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THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF
Q(

√−3)

Zrinka Franušić and Ivan Soldo

Abstract. We solve the problem of Diophantus for integers of the
quadratic field Q(

√
−3) by finding a D(z)-quadruple in Z[(1 +

√
−3)/2] for

each z that can be represented as a difference of two squares of integers in
Q(

√
−3), up to finitely many possible exceptions.

1. Introduction and preliminaries

Let R be a commutative ring with unity 1 and n ∈ R. The set of nonzero
and distinct elements {a1, a2, a3, a4} in R such that aiaj +n is a perfect square
in R for 1 ≤ i < j ≤ 4 is called a Diophantine quadruple with the property
D(n) in R or just a D(n)-quadruple. If n = 1 then a quadruple with a given
property is called a Diophantine quadruple. The problem of constructing such
sets was first studied by Diophantus of Alexandria who found the rational
quadruple { 1

16 ,
33
16 ,

17
4 ,

105
16 } with the property D(1). Fermat found the first

Diophantine quadruple in the ring of integers Z - the set {1, 3, 8, 120}.
The problem on the existence of D(n)-quadruples has been studied in dif-

ferent rings, but mainly in rings of integers of numbers fields. The following
assertion is shown to be true in many cases: There exists a D(n)-quadruple if
and only if n can be represented as a difference of two squares, up to finitely
many exceptions. In the ring Z one part of the assertion is proved inde-
pendently by several authors (Brown, Gupta, Singh, Mohanty, Ramamsamy,
see [6, 25, 27]), and another by Dujella in [7]. The set of possible exceptions
S = {−4,−3,−1, 3, 5, 8, 12, 20} is still an open problem studied by many au-
thors. The conjecture is that for n ∈ S there does not exist a Diophantine
quadruple with the property D(n).

In the ring of integers Z well studied is the case of n = −1. There is a
conjecture that D(−1)-quadruple does not exist in Z. That is known as the
D(−1)-quadruple conjecture and it was presented explicitly in [11] for the first
time. While it is conjectured that D(−1)-quadruples do not exist in integers
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(see [11]), it is known that no D(−1)-quintuple exists and that if {a, b, c, d}
is a D(−1)-quadruple with a < b < c < d, then a = 1 (see [15]). It is
proved that some infinite families of D(−1)-triples cannot be extended to a
D(−1)-quadruple. The non-extendibility of {1, b, c} was confirmed for b = 2
by Dujella in [10], for b = 5 partially by Abu Muriefah and Al Rashed in [2],
and completely by Filipin in [18]. The statement was also proved for b = 10 by
Filipin in [18], and for b = 17, 26, 37, 50 by Fujita in [24]. Dujella, Filipin and
Fuchs in [13] proved that there are at most finitely many D(−1)-quadruples,
by giving an upper bound of 10903 for the number of D(−1)-quadruples. This
bound was improved several times: to 10356 by Filipin and Fujita ([19]), to
4 · 1070 by Bonciocat, Cipu and Mignotte ([5]) and very recently to 5 · 1060 by
Elsholtz, Filipin and Fujita ([17]).

In the ring of Gaussian integers Z[i] the above assertion was proved in
[9]. Namely, if a+ bi is not representable as a difference of the squares of two
elements in Z[i], and in contrary if a + bi is not of such form and a + bi 6∈
{±2,±1±2i,±4i}, then D(a+bi)-quadruple exists. Franušić in [20–22] found
that a similar statement is true for rings of integers of some real quadratic
fields, i.e. it can be seen that there exist infinitely many D(n)-quadruples if
and only if n can be represented as a difference of two squares of integers.
To be more precise, assuming the solvability of certain Pellian equation (x2 −
dy2 = ±2 or x2 − dy2 = 4 in odd numbers) we are able to obtain an effective
characterization of integers that can be represented as a difference of two
squares of integers in Q(

√
d) and then apply some polynomial formulas for

Diophantine quadruples in a combination with elements of a small norm.
Also, in [23] the existence problem in the ring of integers of the pure cubic
field Q( 3

√
2) has been completely solved.

The case of complex quadratic fields is more demanding because the set of
elements with a small norm is poor (while in the real case there exist infinitely
many units). A group of authors ([1, 16, 28]) worked on the problem of the
existence of D(z)-quadruples in Z[

√−2] and contributed that the problem is
almost completely solved. As a prominent case, there appear the case z = −1,
which could not be solved by the standard method via polynomial formulas. In
[29] and [30] Soldo studied D(−1)-triples of the form {1, b, c} and the existence
of D(−1)-quadruples of the form {1, b, c, d} in the ring Z[

√−t], t > 0, for
b = 2, 5, 10, 17, 26, 37 or 50. He proved a more general result i.e. if positive
integer b is a prime, twice prime or twice prime squared such that {1, b, c} is
a D(−1)-triple in the ring Z[

√−t], t > 0, then c has to be an integer. As a
consequence of this result, he showed that for t 6∈ {1, 4, 9, 16, 25, 36, 49} there
does not exist a subset of Z[

√−t] of the form {1, b, c, d} with the property that
the product of any two of its distinct elements diminished by 1 is a square of
an element in Z[

√−t]. For those exceptional cases of t he showed that there
exist infinitely many D(−1)-quadruples of the form {1, b,−c, d}, c, d > 0 in
Z[

√−t ].
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In this paper, we verify assertion on the existence of D(z)-quadruples in
complex quadratic field Q(

√−3), i.e. in the corresponding ring of integers
Z[(1 +

√
−3)/2]. In other words, we show the following theorems.

Theorem 1.1. There exists a D(z)-quadruple in the ring of integers of
the quadratic field Q(

√−3) if and only if z can be represented as a difference
of two squares of integers in Q(

√
−3), up to possible exceptions z ∈ {−1, 3, 1

2 −
1
2

√
−3, 1

2 + 1
2

√
−3}.

Theorem 1.2. There exists a D(z)-quadruple in the ring Z[
√

−3] if and
only if z can be represented as a difference of two squares of elements in
Z[

√−3], up to possible exceptions z ∈ {−4,−1, 3, 2 − 2
√−3, 2 + 2

√−3}.

Although we have mentioned that the case of complex quadratic fields is
rather complicated, observe that the Pellian equation x2 − dy2 = 4 is solvable
for d = −3 in Z (the only solution is 1 +

√
−3). To begin with, we will

list briefly all statements that we require for the proofs of Theorem 1.1 and
Theorem 1.2.

Lemma 1.3 ([8, Theorem 1]). Let R be a commutative ring with the unity
1 and m, k ∈ R. The set

(1.1) {m,m(3k + 1)2 + 2k,m(3k + 2)2 + 2k + 2, 9m(2k+ 1)2 + 8k + 4}
has the D(2m(2k + 1) + 1)-property.

The set (1.1) is a D(2m(2k + 1) + 1)-quadruple if it contains no equal
elements or elements equal to zero.

Lemma 1.4. If u is an element of a commutative ring R with the unity
1 and {w1, w2, w3, w4} is a D(w)-quadruple in R, then {w1u,w2u, w3u,w4u}
is a D(wu2)-quadruple in R.

Lemma 1.5 ([14, Theorem 1]). An integer z ∈ Q(
√

−3) can be represented
as a difference of two squares of elements in Z[

√
−3] if and only if is one of

the following forms

2m+ 1 + 2n
√

−3, 4m+ 4n
√

−3, 4m+ 2 + (4n+ 2)
√

−3,

m, n ∈ Z.

Lemma 1.6 ([14, Theorem 2]). An integer z ∈ Q(
√

−3) can be represented
as a difference of two squares of elements in Z[(1 +

√
−3)/2] if and only if is

one of the following forms

2m+ 1 + 2n
√

−3, 2m+ (2n+ 1)
√

−3, 4m+ 4n
√

−3, 4m+ 2 + (4n+ 2)
√

−3,

2m+ 1
2

+
2n+ 1

2

√
−3,

m, n ∈ Z.
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Lemma 1.7 ([22, Lemma 5]). For each M,N ∈ Z, there exist k ∈ Z[(1 +√−3)/2] such that

1. 2M + 1 + 2N
√

−3 = 2m(k + 1) + 1, where m = 1
2 + 1

2

√
−3,

2. 4M + 3 + (4N + 2)
√−3 = 2m(2k + 1) + 1, where m = 1 +

√−3,
3. 2M + (2N + 1)

√
−3 = m(2k + 1) + 1, where m = 1 +

√
−3,

4. 2M + 1 + (2N + 1)
√

−3 = m(2k + 1) + 1, where m = 1
2 + 1

2

√
−3,

5. 2M+1
2 + 2N+1

2

√−3 = m
2 (2k + 1) + 1, where m = 1 +

√−3.

By using Lemmas 1.3, 1.4 and 1.7, we effectively construct Diophantine
quadruples for integers of the forms given in Lemmas 1.5 and 1.6. The fol-
lowing assertion gives the nonexistence of a D(z)-quadruple in Z[ 1+

√
−3

2 ] if
z cannot be represented as a difference of two squares in Z[(1 +

√
−3)/2],

i.e. if and only if z is of the form 4m + 2 + 4n
√−3, 4m + (4n + 2)

√−3,
2m+ 1 + (2n+ 1)

√
−3.

Lemma 1.8 ([22, Theorem 2]). If z has one of the forms

4m+ 2 + 4n
√

−3, 4m+ (4n+ 2)
√

−3, 2m+ 1 + (2n+ 1)
√

−3,

where m,n ∈ Z, then a D(z)-quadruple in Z[(1 +
√

−3)/2] does not exist.

The nonexistence of a D(z)-quadruple in Z[
√−3] if z cannot be repre-

sented as a difference of two squares in Z[
√−3] follows partially from Lemma

1.8 (if z = 4m+2+4n
√

−3 or z = 4m+(4n+2)
√

−3) and from the following
assertion.

Lemma 1.9. Let d ∈ Z is not a perfect square. Then there is no D(m +
(2n+ 1)

√
d)-quadruple in the ring Z[

√
d].

Proof. The proof of Proposition 1 in [1] given for d = 2 can be imme-
diately rewritten for an arbitrary d.

2. D(z)-quadruples in Z[ 1+
√

−3
2 ]

Let us denote the set

D4 = {mu, (m(3k+1)2+2k)u, (m(3k+2)2+2k+2)u, (9m(2k+1)2+8k+4)u}.
According to Lemmas 1.3 and 1.4, D4 is D((2m(2k + 1) + 1)u2)-quadruple
if it contains no equal elements or elements equal to zero. This polynomial
formula combining with specific values of m and u solves our problem, up
to finitely many cases. Our results are listed in the tables of the following
subsections.

2.1. D(2m+ 1 + 2n
√−3)-quadruples.

In this subsection, for integers A and B, we will separate the cases of
z = 4A + 3 + (4B + 2)

√−3 and z = 4A + 1 + 4B
√−3 to corresponding

subcases.
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z k m u D4 in exceptions of
z

4A+3+4B
√

−3 A + B
√

−3 1 1 Z[
√

−3] −1, 3

4A+1+(4B+2)
√

−3 −1+2A
2 + 1+2B

2

√
−3 1 1 Z[

1+
√

−3

2 ] −
8A+3+(8B+2)

√
−3 A+3B

2 + −A+B
2

√
−3 1 +

√
−3 1 Z[

√
−3] 3 + 2

√
−3

8A+7+(8B+6)
√

−3 A+3B+2
2 + −A+B

2

√
−3 1 +

√
−3 1 Z[

√
−3] −1 − 2

√
−3

8A+7+(8B+2)
√

−3 A−3B−1
2 + A+B+1

2

√
−3 1 −

√
−3 1 Z[

√
−3] −1 + 2

√
−3

8A+3+(8B+6)
√

−3: A−3B−3
2 + A+B+1

2

√
−3 1 −

√
−3 1 Z[

√
−3] 3 − 2

√
−3

8A+5+8B
√

−3 A + B
√

−3 2 1 Z[
√

−3] 5, −3
8A+1+(8B+4)

√
−3 2A−1

2 + 2B+1
2

√
−3 2 1 Z[

√
−3] −

8A+1+8B
√

−3 A − 1 + B
√

−3 4 1 Z[
√

−3] 1, 9, −7
8A+5+(8B+4)

√
−3 4A−2B−3

4 + 2B+1
4

√
−3 4 1 Z[

√
−3] −

Table 1

It is easy to check that for those exceptions of z in Table 1, the polynomial
formula D4 gives the set with two equal elements, or some element is equal
to zero. Therefore, in those exceptions of z (and all further exceptions), we
used the method for the first time described in [8] (but only for quadruples
in Z), to construct D(z)-quadruples with all distinct elements, of the form
{u, v, u+v+2r, u+4v+4r}, for some u, v, r ∈ Z[

√−3], or u, v, r ∈ Z[ 1+
√

−3
2 ],

respectively. Except in cases of z = −1, 3, we found the following D(z)-
quadruples in Z[

√
−3]:

• {3 +
√−3, 1 − √−3,−2,−5 − 3

√−3} is the D(3 + 2
√−3)-quadruple,

• {3 −
√

−3, 1 +
√

−3,−2,−5 + 3
√

−3} is the D(3 − 2
√

−3)-quadruple,
• {1 + 3

√
−3,−1 +

√
−3, 2, 1 −

√
−3} is the D(−1 − 2

√
−3)-quadruple,

• {1 − 3
√−3,−1 − √−3, 2, 1 +

√−3} is the D(−1 + 2
√−3)-quadruple,

• {8, 1 +
√

−3, 1 −
√

−3,−4} is the D(5)-quadruple,
• {

√
−3, 3

√
−3, 8

√
−3, 120

√
−3} is the D(−3)-quadruple,

• {1, 3, 8, 120} is the D(1)-quadruple,
• {6,−2 − 2

√
−3,−2 + 2

√
−3,−14} is the D(9)-quadruple,

• {2 + 2
√

−3, 1 +
√

−3, 1 −
√

−3, 2 − 2
√

−3} is the D(−7)-quadruple.

2.2. D(2m+ (2n+ 1)
√−3)-quadruples.

z k m u D4 in exceptions of
z

4A + (4B + 3)
√

−3 A+3B+1
2 + −A+B+1

2

√
−3

1+
√

−3

2 1 Z[
1+

√
−3

2 ] −
√

−3

4A + 2 + (4B + 1)
√

−3 A+3B
2 + −A+B

2

√
−3

1+
√

−3

2 1 Z[
1+

√
−3

2 ] 2 +
√

−3

4A + (4B + 1)
√

−3 A−3B
2 − 1 + A+B

2

√
−3

1−

√
−3

2 1 Z[
1+

√
−3

2 ]
√

−3

4A + 2 + (4B + 3)
√

−3 A−3B−3
2 + A+B+1

2

√
−3

1−

√
−3

2 1 Z[
1+

√
−3

2 ] 2 −
√

−3

Table 2
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For the exceptions noted in Table 2, we found the following D(z)-
quadruples in Z[ 1+

√
−3

2 ]:

• { 1
2 − 3

2

√−3,−1, 1
2 − 1

2

√−3,− 3
2 + 1

2

√−3} is the D(−√−3)-quadruple,
• { 1

2 + 1
2

√
−3,− 7

2 + 1
2

√
−3,−2,− 23

2 + 1
2

√
−3} is the D(2 +

√
−3)-

quadruple,
• { 1

2 + 3
2

√
−3,−1, 1

2 + 1
2

√
−3,− 3

2 − 1
2

√
−3} is the D(

√
−3)-quadruple,

• { 1
2 − 1

2

√
−3,− 7

2 − 1
2

√
−3,−2,− 23

2 − 1
2

√
−3} is the D(2 −

√
−3)-

quadruple.

2.3. D(4m+ 4n
√

−3)-quadruples.

z k m u D4 in exceptions of
z

8A+8B
√

−3 −A+3B−2
2 − A+B

2

√
−3 1

2 1 +
√

−3 Z[
1+

√
−3

2 ] 0

8A+4+(8B+4)
√

−3 −A+3B−1
2 − A+B+1

2

√
−3 1

2 1 +
√

−3 Z[
1+

√
−3

2 ] −4 + 4
√

−3

Table 3

The set {1, 2 − 2
√−3, 5, 13 − 4

√−3} is the D(−4 + 4
√−3)-quadruple in

Z[
√−3] and it is easy to see that there exits infinitely many D(0)-quadruples.

We obtain a D(8A + 4 + 8B
√

−3)-quadruple by multiplying elements of
a D(2m+ 1 + 2n

√
−3)-quadruple by u = 2 except for z = −4, 12, but

{1,
7
2

+
1
2

√
−3,

7
2

− 1
2

√
−3, 13}

is the D(−4)-quadruple, and

{−2, 7 +
√

−3, 7 −
√

−3, 30}
is the D(12)-quadruple. Also, a D(8A+ (8B+ 4)

√−3)-quadruple is obtained
by multiplying elements of a D(2m + (2n + 1)

√
−3)-quadruple by u = 2.

Obviously, the resulting sets are subsets of Z[
√

−3] (except for z = −4).

2.4. D(4m+ 2 + (4n+ 2)
√

−3)-quadruples.

z k m u D4 in exceptions of
z

8A+2+(8B+2)
√

−3 −A−1−B
√

−3
1+

√
−3

4 1+
√

−3 Z[
1+

√
−3

2 ] −6+2
√

−3,
2+2

√
−3

8A+6+(8B+6)
√

−3 −2A+3
2 − 2B+1

2

√
−3

1+
√

−3

4 1+
√

−3 Z[
1+

√
−3

2 ] −
8A+2+(8B+6)

√
−3 −(A+1)−(B+1)

√
−3

1−

√
−3

4 1−
√

−3 Z[
1+

√
−3

2 ] −6−2
√

−3,
2−2

√
−3

8A+6+(8B+2)
√

−3 −2A+3
2 − 2B+1

2

√
−3

1−

√
−3

4 1−
√

−3 Z[
1+

√
−3

2 ] −

Table 4
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While the polynomial formula D4 gives sets with two equal elements, for
those exceptions of z of Table 4, we found the following D(z)-quadruples in
Z[ 1+

√
−3

2 ]:

• {− 1
2 + 1

2

√
−3,−9−2

√
−3,− 25

2 − 1
2

√
−3,− 85

2 − 11
2

√
−3} is the D(−6+

2
√

−3)-quadruple,
• {− 1

2 + 1
2

√−3,− 5
2 + 3

2

√−3,−1 + 2
√−3,− 13

2 + 13
2

√−3} is the D(2 +
2
√−3)-quadruple,

• {− 1
2 − 1

2

√
−3,−9+2

√
−3,− 25

2 + 1
2

√
−3,− 85

2 + 11
2

√
−3} is the D(−6−

2
√

−3)-quadruple,
• {− 1

2 − 1
2

√
−3,− 5

2 − 3
2

√
−3,−1 − 2

√
−3,− 13

2 − 13
2

√
−3} is the D(2 −

2
√−3)-quadruple.

2.5. D(2m+1
2 + 2n+1

2

√
−3)-quadruples.

We derive D(2m+1
2 + 2n+1

2

√
−3)-quadruples from D(2m + 1 + 2n

√
−3) and

D(2m+(2n+1)
√−3) -quadruples by multiplying them by 1+

√
−3

2 and 1−
√

−3
2 .

• Multiplying the elements of a D(2m+ 1 + 2n
√−3)-quadruple by u =

1+
√

−3
2 we obtain a D((2m+ 1 + 2n

√
−3)u2)-quadruple except for z =

1
2 − 1

2

√−3, − 3
2 + 3

2

√−3. The number (2m+ 1 + 2n
√−3)u2 is of the

form 2A+1
2 + 2B+1

2

√
−3 and for given A,B ∈ Z the equation

(2.1) (2m+ 1 + 2n
√

−3)u2 =
2A+ 1

2
+

2B + 1
2

√
−3

has an integer solution (m,n ∈ Z) if and only if −A+ 3B ≡ 1(mod 4)
and A+B ≡ 3(mod 4), i.e. (A,B) mod 4 ∈ {(0, 3), (1, 2), (2, 1), (3, 0)}.
Concerning exceptions, the set

{1
2

+
1
2

√
−3,−5

2
− 3

2

√
−3,−1 − 2

√
−3,−15

2
− 15

2

√
−3}

represents the D(− 3
2 + 3

2

√−3)-quadruple, while we could not find the
D(1

2 − 1
2

√
−3)-quadruple.

• Multiplying the elements of a D(2m+ 1 + 2n
√

−3)-quadruple by u =
1−

√
−3

2 we obtain a D((2m+ 1 + 2n
√−3)u2)-quadruple except for z =

1
2 + 1

2

√
−3, − 3

2 − 3
2

√
−3. For given A,B ∈ Z the equation (2.1) has

an integer solution if and only if A+ 3B ≡ 0 (mod 4) and A−B ≡ 0
(mod 4), i.e. (A,B) mod 4 ∈ {(0, 0), (1, 1), (2, 2), (3, 3)}. The set

{1
2

− 1
2

√
−3,−5

2
+

3
2

√
−3,−1 + 2

√
−3,−15

2
+

15
2

√
−3}

is the D(− 3
2 − 3

2

√
−3)-quadruple and we have not detected a D(1

2 +
1
2

√
−3)-quadruple.
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• Multiplying the elements of a D(2m + (2n + 1)
√

−3)-quadruple by
u = 1+

√
−3

2 we obtain a D(2A+1
2 + 2B+1

2

√
−3)-quadruple. For given

A,B ∈ Z the equation

(2.2) (2m+ (2n+ 1)
√

−3)u2 =
2A+ 1

2
+

2B + 1
2

√
−3

has an integer solution if and only if −A+3B ≡ 3 (mod 4) and A+B ≡
1 (mod 4), i.e. (A,B) mod 4 ∈ {(0, 1), (1, 0), (3, 2), (2, 3)}.

• Multiplying the elements of a D(2m + (2n + 1)
√

−3)-quadruple by
u = 1−

√
−3

2 we obtain a D(2A+1
2 + 2B+1

2

√
−3)-quadruple. For given

A,B ∈ Z the equation (2.2) has an integer solution if and only if
A+ 3B ≡ 2 (mod 4) and −A + B ≡ 2 (mod 4), i.e. (A,B) mod 4 ∈
{(0, 2), (2, 0), (1, 3), (3, 1)}.

3. D(z) quadruples in Z[
√

−3]

In the previous section we see that some D(z)-quadruples that have been
constructed already lie in Z[

√
−3] but some of them do not although z can

be represented as a difference of squares in Z[
√−3]. Here we show that this

can be improved.

3.1. D(2m+ 1 + 2n
√−3)-quadruples.

z k m u D4 in exceptions of
z

4A + 1 + (4B + 2)
√

−3 2A−2B+1
2 + A+1

2

√
−3

√
−3/3

√
−3 Z[

√
−3] −3 − 2

√
−3,

−3 + 2
√

−3

Table 5

The set {−√−3,−2 +
√−3,−2,−8 + 3

√−3} is a D(−3 − 2
√−3), while

the set {
√

−3,−2 −
√

−3,−2,−8 − 3
√

−3} is a D(−3 + 2
√

−3)-quadruple in
Z[

√
−3].

3.2. D(4m+ 2 + (4n+ 2)
√−3)-quadruples.

Since there exist a D(2m+1
2 + 2n+1

2

√−3)-quadruple in Z[(1 +
√−3)/2], by

multiplying by 2 the elements of this quadruple we obtain a D(4m+2+(4n+
2)

√−3)-quadruple in Z[
√−3], up to z = 2 − 2

√−3, 2 + 2
√−3.



THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF Q(
√

−3) 23

3.3. D(4m+ 4n
√

−3)-quadruples.

We have shown in § 2.3. that D(8m+(8n+4)
√−3) and D(8m+4+8n

√−3)-
quadruples in Z[

√
−3] are obtained by multiplying by 2 the elements of

D(2m+(2n+1)
√

−3) and D(2m+1+2n
√

−3)-quadruples in Z[(1+
√

−3)/2]
up to the the D(−4)-quadruple whose elements are not in Z[

√−3].
The set

{1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1}
is D(8k)-quadruple ([7]) if k 6= 0, 1, so there exists a D(8m + 8n

√−3)-
quadruple in Z[

√
−3].

z k m u D4 in exceptions of
z

8A + 4 + (8B + 4)
√

−3 3A−2B+4
2 + A+2

2

√
−3

√
−3

6 2
√

−3 Z[
√

−3] −12 − 4
√

−3
−12 + 4

√
−3

Table 6

It is easy to check that for those exceptions of z in Table 6, the polynomial
formula D4 gives the set with two equal elements. Therefore for certain z, we
found the following D(z)-quadruples in Z[

√
−3]:

• {2 +
√

−3, 2 − 2
√

−3, 2 − 3
√

−3, 6 − 11
√

−3} is the D(−12 + 4
√

−3)-
quadruple,

• {2 −
√

−3, 2 + 2
√

−3, 2 + 3
√

−3, 6 + 11
√

−3} is the D(−12 − 4
√

−3)-
quadruple,

• {2+
√−3,−2+2

√−3,−2+
√−3,−10+5

√−3} is the D(8)-quadruple.

Remark 3.1. Concerning the list of possible exceptions given in Theorem
1.1 and Theorem 1.2, we can easily observe that 3 = −1·(

√
−3)2, −4 = −1·22,

1
2 ± 1

2

√−3 = −1 · (1
2 ∓ 1

2

√−3)2 and 2 ± 2
√−3 = −1 · (1 ∓ √−3)2. So, we

are not surprised that the key point lies in an investigation on the existence
of D(−1)-quadruples in rings Z[(1 +

√
−3)/2] and Z[

√
−3]. In an analogy

to D(−1)-quadruple conjecture in the ring of integers and the problem of
existence of D(−1)-quadruples in Z[

√−t], t > 0 studied in [29] and [30], we
might expect that for such z there does not exists a D(z)-quadruple.
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Diofantov problem za cijele brojeve kvadratnog polja Q(
√−3)

Zrinka Franušić i Ivan Soldo

Sažetak. Rješavamo Diofantov problem za cijele bro-

jeve kvadratnog polja Q(
√

−3) konstruiranjem D(z)-četvorki u

prstenu Z[
√

−3] za svaki z koji se može prikazati kao razlika dva

kvadrata u Q(
√

−3), do na konačno mnogo mogućih izuzetaka.
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