sequences
µ1 =

(
m1

i

)
and µ2 =

(
m2

i

)
, respectively. By the definition of the function Φ it

follows that Φ (⟨a∗⟩) is represented by

g1 =
(
g1n
)
∈ P k

(
µ1
)
, g1n = an1 = p1i′a

n
i′ :
(
Sk, s0

)
→ Gk

i′ , n ∈ N,

where i′ is the unique integer such that m1
i′ ≤ n < m1

i′+1, and Φ (⟨b∗⟩) is represented
by

g2 =
(
g2n
)
∈ P k

(
µ2
)
, g2n = bn1 = p1i′′b

n
i′′ :

(
Sk, s0

)
→ Gk

i′′ , n ∈ N,

where i′′ is the unique integer such that m2
i′′ ≤ n < m2

i′′+1. Thus,
[
g1
]
= Φ(A∗) and[

g2
]
= Φ(B∗) . Notice that A∗ + B∗ is represented by [(ani + bni )] (see [3]), where

the sum ani + bni denotes the H-map (the homotopy class of mapping) which is the
sum in the group πk (Xi, xi) . It can be readily seen that an S∗-morphism (ani + bni )
has the sequence µ = (mi) = max

{
µ1, µ2

}
for its controlling sequence. Therefore

Φ (A∗ +B∗) is represented by

g = (gn) ∈ P k (µ) , gn = p1i (a
n
i + bni ) :

(
Sk, s0

)
→ Gk

i ,

where i is the unique integer such that mi ≤ n < mi+1. From the respective prop-
erties of the homomorphisms πk (p1i) : πk (Xi, xi)→ Gk

i , i ∈ N, and the controlling
sequence µ it follows

gn = an1 + bn1 = g1n + g2n, for every n ∈ N.

Hence,

Φ (A∗ +B∗) = [gn] =
[
g1n
]
+
[
g2n
]
= Φ(A∗) + Φ (B∗) .

Next we prove that Φ is an epimorphism. Assume that g = (gn) ∈ P k (µ) is an
arbitrary element of P k. For every i ∈ N, put

ani = [πk (p1i)]
−1

(gn) :
(
Sk, s0

)
→ (Xi, xi) , for n ≥ mi,

and ani = 0 (0 is the trivial H-map), otherwise. Notice that, for n ≥ mi, a
n
i is

defined as the unique element of πk (Xi, xi) such that gn = p1ia
n
i . Since πk (p1i) :

πk (Xi, xi) → Gi is an isomorphism and gn ∈ Gi, for n ≥ mi, a
n
i is well defined.

One can verify in a straightforward manner that

(ani ) :
(
Sk, s0

)
→ (X,x0)

is an S∗-morphism having µ for its controlling sequence. Thus the following equality
holds

Φ (⟨[(ani )]⟩) = [g] .

Let us prove that Φ is a monomorphism. Let A∗, B∗ ∈ π̌∗
k (X,x0) be represented

by a∗ = [(ani )] and b∗ = [(bni )] :
(
Sk, s0

)
→ (X,x0), respectively, where (ani ) and
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(bni ) are S∗-morphisms having controlling sequences µ1 =
(
m1

i

)
and µ2 =

(
m2

i

)
, re-

spectively. By the definition of the function Φ, it follows that Φ (⟨a∗⟩) is represented
by

g1 =
(
g1n
)
∈ P k

(
µ1
)
, g1n = p1ia

n
i :
(
Sk, s0

)
→ Gk

i ,

where i is the unique integer such that m1
i ≤ n < m1

i+1, and Φ (⟨b∗⟩) is represented
by

g2 =
(
g2n
)
∈ P k

(
µ2
)
, g2n = p1i′b

n
i′ :
(
Sk, s0

)
→ Gk

i′ ,

where i′ is the unique integer such that m2
i′ ≤ n < m2

i′+1. Thus,
[
g1
]
= Φ(A∗) and[

g2
]
= Φ(B∗) . Suppose that Φ (A∗) = Φ (B∗) . Hence,

g1 − g2 ∈ Qk (µ∗) ⊆ Qk,

where µ∗ = (mi) = max
{
µ1, µ2

}
. Then there exists an n ∈ N such that

g1n′ − g2n′ = 0, for every n′ ≥ n.

Therefore, for every i ∈ N, for every n′ ≥ max {n,mi} , we have

0 = g1n′ − g2n′ = p1ia
n′

i − p1ib
n′

i .

Using respective properties of the monomorphism πk (p1i) : πk (Xi, xi) → Gi we
infer that

0 = p1i

(
an

′

i − bn
′

i

)
and finally an

′

i = bn
′

i . Hence, (ani ) ∼ (bni ) and consequently we conclude

A∗ = [(ani )] = [(bni )] = B∗.

This shows that Φ is a group isomorphism. Hereby we have proved the following
theorem:

Theorem 1. Let k ∈ N and let (X,x0) be a pointed space admitting a sequential
HPol⋆-expansion p : (X,x0) → (X,x0) = ((Xi, xi) , pii+1,N) such that all bonding
homomorphisms πk (pii+1) , i ∈ N, of its homotopy pro-group pro-πk (X,x0) are
monomorphisms. Then

π̌∗
k (X,x0) ∼=

∪
µ∈M

P k (µ) /
∪

µ∈M

Qk (µ) .

Remark 2. An analogous formula for π̌∗
0 (X,x0) holds as well (without a group

structure). Namely, one can easily check that π̌∗
0 (X,x0) ∼=

∪
µ∈M

P k (µ) / (∼) holds,

where ∼ denotes the equivalence relation ”to be equal at all but finitely many coor-
dinates” on the direct product of pointed sets

∏
n∈N

Gk
1 given by the rule: (g1, g2, ...) ∼

(g′1, g
′
2, ...) provided there exists an n0 ∈ N such that gn = g′n, for every n > n0.
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3. An application

An immediate consequence of Theorem 1 and Remark 2 is the following corollary
which gives us a useful formula for computing the coarse shape groups of some
particular pointed spaces in any dimension.

Corollary 1. Let k ∈ N0. If a pointed space (X,x0) satisfies the assumptions of the
previous theorem, then

π̌∗
k (X,x0) ∼=

( ∪
(ji)∈NN

∏
i∈N
(
Gk

i

)ji)
/ ∼,

where ∼ is the equivalence relation ”to be equal at all but finitely many coordinates”.

Proof. The corollary statement is an immediate consequence of Theorem 1 and
Remark 2. It is sufficient to notice that, for every sequence (ji) ∈ NN, there exists a
sequence

µ = (1, j1 + 1, j2 + j1 + 1, j3 + j2 + j1 + 1, . . .) ∈M

such that
P (µ) =

∏
i∈N
(
Gk

i

)ji
,

and vice versa, for every µ ∈ M , there exists a sequence (ji) ∈ NN such that the
above equality holds.

Consider a pointed solenoid(
Σ(pi), x

)
= lim ((Xi, xi) , pii+1) ,

where Xi = S1 = {z ∈ C | |z| = 1} , xi = 1, (pi) is a sequence in N and pii+1 (z) =
zpi , for every i ∈ N. Notice that every bonding homomorphism

π1 (pii+1) : Z→ Z

of pro-π1

(
Σ(pi), x

)
is the multiplication by pi, for every i ∈ N, and consequently it

is a monomorphism. It follows that π1 (p1i) : Z → Z is an isomorphism onto the
image

Gi = π1 (p1i) (π1 (Xi, xi)) = p1 · · · · · pi−1 · Z,

which is the subgroup of Z consisting of all multiples of p1 · · · · · pi−1. Now, by
Corollary 1, the coarse shape group π̌∗

1

(
Σ(pi), x

)
is equal, up to an isomorphism, to

the group ( ∪
(ji)∈NN

∏
i∈N (p1 · · · · · pi−1 · Z)ji

)
/ ∼,

where ∼ is the equivalence relation ”to be equal at all but finitely many coordinates”.
Its elements are all equivalence classes represented by

g ∈ Zj1 × (p1Z)j2 × (p1p2Z)j3 × · · · =
∏
i∈N

(p1 · · · · · pi−1 · Z)ji
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for some sequence (ji) in N, and two such elements g and g′ represent the same class
if they coincide at all but finitely many coordinates. The same holds for any other
base point x ∈ Σ(pi) as well.

By applying the previous consideration to the pointed dyadic solenoid (Σ2, x)
(pi = 2, i ∈ N), one may conclude that the elements of π̌∗

1 (Σ2, x) are all sequences(
2k11, ..., 2k

1
j1 , 4k

2
1, ..., 4k

2
j2 , 8k

3
1, ..., 8k

3
j3 , ...

)
of multiples of 2, 4, 8, ...,2i,..., in the row (where ji ∈ N, kil ∈ Z, i ∈ N, l = 1, ..., ji)
and two such sequences are considered equal provided they are equal at all but
finitely many coordinates.

Recall that, for every pointed solenoid
(
Σ(pi), x

)
= lim ((Xi, xi) , pii+1), the cor-

responding 1-dimensional shape group is

π̌1

(
Σ(pi), x

)
= lim (π1 (Xi, xi) , π1(pii+1)) = lim

→

(
Z p1←− Z p2←− Z · · ·

)
= 0.

Since π̌1

(
Σ(pi), x

)
is trivial, we have lost all information about solenoid in the inverse

limit process. Therefore, 1-dimensional coarse shape groups of solenoids algebraically
represent their rather complicated structure much better than shape groups.
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