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ON KAC PARAMETERS AND SPECTRAL
DECOMPOSITION OF A MATRIX OF SPECIALIZED

ROOTS OF LIE ALGEBRA sln

Zlatko Drmač and Tomislav Šikić

Abstract. This paper presents interesting spectral properties of a
particular integer skew-symmetric matrix, used to encode information on
Z-gradation of type s̃ for classical affine Lie algebra s̃ln. It is shown that
the hidden Kac parameters can be revealed using an explicitly computed
eigenvector in a Gram-Schmidt orthogonalization process.

1. Introduction

The connection between the Z-gradation of type s̃ of an affine Lie algebra
g̃ and the finite order automorphisms of the simple Lie algebra g is among the
earliest important achievements of the theory of affine Lie algebras (see [7], [8]
or [5]). In 1968, V. G. Kac ([7]) showed that all N -th order automorphisms of
g are, in fact, parameterized (in such a way) by a sequence of nonnegative rel-
atively prime integers (s0, s1, . . . , sℓ) for which N = k

∑ℓ
i=0 aisi. Here the ai’s

are positive integer labels of the corresponding Dynkin Diagram X (see [8]).
The sequence (s0, s1, ..., sℓ) is in [14] designated by the term Kac parameters
and denoted by s̃Kac. Further, [14] provides an algorithm to determine s̃Kac

for every Z-gradation of the type s̃ for the classical affine Lie algebras, i.e.,

Lie algebras with Dynkin diagrams of the type X ∈
{

A(1)
ℓ ,B(1)

ℓ , C(1)
ℓ ,D(1)

ℓ

}
.

An increased interest for researching various gradations, corresponding
specializations of Weyl-Kac character formula for affine Lie algebras and for
certain realizations of modules (i.e. representations) by vertex operators is
triggered in the early 1980’s, let us just mention [13], [9], [10]. Many of the
vertex operator constructions of integrable highest weight representations and
the corresponding Z-gradations and specializations are not described in terms
of Kac parameters, see e.g. [10], [12], [11].
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The realization of the classical simple Lie algebra by traceless matrices
(see [3]) enables us to find the connection between their Z-gradations of type
s = (s1, ..., sn−1) and certain n × n integer skew-symmetric matrix, called
the matrix of specialized roots, and denoted by MSRX (s). In fact, this ma-
trix is a convenient encoding of the corresponding Z-gradation of the type
s of the classical simple Lie algebra (see Definition 2.1). Using some basic
properties of the matrix of specialized roots, the algorithm [14] extracts the
proper element from the Weyl group which points to hidden Kac parameters.
In this process of finding the Kac parameters, the algorithm rearranges all
elements of MSRX (s) in an interesting way. Especially, in the case of Lie al-
gebra with X = A(1)

ℓ , the upper triangle becomes nonnegative, and the lower
triangle becomes nonpositive. This interesting phenomenon motivated the
authors of this paper to study the structure of the matrix of specialized roots
A = MSRA(1)

ℓ

(s).

Although integer, skew-symmetric and of rank only two, A possesses very
intriguing structure. For instance, an eigenvector corresponding to a nonzero
eigenvalue determines all elements of the Weyl group that point to the hidden
Kac parameters – simple sorting of the components of the imaginary part
of this eigenvector reveals the key permutation(s). Furthermore, such an
eigenvector of a nonzero eigenvalue can be computed by an explicit formula
– its real part is constant and the imaginary part is obtained by the Gram-
Schmidt orthogonalization of the vector of partial sums of s= (s1, ..., sn−1)
against the vector of ones. Thus, using pure linear algebra, we have devised
a simple and efficient algorithm for computing the key elements of the Weyl
group of sln. As an illustration of its power, we easily reproduce the results
of the algorithm in [14], see Corollary 3.8.

The rest of the paper is organized as follows. In §2, we set the stage, define
the matrix of specialized roots and recall the results from [14]. In §3 we first
observe that the matrix of specialized roots is of rank two, and give explicit
formulas for its eigenvalues and eigenvectors. We show that the permutation
that sorts the imaginary part of an eigenvectors reveals the underlying struc-
ture. Section 4 presents an application of our results to bosonic and fermionic
realization [11], which is connected with some Z-gradations of type s.

2. The matrix of specialized roots of sln

It is well known that traceless n × n matrices form the Lie subalgebra
g = sln of the general linear (Lie) algebra gln. Clearly, dim(sln) = n2 − 1,
with the standard basis

B =
{
Eij ≡ eie

T
j | i 6= j

}
∪ {Hi ≡ Eii − Ei+1,i+1 | i = 1, . . . , n− 1} .

(Here ei denotes the i-th column of the n × n identity matrix I, and Eii =
eie

T
i .)
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Now it is very important to notice that the set {Hi | i = 1, . . . , n− 1} spans
one maximal toral subalgebra h (consisting of semisimple elements). In the
case when g is (semi)simple, the Lie subalgebra h is Cartan subalgebra. Since
h is abelian, the set

adgh = {adgh|h ∈ h}
is simultaneously diagonalizable, where adgh(x) = [h, x], x ∈ g. Hence, g is
the direct sum of the subspaces gα = {x ∈ g | ad(h)(x) = α(h)x , h ∈ h},
where α is a linear functional (α ∈ h⋆). The set of all nonzero α ∈ h⋆ for which
gα 6= 0 is usually denoted by R and called the root system. The elements
from R are called the roots (of g relative to h). Following this notation, we
have

(2.1) g = g0 +
∑

α∈R
gα,

where g0 = h. The decomposition (2.1) is called a Cartan or root space
decomposition.
In the case of sln, the root system R corresponds to the Dynkin diagram
An−1 and

∆ = (α1, ..., αn−1)

denotes the standard basis of the root system R, i.e. each root α ∈ R can be
written uniquely as

α =
n−1∑

i=1

kiαi,

with integral coefficients ki all nonegative or all nonpositive.
Let {ε̂i, i = 1, . . . , n} be a dual basis of the basis {Eii|, i = 1, ..., n} of the
diagonal matrices from gln. Let εi be the restriction of ε̂i on the Cartan
subalgebra h. It is well known (see [2] and [3]) that

R = {±(εi − εj), 1 ≤ i < j ≤ n}
α1 = ε1 − ε2, α2 = ε2 − ε3, ..., αn−2 = εn−2 − εn−1, αn−1 = εn−1 − εn .(2.2)

Let now s = (s1, ..., sn−1) be an (n− 1)-tuple of integers and α =
∑n−1

i=1 kiαi

an arbitrary root. Define the mapping deg : R → Z by

(2.3) deg(α) =
n−1∑

i=1

kisi.

For the roots from the basis ∆, it holds that

(2.4) deg(αi) = si i = 1, . . . , n− 1.

By (2.2) we can interpret (2.4) as a system of linear equations with variables
deg(εi)

(2.5) deg(εi) − deg(εi+1) = si i = 1, . . . , n− 1.

We recall the following notion of the matrix of specialized roots [14].
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Definition 2.1. Let ∆ = (α1, ..., αn−1) be a basis of the simple Lie al-
gebra root system R (for simple Lie algebra sln). Let s = (s1, ..., sn−1) be an
arbitrary (n − 1)-tuple of integers, and let the mapping deg : R → Z for the
basis ∆ be given by (2.3). The matrix [aij ]i,j ∈ Zn×n, defined by

(2.6) aij = deg(εi) − deg(εj) i, j ∈ {1, · · · , n}
is called the matrix of specialized roots and denoted by MSRA(1)

n−1

(s).

Remark 2.2. Note that the values of variables deg(εi) are not uniquely
determined by (2.5), but the above definition does not depend on the choice of
solutions deg(εi). Indeed the functional εi − εj for i 6= j is always a root and
we have following equations

ai,j
def
= deg(εi) − deg(εj) = deg(εi − εj) = deg(α) = deg(

n−1∑

i=1

kiαi),

where α = εi − εj. For i = j it is evidently ai,i = deg(εi) − deg(εi) = 0.

Remark 2.3. In [14], the term matrix of specialized roots is simultane-
ously defined for all classical simple Lie algebras, i.e. for Lie algebras with
Dynkin diagrams of the type X ∈ {A(1)

ℓ ,B(1)
ℓ , C(1)

ℓ ,D(1)
ℓ }, and the correspond-

ing notation is MSRX (s). For the sake of brevity, in this paper we focus only

on the case sln (i.e. Dynkin diagram A(1)
n−1) and we simplify the notation by

writing MSR(s) ≡ MSRA(1)

n−1

(s). Our preliminary results indicate that similar

development is possible for other Dynkin diagrams.

Example 2.4. Let g = sl5 and s = (s1, s2, s3, s4) = (3, 11, 5,−2). The
root system is

R = {±α1,±α2,±α3,±α4,±(α1 + α2),±(α2 + α3),±(α3 + α4),

±(α1 + α2 + α3),±(α2 + α3 + α4),±(α1 + α2 + α3 + α4)}.
The matrix of specialized roots reads

MSR(s) =




0 3 14 19 17
−3 0 11 16 14
−14 −11 0 5 3
−19 −16 −5 0 −2
−17 −14 −3 2 0



.

It is important to notice that every deg(α) for α ∈ R is placed on (i, j)-
position in the matrix which related to corresponding root vector. For in-
stance, deg(α2 +α3)(= 16) is placed on the (2, 4)-position. At the same time
the matrix E2,4 is root vector for the root α2 + α3 ∈ h⋆, i.e.

[h,E2,4] = (α2 + α3)(h) ·E2,4, h ∈ h .
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2.1. MSR(s) and the Weyl group.

As we emphasized in the introduction, the matrix of specialized roots
MSRX (s) has one of the main roles in the algorithm for finding Kac param-
eters of Z-gradation of type s for classical affine Lie algebras. In fact, the
matrix MSR(s) will serve to detect another base of the root system R that
will guarantee the positivity of the Kac parameters (see [14]). Before we show
our proposition about the connection between matrix MSR(s) and the hidden
base we introduce an additional notation related to the Weyl group.

Let E be the ambient Euclidean space for the root system R. The sub-
group of GL(E) generated by the reflections

σα(β) = β − 2(β, α)
(α, α)

α , α ∈ R

is the Weyl group W . Since any reflection σα leaves the roots system R
invariant, the Weyl group in fact permutes the set R. Moreover W acts
simply transitively on bases, i.e.

i) if ∆′ is another base of R, then ∆′ = σ(∆) for some σ ∈ W ;
ii) if ∆′ = σ(∆′) then σ = id .

Since Weyl group of sln is isomorphic to symmetric group Sn, its cardinality
rapidly grows with increasing n, |W| = n!. Hence, to determine an appropriate
base of the root system R, the naive search is not feasible.

The following proposition gives us the properties of MSR(s), which will
enable us to find an appropriate base via corresponding element from Weyl
group.

Proposition 2.5. Let MSR(s) be the matrix of specialized roots for an
arbitrary (n− 1)-tuple of integers s = (s1, ..., sn−1). Then

1. The MSR(s) is an skew-symmetric matrix.
2. The columns Aei, i = 1, . . . , n, of A can be ordered so that

Aej1 � Aej2 � · · · � Aejn−1 � Aejn
,

where the inequality � between two vectors is understood entry-wise.
3. The matrix MSR(s) contains at least one row composed of nonnegative

integers.
4. The permutation π =

( 1 2 ··· n−1 n
j1 j2 ··· jn−1 jn

)
∈ Sn(≃ W) yields the basis

∆′ = (π(α1), ..., π(αn−1))

of the root system R, which satisfies the required condition

deg(π(αi)) = aji,ji+1 ∈ Z+, i = 1, . . . , n− 1 .

5. For each cyclic permutation (i1, i2, · · · , ir−1, ir) ∈ Sn, it holds that

ai1,i2 + ai2,i3 + · · · + air−1,ir
+ air ,i1 = 0.
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Proof. (1) From the definition (2.6) it follows that MSR(s) is skew-
symmetric.
(2) Let i, j, k be arbitrary indices from {1, 2, · · · , n}. Using (2.6), we have
(2.7)
aij − aik = deg(εi) − deg(εj) − deg(εi) + deg(εk) = deg(εk) − deg(εj) = akj .

Hence, the difference between two elements does not depend on the choice of
the row index. In fact, we can simultaneously order elements for all rows in
the following way

(2.8) ai,j1 ≤ ai,j2 ≤ · · · ≤ ai,jn−1 ≤ ai,jn
, i = 1, . . . , n .

This implies that the claim (2) is true.
(3) Since ai,i = 0, (2.8) implies that the jth

1 row consist of positive elements.
(4) It is well known that permutation π is an element of the Weyl group
of Lie algebra sln and the Weyl group W of any simple Lie algebra acts
transitively on bases (see for instance [6]). Since the mapping between the
roots αi 7−→ π(αi) is determined by mapping between the functionals εk 7−→
εjk

, k = 1, 2, . . . , n, we can write

deg(π(αi)) = deg(π(εi − εi+1)) = deg(εji
− εji+1)) = aji,ji+1

for every i = 1, 2, . . . , n− 1. Using (2.7) and (2.8), we immediately conclude
that

deg(π(αi)) = aji,ji+1 = ai,ji+1 − ai,ji
≥ 0 .

(5) Let (i1, i2, . . . , ir) be an arbitrary cyclic permutation and denote acycle =
ai1,i2 + · · · + air−1,ir

+ air ,i1 . By definition of MSR(s) (2.6)

acycle = deg(εi1 − εi2 ) + · · · + deg(εir−1 − εir
) + deg(εir

− εi1 )

= deg[(εi1 − εi2) + · · · + (εir−1 − εir
) + (εir

− εi1 )]

= deg(0) = 0 .

Remark 2.6. From Proposition 2.5 (5.) we know that for any closed
circuit of any length k ≥ 2, ai1i2 + ai2i3 + · · · + aik−1ik

+ aiki1 = 0. Thus, the
tropical spectral radius of A is

ρtrop(A) = max
i1,...,ik

ai1i2 + ai2i3 + · · · + aik−1ik
+ aiki1

k
= 0.

2.2. An example.

Example 2.7. Take n = 12 and

s =
(

2 −3 4 −1 −5 6 −3 −2 −5 10 11
)
.
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The matrix MSR(s) is given by

MSR(s) =




0 2 −1 3 2 −3 3 0 −2 −7 3 14
−2 0 −3 1 0 −5 1 −2 −4 −9 1 12

1 3 0 4 3 −2 4 1 −1 −6 4 15
−3 −1 −4 0 −1 −6 0 −3 −5 −10 0 11
−2 0 −3 1 0 −5 1 −2 −4 −9 1 12

3 5 2 6 5 0 6 3 1 −4 6 17
−3 −1 −4 0 −1 −6 0 −3 −5 −10 0 11

0 2 −1 3 2 −3 3 0 −2 −7 3 14
2 4 1 5 4 −1 5 2 0 −5 5 16
7 9 6 10 9 4 10 7 5 0 10 21

−3 −1 −4 0 −1 −6 0 −3 −5 −10 0 11

−14 −12 −15 −11 −12 −17 −11 −14 −16 −21 −11 0




.

The 10th row of MSR(s) contains only nonnegative integers

(a10,j) = 7 9 6 10 9 4 10 7 5 0 10 21 .

We can order the selected row
a10,10 a10,6 a10,9 a10,3 a10,1 a10,8 a10,2 a10,5 a10,4 a10,7 a10,11 a10,12

0 4 5 6 7 7 9 9 10 10 10 21
.

This determines the proper element of the Weyl group

π =

(
1 2 3 4 5 6 7 8 9 10 11 12
10 6 9 3 1 8 2 5 4 7 11 12

)
,

which points to the right base ∆′, and to the corresponding (n − 1)-tuple of
nonnegative integers

s′ = (a10,6, a6,9, a9,3, a3,1, a1,8a8,2, a2,5, a5,4, a4,7, a7,11, a11,12) =

= (4, 1, 1, 1, 0, 2, 0, 1, 0, 0, 11).

Then the functionals

α′
1 = ε10 − ε6 = −(α6 + α7 + α8 + α9) α′

2 = ε6 − ε9 = α6 + α7 + α8

α′
3 = ε9 − ε3 = −(α3 + α4 + · · · + α8) α′

4 = ε3 − ε1 = −(α1 + α2 + α3)
α′

5 = ε1 − ε8 = α1 + α2 + · · · + α7 α′
6 = ε8 − ε2 = −(α2 + · · · + α7)

α′
7 = ε2 − ε5 = α2 + α3 + α4 α′

8 = ε5 − ε4 = −α4

α′
9 = ε4 − ε7 = α4 + α5 + α6 α′

10 = ε7 − ε11 = α7 + · · · + α10

α′
11 = ε11 − ε12 = α11

form the basis ∆′ = (α′
1, ..., α

′
n−1). The matrix of specialized roots MSR(s′)

is

MSR(s
′
) =




0 4 5 6 7 7 9 9 10 10 10 21
−4 0 1 2 3 3 5 5 6 6 6 17
−5 −1 0 1 2 2 4 4 5 5 5 16
−6 −2 −1 0 1 1 3 3 4 4 4 15
−7 −3 −2 −1 0 0 2 2 3 3 3 14
−7 −3 −2 −1 0 0 2 2 3 3 3 14
−9 −5 −4 −3 −2 −2 0 0 1 1 1 12
−9 −5 −4 −3 −2 −2 0 0 1 1 1 12

−10 −6 −5 −4 −3 −3 −1 −1 0 0 0 11
−10 −6 −5 −4 −3 −3 −1 −1 0 0 0 11
−10 −6 −5 −4 −3 −3 −1 −1 0 0 0 11
−21 −17 −16 −15 −14 −14 −12 −12 −11 −11 −11 0




.

Note that
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• The permutation π redistributes the signs so that in the resulting skew–
symmetric matrix the upper triangle is positive, and the lower negative.
The entries in each column and in each row are monotonically ordered.

• The difference of any two rows (or any two columns) of MSR(s′) is a
vector with all entries equal. The same property holds for MSR(s).
(See Proposition 2.5.)

3. Spectral decomposition of MSR(s)

The matrix of specialized roots can be written in compact form as a difference
of two dyads (rank-one matrices), parametrized by the integers si. This leads
to a different and more natural parametrization and allows detailed spectral
analysis of MSR(s) as a function of s, without using the matrix entries (2.6).

3.1. A dyadic representation of MSR(s).

Our key observation is the following simple proposition.

Proposition 3.1. Let s = (s1, . . . , sn−1) be an arbitrary (n− 1)–tuple of
integers. The matrix of specialized roots MSR(s) can be represented as

(3.1) MSR(s) ≡ A = EST − T TSTET ,

where E =
(
1 1 · · · 1

)T
, S =

(
0 s1 · · · sn−1

)
, T =




1 1 ··· 1

0
...

...
...

...
... 1 1

0 ··· 0 1


.

The vector S = (0 s) is uniquely determined by A: S = eT
1 T

−TAT−1, s =
eT

1 T
−TAT−1(e2 . . . en). Further, it holds ETAE = SAST = 0.

Proof. From the Definition 2.1, it immediately follows ai,i+1 = si, i =
1, . . . , n− 1 (cf. (2.5)), and from [14] we know that ai,j = ai,i+1 + ai+1,i+2 +
· · · +aj−2,j−1 +aj−1,j . Hence, for i < j, aij = si + · · ·+ sj−1. Since A is skew
symmetric by definition, aji = −aij . On the other hand, it is straightforward
to check that the righthand side of (3.1) gives precisely the same elements of
A. The remaining claims are easily proved; the only small technical details is
to note that the inverse of T is an upper bidiagonal matrix with unit diagonal
and the value of minus one at the first superdiagonal.

Remark 3.2. Note that we have actually defined a linear mapping M(·) :
Rn−1 −→ Skewn, M(s) = EST − T TSTET into the vector space Skewn of
skew–symmetric matrices. It is easy to show that M(s) = 0n×n if and only
if s = 0n−1. It is also clear that the matrices MSR(s) are integer vectors in
an (n− 1)–dimensional linear subspace of Skewn.
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3.2. Spectral decomposition.

The Schur form of A is diagonal (see e.g. [1]), and we want explicit formu-
las for its eigenvalues and eigenvectors. The special structure of A certainly
raises expectations regarding the structure of its spectral decomposition. Our
goal is not to merely compute the eigenvalues and the eigenvectors, but to
discover more of the intrinsic structure of A that may, in turn, impart new
knowledge in the Lie algebra setting.

In the sequel, the Euclidean inner product is denoted by < ·, ·>, and
‖ · ‖ =

√
<·, ·> is the corresponding induced norm. The imaginary unit is

i =
√−1.

Theorem 3.3. Let s = (s1, . . . , sn−1) be an arbitrary (n − 1)–tuple of
integer scalars,1 and let A = EST − T TSTET , where E, S, T are as in
Proposition 3.1. Further, set

P = (ST )T =
(
0, s1, s1 + s2, . . . , s1 + · · · + sn−1

)T
,

and let

(3.2) P̆ = P − 1

ETE
EETP

be the result of the Gram–Schmidt orthogonalization of P to E. Then
A ≡ EPT − PET has spectral decomposition A = WΛW ∗, where Λ =
diag(λ1, . . . , λn), W ∗W = In, and

λ1 = i
√
<P,P><E,E> − <P,E>2,

λ2 = −i
√
<P,P><E,E> − <P,E>2,

λ3 = λ4 = . . . = λn = 0.

The corresponding eigenvectors (the columns of W ) are

w1 =
w̃1

‖w̃1‖ , where w̃1 =
‖P̆‖
‖E‖E + iP̆ ,

w2 =
w̃2

‖w̃2‖ , where w̃2 =
‖P̆‖
‖E‖E − iP̆ ,

w3, . . . , wn = any orthonormal basis of span(w1, w2)⊥.

Proof. We first note that A 6= 0 is of rank two. There are many simple
ways to show this. For instance, the congruence BTAB with B = T−1 yields

BTAB =
(

0 s
−sT

0n−1,n−1

)
, which is of rank two for any s 6= 0. (Note here

that B is upper bidiagonal matrix with unit diagonal and with the value
−1 on the first super–diagonal. In fact, B is the Cholesky factor of Cartan
matrix.) The null–space of A is easily calculated as Ker(A) = span(E,P )⊥.

1At this point, we are only interested in integer si’s; going over to real or complex s
follows mutatis mutandis.
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Hence, Im(A) = span(E,P ). If we orthogonalize P against E to compute
P̆ = P − 1

nEE
TP, then span(E,P ) = span(E, P̆ ), ET P̆ = 0. Hence, A has

only two non–zero eigenvalues of the form (due to skew–symmetry) λ1 = iω,
λ2 = −iω, where ω ∈ R+. The remaining eigenvalues are λ3 = · · · = λn = 0.

It is easily checked that the negative semidefinite A2 = −ATA has double
nonzero eigenvalue with eigenvectors E and P :

A2E = ζE
A2P = ζP

with ζ =

(
n−1∑

k=1

sk(n− k)

)2

− n

n−1∑

k=1




k∑

j=1

sj




2

< 0.

Note that ζ = (ETP )2 − nPTP , that is, ζ =<P,E>2 − <P,P ><E,E>.
Since P and E are not collinear, ζ < 0 by the Cauchy–Schwarz inequality.
The number ζ is double eigenvalue of A2, and the corresponding eigenspace
is span(E,P ) = span(E, P̆ ). We immediately conclude that ω =

√−ζ.
Let w̃1 = x + iy be an (essentially unique) eigenvector belonging to λ1.

Then w̃2 = x− iy is an eigenvector belonging to λ2. Further, we equivalently
write

Ax = −ωy, Ay = ωx, i.e. A
(
x y

)
=
(
x y

)( 0 ω
−ω 0

)
.

From xTAx = −ωxT y it follows xT y = 0, i.e. x and y are perpendicular in
the Euclidean inner product. Comparing yTAx and xTAy we conclude that
also xTx = yT y, i.e. x and y are of the same Euclidean length. If we take
‖x‖2 = ‖y‖2 = 1, then A = ω(xyT − yxT ). It remains to find x and y.

Note that, due to skew–symmetry,

AP̆ = η1E, η1 =
ETAP̆

ETE
=
ETAP

ETE
, and

AE = η2P̆ , η2 = −ETAP

P̆T P̆
.

Putting the two relations together and re–scaling yields

A
(

‖P̆ ‖
‖E‖E P̆

)
=
(

‖P̆ ‖
‖E‖E P̆

)

 0 ET AP

‖E‖‖P̆ ‖
− ET AP

‖E‖‖P̆ ‖ 0


 .

Hence, we can write

ω =
ETAP

‖E‖‖P̆‖
, λ1 = iω, w̃1 =

‖P̆‖
‖E‖E + iP̆ .

Remark 3.4. Note that the proof contains the identity

−ζ = ω2 = −η1η2 =<P,P><E,E> − <P,E>2=
<AP,E>2

<E,E><P̆ , P̆>
,
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and that we can say that the spectrum of A is in ±i
√
Z+. Further, if we

compare the first entries in the relation AE = η2P̆ , using the representation
A = EPT − PET , we immediately get η2 = −n. Also, AP̆ = η1E yields
η1 = PT P̆ .

Remark 3.5. An eigenvector w̃1 = x+ iy is determined up to multiplica-
tion with non–zero complex scalar α + iβ. Take an arbitrary α + iβ 6= 0 and
consider (α+ iβ)(x + iy) = x̃+ iỹ. Note that

(3.3)
(
x̃ ỹ

)
= ρ ·

(
x y

)( α/ρ β/ρ
−β/ρ α/ρ

)
, ρ = |α+ iβ|.

If the scaling factor is such that |α + iβ| = 1, then this is just a change of
orthogonal basis in the image of A.

Corollary 3.6. For an arbitrary choice of the eigenvector w̃ = x + iy
of the eigenvalue λ1 (or λ2), the n points Pj = (xj , yj), j = 1, . . . , n, are
collinear.

Proof. The claim obviously holds true for the particularly chosen eigen-
vectors w1 and w2 from the Theorem 3.3. Using Remark 3.5 and the fact that
transformation (3.3) preserves collinearity2 of the points (given by two coordi-
nates in each row of

(
x y

)
) the claim remains true for any other eigenvector

of λ1 (λ2).

Corollary 3.7. Let π be a permutation that sorts the components of the
vector P̆ in a non-increasing sequence, and let w̃ = x + iy be an arbitrary
eigenvector belonging to λ1 or λ2. Then π is a sorting permutation for both
x and y.

Proof. Again, the claim obviously holds true for the particularly cho-
sen eigenvectors w1 and w2 from the Theorem 3.3. Next note that, due to
collinearity, a permutation that sorts the components of x, also sorts the com-
ponents of y (but not necessarily in the same direction, e.g. y may get sorted
in non-decreasing sequence, while x is sorted in non–increasing sequence).
And finally, since any transformation from Remark 3.5, with ρ = 1, just ro-
tates the line with the points as a rigid body, the order is preserved, up to
the direction. An additional scaling with ρ 6= 1 preserves the order.

Corollary 3.8. Let Π be the matrix representation of the permutation π
from Corollary 3.7. Then π is also a sorting permutation for P . Further, all
entries in the upper triangle of ΠTAΠ are non–negative; by skew–symmetry
all entries in the lower triangle are non–positive. In each row of ΠTAΠ the
entries are monotonically increasing; in each of its columns, the entries are
monotonically decreasing. For each cluster of k equal entries in ΠT P̆ , the

2Use the determinant criterion for any three points.
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matrix ΠTAΠ has a k × k zero block on the main diagonal. All columns
(rows) with indices in such a zero block are mutually equal.

Proof. We use the formulas from the proof of Theorem 3.3 to write A
as

A ≡ EPT − PET = ω
‖P̆‖2

‖E‖2
(EP̆T − P̆ET ).

The conclusion about the distribution of the signs in ΠTAΠ follows from
the following simple fact: if the entries of a vector v are non–decreasing,
v1 ≤ · · · ≤ vn, then (EvT − vET )ij ≥ 0 for 1 ≤ i ≤ j ≤ n, and in each row
(column) of EvT −vET the entries are monotonically increasing (decreasing).

Corollary 3.9. The exponential of A can be explicitly written as the
rotation

eA = I +
sinω

ω
A+

1 − cosω

ω2 A2, ω = ‖A‖2.

Proof. It is quite easy to setup the quadratic Lagrange polynomial that
resembles the exponential function on the spectrum of A: L2(iω) = eiω,
L2(−iω) = e−iω, L2(0) = 1. Hence, L2(z) = 1 + (sinω/ω)z + ((1 −
cosω)/ω2)z2, and eA = L2(A). Note that this is an instance of the Ro-
drigues formula for 3 × 3 rotation, and it also follows as a special case from
the generalized Rodrigues formula [4], since it holds A3 = −ω2A.

Example 3.10. (Example 2.7 continued.) The vector P̆ reads

P̆ =
1

6

(
−7 5 −13 11 5 −25 11 −7 −19 −49 11 77

)T
.

Its sorting permutation is the same π as in Example 2.7, and the permuted
matrix is ΠTAΠ = MSR(s′), as in Example 2.7. Altogether 3! · 2! · 2! per-
mutations leave the structure of ΠTAΠ intact. This ambiguity of the sorting
permutation is easily seen in the repeated entries of the vector P̆ .

4. Spectral decomposition of MSR(s) in the case of bosonic and
fermionic realization

As we pointed out in §1, many of the vertex operator constructions of inte-
grable highest weight representations and the corresponding gradations and
specializations are not described in terms of Kac parameters. For instance,
in [11] the bosonic and fermionic realization of the affine algebra gln for the
conjugacy classes of Heisenberg subalgebra are parametrized by partitions of
the integer n

n = {n1, n2, ..., nr}; n1 ≤ n2 ≤ · · · ≤ nr .
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The associated Z-gradations of the constructed modules are determined by
n-tuple s̃ = (s0, . . . , sn−1) of relatively prime integers defined by

s̃ = N

(
n1 + nr

2n1nr
,

1

n1
, . . . ,

1

n1︸ ︷︷ ︸
n1−1

,
n1 + n2

2n1n2
− 1,

1

n2
, . . . ,

1

n2︸ ︷︷ ︸
n2−1

,
n2 + n3

2n2n3
− 1, . . .

. . . ,
1

nr−1
, . . . ,

1

nr−1︸ ︷︷ ︸
nr−1−1

,
nr−1 + nr

2nr−1nr
− 1,

1

nr
, . . . ,

1

nr

)

︸ ︷︷ ︸
nr−1

.(4.1)

In this particular construction, the positive integer N is computed as

(4.2) N =

{
N ′, if N ′( 1

ni
+ 1

nj
) ∈ 2Z for all i, j ∈ {1, . . . , r};

2N ′ if N ′( 1
ni

+ 1
nj

) /∈ 2Z for some (i, j),

whereN ′ is the least common multiple of {n1, n2, ..., nr}. SinceN(ni+ni+1

2nini+1
−1)

are negative integers, the above Z-gradations are not parametrized by Kac
parameters. The corresponding (n− 1)-tuple, derived from (4.1) reads

s =
(
s1 s2 . . . sn−1

)

= (
N

n1
, . . . ,

N

n1︸ ︷︷ ︸
n1−1

, N
n1 + n2

2n1n2
−N,

N

n2
, . . . ,

N

n2︸ ︷︷ ︸
n2−1

, N
n2 + n3

2n2n3
−N, . . .

. . . ,
N

nr−1
, . . . ,

N

nr−1︸ ︷︷ ︸
nr−1−1

, N
nr−1 + nr

2nr−1nr
−N,

N

nr
, . . . ,

N

nr

)

︸ ︷︷ ︸
nr−1

.(4.3)

Example 4.1. (See [14, Example 3.8]) Take n = 12 and {n1, n2, n3}
= {3, 4, 5}. For a given partition we have N = 120 and

s =
(

40, 40, −85, 30, 30, 30, −93, 24, 24, 24, 24
)
.

The corresponding matrix MSR(s) has the form

MSR(s) =




0 40 80 −5 25 55 85 −8 16 40 64 88
−40 0 40 −45 −15 15 45 −48 −24 0 24 48
−80 −40 0 −85 −55 −25 5 −88 −64 −40 −16 8

5 45 85 0 30 60 90 −3 21 45 69 93
−25 15 55 −30 0 30 60 −33 −9 15 39 63
−55 −15 25 −60 −30 0 30 −63 −39 −15 9 33
−85 −45 −5 −90 −60 −30 0 −93 −69 −45 −21 3

8 48 88 3 33 63 93 0 24 48 72 96
−16 24 64 −21 9 39 69 −24 0 24 48 72
−40 0 40 −45 −15 15 45 −48 −24 0 24 48
−64 −24 16 −69 −39 −9 21 −72 −48 −24 0 24

−88 −48 −8 −93 −63 −33 −3 −96 −72 −48 −24 0




.

Following the algorithm from [14] we have the 8th row of nonnegative integers

(a8,j) = 8 48 88 3 33 63 93 0 24 48 72 96 .
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We can order the selected row and determine the element of the Weyl group

π =

(
1 2 3 4 5 6 7 8 9 10 11 12
8 4 1 9 5 2 10 6 11 3 7 12

)
,

which points to (n− 1)-tuple of nonnegative integers

s′ = (a8,4, a4,1, a1,9, a9,5, a5,2, a2,10, a10,6, a6,11, a11,3, a3,7, a7,12)

= (3, 5, 16, 9, 15, 0, 15, 9, 16, 5, 3) .

Since N = 120, the associated Z-gradation is determined by relatively prime
integers

s̃ =
(

32, 40, 40, −85, 30, 30, 30, −93, 24, 24, 24, 24
)
.

The hidden Kac parameters for the mentioned bosonic and fermionic realiza-
tion are

s̃Kac = (sKac
0 , . . . , sKac

11 ) = (24, 3, 5, 16, 9, 15, 0, 15, 9, 16, 5, 3)

where sKac
0 = a12,8 +N = −96 + 120 = 24.

Of course, thanks to Theorem 3.3 (or more precisely Corollary 3.8) the
corresponding permutation Π redistributes the signs so that in the resulting
skew-symmetric matrix the upper triangle is positive, and the lower negative

ΠT
AΠ =




0 3 8 24 33 48 48 63 72 88 93 96
−3 0 5 21 30 45 45 60 69 85 90 93
−8 −5 0 16 25 40 40 55 64 80 85 88

−24 −21 −16 0 9 24 24 39 48 64 69 72
−33 −30 −25 −9 0 15 15 30 39 55 60 63
−48 −45 −40 −24 −15 0 0 15 24 40 45 48
−48 −45 −40 −24 −15 0 0 15 24 40 45 48
−63 −60 −55 −39 −30 −15 −15 0 9 25 30 33
−72 −69 −64 −48 −39 −24 −24 −9 0 16 21 24
−88 −85 −80 −64 −55 −40 −40 −25 −16 0 5 8
−93 −90 −85 −69 −60 −45 −45 −30 −21 −5 0 3

−96 −93 −88 −72 −63 −48 −48 −33 −24 −8 −3 0




.

Note that the Kac parameters are placed on the first superdiagonal in the
matrix ΠTAΠ.

The special structure (4.3) of s implies additional structure of the key vector
P̆ defined in (3.2).

Theorem 4.2. Let n = {n1, . . . , nr} be a partition of n. Let s be given
by (4.3). Then P̆ ∈ 1

2Z
n and its nonzero entries come in ± pairs (hence,

for even (odd) n an even (odd ) number of entries of P̆ can be zero). More
precisely, the sign structure of P̆ can be described as follows: First, partition
P̆ as

(4.4) P̆ =

(
P̆ [1]

...
P̆ [r]

)
, P̆ [i] ∈ 1

2
Zni , i = 1, . . . , r.
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Then the vectors P̆ [i] have the following sign structure:

if ni is even: P̆ [i]
j = −P̆ [i]

ni−j+1 < 0, ; j = 1, . . . ,
ni

2
(4.5)

if ni is odd:

{
P̆

[i]
j = −P̆ [i]

ni−j+1 < 0, ; j = 1, . . . , ni−1
2

P̆
[i]
ni−1

2 +1
= 0

(4.6)

Proof. We first show that P̆ ∈ 1
2Z

n. Since P is integer vector and
ETE = n, it suffices to show that 1

nE
TP ∈ 1

2Z, i.e. 1
nEE

TP ∈ 1
2Z

n.
Note that
(4.7)

1

n
ETP =

s1 + (s1 + s2) + · · · + (s1 + s2 + · · · + sn−1)

n
= (1/n)

n−1∑

k=1

sk(n− k).

Set M = n1 · . . . · nr. By induction with respect to the index r, it can be
shown that

(4.8) M
n−1∑

k=1

ṡk(n− k) =
1

2
· (n1 − 1)n2 · · ·nr · n, where ṡk =

sk

N
.

Then we can write (4.7) as

1

n
ETP = (1/n)

N

M

n−1∑

k=1

Mṡk(n− k) = (1/n)
N

M
· 1

2
· (n1 − 1)n2 · · ·nr · n

=
N

M
· 1

2
· (n1 − 1)n2 · · ·nr =

N

2n1
· (n1 − 1).(4.9)

From N
n1

∈ Z and (n1−1)
2 ∈ 1

2Z we can conclude that 1
nE

TP ∈ 1
2Z, i.e. P̆ ∈

1
2Z

n. Since P̆ and E are orthogonal, it must hold
∑n

i=1 P̆i = 0; so we know
that P̆ must have entries of both signs. Since the numbers si are particularly
structured, some additional structure of P̆ is expected. For instance, the first
block in the partition (4.4) reads

P̆ [1] =




0
s1

s1+s2

...
s1+s2+···+sn1−1


−




N(n1−1)/(2n1)
N(n1−1)/(2n1)
N(n1−1)/(2n1)

...
N(n1−1)/(2n1)


 ,where s1 = · · · = sn1−1 =

N

n1
,

and one can easily check that the entries of P̆ [1] are monotonically increasing
and that

P̆
[1]
j + P̆

[1]
n1−j+1 = (j − 1)

N

n1
− N(n1 − 1)

2n1
+ (n1 − j)

N

n1
− N(n1 − 1)

2n1
= 0.
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The structure of the second block is slightly more complicated and we have

P̆
[2]
j + P̆

[2]
n2−j+1 = s1 + · · · + sn1 + (j − 1)

N

n2
− N(n1 − 1)

2n1
+ s1 + · · · + sn1

+ (n2 − j)
N

n2
− N(n1 − 1)

2n1
= 0, where we have used that

s1 + · · · + sn1 = N(
n1 − 1

n1
+
n1 + n2

2n1n2
− 1), sn1+1 = · · · = sn1+n2−1 =

N

n2
.

The general case is analogous but slightly more technical, and we skip the
details for the sake o brevity.

Corollary 4.3. Let the assumptions of Theorem 4.2 hold true. If, in
addition, either N = 2N ′ or n = {n1, . . . , nr} is a partition of n with relatively
prime numbers ni, then P̆ is an integer vector.

Proof. Using the calculation (4.9) we have the following discussion.
Suppose that N = 2N ′. From N

2n1
= N ′

n1
it is obvious that 1

nE
TP ∈ Z,

i.e. P̆ is an integer vector.
Now let n = {n1, . . . , nr} be a relatively prime partition. If n1 is odd, then
(n1 − 1) is even and the right hand side in (4.9) is an integer, hence P̆ ∈ Zn.
If n1 is even, one of {nj : j = 2, ..., r} must be odd (since n1, n2, . . . , nr are
relatively prime). If nj is odd, then (by (4.2)) N ′( 1

n1
+ 1

nj
) ∈ 2Z + 1, which

implies that N = 2N ′, and the right hand side in (4.9) is again an integer.
Hence, P̆ is an integer vector.

Corollary 4.4. Let Π be a permutation matrix such that P̂ ≡ ΠT P̆ has
entries in non–decreasing order. Then the matrix Â ≡ ΠTAΠ is symmetric
with respect to the anti–diagonal (i, n− i+ 1), i = 1, . . . , n.

Proof. We already know that Â = η1(EP̂T − P̂ET ). Because of the
structure of P̆ (Theorem 4.2), we conclude that P̂i = −P̂n−i+1, i = 1, . . . , n.
Hence, the entries âij of Â satisfy âij = η1(P̂j − P̂i) = η1(P̂n−i+1 − P̂n−j+1) =
ân−j+1,n−i+1.

Example 4.5. For instance, in the case of A = MSR(s) for s such as in
Example 4.1, we clearly see the symmetry respect to the anti–diagonal which
is based on the symmetry of the corresponding tuple

(sKac
1 , sKac

2 , · · · , sKac
11 ) = (3, 5, 16, 9, 15, 0, 15, 9, 16, 5, 3) .
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O Kacovim parametrima i spektralnoj dekompoziciji matrice
specijaliziranih korijena Liejeve algebre sln

Zlatko Drmač i Tomislav Šikić

Sažetak. Ovaj rad prezentira zanimljiva spektralna svojstva

odredene cjelobrojne antisimetrične matrice, koja nosi u sebi po-

datke o Z-gradacijama tipa s̃ klasične afine Liejeve algebre s̃ln.

Pokazano je da se skriveni Kacovi parametri mogu rekonstru-

irati iz eksplicitno izračunatih svojstvenih vektora pomoću Gram-

Schmidtova postupka ortogonalizacije.
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