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Abstract 
The nanoparticles (NP) ZnO and CuO were synthesized by electrochemical-thermal 
method. The influence of cetyltrimethylammonium bromide (CTAB) on size and 
morphology of NP was evaluated. They were characterized by powder X-ray diffraction 
spectroscopy (XRD), scanning electron microscopy (SEM), UV-Visible absorption 
spectroscopy. The average crystallite size and the average grain size of NP decreased 
with CTAB concentration. The CTAB significantly affected the morphology of CuO and 
ZnO NP. The regular spindle shape of CuO transformed into irregular spherical shape and 
the homogeneity in the morphology of spherical ZnO NP was lost with increase in CTAB 
concentration. The effect of morphology and size of ZnO on its photocatalytic activity 
was evaluated by subjecting methylene blue (MB) dye to photocatalytic degradation 
under the irradiation of UV light. The color removal of MB dye during electrolysis was 
monitored by UV-Visible spectroscopy. The highest photocatalytic activity was noticed 
for ZnO 10 mM CTAB. 
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Introduction 

The TiO2, SnO2, Fe2O3, PdO, WO3, Ga2O3, In2O3, ZrO2, CuO and ZnO are amongst the extensively 

studied transition metal-oxide semiconducting nanomaterials and have potential applications in 

optics, optoelectronics, microelectronics, biosensors, gas sensors, chemical sensors, switching, 

magnetic, luminescent, electrical and acoustic devices, solar cells, catalysis and powder metal-
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lurgy [1-4,5]. The CuO and ZnO nanomaterials are particularly of special interest as they are cheap, 

easy to prepare by simple, low cost methods at normal temperatures [6]. They exhibit diverse 

nanostructure configurations and show superior performance in many applications.  

CuO is a p-type semiconductor with band gap of 1.8 to 2.5 eV [2,7]. It is an excellent solar 

absorber with low emittance, which makes it a suitable candidate for solar cells as thermal 

collector [8]. The suspension of CuO NPs in the heating or cooling fluids substantially increases the 

thermal conductivity [9]. CuO is highly responsive in non-enzymatic glucose sensing and H2S gas 

sensing [1,10-12]. CuO on ceria shows high catalytic activity for the oxidation of NO, CO and 

dehydrogenolysis of CH4 [13].  

ZnO on the other hand, is extensively studied and widely recognized for its photocatalytic 

activity. ZnO, with a high surface reactivity owing to large number of active sites, has emerged to 

be an efficient photocatalyst [14,6]. The nanocrystalline ZnO is non-toxic and has the ability to kill 

or restrain bacteria [4]. It has a wide band gap of 3.2 eV and large exciton binding energy of 60 

meV, which makes it a preferable material in low-voltage and short wavelength optoelectronic 

devices such as light emitting diodes and diode lasers [5]. The applicability of ZnO is widening with 

the extending knowledge of its physico-chemical properties. ZnO nanomaterials are also used in 

solar cells, luminescent, electrical and acoustic devices, chemical sensors, catalysis, electronics, gas 

sensor devices, optoelectronics, transducers [3,4].  

The synthesis of ZnO and CuO thus acquires special interest. The common chemical synthetic 

methods adopted in the preparation of these nanomaterials are precipitation, sol-gel, 

hydrothermal, solvothermal, solution combustion, thermal decomposition, simple hydrolysis, wet-

chemical, microemulsion, non-microemulsion, microwave assisted solvothermal, ultrasonic 

radiation precipitation, mechanical milling, electrochemical, chemical vapor deposition (CVD), 

laser vaporization, exfoliation, laser ablation methods and so on [2]. However, these methods 

involve organic solvents, rigorous reaction conditions, demand sophisticated instruments and few 

of these techniques require longer time duration affording less yield than expected [4].  

The organic solvents can be replaced completely with aqueous medium using electrochemical 

method. Electrochemical method is fast, cheap, and easy to control and provides appreciable 

yields even at normal temperature and mild conditions. It was Reetz and co-workers who 

proposed the sacrificial anode electrochemical route for the synthesis of nano metal clusters and 

colloids and showed that it is possible to control the particle size by adjusting the applied current 

density [15-17]. Gao-Qing et al. demonstrated that the size and shape of the synthesized CuO 

nanocrystals could be controlled by changing the solvent system [12]. Mahamuni and co-workers 

prepared ZnO quantum dots using the sacrificial anode electrochemical method [18]. The 

ZnO [19], Cu2O [20], CuO [21], Au/AgI [22] have been successfully synthesized by electrochemical 

method. We have recently synthesized hexagonal shaped CuO NP in bulk [2], cubic shaped Zn2SO4 

[23] and large size ZnO NP [3,4] by hybrid sacrificial anode electrochemical-thermal route. 

There are many factors to be monitored in the electrochemical synthesis to control the size and 

shape of NPs. The current density, distance between the electrodes, solvent system, temperature, 

supporting electrolyte and stabilizing agent are the most critical parameters which dictate the size 

and morphology of resulting NPs. The role of stabilizing agent is to bind to the surface of NP, 

decrease the surface energy, control growth and shape evolution and prevent the agglomeration 

of NPs [24]. Cetyl trimethylammonium bromide (CTAB) a cationic surfactant is the most commonly 

used stabilizing agent in controlling the shape and size of NPs [24-29]. Oscar et al. [24] reported 

that in the synthesis of gold nanorods, CTAB dictates the crystal growth along the faces by binding 
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to the surfaces along the sides of nanorod. Reetz and co-workers have demonstrated the role of 

surfactant (CTAB) in the formation of nanoclusters and nanocolloids [15-17]. In this paper, we 

have systematically studied the effect of CTAB concentration in the electrolyte bath, on the 

morphology and size of ZnO and CuO metal oxide NPs prepared by hybrid sacrificial anode 

electrochemical-thermal route. Furthermore, the photocatalytic degradation of methylene blue 

dye on ZnO NP was studied in order to evaluate the effect of size and shape of the NPs on its 

photocatalytic activity. 

Experimental procedure 

Materials and synthesis of ZnO and CuO NP 

Zinc and copper metal plates (99.99 % pure) were purchased from Sisco research laboratories, 

Mumbai. AR grade NaHCO3, NaNO3, CTAB and methylene blue (MB) dye purchased from S. D Fine 

Chemicals Ltd. India, were used without further purification. The electrolyte solution was prepared 

in Millipore water (specific resistance > 18 MΩ at 25 °C, Millipore Elix 3 water purification system, 

France). The electrolysis was carried out under constant current supply from potentiostat / 

galvanostat source (Model PS-618 chemilink systems, Navi Mumbai, India).  

The experimental procedure for the electrochemical-thermal synthesis of ZnO NP was followed 

as mentioned in our previous work [4]. The two Zn metal plates with dimension 4 x 4 x 0.1 cm3, 

were dipped in 1 M HCl for 30 seconds and washed thoroughly with Millipore water. These plates 

were then immersed in a rectangular electrolytic glass cell containing 250 cm3 of 60 mM NaHCO3 

with or without CTAB. Three different concentrations of CTAB (5 mM, 10 mM and 15 mM) were 

used. The NP prepared in presence of ‘x’ mM concentration of CTAB is hereafter represented as 

MO/x, where M is Zn or Cu. The distance between the two electrodes was maintained to be 5 cm. 

The electrolysis was carried out for 90 minutes under constant current density of 4.9 mA cm-2 with 

constant stirring at the rate of 500 rpm. The electrolytic bath temperature was maintained around 

26 ± 1 °C. The pH of the electrolytic bath was noted before and after electrolysis. The resulting 

colloidal solution was filtered and the solid residue thus obtained was calcined at 300 °C for 1 

hour. The same procedure was followed in the preparation of CuO NP, except that the electrodes 

were pretreated Cu plates and the electrolyte was 60 mM NaNO3. As a pretreatment, the Cu metal 

plates were dipped in 5 % HNO3 for 1 minute. 

Characterization of NP 

The crystallite size of the NPs was evaluated by powder X-ray diffraction (XRD) pattern using 

X’pert Pro diffractometer (Phillips, Cu-Kα radiation, λCu= 1.5148 Å) working at 30 mA and 40 kV 

recorded in the 2 range between 10° and 90° (scan rate 1° min-1). The Scherrer equation was 

made use in estimating the average crystallite size. The scanning electron microscope (Philips 

XL 30) fitted with an energy dispersive X-ray (EDAX) analyzer recorded the morphology and 

composition of the synthesized NP. The band gap of the synthesized NPs was evaluated by the UV-

Visible absorption spectrum of solid ZnO and CuO NPs using UV-Visible spectrophotometer 

(HR 4000 UV-Vis spectrophotometer, UV-Vis-NIR light source, DT-MINI-2-GS, Jaz detector).  

Photocatalytic degradation of MB dye 

To evaluate the photocatalytic activity of ZnO NP, 50 mg L-1 MB dye solution was prepared 

using Millipore water. 30 mg ZnO nanoparticle was added to 30 mL MB solution and stirred for 

2 hours in dark to establish equilibrium between adsorption/desorption of MB on NPs. Then, this 
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solution was exposed to continuous flash of UV light for duration of 10 minutes. A high pressure 

mercury vapor lamp (HPML) of 125 W (Phillips, India) was jacketed in a quartz tube provided with 

inlet and outlet for water circulation to avoid rise in temperature of the solution. The UV-lamp 

radiated predominantly at 365 nm (3.4 eV) and photon flux of 5.8×10-6 mol of photons sec-1. 

0.5 mL of the irradiated sample was removed, diluted with 1 mL Millipore water and subjected to 

centrifugation for 5 minutes. The supernatant liquid was taken for UV-Visible spectroscopic 

analysis. After 2 minutes, the UV light irradiation was again continued for 10 minutes and then 

sample was removed. The total time of UV light irradiation on the sample was 60 minutes. 

Results 

XRD analysis 

The XRD patterns obtained for ZnO NPs prepared in presence of different concentrations of 

CTAB are given in Fig. 1. 

 
2, degree 

Figure 1. The XRD pattern of A) ZnO/0; B) ZnO/5; C) ZnO/10; D) ZnO/15 

The positions and intensities of the diffraction peaks of ZnO NPs are in good agreement with 

the literature values of hexagonal phase ZnO (JCPDS card No. 36-1451) with primitive lattice 

structure. The crystallite size of the NPs was calculated from full wave half maximum intensity 

(FWHM) of each peak using Scherrer’s formula and the average crystallite size was determined. 
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In the above formula, D is the diameter of the crystallite size, K - the shape factor (the typical value 

is 0.9), λ - the wavelength of the incident beam,  - the broadening of the diffraction line 

measured in radians at FWHM and  is the Bragg’s angle. The crystallite size of ZnO NPs calculated 

using the XRD data is given in Table 1.  
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Table 1. The average crystallite size of ZnO NPs prepared in presence of CTAB 

Zinc oxide 

NP 

 Crystallite size, nm  

Family of crystallographic planes {hkl} and corresponding 2 values 

{100} {002} {101} {102} {110} {103} {200} {112} {201} 
Average 

31.8° 34.5° 36.3° 47.6° 56.7° 62.9° 66.4° 68.1° 69.2° 

ZnO/0 44 98 45 28 106 55 23 40 47 48 

ZnO/5 44 44 41 23 66 27 35 31 24 34 

ZnO/10 25 31 23 16 39 18 24 21 24 23 

ZnO/15 16 20 27 13 11 20 23 20 24 18 

 

The crystallite size of NP markedly decreased with increase in concentration of CTAB in the 

electrolyte bath. The width of the peaks appreciably increased suggesting the reduction in the 

crystallinity of ZnO with increase in CTAB concentration. 

 

 
2, degree 

Figure 2. The XRD pattern of A) CuO/0; B) CuO/5; C) CuO/10; D) CuO/15 

The XRD patterns of synthesized CuO (Fig. 2) are in close match with the XRD pattern of JCPDS 

card no. 48-1548 with monoclinic (tenorite) phase crystallite structure. The crystallite size of CuO 

NPs calculated using the XRD data is given in Table 2. The crystallite size of CuO NPs also decreased 

with increase in CTAB concentration.  
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Table 2. The average crystallite size of CuO NP prepared in presence of CTAB. 

Copper 

oxide 

NP 

 Crystallite size, nm 

Family of crystallographic planes {hkl} and corresponding 2 values 

{110} {111} {111} {202} {020} {202} {113} {311} {220} {311} {222} 
Average 

32.1° 35.1° 38.5° 47.8° 53.7° 57.9° 61.1° 65.3° 68.1° 71.9° 74.9° 

CuO/0 22 49 44 14 15 24 24 25 11 22 18 31 

CuO/5 36 26 36 16 14 20 20 20 30 26 15 26 

CuO/10 09 22 22 13 10 24 15 18 18 13 13 16 

CuO/15 18 33 11 17 16 14 33 17 09 12 22 19 

SEM/EDAX analysis 

The changes in the morphology of ZnO (Fig. 3) and CuO (Fig. 4) NPs with CTAB concentration 

are evident from the SEM images. From Fig. 3 and Fig. 4, it can be noticed that the change in the 

morphology of both CuO and ZnO crystals is not obvious within 5 mM CTAB, but the tendency 

from regular shapes to irregular ones increases with the increase of CTAB concentration. 

The spherical shape of ZnO crystals was though retained, the irregularity in the shape increased 

with increase in CTAB concentration. The shape of CuO crystals changed from nanospindles 

(Fig. 4A and Fig. 4B) to irregular nanospheres (Fig. 4C and Fig. 4D). Similar changes in the mor-

phology of CuO crystals were observed by Gao-Qing Yuan et al. [12] on varying the solvent system. 

The average grain size of ZnO and CuO NPs as depicted from SEM images is given in Table 3. 
 

 
Figure 3. SEM images of ZnO NP; A) ZnO/0; B) ZnO/5; C) ZnO/10; D) ZnO/15 
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Figure 4. SEM images of CuO NP; A) CuO/0; B) CuO/5; C) CuO/10; D) CuO/15 

 
Table 3. The average grain size of ZnO and CuO NPs prepared in presence of CTAB 

Metal oxide NP 
Average grain size, nm 

0 mM CTABa 5 mM CTAB 10 mM CTAB 15 mM CTAB 

ZnO 32-42 31-40 30-69 25-29 

CuO 60-65 85-95 18-40 27-64 
a
 The CTAB concentration in electrolyte bath 

 

 
Figure 5. EDAX analysis of ZnO NP; A) ZnO/0; B) ZnO/5; C) ZnO/10; D) ZnO/15 

The shape and size of CuO/0 and CuO/5 nanospindles was homogeneous. The length of the 

nanospindles ranged between 430 nm to 580 nm and the rigidity enhanced from CuO/0 to CuO/5. 
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The CuO/10 and CuO/15 NPs showed irregular morphologies (nanospindle, nanosphere, 

nanoplate). In case of ZnO NPs, the homogeneity in the spherical shape was lost as the CTAB 

concentration was increased in the electrolyte bath. There was only slight reduction in the grain 

size from ZnO/0 to ZnO/15.  

The stoichiometry of metal ion and oxygen in the synthesized ZnO and CuO nanomaterials was 

determined by EDAX analysis (Fig. 5 and Fig. 6). No peaks corresponding to impurities were found 

suggesting that the synthesized ZnO and CuO nanomaterials are pure. 
 

 
Figure 6. EDAX analysis of CuO NP; A) CuO/0; B) CuO/5; C) CuO/10; D) CuO/15 

UV-Visible spectroscopy 

To better understand the optoelectronic properties of NP, the band gap energy was calculated 

from their absorption curves using Tauc plots. The UV-Visible absorption spectra of ZnO and CuO 

NPs are given in Fig. 7A and Fig. 7B respectively. Firstly, the absorption coefficient (α) was 

calculated using Eq. (1): 

 

 
 / nm      / nm 

Figure 7. UV-Visible absorption spectra of A) ZnO NPs and B) CuO NPs synthesized in presence 
of different concentrations of CTAB 

2.303 
 

A

d
   (1) 

where A is absorbance, d is the thickness of sample. To determine the band gap of NP, a plot of 

(αhν)n vs. Eg was made (Tauc plot). The value of ‘n’ is dependent on the mode of electronic 
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transition; n = 2 for direct band transitions and n = 1/2 for indirect transitions. For both ZnO and 

CuO, it is known that the electronic transition is direct. Therefore, Eq. (2) is valid for both ZnO and 

CuO NP: 

(αhν)2 = B (hν - Eg) (2) 

where, B is a constant, hν is the photonic energy. The band gap (Eg) was obtained by extrapolating 

the linear part of the graphics to the axis of the abscissa [30]. 
 

 
 h / eV h / eV 

Figure 8. Tauc plots for the evaluation of band gap of samples A) ZnO/0; B) ZnO/5; C) ZnO/10; D) ZnO/15 

 
 h / eV h / eV 

Figure 9. Tauc plots for the evaluation of band gap of samples A) CuO/0; B) CuO/5; C) CuO/10; D) CuO/15 
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Table 4. Eg values for different ZnO and CuO NPs obtained from Tauc plot 

c (CTAB) / mM 
Eg / eV 

ZnO CuO 

0 3.18 2.34 
5 3.19 2.32 

10 3.17 2.42 
15 3.18 2.40 

 

The Tauc plots for different ZnO and CuO NPs has been presented in Fig. 8 and Fig. 9 

respectively and corresponding band gap values have been summarized in Table 4. The band gap 

of CuO NPs increased with increase in the concentration of CTAB in the electrolytic bath during 

synthesis and it was found to be in between 2.32 – 2.42 eV, which is higher than that reported by 

Wang et al. [31]. However, such notable variation in the band gap of ZnO NPs was not observed. 

The average band gap of ZnO NP was 3.18 eV; where the literature reports a 3.2 eV band gap [3].  

Photocatalytic degradation of MB dye 

The photocatalytic degradation of methylene blue dye was monitored by UV-Visible 

spectroscopy. The variation in the absorption intensity of the methylene blue dye on UV 

irradiation in presence of 30 mg of ZnO NPs is presented in Fig 10.  

The degradation of methylene blue was expressed in terms of % color removal by recording the 

changes in absorption intensity at the characteristic peak position (661 nm) in the visible region.  

 

 
  / nm  / nm 

 
  / nm  / nm 

Figure 10. The variation in the UV-Visible absorption intensity of methylene blue dye with time on 
electrolysis. UV irradiation in presence of 30 mg ZnO NPs; A) ZnO/0; B) ZnO/5; C) ZnO/10; D) ZnO/15 
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The Eq. (3) was used to calculate the color removal: 

o t

o

[ ]
color removal, %   100

A A

A


   (3) 

where, Ao and At are the absorbance at 661 nm at 0 minutes and t minutes respectively. The color 

removal of methylene blue achieved in presence of ZnO photocatalyst was in the following order; 

ZnO/10 > ZnO/15 > ZnO/0 = ZnO/5. The color removal achieved after 60 minutes of UV irradiation 

was evaluated and given in Table 5. 

Table 5: Photocatalytic degradation of methylene blue dye 

ZnO NP color removal, %a 

ZnO/0 13 

ZnO/5 13 

ZnO/10 33 

ZnO/15 22 
a
 color removal achieved after 60 minutes irradiation 

The CuO was also tested for its photocatalytic activity. The CuO NP under the irradiation of UV 

light (predominantly at 365 nm) was ineffective as a photocatalyst to degrade the MB dye. The 

color removal of MB achieved in presence of CuO NP and UV irradiation was insignificant. 

Discussion 

It is crucial to understand the mechanism of formation of ZnO and CuO in order to control their 

size and shape. The electrolytes used in the electrolyte bath should enhance the conductivity and 

assist the formation of metal hydroxides. The NaHCO3 and NaNO3 have been used in the synthesis 

of ZnO and CuO NP respectively [2-4,12]. These electrolytes facilitate the formation of metal 

hydroxides along with enhancing the conductivity of the electrolyte bath. The following reactions 

take place during the electrolysis which leads to the formation of ZnO NP in the electrolyte bath 

containing NaHCO3 electrolyte [Eqs. (4) to (7)]; 

Zn  Zn2+ + 2e- (on anode), E° = 0.76 V (4) 

NaHCO3 + H2O  NaOH + CO2 (in electrolyte solution) (5) 

Zn2+ + 2-OH  Zn(OH)2 (in electrolyte solution) (6) 

Zn(OH)2  ZnO + H2O (7) 

In presence of NaNO3, the CuO is generated according to the following reactions [12] [Eqs. (8) 

to (11)]; 

Cu  Cu2+ + 2e- (on anode), E° = 0.34 V  (8) 

NO3
- + H2O + 2e-  NO2

- + 2-OH (on cathode), E° = 0.1 V (9) 

Cu2+ + 2-OH  Cu(OH)2 (in electrolyte solution)  (10) 

Cu(OH)2  CuO + H2O (11) 

The mechanism of NP crystal growth is usually explained as oriented aggregation in the 

electrolyte solution. The metal ions generated at the anode react with the -OH ions in the 

electrolyte bath to form corresponding nano-sized amorphous metal hydroxide precipitate 
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(Cu(OH)2 or Zn(OH)2). A part of the precipitate undergoes dehydration to give metal oxide in the 

electrolyte bath (CuO or ZnO) [2-4]. However, complete conversion of all metal hydroxide into 

metal oxide is ensured by calcinating the sample at elevated temperatures (in this case, 300 °C). 

The metal oxide thus generated acts as seed for further directional aggregation of metal oxides to 

form precisely oriented nanostructures [12].  

The advantage in electrochemical synthesis is that the precursor metal ion is slowly released 

from the anode metal. The current density determines the number of ions released per unit time 

and their availability in the electrolyte bath for further reaction. However, in chemical methods 

(like solvothermal and precipitation) the entire precursor metal ion is made available for reaction. 

The nucleation and crystal growth are the two processes which decide the particle size. If the 

nucleation is fast, the crystal growth is hindered and the particle size eventually remains small. 

These two processes occur at controlled rate in electrochemical method. The crystal growth and 

shape evolution is controlled by the stabilizing agent when it is present in the electrolyte bath. In 

this case, CTAB binds to the surface of the nuclei and prevents agglomeration or dictates the 

orientation of incoming species [12]. In the present study, the concentration of CTAB was more 

than 6 times its critical micelle concentration (CMC) i.e., 0.8 mM [24]. The CTAB micelles existing at 

this concentration of CTAB tend to act as template for the shape evolution of NPs. The effect of 

CTAB concentration on the morphology and size of both ZnO and CuO NPs is clearly evident from 

the SEM images and the crystallite size calculated using XRD data. As mentioned earlier, from the 

SEM images (Fig. 3 and Fig. 4), the change in morphology of both CuO and ZnO crystals is not 

obvious within 5 mM CTAB. But, the tendency from regular shapes to irregular ones increased 

beyond the CTAB concentration ≥ 10 mM. The morphology of CuO NPs was much affected by the 

CTAB concentration as compared to ZnO NPs. The spindle shape of CuO NPs increased in length 

and gained rigidity in presence of 5 mM CTAB as noticed in the SEM images. However, when the 

CTAB concentration was raised to 10 mM and 15 mM, the spindle shape of CuO NPs transformed 

into irregular spherical shape with reduced grain size. On the other hand, the ZnO NPs retained 

their spherical shape irrespective of the CTAB concentration. However, the homogeneity in the 

shape of ZnO NPs was disrupted. The grain size of both ZnO and CuO NPs decreased with increase 

in CTAB concentration. From these observations, it can be deduced that the minimum 

concentration of CTAB required to influence the shape and size of ZnO and CuO NP crystal is 

≥ 10 mM i.e., more than 10 times its CMC value.  

The effect of CTAB concentration on the band gap energy and absorption edge in the UV region 

for ZnO NPs was insignificant. However, there was a hike of 0.1 eV in the band gap of CuO NPs on 

increasing the concentration of CTAB from 0 mM to 15 mM. The decrease in size of CuO NPs led to 

the increment in band gap. The absorption edge in the UV region for CuO NPs altered with the 

grain size which is intern dependent on the CTAB concentration. 

The influence of changes in the morphology and size of ZnO NPs reflected on its photocatalytic 

activity. The electrons from the valence band (VB) of ZnO NPs leap to the conduction band (CB) on 

UV light irradiation. Vacancies created in the valence band (holes) are represented as hVB
+ and the 

excited electrons are given the symbol eCB
-. The photogenerated positive vacancies in the VB have 

high oxidizing potential. These holes can react with the adsorbed water to produce hydroxyl 

radical and the photogenerated electrons lead to the formation of other oxidizing agents such as 

superoxide anions (·O2
-), hydrogenperoxide (H2O2), hydroxyl radicals (·OH), hydrogen dioxide anion 

(HO2
-) and hydroperoxy radicals (·HO2) as given in Eqs. (12) to (18) [7]; 

MO + hν  MO (hVB
+ + eCB

-) (12) 
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MO (hVB
+) + H2O  MO + ·OH + H+ (13) 

MO (eCB
-) + O2  MO + ·O2

- (14) 

MO (eCB
-) + ·O2

- + 2H+  MO + H2O2 (15) 

MO (eCB
-) + H2O2  MO + ·OH + -OH  (16) 

O2
- + H2O2  ·OH + -OH + O2 (17) 

O2
- + H+  ·OH2 (18) 

These oxidants are powerful enough to completely incinerate the organics into CO2 and H2O. 

The photocatalytic reaction efficiency increases with increase in surface area available for the 

adsorption of target molecule. As the size of ZnO NPs decreased with increase in CTAB 

concentration, the surface area available for the adsorption of dye molecules also increased. The 

number of MB molecules adsorbed on the ZnO/15 and ZnO/10 NPs was higher than that on ZnO/0 

and ZnO/5 NPs. The % color removal of MB dye achieved after 60 minutes UV light irradiation was 

thus highest with ZnO/10 and ZnO/15 NPs.  

Conclusion 

The ZnO and CuO NPs of varying size and morphology were successfully synthesized by 

sacrificial anode electrochemical-thermal method. The crystallite size of both ZnO and CuO 

reduced with increase in concentration of CTAB in the electrolyte bath during electrolysis. The 

crystallite size of ZnO NPs was between 48-18 nm and for CuO it varied between 31-19 nm. The 

ZnO/0 and ZnO/5 NPs exhibited homogeneous size and morphology. The homogeneity of ZnO NPs 

was lost with increase in CTAB concentration in the electrolyte bath during electrolysis and led to 

the formation of irregular sized nanostructures of reduced size in presence of 10 mM and 15 mM 

CTAB. Similar effects were observed for the CuO NPs. The CuO NPs of uniform size and 

morphology were obtained in the absence of CTAB and in presence of 5 mM CTAB. The rigidity of 

CuO NPs enhanced in presence of 5 mM CTAB. However, on increasing the CTAB concentration to 

10 mM and 15 mM the spindle shape of CuO NPs disrupted to form irregular nanostructures. The 

CTAB adsorbs on the surface of the metal oxide nuclei and restrains the growth of NPs by reducing 

the surface energy and preventing further agglomeration. CTAB tends to gain spherical structure in 

aqueous solution at these concentrations and act like template for the evolution of spherical NPs 

of irregular morphology. It can be deduced from the results that the minimum concentration of 

CTAB influencing the evolution of shape and size of the NP is ≥ 10 mM (greater than 10 times the 

CMC value of CTAB).  

The effect of size and shape of ZnO NPs on the absorption edge and band gap was insignificant. 

The band gap of ZnO NPs lied between 3.17 – 3.19 eV. The band gap of CuO NPs showed 

considerable changes with size. A hike of 0.1 eV was observed due to the reduction in size of CuO 

NPs with increase in CTAB concentration. The photocatalytic activity of ZnO NPs was tested for the 

degradation of MB dye. The ZnO/10 NPs showed comparatively higher photocatalytic activity and 

a color removal of 33 % was achieved using this NPs with the UV light irradiation for 60 minutes.  
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