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Summary 

One of the well-known problems in the curves and surfaces reconstruction theory 
regarding global analytic object description, besides the description of its curvature changes, 
inflexions and non-bijective parts, is the existence of oscillations near point discontinuities in 
the middle of the range and at the boundaries of the description. In the ship geometric 
modelling, ship hull form is usually described globally using parametric methods based on   
B-spline and NURB-spline, for they have general property of describing discontinuities. 
Nevertheless, they are not enabling direct, exact calculation of ship's geometric properties, i.e. 
the calculation of the integrals for determining geometric and other geometry properties or the 
intersection with water surface. Because of above mentioned, the predominant way of 
computing geometric properties of the ships is still numerical computation using Simpson 
integration methods, which also dictates mesh based description of an observed geometry.  

Analytical solution of global 2D description for ship geometry with discontinuities will 
be shown in this paper, using the composition of polynomial RBFs, thus solving 
computational geometry problems, too. 

Key words: ship geometry; meshless; piecewise; discontinuities; Gibbs phenomenon; 
Runge phenomenon; polynomial RBFs; 

1. Analytical description of discontinuities 

From the beginning of naval architecture as science, in the works of its founders 
Chapman, [1], Euler, [2], Taylor, [3], and others, there have been the efforts of analytical 
description of ship geometry using polynomials, that has not been completely efficient in 
solving all analytical geometry problems. One of the main problems in an analytical global 
description of arbitrary ship geometry is the description of its discontinuities, where large 
curve oscillations occurs near discontinuities (Gibbs phenomenon), and on the boundaries of 
the description (Runge phenomenon), as shown on Figure 1. Besides knuckles of the curve, 
the boundaries of the description are the discontinuities, too, with one singular branch. 
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Because of that, described object is usually divided in segments, and the calculation of its 
geometric properties is separated in parts, or the calculations are performed using numerical 
methods like in numerical integration. In doing so, no other information but points are used.  

On the other side, when analytical description of the geometry is done, it cannot 
describe discontinuities without their explicit, direct designation using supervised learning, 
and appropriate curve break elimination. Therefore, besides the data pairs in the input data set 
X and output data set Y, the analytical description requires additional geometry information 
like the derivations in defined input points, the position of discontinuities, and so on. Figure 1 
shows the example of the wedge with branches defined by unit circle, described by 
Lagrange’s polynomials for equidistant points.  

One of the biggest advantages of parametric methods based on B-splines and       
NURB-splines, [4], and the reason why they are widely used in geometric modelling 
compared to direct description methods, is their ability to describe discontinuities of the 
curves and surfaces. Nevertheless, the same property of RBF description will be shown in this 
paper, i.e. the possibility of discontinuities description using RBF networks, with much higher 
accuracy. The RBF description has the basic property of piecewise description, as shown in 
2D ship geometry description using RBF with polynomial precision, [5], and therefore it is 
assumed that it is possible to change their bases, in order to change the description curvature 
near knuckles, as will be shown later in the text. 
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Figure 1 The wedge with branches, defined by unit circle, and described by Lagrangian polynomials for 

equidistant points, with N = 11 (L is the break point) 

Two methods for the solution of the description of the curves with discontinuities are 
shown in the dissertation, [6]: Elastic Shift Method and Composition of Radial Basis 
Functions with Dense Points near Discontinuities, with later been more efficient and therefore 
chosen to be represented and explained in this paper. In order to examine the efficiency of the 
global 2D RBF description method to be shown in this paper, two arbitrary test frames with 
several discontinuities are chosen: 1. The test frame of the car-truck carrier with flat side and 
camber, and 2. The test frame of the planning boat with several knuckles and curved camber, 
as described in the Appendix. Those test problems represent complex description problems of 
actual ship geometries to be solved.  

The required global and local accuracies for those ship frames descriptions are set to the 
values of 10-4, in order to fulfil further integration requirements for solving ship's 
computational geometry problems as the main goal of the geometry description. 
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2. The curve and surface reconstruction 

The problem of the curve or some surface reconstruction is the problem of the 
determination of the function f based on the input data set X ≡ {xj, j = 1,…, N} and output 
data set points Y ≡ {yj, j = 1,…, N}, on the range [a, b], where a = x1 and b = xN, that 
describes the curve or surface defined by observed points. There are a larger number of 
methods defined for that purpose which are approximating, or interpolating, in their nature. 
Regarding the ways of learning, the reconstruction process can be divided in the non-
supervised and supervised learning procedures. The former procedure takes input and output 
data sets only as sufficient for the description of the object to be reconstructed, while the latter 
needs additional information about inflexion points, extremes, the discontinuity points L, 
curvatures ρ and belonging derivations. 

2.1 The conditions for the existence of analytical functions 

The basic condition for the existence of analytical functions is the existence of the 
bijection, i.e. the surjection and the injection, between input data set X and output data set 
points Y. The function also must agree with Taylor series developed around every input data 
set point, [7]. Analytic functions are for example: polynomials, exponential functions, 
trigonometric functions u rectangle Cartesian (Decartes) coordinate system, and radial basis 
functions that will be observed in this paper. 

Bijection 

For some function it can be said it is analytical if it satisfies the conditions of surjection 
and injection between input data set points X and output data set Y, i.e. there exists one-to-
one correspondence that gives one unique functional value for each input point value. 

The analytical function can be generally defined as ∞⊆→Ω CIRf l: , i.e. continuous 

function mapping from the subset of d-dimensional real space dIR⊆Ω  to some                      
l-dimensional real space lIR  where bijective mapping exists. 

2.2 Radial basis function networks 

In general, radial basis function networks are defined as the linear combination of basis 
functions, which depend on the distance between input data set points, x, and  the points of 
centres, t, around  which the function is developed. They can be further described as weighted 
sum of radial basis functions translated around the points called centres, whose number 
depends on mathematical procedure chosen for object representation. Therefore, RBF 
network can be represented in the form: 

( ) ( )∑
=

Φ==
O

i
iii txwf

1
,xy , dIR⊆Ω∈x , lIR∈y  (1) 

where x is input variables data points set, y is output variables data points set, t is the set of O 
centres radial basis functions are developed for, w is the matrix of the weight coefficients, d is 
the dimension of input data set, and l is the dimension of output data set. 

By analogy with neural networks, RBFs are defined explicitly as the functional 
relationship between input and output data sets, as shown on Figure 2, with the network 
matrix H as the interpolating/approximating matrix with the elements ( )ijiji txH ,Φ= . 
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Figure 2 Single-layered, Feed-forward RBF Neural Network 

Theoretical foundations for the RBF definition as the linear combination of basis 
functions come from the Reproducing Kernel Hilbert Spaces (RKHS) theory, introduced by 
Nachman and Aronszajn, [8]. In RKHS there are positive definite kernels defined that ensure 
the point convergence and ortho-normal basis defined by: 

( ) ( )∑∑∑
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where s
j IRxNjx ∈=  ;,...,1, is input data set, K are reproduction kernels, iB  are basis 

functions, iΦ  are radial basis functions, ti are RBF development centres with Oi ,...,1 = , 
where O is the number of centres, wi are weight coefficients of RBF network, ϕ are radial 
basis functions based on the norm between input data points and the points of centres, and 

)(ˆ xf  is generalized interpolating/approximating function. 
The main advantage of RBFs is that they are the solution of scattered data interpolation 

problem, the solution obtained by determination of weight coefficient vector/matrix w, using 
inversion of interpolating matrix H as: 

yHw ⋅= −1  (3) 

Furthermore, in the example of the RBFs applicability in geometry description, [5], 
there are conditionally positive definite functions used for global 2D RBF interpolating 
description of ship's geometry, using RBFs with polynomial precision, in the form: 
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where ϕ are radial basis functions, and Mpp …1 are basis in ( )1
1
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−= ms
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polynomial space s
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Thus, in the most general form of the solution of the system of linear equations is: 
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where Hji = Bj(xi), j, i = 1, …, N, Pjl = pl(xi), l = 1, …, M, w = [w1, …, wN]T,                        
ω = [ω1, …, ωM]T , y = [y1, …, yN]T , and 0 is null-vector of length M. 
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Regarding RBF networks with L2 norm, they have optimal recovery property, i.e. they 
belong to native reproductive Hilbert spaces (RKHS), [8], and are the best approximators, [9], 
that minimize the oscillations of the boundaries. 

2.3 Polynomial Radial Basis Functions with L1 norm 

Nevertheless above stated characteristics of standard RBFs, the possibility of the 
application of Polynomial RBFs (PRBFs) with L1 norm will be investigated here also, for they 
have computationally efficient and robust form, together with high precision, as shown in 
dissertation, [6]. They are generally defined as: 

( ) ( )∑
=

+−=
N

j
ii ctxwxf

1
 β , INIR ⋅∈ 2\β  (6) 

with shape parameter c set outside of polynomial brackets, and function exponent β defined in 
the whole space real numbers IR restricted for even integers, as shown on Figure 3, below. 

Figure 3 shows β – RMSE sensitivity diagram of the RBF description of Franke’s 1D 
function, [10], where all but even integer values of Polynomial Radial Basis Function 
exponents β from real space IR give acceptable RMSE values. It is obvious that odd integer 
values for PRBF exponent β  are acceptable, thus enabling integer polynomial functions. 

 
Figure 3 The sensitivity diagram β – RMSE for Polynomial RBFs with L1 norm 

The reason for integer exponent values β  become acceptable is avoiding squaring of the 
norm used in standard RBF definitions with L2 norm, directed by Schoenberg-Menger’s 
theorem for conditionally positive semi-definite matrices, as described in [10]. As Figure 3 
shows, additional function exponent can be omitted, as described in [6], instead of squaring 
the norm L2 in standard RBFs definitions with 2

2L . 
The applicability of polynomial RBFs in the description of the lines has been tested in 

[6], and PRBFs with L1 norm has proved to have the best properties in their description 
among several RBF types. 
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They are very efficient in the 2D global description of the curves also, with whole real 
number space IR acceptable for the choice of the function global shape parameter c, as will be 
shown on Figure 8. Moreover, the accuracy of PRBF 2D description is very high, with RMSE 
values below required for analytical integration without the error grouping in the point 
phenomenon. Therefore, they are chosen to be one of the candidates for the description of the 
curves with discontinuities with standard RBFs with L2 norm. 

2.4 Gibbs and Runge phenomena 

There is a problem of the occurrence of oscillations in a global analytic description of 
objects with discontinuities, known as Gibbs phenomenon, as well as oscillations near 
boundaries of the description called Runge phenomenon, as described before. The same case 
is with global descriptions by continuous piecewise functions like radial basis functions.  

There are several methods that can be found for the elimination of Gibbs phenomenon; 
by adding points near discontinuity [11], by post-processing of input data set using spectral 
filters, [12], and by mappings like conformal mapping, i.e. mapping spectral projection to 
some other basis, [13].  

Regarding Runge's phenomenon of the curve oscillations near boundaries, there are 
several authors that are proposing methods for its elimination, like spatially variable shape 
parameters, [14], least squares polynomial approximation on an equidistant grid and Mock-
Chebyshev subset interpolation, [15], and varying Gaussian radial basis function exponent 
with the number of points, extending description range and split range into two boundary 
layers in [16].  

Among above mentioned methods, the procedure of adding points near the point of 
discontinuity will be observed here with change of Polynomial RBF exponent basis, while 
other won't be observed. Additionally to added points, the bases of the Polynomial RBFs will 
be changed near discontinuities in order to describe them without oscillations. In adding the 
points near the discontinuity there is the limitation in the distance hX,Ω between points to be 
added depending on the mapping function chosen, and so is the quality of the description, [6]. 

Due to the characteristics of global, analytical description defined by points xj,                
j = 1,.., N, x ∈ [a, b], the oscillations occur around discontinuities Ll, too, where l = 1,..., L, 
with L equals the number of discontinuities. In order to eliminate those oscillations, it is 
necessary to include additional information in the interpolation problem about the geometry to 
be described. In opposite to before mentioned parametric NURB spline methods, analytical 
solutions of the discontinuities are usually based on the decomposition and Hermite 
interpolation methods. In this paper, the problem of the discontinuity description will be 
solved by linearization of the curve near curve breaks bounded by densely added points, with 
the information about tangents t, and normal vectors n near discontinuity. 

3. Mathematical description of the point discontinuities 

The curve discontinuity in some singular point L can be mathematically described as the 
interruption of all C continuities inside the range of the curve definition, along with keeping 
G0 continuity. Belonging function f(x), for global description of observed curve discontinuity, 
needs to have different derivations on the different sides of the discontinuity, as shown below. 
Figure 4 shows the general case of the curve break with two branches, the left GL and the 
right GD, tangents tL and tD, normal vectors nL and nD, and curvature radii RL and RD, and 
centres CL and CD. 
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Figure 4 Mathematical description of a curve discontinuity 
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Regarding the boundaries of the curve description, their derivations are not defined 
outside object range. Therefore, the discontinuities are not fully defined on the boundaries, 
and it is necessary to reduce them by linearization or extension of the description range. 

 
As the measures of the accuracy of the description, global and local errors are defined as 

RMSE (Root Mean Square Error) and Errmax, for chosen number of input points N: 

N

yxf
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where N is the number of input data set, Njy j ,...,1, =  is the output data set of points, 
and )(xf is radial basis function. And for Errmax we have: 

( ) ( ) Gkkkk Nkxfy ,,1 ,Err,ErrmaxErrmax …=−==  (9) 

where NG is the number of the points for generalization and evaluation of the description. 
 
The number of points for plotting of the results NP equals the number of generalization 

points. Therefore, for some knuckle point L, we have the same function values on the both 
sides of the discontinuity, but different derivations. That singular point causes oscillations 
around the discontinuity point L because of the interruption of C continuity, and results in the 
change of extremes from local minimum to local maximum, with the change of the rhythm of 
the exchange of the extremes on regular input points, as shown on Figure 1. Besides that, the 
amplitudes of the oscillations enlarge around the discontinuity point, and it is necessary to 
reduce them or completely cancel it. 
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In order to describe the discontinuity with required accuracy it is necessary to add 
points near it to locally cancel the oscillations or decompose it by translation of the branches 
of the discontinuity. The required global and local accuracies are set to the values          
RMSE ≤ 10-4 and Errmax ≤ 10-4 (m), respectively, to ensure the possibility of RBF integration 
without occurrence of error grouping in the point, [6]. 

4. The composition of radial basis functions 

The Radial Basis Function networks are enabling piecewise, meshless description of 
geometry consisting of the composition of the linear sum basis functions as in (2), usually of 
the same RBF type. Those RBF properties ensure its adjustment to the geometry to be 
described, with possibility of the change of basis, as will be described in this paper. 

The RBF description of the frame with discontinuities using elastic shift method, [6], 
shows that it is hard to obtain required local description accuracy of 4

max 10  Err -= (m) due to 
oscillations near the discontinuity point. I.e., it is impossible to control the derivations of the 
curve near discontinuities when standard RBFs with L2 norms are used, because of the 
limitations of a distance between the points hmin. Hermite's RBF interpolation, set in the way 
explained in [10] and [17], does not give acceptable results, too, when applied to curved ship's 
form, i.e. it is not possible to control the derivations in the discontinuity point. The Gibbs 
phenomenon is considered in the work [18], too, where adaptive, local approximation is used, 
and the properties of global RBF description observed near discontinuity depending on shape 
parameter of RBFs, with the decomposition of the discontinuity in two branches. The 
composition of Polynomial Radial Basis Functions method with dense description of the 
discontinuity method will be used in this paper to solve above mentioned description problem, 
as described in [6]. 

The validation of the procedure will be performed for the Test Frame No. 1, described 
on the Table 3 in the Appendix, with discontinuities of the form and flat camber, which 
description is significant problem for all global computational geometry procedures. 

4.1 The Solution of the Description of the Curve with Discontinuities 

When the problem of the curve with discontinuities description is observed, there is one 
method that describes it piecewise continuously, and that is simple, linear interpolation 
method. Therefore, if we want to describe discontinuities by the composition of the functions, 
it can be done be linearization of the curve near discontinuity. Corresponding Radial Basis 
Functions used for discontinuity description need to enable lines description, while another 
basis function should be used for the description of the rest of the curve, as will be explained 
further, in the text.  

In order to reduce the oscillations and control associate derivations on both 
discontinuity sides, additional points very near discontinuity need to be added, on small 
distance δl → 0. The curve around discontinuity can then be described by linear and pseudo-
linear RB functions, as it is explained in the dissertation [6]. The basic problems with that 
description, using standard RBFs with L2 norm, are twofold. The first is connected with 
worsened convergence when the distance between the input points hmin is lowered, and the 
second is the application of the different basis functions, i.e. the change of basis; linearized 
RBFs around discontinuity points and smooth RBFs for curved parts. Because of that, the 
possibility of the global description of discontinuities using the composition of radial basis 
functions based on L1 norm is shown in this paper, as in [6], instead of standard RBFs with L2 
norm. 
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If infinitesimally small parts δl of the curve around discontinuity are observed, it can be 
seen that curve break represents the discontinuity in the C curvature of the curve, with jump 
of the values of belonging derivations y', y'', …, and can be approximated by linear function. 
The discontinuity therefore can be described linearly by straight line, as shown on Figure 5, 
below, limited by additional points near discontinuity point L, set on some distance δl. 

 

 
Figure 5 The discontinuity description using lines and dense adding of points 

Therefore, it is necessary to include discontinuity points Ll in input data set 
immediately, where LjLl ,,1…=≡  is the number of added discontinuity points. When using 
meshless RBF methods it is possible to do it without limitations, opposite to mesh based 
methods that require some data organization. The input data set now becomes the set                        
with discontinuities as X ≡{ }NNNLjLjL xxxxxxxx ,,,,,,,,,,, 1121 −…………… .  

Beside discontinuity points, it is necessary to add additional points D around 
discontinuities Ll, too, and enlarge input data set X for the dense points around discontinuities 
{ }lxlxlxlxlxlx NLNLjLjLLL δδδδδδ +−+−+− ,,,,, 11 …… . Finally, expanded input data set 
X is obtained, with N + D + L points, that won't be written here, because of its complexity. 
The position of added points can then be determined by the distance lδ from the discontinuity 
points, on the tangent tL i tD lines on the both sides of discontinuity. 

Therefore, it is necessary to add points very near to the discontinuity point, as shown on 
Figure 5, and use linear or pseudo-linear RB function for the description of discontinuity. For 
the rest of the curve, it is necessary to change the basis and use RBF for smooth description, 
and use the composition of radial basis functions as: 

lsx φφφ =)(  (10) 

where φs is radial basis function for the description of smooth parts of the curve, and φl is 
radial basis function for the description of the flat parts. 

The basic condition for the existence of piecewise analytical function, when the curve 
with discontinuity is described, is the continuity of the range, with C0 continuity in the 
vicinity of the discontinuity, and Cn continuity for the smooth parts of the curve. It is also 
required that the curve description need to have the continuity of the derivations with minimal 
C2 continuity. Therefore, the conditions for the choice of RBF functions φs and φl are: 

2,: ≥∈→ nCIRIR n
sφ  (11a) 
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0: CIRIRl ∈→φ  (11b) 

It is shown on Figure 5, that the part of the curve is linearized in the vicinity of the 
discontinuity, i.e. it is set to C0, with suitable functionφl used. Curved part of the curve must 
have minimal C2 continuity of the description, with the condition of having the second 
derivation of basis function as: 

φ'' ≠ 0 (12) 

For multiple monotonic Polynomial RBFs with L1 norm, it means that the integer 
function exponent β values must satisfy condition (13) for required function to produce 
smooth curve, with limitation in having odd integer values from the definition of PRBFs in 
(6) as it is shown on the Figure 3: 

β ≥ 3 (13) 

The radial basis functions definition in (4) can now be written for the composition of 
functions case, defined on the set of points X with N input starting points, L points of 
discontinuity and D additional points around discontinuity, in the form: 

( ) ( )∑∑
=

+

=
+=

L

l
ll

DN

i
ii ctxwctxwxf

1
22

1
11 ;,;,)(ˆ φφ  (14) 

where Nj ,,1…= are the points of the input data set, with D added points around 
discontinuity, Ll ,,1…= are the discontinuity points, 1φ  is the basic RB function for the 
description of the curved parts of the curve, and 2φ is RB function for the description of the 
discontinuities. 

Additional points have a role of limitation of the influence of the linear Polynomial 
RBFs to small segments near discontinuity, and the functions φl for the description of flat 
parts and discontinuities are set in the discontinuity points L, only. Total number of the points 
in input data set for the description of the smooth parts of the curve is now N + D, and for the 
simplification their number will be written as N further in the text. 

4.2 Additional Points 

The additional points D of the description need to be set very near the discontinuity 
points, on the distances below global description tolerance of 10-4 (m), to reduce the error of 
the description, as described in detail in Chapters  from 5 to 8.  

This procedure is not always possible for standard RBFs with L2 norm due to the 
singularity of interpolating matrix, and the assurance of its good conditioning and inversion, 
when the distance of input points is very small, [19]. RBFs with L1 norm are chosen instead, 
using the composition of radial basis functions with change of basis suitable for the 
description of the curves with discontinuities. 

5. The choice of the functions for the description of discontinuity 

When global description of the curves with discontinuities is performed, the need for 
different basis functions occurs: the smooth RBFs and linear (pseudo-linear) RBFs in the area 
near discontinuities. But, the usage of the different RBFs creates oscillations also, that can be 
larger then normal oscillations, and that problem should be solved. In 1991, Sibson and Stone, 
[20], suggested the procedure based on the search for better bases for conditionally positive 
definite radial basis functions using reproductive kernels of belonging native spaces, and 
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Beatson, Light and Billings, [21], performed that procedure for polyharmonic splines, in 
2000. The composition of different RBFs should enable simultaneous application of different 
basis functions, in global description of some geometry without occurrence of oscillations, 
and that is the main condition for the selection of changeable radial basis functions. The basic 
function for the description of linear parts of the curve φl, should be picked first, and than its 
suitable function φs for the description of curved parts of the curve. 

 
The properties and the possibility of 2D description of the curves with discontinuities is 

shown in this chapter for Polynomial RBFs (PRBF), [6], Gaussian RBFs, [10], and 
Multiquadric RBF (MQ RBF), [22], with L1 norm, for the description of the Test frame No. 1, 
as shown in the Table 1, below. These functions have nearly polynomial form, with 
possibility of linear or pseudo-linear description of flat curve parts, suitable for further 
computational geometry calculations. The points near discontinuities on the distances 10-4 (m) 
are added to the input point data set in those calculations, on the flat of the side only, as 
shown in the Table 3, in the Appendix. 

 
Table 1 The results of the description of the Test Frame No. 1, using the composition of RBFs                       

with dense discontinuity description 

RBF Type  
Smooth, φs 

β c RBF Type 
Linear, φl 

β RMSE Errmax 

MQ 

1.5 0.01 MQ 0.5 4.523·10-9 1.103 

2.5 0.01 MQ 0.5 3.501·10-4 1.381 

2.5 0.01 MQ 1 6.407·10-5 2.147 

Gaussian 
3 40 PRBF 1 1.103·10-5 2.692·10-2 

3 40 Gaussian 1 5.954·10-4 1.301·10-2 

PRBF 

1.5 0.01 PRBF 0.5 6.369·10-10 8.898·10-1 

1.5 0.01 PRBF 1 1.424·10-9 1.416 

2.5 0.01 PRBF 0.5 2.036·10-5 1.164 

2.5 0.01 PRBF 1 9.251·10-5 8.338·10-1 

3 0.01 PRBF 1 5.251·10-3 1.196·10-2 

3 3.08 PRBF 1 1.424·10-4 2.388·10-4 

 
It can be concluded from the results in the Table 1 that PRBFs and Gaussian RBFs, with 

function exponents β = 3, are suitable for the description of discontinuities. It can be noticed 
in it, that PRBF with β = 3 have compatible function PRBF with β = 1 and that is 
computationally the most suitable combination of functions that will be further investigated. 

In order to obtain better shape parameter c value of the smoothing function φs, the 
belonging sensitivity diagram RMSE−c is done, while c for linear function φl is fixed to 0.01 
in this case. The value c = 3.08 is determined, what gives the accuracy values                     
RMSE = 1.424⋅10-4 and Errmax = 2.388⋅10-4 (m), with the values very near required global and 
local accuracy values. 
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Figure 6 The description of Test Frame No. 1 with camber and knuckles, using PRBF composition                         
with β = 3 for curved frame parts and β = 1 for discontinuities description 

Figure 6, above, shows the description of the Test Frame No. 1, with knuckles and 
camber, using PRBF composition, with exponent β = 3 for the description of smooth parts of 
the curve and β = 1 for the description of the discontinuities. It is shown that PRBF with β = 3 
is suitable function for the smooth description of the frame with discontinuities, compatible 
with the function PRBF with β = 1 for the description of flat parts of the frame and 
discontinuities.  

Nevertheless, the choice of polynomial RBFs limits the applicability of this procedure 
to 2D problems, concerning the limitations of polynomial descriptions from Mairhuber-Curtis 
theorem, [10], and the corresponding solution for 3D geometries with discontinuities is still to 
be found. 

6. Natural description of the flat parts of the curve 

As the side of the Test Frame No. 1 is flat, only two points are needed for side 
description in the case of linear description, as shown in the Table 4, in the Appendix. This 
description represents natural description of the straight line with minimal number of points. 
Therefore, all other points in the starting input data set, but two points, are left out from it for 
flat side description, with dense points for the description of frame brakes. After that, the 
description of the test frame with knuckles and camber is tested for RBF description by the 
composition of PRBF functions for new input data set. Belonging statement for PRBFs with 
the composition of basis functions is then: 
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It can be seen that the function used for the description of smooth curve parts is cubic 
spline, [19], and the function for the description of flat parts of the frame is linear function. 
Those functions have L1 norm as the argument, i.e. absolute value of the difference between x 
and xi, ixx − . 
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 Not scaled, N = 22, NP = 2101

- RMSE = 3.500⋅10-10 
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- Max. Error - Side = 1.168⋅10-6 (m)
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)

 
Figure 7 The description of the Test Frame No. 1 with camber and knuckles,                                                          

by composition of PRBF functions with β = {3, 1} 

After calculation by PRBF composition, with β = 3 and c = 9.6 for smooth parts, and    
β = 1 and c = 0 for the description of flat parts and discontinuities, following values of errors 
are obtained for the Test Frame No. 1: RMSE = 3.5⋅10-10 and Errmax = 1.168⋅10-6 (m). It can 
be seen that local description error Errmax is significantly below required 10-4 (m), and 
therefore the condition of local precision of the description is fulfilled.  

Figure 7, above, shows natural ship description of the ship frame with discontinuities 
using the composition of PRBFs, with 1 point added near each frame knuckle, with left out 
points for the side description. 

Besides that, the composition of basis functions PRBFs with β = {3, 1} and adjusted 
input data set, removes the region of global accuracy of the description from the range of 10-3 
to 100, to the accuracy range from 10-9 to 10-6. I.e., whole region of the shape parameter c for 
composition of polynomial radial basis functions is acceptable as can be seen on Figure 8, 
below. 
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Figure 8 The sensitivity diagram of global shape parametar c for the test frame description                                       

by composition of PRBFs with β = {3, 1} 

Additionally, it can be concluded that it is possible to omit shape parameter c in a 
natural description by PRBFs function composition with β = {3, 1}, in some cases. Pure 
polynomial description can be obtained in this way, without additive constant in the function 
definition, thus eliminating the search for optimal shape parameter c. Besides that, the number 
of input data set points is reduced when flat parts exist in the frame curve description. 
Moreover, the composition of PRBFs gives robust description with very high accuracy, which 
is required for the direct analytical integration calculations where grouping of error in a point 
has to be avoided, [6]. Therefore, the statement (15) can be written as: 

( ) ( ) s
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3
1 φφ  (16) 

Therefore, it is not necessary to introduce function shape parameter c, i.e. the 
description accuracy does not significantly change by c, as shown on Figure 8, above. 

Additionally, for PRBFs there holds: 

3

1 1

ˆ ( ) ,
N L

s
i i l l

i l
f x w x t w x t x IR

= =

= − + − ∈∑ ∑  (17) 

This conclusion connects Polynomial RBFs with Radial Power Functions which are 
classified as polyharmonic splines, [19], in theory, i.e. they also do not depend on shape 
parameter c. The statement (17) explains and confirms the name Polynomial RBFs, because 
cubic spline is obtained as the result, with the argument consisting of the absolute value of the 
difference between input data set points and the points of centres for the development of RBF 
description. 

The summation of the terms for each polynomial exponent finally gives cubic 
polynomial written by coefficients as: 

( ) NjCxCxCxCxf jjjj ,...,1 ,01
2

2
3

3 =+++=  (18) 
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where Cj3, Cj2, Cj1 and Cj0 are the polynomial coefficients of the cubic for j–th segment of the 
description, i.e. for x ∈ [tj, tj+1] or x ∈ [xj, xj+1] when centers vector t coincide with vector x.  

Analytical description by cubic polynomials, (18), is very simple and robust, and beside 
the solution of the oscillations of global interpolation description, enables further analytical 
calculations of ship's hydrostatic properties, instead of numeric integration methods used for 
their calculations, together with the solution of the intersection of the ship's geometry with 
waterlines. 

7. The accuracy of the description near added points 

In order to achieve the linearization of the description near discontinuities, it is 
necessary to add points densely around them. The positions of those points have not been 
observed yet, and that will be done in this chapter. Consequently, the sensitivity of the 
description by the composition of PRBFs with β = {3, 1} and c = 9.6 on the position of added 
points near discontinuities is investigated, i.e. their direction and the distance from the 
discontinuity points for Test Frame No. 1, from Figure 7. The sensitivity is tested for vertical 

zΔ  and horizontal distances yΔ  from discontinuity points, as shown in the Table 2 and 
Figure 9, below. 

Table 2 The influence of the position of additional points near discontinuity                                                          
on the results of the description of the Test Frame No. 1 

Added Points, Vertical Translation zΔ
Added Points, Horizontal Transl. yΔ , 

410−=Δz  

Transl. RMSE Errmax Transl. RMSE Errmax 

10-1 5.928·10-8 5.091·10-3    

10-2 6.465·10-8 8.140·10-5    

10-3 1.920·10-8 9.030·10-7 10-4 2.110·10-9 4.576·100 

10-4 3.500·10-10 1.168·10-6 10-5 7.773·10-9 4.576·10-1 

10-5 2.969·10-8 8.495·10-6 10-6 3.141·10-9 4.576·10-2 

10-6 5.630·10-7 5.662·10-5 10-9 3.795·10-9 4.673·10-5 

10-7 1.371·10-5 4.046·10-4    

10-8 8.849·10-5 4.077·10-3    

10-9 1.129·10-4 2.467·10-2    
 
From the results in Table 2, it can be seen that the accuracy of the description depends 

on the coincidence of added points with the tangents around the discontinuity points. 
The results for different positions of the added points for Test Frame No. 1, from Table 

3 in the Appendix, show that the horizontal translation of added points Δy is more significant, 
because it shows the difference from the tangent slopes in the points of discontinuities. 
Therefore, the local description error Errmax grows linearly with Δy, while RMSE does not 
depend significantly on Δy. 
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Figure 9 The influence of the position of additional points near discontinuity on the results of the Test Frame 
No. 1 description 

It can be concluded that additional points need to be set on the tangent lines near 
discontinuities, with the distance from the discontinuity points around required accuracy 
tolerance of 10-4 (m).  

Therefore, for the 2D ship geometry description by the composition of PRBFs with 
dense point description of discontinuities, it is necessary to have additional information about 
the tangents on the both sides of discontinuity. Anyway, this method requires less amount of 
information compared to usual RBF description or Hermite RBF method, due to reduction of 
the number of points for flat parts description. 

The necessary number of points required for the description by the composition of 
Polynomial Radial Basis Functions with dense point discontinuity description is therefore     
N + L + D, where N is the number of the points at the beginning, L is the number of 
discontinuity points, and D is the number of added points near discontinuities with the slope 
of the tangents near discontinuity points. The number of densely added points D can vary 
depending on the case, as will be shown in the description of Test Frame No. 2, in the next 
chapter. 

8. The example of the description of a test frame from a planning boat 

Additional example for showing the applicability of the global 2D description of ship's 
geometry by composition of Polynomial RBFs with β = {3, 1} and the dense points near 
discontinuity, the description of the frame of the planning boat will be shown in this chapter, 
defined as Test Frame No. 2, described in the Table 5, in the Appendix. It represents the 
frame of a planning boat with several knuckles and curved camber, as shown on Figure 10, 
with the interchange of curved and flat parts of the frame curve. 
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Figure 10 The description of the Test Frame No. 2, using the composition of Polynomial RBFs with β = {3, 1} 

and dense knuckles description (green) 

 
At the beginning Test Frame No. 2 is defined with the input set of N = 37 points. After 

that it is expanded for the additional L = 6 points for discontinuities description and D = 6 
additional points near discontinuities for their dense description, in order to enable the 
application of the composition of PRBFs method with β = {3, 1}. One, two or none additional 
points, including discontinuity points have to be added to the input data set on the distance of 
1⋅10-4 (m) and 2⋅10-4 (m), thus forming input data set of  N = 49 in total, as shown in the Table 
5 in the Appendix. 

It can be seen that very good global accuracy of RMSE = 1.983⋅10-5 and local accuracy 
of Errmax = 3.73⋅10-5 (m) is obtained by using PRBF composition with β = {3, 1} and dense 
discontinuity description, thus fulfilling required accuracy criterion of 10-4.  

 
Regarding the fact that Test Frame No. 2 has very complex geometry with 6 knuckles, 

several curvature and flatness changes, it can be concluded that new analytical 2D ship's 
geometry description method using PRBFs has excellent efficiency of the description for 
curves with discontinuities. Moreover, there is no need for any additional point near 
discontinuities in some cases with the tangent near 90°. 

Considering the complexity of the problem, it was necessary to include shape parameter 
c of radial basis function φs for smooth parts description in this case, with c = 0.37, while for 
radial basis function φl for flat parts description c can be omitted. 
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Added points near discontinuities for the Test Frame No. 2 are shown in Figure 10, with 
the details „A“, „B“ and „C“, depending on the case as shown on Figures 11 and 12. 
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Figure 11 The detail of the description of the Test Frame No. 2, with two points around the knuckle, one from 

each side of the knuckle 

In the case of large differences in the slopes of the tangents of the discontinuity 
branches tL and tD it is necessary to add two points, one on the each side of the discontinuity, 
as shown by magnification „A“, on Figure 11. 

Further, in the case of flat frame parts description it is necessary to add one point on the 
each knuckle of the straight line on the frame side, as shown on the magnifications „B“ and 
„C“, on Figure 12.  
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Figure 12 The details “B” and “C” of the description of the Test Frame No. 2, with one point around the knuckle 
in order to describe flat part of the frame 

In all cases, the points are set on the distance 10-4 (m) from the discontinuity point, 
along the z axis. Finally, in the case of the flat part of the frame near or on the 90° slope it is 
not necessary to add any point to achieve flat description, as shown on Figure 10. 

Additionally, in order to describe boundaries of the frame with required accuracy and 
without oscillations, the first point of the frame at the bottom is set as discontinuity too, thus 
solving Runge phenomenon, also, as it can be seen on Figures 6, 7 and 10, where Test Frames 
No. 1 and 2 are described. 
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It can be concluded that it is possible to use the Composition of compatible Polynomial 
RBFs with dense points method for global description of the curves with discontinuities and 
multiple changes of smooth and flat parts, with very high accuracy. 

9. Conclusion 

The composition of compatible cubic-linear polynomial radial basis functions with 
dense description of curve knuckles is the solution of the problem of global 2D ship's 
geometry description for frames with discontinuities. The linearization of the curve near 
discontinuities, and usage of L1 norm instead of L2, enables the description of discontinuities 
by linear Polynomial RBFs, very near to discontinuity points.  

Furthermore, smooth parts of the curve can be described by cubic Polynomial RBFs, 
without occurrence of additional oscillations, known as Gibbs and Runge phenomena. As the 
final result of that description, cubic piecewise polynomials are obtained, giving direct, 
explicit and very accurate description of the curve with discontinuities, representing complete 
solution of 2D ship's computational geometry problems.  

This solution of the analytical description of the curve with discontinuities is the 
simplest possible and represents yet another example of Occam's razor applied, consisting of 
the composition of linear and cubic polynomial RBFs. 

It can be concluded comprehensively that this solution represents complete analytical 
solution of global 2D geometry reconstruction problem for curves with discontinuities. Being 
essentially analytical, the composition of cubic-linear polynomial radial basis functions 
enables direct, analytical procedure of integration under the curve thus solving all 2D ship's 
computational geometry problems, as will be described in detail in future paper. 

In order to solve ship's geometry problems completely, it is necessary to solve the 
problem of the reconstruction of 3D ship geometry with discontinuities, too, and that will be 
the subject of the future research of this authors in the field of ship's computational geometry. 
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APPENDIX 

The points coloured red in the tables below are designating added points near 
discontinuities, while blue marking designates discontinuity points. 

Table 3 Offset table of Test Frame No. 1 with knuckles and flat camber 

 z y/2 
1 0.0408 0 
2 0.1 0.1758 
3 0.25 0.4228 
4 0.5 0.6857 
5 0.75 0.8688 
6 1 1.005 
7 1.5 1.173 
8 2 1.2329 
9 3 1.1198 

10 4 0.8255 
11 5 0.5456 
12 6 0.5218 
13 7 1.0714 
14 8 3.7948 
15 9 9.1507 
16 10 14.5066 
17 10.1948 15.55 
18 10.1949 15.55 
19 11 15.55 
20 12 15.55 
21 13 15.55 

 

 z y/2 
22 14 15.55 
23 15 15.55 
24 16 15.55 
25 17 15.55 
26 18 15.55 
27 19 15.55 
28 20 15.55 
29 21 15.55 
30 22 15.55 
31 23 15.55 
32 24 15.55 
33 25 15.55 
34 26 15.55 
35 27 15.55 
36 28 15.55 
37 28.4999 15.55 
38 28.5 15.55 
39 28.6 13.445 
40 28.7 11.34 
41 28.7 0 

Table 4 Test Frame No. 1 with knuckles and flat camber, without side points 

 z y/2 
1 0.0408 0 
2 0.1 0.1758 
3 0.25 0.4228 
4 0.5 0.6857 
5 0.75 0.8688 
6 1 1.005 
7 1.5 1.173 
8 2 1.2329 
9 3 1.1198 

10 4 0.8255 
11 5 0.5456 

 

 z y/2 
12 6 0.5218 
13 7 1.0714 
14 8 3.7948 
15 9 9.1507 
16 10 14.5066 
17 10.1948 15.55 
18 10.1949 15.55 
19 28.4999 15.55 
20 28.5 15.55 
21 28.7 11.34 
22 28.7 0 
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Table 5 Offset table of Test Frame No. 2 of planning boat with discontinuities and curved camber 
 z y/2 
1 0 0 
2 0.0155 0.05 
3 0.032 0.1 
4 0.05 0.1487 
5 0.1 0.265 
6 0.15 0.361 
7 0.2 0.447 
8 0.25 0.527 
9 0.3 0.597 

10 0.32 0.627 
11 0.3201 0.687 
12 0.3202 0.687018 
13 0.324 0.6876 
14 0.37 0.6948 
15 0.375 0.6958 
16 0.38 0.6971 
17 0.383 0.69873 
18 0.3842 0.7005 
19 0.3848 0.703 
20 0.385 0.704 
21 0.3852 0.70404 
22 0.4 0.708 
23 0.5 0.733 
24 0.6 0.76 
25 0.7 0.788 

 z y/2 
26 0.75 0.808 
27 0.77 0.818 
28 0.775 0.82 
29 0.7751 0.82001 
30 0.8999 0.83499 
31 0.9 0.835 
32 0.9001 0.83501 
33 0.9045 0.8356 
34 0.91 0.837 
35 0.915 0.841 
36 0.919 0.848 
37 0.92 0.85 
38 0.9201 0.85 
39 0.9499 0.85 
40 0.95 0.85 
41 0.9615 0.8 
42 0.9828 0.70 
43 1.00 0.55 
44 1.01 0.4 
45 1.015 0.3 
46 10.167 0.22 
47 10.182 0.1 
48 10.192 0.05 
49 1.02 0 
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