

RAD HAZU. MATEMATIČKE ZNANOSTI Vol. 18 = 519 (2014): 15-25

THE PROBLEM OF DIOPHANTUS FOR INTEGERS OF $\mathbb{Q}(\sqrt{-3})$

ZRINKA FRANUŠIĆ AND IVAN SOLDO

ABSTRACT. We solve the problem of Diophantus for integers of the quadratic field $\mathbb{Q}(\sqrt{-3})$ by finding a D(z)-quadruple in $\mathbb{Z}[(1+\sqrt{-3})/2]$ for each z that can be represented as a difference of two squares of integers in $\mathbb{Q}(\sqrt{-3})$, up to finitely many possible exceptions.

1. INTRODUCTION AND PRELIMINARIES

Let R be a commutative ring with unity 1 and $n \in R$. The set of nonzero and distinct elements $\{a_1, a_2, a_3, a_4\}$ in R such that $a_i a_j + n$ is a perfect square in R for $1 \leq i < j \leq 4$ is called a *Diophantine quadruple with the property* D(n) in R or just a D(n)-quadruple. If n = 1 then a quadruple with a given property is called a *Diophantine quadruple*. The problem of constructing such sets was first studied by Diophantus of Alexandria who found the rational quadruple $\{\frac{1}{16}, \frac{33}{16}, \frac{17}{16}, \frac{10}{16}\}$ with the property D(1). Fermat found the first Diophantine quadruple in the ring of integers \mathbb{Z} - the set $\{1, 3, 8, 120\}$.

The problem on the existence of D(n)-quadruples has been studied in different rings, but mainly in rings of integers of numbers fields. The following assertion is shown to be true in many cases: There exists a D(n)-quadruple if and only if n can be represented as a difference of two squares, up to finitely many exceptions. In the ring \mathbb{Z} one part of the assertion is proved independently by several authors (Brown, Gupta, Singh, Mohanty, Ramamsamy, see [6, 25, 27]), and another by Dujella in [7]. The set of possible exceptions $S = \{-4, -3, -1, 3, 5, 8, 12, 20\}$ is still an open problem studied by many authors. The conjecture is that for $n \in S$ there does not exist a Diophantine quadruple with the property D(n).

In the ring of integers \mathbb{Z} well studied is the case of n = -1. There is a conjecture that D(-1)-quadruple does not exist in \mathbb{Z} . That is known as the D(-1)-quadruple conjecture and it was presented explicitly in [11] for the first time. While it is conjectured that D(-1)-quadruples do not exist in integers

²⁰¹⁰ Mathematics Subject Classification. 11D09, 11R11.

Key words and phrases. Diophantine quadruples, quadratic field.

¹⁵

(see [11]), it is known that no D(-1)-quintuple exists and that if $\{a, b, c, d\}$ is a D(-1)-quadruple with a < b < c < d, then a = 1 (see [15]). It is proved that some infinite families of D(-1)-triples cannot be extended to a D(-1)-quadruple. The non-extendibility of $\{1, b, c\}$ was confirmed for b = 2by Dujella in [10], for b = 5 partially by Abu Muriefah and Al Rashed in [2], and completely by Filipin in [18]. The statement was also proved for b = 10 by Filipin in [18], and for b = 17, 26, 37, 50 by Fujita in [24]. Dujella, Filipin and Fuchs in [13] proved that there are at most finitely many D(-1)-quadruples, by giving an upper bound of 10^{903} for the number of D(-1)-quadruples. This bound was improved several times: to 10^{356} by Filipin and Fujita ([19]), to $4 \cdot 10^{70}$ by Bonciocat, Cipu and Mignotte ([5]) and very recently to $5 \cdot 10^{60}$ by Elsholtz, Filipin and Fujita ([17]).

In the ring of Gaussian integers $\mathbb{Z}[i]$ the above assertion was proved in [9]. Namely, if a + bi is not representable as a difference of the squares of two elements in $\mathbb{Z}[i]$, and in contrary if a + bi is not of such form and $a + bi \notin$ $\{\pm 2, \pm 1 \pm 2i, \pm 4i\}$, then D(a+bi)-quadruple exists. Franušić in [20–22] found that a similar statement is true for rings of integers of some real quadratic fields, i.e. it can be seen that there exist infinitely many D(n)-quadruples if and only if n can be represented as a difference of two squares of integers. To be more precise, assuming the solvability of certain Pellian equation $(x^2 - dy^2 = \pm 2 \text{ or } x^2 - dy^2 = 4$ in odd numbers) we are able to obtain an effective characterization of integers that can be represented as a difference of two squares of integers in $\mathbb{Q}(\sqrt{d})$ and then apply some polynomial formulas for Diophantine quadruples in a combination with elements of a small norm. Also, in [23] the existence problem in the ring of integers of the pure cubic field $\mathbb{Q}(\sqrt[3]{2})$ has been completely solved.

The case of complex quadratic fields is more demanding because the set of elements with a small norm is poor (while in the real case there exist infinitely many units). A group of authors ([1, 16, 28]) worked on the problem of the existence of D(z)-quadruples in $\mathbb{Z}[\sqrt{-2}]$ and contributed that the problem is almost completely solved. As a prominent case, there appear the case z = -1, which could not be solved by the standard method via polynomial formulas. In [29] and [30] Soldo studied D(-1)-triples of the form $\{1, b, c\}$ and the existence of D(-1)-quadruples of the form $\{1, b, c, d\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t > 0$, for b = 2, 5, 10, 17, 26, 37 or 50. He proved a more general result i.e. if positive integer b is a prime, twice prime or twice prime squared such that $\{1, b, c\}$ is a D(-1)-triple in the ring $\mathbb{Z}[\sqrt{-t}], t > 0$, then c has to be an integer. As a consequence of this result, he showed that for $t \notin \{1, 4, 9, 16, 25, 36, 49\}$ there does not exist a subset of $\mathbb{Z}[\sqrt{-t}]$ of the form $\{1, b, c, d\}$ with the property that the product of any two of its distinct elements diminished by 1 is a square of an element in $\mathbb{Z}[\sqrt{-t}]$. For those exceptional cases of t he showed that there exist infinitely many D(-1)-quadruples of the form $\{1, b, -c, d\}, c, d > 0$ in $\mathbb{Z}[\sqrt{-t}].$

In this paper, we verify assertion on the existence of D(z)-quadruples in complex quadratic field $\mathbb{Q}(\sqrt{-3})$, i.e. in the corresponding ring of integers $\mathbb{Z}[(1+\sqrt{-3})/2]$. In other words, we show the following theorems.

THEOREM 1.1. There exists a D(z)-quadruple in the ring of integers of the quadratic field $\mathbb{Q}(\sqrt{-3})$ if and only if z can be represented as a difference of two squares of integers in $\mathbb{Q}(\sqrt{-3})$, up to possible exceptions $z \in \{-1, 3, \frac{1}{2} - \frac{1}{2}\sqrt{-3}, \frac{1}{2} + \frac{1}{2}\sqrt{-3}\}$.

THEOREM 1.2. There exists a D(z)-quadruple in the ring $\mathbb{Z}[\sqrt{-3}]$ if and only if z can be represented as a difference of two squares of elements in $\mathbb{Z}[\sqrt{-3}]$, up to possible exceptions $z \in \{-4, -1, 3, 2 - 2\sqrt{-3}, 2 + 2\sqrt{-3}\}$.

Although we have mentioned that the case of complex quadratic fields is rather complicated, observe that the Pellian equation $x^2 - dy^2 = 4$ is solvable for d = -3 in \mathbb{Z} (the only solution is $1 + \sqrt{-3}$). To begin with, we will list briefly all statements that we require for the proofs of Theorem 1.1 and Theorem 1.2.

LEMMA 1.3 ([8, Theorem 1]). Let R be a commutative ring with the unity 1 and $m, k \in R$. The set

$$(1.1) \quad \{m, m(3k+1)^2 + 2k, m(3k+2)^2 + 2k + 2, 9m(2k+1)^2 + 8k + 4\}$$

has the D(2m(2k+1)+1)-property.

The set (1.1) is a D(2m(2k+1)+1)-quadruple if it contains no equal elements or elements equal to zero.

LEMMA 1.4. If u is an element of a commutative ring R with the unity 1 and $\{w_1, w_2, w_3, w_4\}$ is a D(w)-quadruple in R, then $\{w_1u, w_2u, w_3u, w_4u\}$ is a $D(wu^2)$ -quadruple in R.

LEMMA 1.5 ([14, Theorem 1]). An integer $z \in \mathbb{Q}(\sqrt{-3})$ can be represented as a difference of two squares of elements in $\mathbb{Z}[\sqrt{-3}]$ if and only if is one of the following forms

$$2m + 1 + 2n\sqrt{-3}, 4m + 4n\sqrt{-3}, 4m + 2 + (4n + 2)\sqrt{-3}$$

 $m, n \in \mathbb{Z}.$

LEMMA 1.6 ([14, Theorem 2]). An integer $z \in \mathbb{Q}(\sqrt{-3})$ can be represented as a difference of two squares of elements in $\mathbb{Z}[(1+\sqrt{-3})/2]$ if and only if is one of the following forms

 $\begin{array}{l} 2m+1+2n\sqrt{-3}, \ 2m+(2n+1)\sqrt{-3}, \ 4m+4n\sqrt{-3}, \ 4m+2+(4n+2)\sqrt{-3}, \\ \\ \frac{2m+1}{2}+\frac{2n+1}{2}\sqrt{-3}, \end{array}$

 $m, n \in \mathbb{Z}.$

LEMMA 1.7 ([22, Lemma 5]). For each $M, N \in \mathbb{Z}$, there exist $k \in \mathbb{Z}[(1 + 1)]$ $\sqrt{-3}/2$ such that

1. $2M + 1 + 2N\sqrt{-3} = 2m(k+1) + 1$, where $m = \frac{1}{2} + \frac{1}{2}\sqrt{-3}$,

- 2. $4M + 3 + (4N + 2)\sqrt{-3} = 2m(2k + 1) + 1$, where $m = 1 + \sqrt{-3}$,
- 3. $2M + (2N+1)\sqrt{-3} = m(2k+1) + 1$, where $m = 1 + \sqrt{-3}$,
- 4. $2M + 1 + (2N+1)\sqrt{-3} = m(2k+1) + 1$, where $m = \frac{1}{2} + \frac{1}{2}\sqrt{-3}$, 5. $\frac{2M+1}{2} + \frac{2N+1}{2}\sqrt{-3} = \frac{m}{2}(2k+1) + 1$, where $m = 1 + \sqrt{-3}$.

By using Lemmas 1.3, 1.4 and 1.7, we effectively construct Diophantine quadruples for integers of the forms given in Lemmas 1.5 and 1.6. The following assertion gives the nonexistence of a D(z)-quadruple in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ if z cannot be represented as a difference of two squares in $\mathbb{Z}[(1+\sqrt{-3})/2],$ i.e. if and only if z is of the form $4m + 2 + 4n\sqrt{-3}$, $4m + (4n + 2)\sqrt{-3}$, $2m+1+(2n+1)\sqrt{-3}$

LEMMA 1.8 ([22, Theorem 2]). If z has one of the forms

$$4m + 2 + 4n\sqrt{-3}, \ 4m + (4n + 2)\sqrt{-3}, \ 2m + 1 + (2n + 1)\sqrt{-3},$$

where $m, n \in \mathbb{Z}$, then a D(z)-quadruple in $\mathbb{Z}[(1+\sqrt{-3})/2]$ does not exist.

The nonexistence of a D(z)-quadruple in $\mathbb{Z}[\sqrt{-3}]$ if z cannot be represented as a difference of two squares in $\mathbb{Z}[\sqrt{-3}]$ follows partially from Lemma 1.8 (if $z = 4m + 2 + 4n\sqrt{-3}$ or $z = 4m + (4n+2)\sqrt{-3}$) and from the following assertion.

LEMMA 1.9. Let $d \in \mathbb{Z}$ is not a perfect square. Then there is no D(m + $(2n+1)\sqrt{d}$)-quadruple in the ring $\mathbb{Z}[\sqrt{d}]$.

PROOF. The proof of Proposition 1 in [1] given for d = 2 can be immediately rewritten for an arbitrary d.

2.
$$D(z)$$
-QUADRUPLES IN $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$

Let us denote the set

 $D_4 = \{mu, (m(3k+1)^2 + 2k)u, (m(3k+2)^2 + 2k + 2)u, (9m(2k+1)^2 + 8k + 4)u\}.$ According to Lemmas 1.3 and 1.4, D_4 is $D((2m(2k+1)+1)u^2)$ -quadruple if it contains no equal elements or elements equal to zero. This polynomial formula combining with specific values of m and u solves our problem, up to finitely many cases. Our results are listed in the tables of the following subsections.

2.1. $D(2m+1+2n\sqrt{-3})$ -quadruples.

In this subsection, for integers A and B, we will separate the cases of $z = 4A + 3 + (4B + 2)\sqrt{-3}$ and $z = 4A + 1 + 4B\sqrt{-3}$ to corresponding subcases.

z	k	m	u	D_4 in	exceptions of
					z
$4A + 3 + 4B\sqrt{-3}$	$A + B\sqrt{-3}$	1	1	$\mathbb{Z}[\sqrt{-3}]$	-1, 3
$4A+1+(4B+2)\sqrt{-3}$	$\frac{-1+2A}{2} + \frac{1+2B}{2}\sqrt{-3}$	1	1	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	_
$8A+3+(8B+2)\sqrt{-3}$	$\frac{A+3B}{2} + \frac{-A+B}{2}\sqrt{-3}$	$1 + \sqrt{-3}$	1	$\mathbb{Z}[\sqrt{-3}]$	$3 + 2\sqrt{-3}$
$8A+7+(8B+6)\sqrt{-3}$	$\frac{A+3B+2}{2} + \frac{-A+B}{2}\sqrt{-3}$	$1 + \sqrt{-3}$	1	$\mathbb{Z}[\sqrt{-3}]$	$-1 - 2\sqrt{-3}$
$8A+7+(8B+2)\sqrt{-3}$	$\frac{A-3B-1}{2} + \frac{A+B+1}{2}\sqrt{-3}$	$1 - \sqrt{-3}$	1	$\mathbb{Z}[\sqrt{-3}]$	$-1 + 2\sqrt{-3}$
$8A+3+(8B+6)\sqrt{-3}$:	$\frac{A-3B-3}{2} + \frac{A+B+1}{2}\sqrt{-3}$	$1 - \sqrt{-3}$	1	$\mathbb{Z}[\sqrt{-3}]$	$3 - 2\sqrt{-3}$
$8A + 5 + 8B\sqrt{-3}$	$A + B\sqrt{-3}$	2	1	$\mathbb{Z}[\sqrt{-3}]$	5, -3
$8A+1+(8B+4)\sqrt{-3}$	$\frac{2A-1}{2} + \frac{2B+1}{2}\sqrt{-3}$	2	1	$\mathbb{Z}[\sqrt{-3}]$	-
$8A + 1 + 8B\sqrt{-3}$	$A-1+B\sqrt{-3}$	4	1	$\mathbb{Z}[\sqrt{-3}]$	1, 9, -7
$8A+5+(8B+4)\sqrt{-3}$	$\frac{4A-2B-3}{4} + \frac{2B+1}{4}\sqrt{-3}$	4	1	$\mathbb{Z}[\sqrt{-3}]$	_

TABLE 1

It is easy to check that for those exceptions of z in Table 1, the polynomial formula D_4 gives the set with two equal elements, or some element is equal to zero. Therefore, in those exceptions of z (and all further exceptions), we used the method for the first time described in [8] (but only for quadruples in \mathbb{Z}), to construct D(z)-quadruples with all distinct elements, of the form $\{u, v, u+v+2r, u+4v+4r\}$, for some $u, v, r \in \mathbb{Z}[\sqrt{-3}]$, or $u, v, r \in \mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$, respectively. Except in cases of z = -1, 3, we found the following $\tilde{D}(z)$ quadruples in $\mathbb{Z}[\sqrt{-3}]$:

- { $3 + \sqrt{-3}, 1 \sqrt{-3}, -2, -5 3\sqrt{-3}$ } is the $D(3 + 2\sqrt{-3})$ -quadruple, { $3 \sqrt{-3}, 1 + \sqrt{-3}, -2, -5 + 3\sqrt{-3}$ } is the $D(3 2\sqrt{-3})$ -quadruple, { $1 + 3\sqrt{-3}, -1 + \sqrt{-3}, 2, 1 \sqrt{-3}$ } is the $D(-1 2\sqrt{-3})$ -quadruple, { $1 3\sqrt{-3}, -1 \sqrt{-3}, 2, 1 + \sqrt{-3}$ } is the $D(-1 + 2\sqrt{-3})$ -quadruple,
- $\{8, 1 + \sqrt{-3}, 1 \sqrt{-3}, -4\}$ is the D(5)-quadruple,
- $\{\sqrt{-3}, 3\sqrt{-3}, 8\sqrt{-3}, 120\sqrt{-3}\}$ is the D(-3)-quadruple,
- $\{1, 3, 8, 120\}$ is the D(1)-quadruple,
- $\{6, -2 2\sqrt{-3}, -2 + 2\sqrt{-3}, -14\}$ is the D(9)-quadruple,
- $\{2+2\sqrt{-3}, 1+\sqrt{-3}, 1-\sqrt{-3}, 2-2\sqrt{-3}\}$ is the D(-7)-quadruple.

2	k	m	u	D_4 in	exceptions of
					z
$4A + (4B + 3)\sqrt{-3}$	$\frac{A+3B+1}{2} + \frac{-A+B+1}{2}\sqrt{-3}$	$\frac{1+\sqrt{-3}}{2}$	1	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$-\sqrt{-3}$
$4A + 2 + (4B + 1)\sqrt{-3}$	$\frac{A+3B}{2} + \frac{-A+B}{2}\sqrt{-3}$	$\frac{1+\sqrt{-3}}{2}$	1	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$2 + \sqrt{-3}$
$4A + (AB + 1) \sqrt{-3}$	$A-3B = 1 + A+B \sqrt{-3}$	$1 - \sqrt{-3}$	1	$\pi \left[\frac{1+\sqrt{-3}}{2}\right]$	$\sqrt{-3}$

 $\frac{A-3B-3}{2} + \frac{A+B+1}{2}$

2.2. $D(2m + (2n + 1)\sqrt{-3})$ -quadruples.

 $4A + 2 + (4B + 3)\sqrt{-2}$

TABLE 2

.3

 $\mathbb{Z}\left[\frac{1+\sqrt{2}}{2}\right]$

For the exceptions noted in Table 2, we found the following D(z)quadruples in $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$:

• $\{\frac{1}{2} - \frac{3}{2}\sqrt{-3}, -1, \frac{1}{2} - \frac{1}{2}\sqrt{-3}, -\frac{3}{2} + \frac{1}{2}\sqrt{-3}\}$ is the $D(-\sqrt{-3})$ -quadruple, • $\{\frac{1}{2} + \frac{1}{2}\sqrt{-3}, -\frac{7}{2} + \frac{1}{2}\sqrt{-3}, -2, -\frac{23}{2} + \frac{1}{2}\sqrt{-3}\}$ is the $D(2 + \sqrt{-3})$ quadruple, • $\{\frac{1}{2} + \frac{3}{2}\sqrt{-3}, -1, \frac{1}{2} + \frac{1}{2}\sqrt{-3}, -\frac{3}{2} - \frac{1}{2}\sqrt{-3}\}$ is the $D(\sqrt{-3})$ -quadruple, • $\{\frac{1}{2} - \frac{1}{2}\sqrt{-3}, -\frac{7}{2} - \frac{1}{2}\sqrt{-3}, -2, -\frac{23}{2} - \frac{1}{2}\sqrt{-3}\}$ is the $D(2 - \sqrt{-3})$ quadruple.

2.3. $D(4m+4n\sqrt{-3})$ -quadruples.

z	k	m	u	D_4 in	exceptions of
$8A+8B\sqrt{-3}$	$\frac{-A+3B-2}{2} - \frac{A+B}{2}\sqrt{-3}$	$\frac{1}{2}$	$1 + \sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	0
$8A+4+(8B+4)\sqrt{-3}$	$\frac{-A+3B-1}{2} - \frac{A+B+1}{2}\sqrt{-3}$	1	$1 + \sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	$-4 + 4\sqrt{-3}$

TABLE	3
-------	---

The set $\{1, 2-2\sqrt{-3}, 5, 13-4\sqrt{-3}\}$ is the $D(-4+4\sqrt{-3})$ -quadruple in $\mathbb{Z}[\sqrt{-3}]$ and it is easy to see that there exits infinitely many D(0)-quadruples. We obtain a $D(8A+4+8B\sqrt{-3})$ -quadruple by multiplying elements of

a $D(2m+1+2n\sqrt{-3})$ -quadruple by u=2 except for z=-4,12, but

$$\{1, \frac{7}{2} + \frac{1}{2}\sqrt{-3}, \frac{7}{2} - \frac{1}{2}\sqrt{-3}, 13\}$$

is the D(-4)-quadruple, and

$$[-2, 7+\sqrt{-3}, 7-\sqrt{-3}, 30]$$

is the D(12)-quadruple. Also, a $D(8A + (8B + 4)\sqrt{-3})$ -quadruple is obtained by multiplying elements of a $D(2m + (2n + 1)\sqrt{-3})$ -quadruple by u = 2. Obviously, the resulting sets are subsets of $\mathbb{Z}[\sqrt{-3}]$ (except for z = -4).

2.4. $D(4m+2+(4n+2)\sqrt{-3})$ -quadruples.

z	k	m	u	D_4 in	exceptions of z
$8A+2+(8B+2)\sqrt{-3}$	$-A - 1 - B\sqrt{-3}$	$\frac{1+\sqrt{-3}}{4}$	$1 + \sqrt{-3}$	$\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$	$-6+2\sqrt{-3},$ $2+2\sqrt{-3}$
$8A+6+(8B+6)\sqrt{-3}$	$-\frac{2A+3}{2}-\frac{2B+1}{2}\sqrt{-3}$	$\frac{1+\sqrt{-3}}{4}$	$1 + \sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	_
$8A+2+(8B+6)\sqrt{-3}$	$-(A+1)-(B+1)\sqrt{-3}$	$\frac{1-\sqrt{-3}}{4}$	$1 - \sqrt{-3}$	$\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$	$-6 - 2\sqrt{-3},$ $2 - 2\sqrt{-3}$
$8A+6+(8B+2)\sqrt{-3}$	$-\frac{2A+3}{2}-\frac{2B+1}{2}\sqrt{-3}$	$\frac{1-\sqrt{-3}}{4}$	$1 - \sqrt{-3}$	$\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$	-

TABLE 4

While the polynomial formula D_4 gives sets with two equal elements, for those exceptions of z of Table 4, we found the following D(z)-quadruples in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$:

- $\left\{-\frac{1}{2}+\frac{1}{2}\sqrt{-3},-9-2\sqrt{-3},-\frac{25}{2}-\frac{1}{2}\sqrt{-3},-\frac{85}{2}-\frac{11}{2}\sqrt{-3}\right\}$ is the $D(-6+\frac{1}{2})$
- $\left\{-\frac{1}{2}+\frac{1}{2}\sqrt{-3}, -\frac{5}{2}+\frac{3}{2}\sqrt{-3}, -1+2\sqrt{-3}, -\frac{13}{2}+\frac{13}{2}\sqrt{-3}\right\}$ is the $D(2+2\sqrt{-3})$ -quadruple, $\left\{-\frac{1}{2}+\frac{1}{2}\sqrt{-3}, -\frac{5}{2}+\frac{3}{2}\sqrt{-3}, -1+2\sqrt{-3}, -\frac{13}{2}+\frac{13}{2}\sqrt{-3}\right\}$ is the $D(2+2\sqrt{-3})$ -quadruple, $\left\{-\frac{1}{2}-\frac{1}{2}\sqrt{-3}, -9+2\sqrt{-3}, -\frac{25}{2}+\frac{1}{2}\sqrt{-3}, -\frac{85}{2}+\frac{11}{2}\sqrt{-3}\right\}$ is the $D(-6-2\sqrt{-3})$ -quadruple.
- $\{-\frac{2}{2}, -\frac{2}{3}\}$ -quadruple, $\{-\frac{1}{2}, -\frac{1}{2}, -\frac{5}{2}, -\frac{3}{2}, -\frac{3}{2}, -\frac{1}{2}, -\frac{13}{2}, -\frac{13}{2}$

2.5. $D(\frac{2m+1}{2} + \frac{2n+1}{2}\sqrt{-3})$ -quadruples.

We derive $D(\frac{2m+1}{2} + \frac{2n+1}{2}\sqrt{-3})$ -quadruples from $D(2m + 1 + 2n\sqrt{-3})$ and $D(2m+(2n+1)\sqrt{-3})$ -quadruples by multiplying them by $\frac{1+\sqrt{-3}}{2}$ and $\frac{1-\sqrt{-3}}{2}$.

• Multiplying the elements of a $D(2m + 1 + 2n\sqrt{-3})$ -quadruple by u = $\frac{1+\sqrt{-3}}{2}$ we obtain a $D((2m+1+2n\sqrt{-3})u^2)$ -quadruple except for z= $\frac{1}{2} - \frac{1}{2}\sqrt{-3}, -\frac{3}{2} + \frac{3}{2}\sqrt{-3}$. The number $(2m + 1 + 2n\sqrt{-3})u^2$ is of the form $\frac{2A+1}{2} + \frac{2B+1}{2}\sqrt{-3}$ and for given $A, B \in \mathbb{Z}$ the equation

(2.1)
$$(2m+1+2n\sqrt{-3})u^2 = \frac{2A+1}{2} + \frac{2B+1}{2}\sqrt{-3}$$

has an integer solution $(m, n \in \mathbb{Z})$ if and only if $-A + 3B \equiv 1 \pmod{4}$ and $A+B \equiv 3 \pmod{4}$, i.e. $(A, B) \mod 4 \in \{(0, 3), (1, 2), (2, 1), (3, 0)\}$. Concerning exceptions, the set

$$\{\frac{1}{2} + \frac{1}{2}\sqrt{-3}, -\frac{5}{2} - \frac{3}{2}\sqrt{-3}, -1 - 2\sqrt{-3}, -\frac{15}{2} - \frac{15}{2}\sqrt{-3}\}$$

represents the $D(-\frac{3}{2}+\frac{3}{2}\sqrt{-3})$ -quadruple, while we could not find the $D(\frac{1}{2}-\frac{1}{2}\sqrt{-3})$ -quadruple.

• Multiplying the elements of a $D(2m + 1 + 2n\sqrt{-3})$ -quadruple by u = $\frac{1-\sqrt{-3}}{2}$ we obtain a $D((2m+1+2n\sqrt{-3})u^2)$ -quadruple except for $z = \frac{1}{2} + \frac{1}{2}\sqrt{-3}, -\frac{3}{2} - \frac{3}{2}\sqrt{-3}$. For given $A, B \in \mathbb{Z}$ the equation (2.1) has an integer solution if and only if $A + 3B \equiv 0 \pmod{4}$ and $A - B \equiv 0$ (mod 4), i.e. $(A, B) \mod 4 \in \{(0, 0), (1, 1), (2, 2), (3, 3)\}$. The set

$$\{\frac{1}{2} - \frac{1}{2}\sqrt{-3}, -\frac{5}{2} + \frac{3}{2}\sqrt{-3}, -1 + 2\sqrt{-3}, -\frac{15}{2} + \frac{15}{2}\sqrt{-3}\}$$

is the $D(-\frac{3}{2}-\frac{3}{2}\sqrt{-3})$ -quadruple and we have not detected a $D(\frac{1}{2}+$ $\frac{1}{2}\sqrt{-3}$)-quadruple.

• Multiplying the elements of a $D(2m + (2n + 1)\sqrt{-3})$ -quadruple by $u = \frac{1+\sqrt{-3}}{2}$ we obtain a $D(\frac{2A+1}{2} + \frac{2B+1}{2}\sqrt{-3})$ -quadruple. For given $A, B \in \mathbb{Z}$ the equation

(2.2)
$$(2m + (2n+1)\sqrt{-3})u^2 = \frac{2A+1}{2} + \frac{2B+1}{2}\sqrt{-3}$$

has an integer solution if and only if $-A+3B \equiv 3 \pmod{4}$ and $A+B \equiv 1 \pmod{4}$, i.e. $(A, B) \mod 4 \in \{(0, 1), (1, 0), (3, 2), (2, 3)\}.$

• Multiplying the elements of a $D(2m + (2n + 1)\sqrt{-3})$ -quadruple by $u = \frac{1-\sqrt{-3}}{2}$ we obtain a $D(\frac{2A+1}{2} + \frac{2B+1}{2}\sqrt{-3})$ -quadruple. For given $A, B \in \mathbb{Z}$ the equation (2.2) has an integer solution if and only if $A + 3B \equiv 2 \pmod{4}$ and $-A + B \equiv 2 \pmod{4}$, i.e. $(A, B) \mod 4 \in \{(0, 2), (2, 0), (1, 3), (3, 1)\}.$

3. D(z) quadruples in $\mathbb{Z}[\sqrt{-3}]$

In the previous section we see that some D(z)-quadruples that have been constructed already lie in $\mathbb{Z}[\sqrt{-3}]$ but some of them do not although z can be represented as a difference of squares in $\mathbb{Z}[\sqrt{-3}]$. Here we show that this can be improved.

3.1. $D(2m + 1 + 2n\sqrt{-3})$ -quadruples.

z	k	m	u	D_4 in	exceptions of
					z
$4A + 1 + (4B + 2)\sqrt{-3}$	$\frac{2A-2B+1}{2} + \frac{A+1}{2}\sqrt{-3}$	$\sqrt{-3}/3$	$\sqrt{-3}$	$\mathbb{Z}[\sqrt{-3}]$	$-3 - 2\sqrt{-3}$,
					$-3 + 2\sqrt{-3}$

Table 5

The set $\{-\sqrt{-3}, -2 + \sqrt{-3}, -2, -8 + 3\sqrt{-3}\}$ is a $D(-3 - 2\sqrt{-3})$, while the set $\{\sqrt{-3}, -2 - \sqrt{-3}, -2, -8 - 3\sqrt{-3}\}$ is a $D(-3 + 2\sqrt{-3})$ -quadruple in $\mathbb{Z}[\sqrt{-3}]$.

3.2. $D(4m+2+(4n+2)\sqrt{-3})$ -quadruples.

Since there exist a $D(\frac{2m+1}{2} + \frac{2n+1}{2}\sqrt{-3})$ -quadruple in $\mathbb{Z}[(1 + \sqrt{-3})/2]$, by multiplying by 2 the elements of this quadruple we obtain a $D(4m+2+(4n+2)\sqrt{-3})$ -quadruple in $\mathbb{Z}[\sqrt{-3}]$, up to $z = 2 - 2\sqrt{-3}$, $2 + 2\sqrt{-3}$.

3.3. $D(4m + 4n\sqrt{-3})$ -quadruples.

We have shown in § 2.3. that $D(8m + (8n + 4)\sqrt{-3})$ and $D(8m + 4 + 8n\sqrt{-3})$ quadruples in $\mathbb{Z}[\sqrt{-3}]$ are obtained by multiplying by 2 the elements of $D(2m + (2n+1)\sqrt{-3})$ and $D(2m + 1 + 2n\sqrt{-3})$ -quadruples in $\mathbb{Z}[(1 + \sqrt{-3})/2]$ up to the the D(-4)-quadruple whose elements are not in $\mathbb{Z}[\sqrt{-3}]$.

The set

$$\{1, 9k^2 - 8k, 9k^2 - 2k + 1, 36k^2 - 20k + 1\}$$

is D(8k)-quadruple ([7]) if $k \neq 0, 1$, so there exists a $D(8m + 8n\sqrt{-3})$ quadruple in $\mathbb{Z}[\sqrt{-3}]$.

$2A + A + (2D + A) \sqrt{2} 3A - 2B + 4 + A + 2 \sqrt{2} \sqrt{-3}$			z
$8A + 4 + (8D + 4) \sqrt{2} 3A - 2B + 4 + A + 2 \sqrt{2} \sqrt{-3}$			
$(3A + 4 + (3D + 4)) = 3$ 2 $+$ 2 $\sqrt{-3}$ 6	$2\sqrt{-3}$	$\mathbb{Z}[\sqrt{-3}]$	$-12 - 4\sqrt{-3}$ $-12 + 4\sqrt{-3}$

TABLE 6	
---------	--

It is easy to check that for those exceptions of z in Table 6, the polynomial formula D_4 gives the set with two equal elements. Therefore for certain z, we found the following D(z)-quadruples in $\mathbb{Z}[\sqrt{-3}]$:

- $\{2 + \sqrt{-3}, 2 2\sqrt{-3}, 2 3\sqrt{-3}, 6 11\sqrt{-3}\}$ is the $D(-12 + 4\sqrt{-3})$ quadruple,
- $\{2 \sqrt{-3}, 2 + 2\sqrt{-3}, 2 + 3\sqrt{-3}, 6 + 11\sqrt{-3}\}$ is the $D(-12 4\sqrt{-3})$ -quadruple,
- $\{2+\sqrt{-3}, -2+2\sqrt{-3}, -2+\sqrt{-3}, -10+5\sqrt{-3}\}$ is the D(8)-quadruple.

REMARK 3.1. Concerning the list of possible exceptions given in Theorem 1.1 and Theorem 1.2, we can easily observe that $3 = -1 \cdot (\sqrt{-3})^2$, $-4 = -1 \cdot 2^2$, $\frac{1}{2} \pm \frac{1}{2}\sqrt{-3} = -1 \cdot (\frac{1}{2} \mp \frac{1}{2}\sqrt{-3})^2$ and $2 \pm 2\sqrt{-3} = -1 \cdot (1 \mp \sqrt{-3})^2$. So, we are not surprised that the key point lies in an investigation on the existence of D(-1)-quadruples in rings $\mathbb{Z}[(1 + \sqrt{-3})/2]$ and $\mathbb{Z}[\sqrt{-3}]$. In an analogy to D(-1)-quadruple conjecture in the ring of integers and the problem of existence of D(-1)-quadruples in $\mathbb{Z}[\sqrt{-t}], t > 0$ studied in [29] and [30], we might expect that for such z there does not exists a D(z)-quadruple.

ACKNOWLEDGEMENTS.

This work has been supported by Croatian Science Foundation under the project no. 6422.

References

 F. S. Abu Muriefah and A. Al-Rashed, Some Diophantine quadruples in the ring ℤ[√-2], Math. Commun. 9 (2004), 1–8.

- [2] F. S. Abu Muriefah and A. Al-Rashed, On the extendibility of the Diophantine triples {1, 5, c}, Int. J. Math. Math. Sci. 33 (2004), 1737–1746.
- [3] S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge University Press, Cambridge, 2004.
- [4] A. Baker and H. Davenport, *The equations* $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. Oxford Ser. (2) **20** (1969), 129–137.
- [5] N. C. Bonciocat, M. Cipu and M. Mignotte, On D(-1)-quadruples, Publ. Mat. 56 (2012), 279-304.
- [6] E. Brown, Sets in which xy + k is always a square, Math. Comp. 45 (1985), 613–620.
- [7] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15–27.
 [8] A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber.
- [6] A. Dujena, Some polynomial for mains for Diophantine qualitation, Grazer Math. Ber 328 (1996), 25–30.
- [9] A. Dujella, The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1–10.
- [10] A. Dujella, Complete solution of a family of simultanous Pellian equations, Acta Math. Inform. Univ. Ostraivensis 6 (1998), 59–67.
- [11] A. Dujella, On the exceptional set in the problem of Diophantus and Davenport, Applications of Fibonacci Numbers 7 (1998), 69–76.
- [12] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183–214.
- [13] A. Dujella, A. Filipin and C. Fuchs, Effective solution of the D(-1)-quadruple conjecture, Acta Arith. 128 (2007), 319–338.
- [14] A. Dujella and Z. Franušić, On differences of two squares in some quadratic fields, Rocky Mountain J. Math. 37 (2007), 429–453.
- [15] A. Dujella and C. Fuchs, Complete solution of a problem of Diophantus and Euler, J. London Math. Soc. 71 (2005), 33–52.
- [16] A. Dujella and I. Soldo, Diophantine quadruples in Z[√-2], An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 18 (2010), 81–98.
- [17] C. Elsholtz, A. Filipin and Y. Fujita, On Diophantine quintuples and D(-1)-quadruples, Monatsh. Math. **175** (2014), 227–239.
- [18] A. Filipin, Nonextendibility of D(-1)-triples of the form {1, 10, c}, Int. J. Math. Math. Sci. 14 (2005), 2217–2226.
- [19] A. Filipin and Y. Fujita, The number of D(-1)-quadruples, Math. Commun. **15** (2010), 381–391.
- [20] Z. Franušić, Diophantine quadruples in the ring $\mathbb{Z}[\sqrt{2}]$, Math. Commun. 9(2004), 141–148.
- [21] Z. Franušić, Diophantine quadruples in $\mathbb{Z}[\sqrt{4k+3}]$, Ramanujan J. 17 (2008), 77–88.
- [22] Z. Franušić, A Diophantine problem in $\mathbb{Z}[(1 + \sqrt{d})/2]$, Stud. Sci. Math. Hung. 46 (2009), 103–112.
- [23] Z. Franušić, Diophantine quadruples in the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$, Miskolc Math. Notes 14 (2013), 893–903.
- [24] Y. Fujita, The extensibility of D(-1) -triples $\{1,b,c\},$ Pub. Math. Debrecen ${\bf 70}$ (2007), 103–117.
- [25] H. Gupta and K. Singh, On k-triad sequences, Internat. J. Math. Math. Sci. 8 (1985), 799–804.
- [26] B. He and A. Togbé, On the D(-1)-triple $\{1, k^2 + 1, k^2 + 2k + 2\}$ and its unique D(-1)-extension, J. Number Theory **131** (2011), 120–137.
- [27] S. P. Mohanty and A. M. S. Ramasamy, On $P_{r,k}$ sequences, Fibonacci Quart. 23 (1985), 36–44.
- [28] I. Soldo, On the existence of Diophantine quadruples in Z[√-2], Miskolc Math. Notes 14 (2013), 261–273.

- 25
- [29] I. Soldo, On the extensibility of D(-1)-triples $\{1, b, c\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t > 0$, Studia Sci. Math. Hungar. **50** (2013), 296–330.
- [30] I. Soldo, D(-1)-triples of the form $\{1, b, c\}$ in the ring $\mathbb{Z}[\sqrt{-t}], t > 0$, Bull. Malays. Math. Sci. Soc., to appear.

Diofantov problem za cijele brojeve kvadratnog polja $\mathbb{Q}(\sqrt{-3})$

Zrinka Franušić i Ivan Soldo

SAŽETAK. Rješavamo Diofantov problem za cijele brojeve kvadratnog polja $\mathbb{Q}(\sqrt{-3})$ konstruiranjem D(z)-četvorki u prstenu $\mathbb{Z}[\sqrt{-3}]$ za svaki z koji se može prikazati kao razlika dva kvadrata u $\mathbb{Q}(\sqrt{-3})$, do na konačno mnogo mogućih izuzetaka.

Zrinka Franušić Department of Mathematics University of Zagreb Bijenička cesta 30, HR-10000 Zagreb Croatia *E-mail:* fran@math.hr

Ivan Soldo Department of Mathematics University of Osijek Trg Ljudevita Gaja 6, HR-31000 Osijek Croatia *E-mail:* isoldo@mathos.hr *Received:* 31.3.2014.