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Spherical folding tessellations by kites and isosceles triangles:
a case of adjacency
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Abstract. The classification of dihedral folding tessellations of the sphere and the plane
whose prototiles are a kite and an equilateral triangle are obtained in a recent paper, [1]. In
this paper, we extend this classification presenting all the dihedral folding tessellations of
the sphere by kites and isosceles triangles in a particular case of adjacency. A list containing
these tilings including its combinatorial structure is presented in Table 1.
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1. Introduction

By a folding tessellation or folding tiling of the sphere S2 we mean an edge-to-edge
pattern of spherical geodesic polygons that fills the whole sphere with no gaps and
no overlaps such that the “underlying graph” has even valency at any vertex and
the sums of alternate angles around each vertex are π.

Folding tilings are strongly related to the theory of isometric foldings on Rieman-
nian manifolds. In fact, the set of singularities of any isometric folding corresponds
to a folding tiling, see [10] for the foundations of this subject.

The study of these special class of tessellations was initiated in [2] with a complete
classification of all spherical monohedral folding tilings. Ten years latter, Ueno and
Agaoka [11] have established the complete classification of all triangular spherical
monohedral tilings (without any restriction on angles).

Dawson has also been interested in special classes of spherical tilings, see [7], [8]
and [9], for instance.

The complete classification of all spherical folding tilings by rhombi and triangles
was obtained in 2005 [5]. A detailed study of triangular spherical folding tilings by
equilateral and isosceles triangles is presented in [6].

Spherical f-filings by two non congruent classes of isosceles triangles have been
recently obtained [3].

Here we discuss dihedral folding tessellations by spherical kites and spherical
isosceles triangles.
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A spherical kite K (Figure 1(a)) is a spherical quadrangle with two congruent
pairs of adjacent sides, but distinct from each other. Let us denote by (α1, α2, α1, α3),
α2 > α3, the internal angles of K in cyclic order. The length sides are denoted by
a and b, with a < b. From now on, T denotes a spherical isosceles triangle with
internal angles β and γ (γ ̸= β), and length sides c and d, see Figure 1(b).

By Ω(K,T ) we shall denote the set, up to isomorphism, of all dihedral folding
tilings of S2 whose prototiles are K and T .
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Figure 1: A spherical kite and a spherical isosceles triangle

Taking into account the area of the prototiles K and T we have

2α1 + α2 + α3 > 2π and β + 2γ > π.

As α2 > α3, we also have
α1 + α2 > π.

After certain initial assumptions are made, it is usually possible to deduce se-
quentially the nature and orientation of most of the other tiles. Eventually, either
a complete tiling or an impossible configuration proving that the hypothetical tiling
fails to exist is reached. In the diagrams that follow, the order in which these deduc-
tions can be made is indicated by the numbering of the tiles. For j ≥ 2, the location
of tiling j can be deduced directly from the configurations of tiles (1, 2, . . . , j − 1)
and from the hypothesis that the configuration is part of a complete tiling, except
where otherwise indicated.

We begin by pointing out that any element of Ω (K,T ) has at least two cells
congruent to K and T , respectively, such that they are in adjacent positions and in
one and only one of the situations illustrated in Figure 2.

In this paper we consider the first case of adjacency.

2. Case of adjacency I

Suppose that any element of Ω (K,T ) has at least two cells congruent to K and T ,
respectively, such that they are in adjacent positions, as illustrated in Figure 2–I.
As a = d, using trigonometric formulas, we obtain

cos γ (1 + cosβ)

sin γ sinβ
=

cos α3

2 + cosα1 cos α2

2

sinα1 sin α2

2

. (1)
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Figure 2: Distinct cases of adjacency

Concerning the angles of the triangle T , we have necessarily one of the following
situations:

γ > β or γ < β.

In the following subsections we consider each of these cases separately. The results
will show that there are no f-tilings for both instances.

2.1. γ > β

As γ > β, we have γ > π
3 and c < a = d < b, i.e., all the lengths are pairwise

distinct (except a and d). Concerning the angles of the kite K, we have necessarily
one of the following situations: α1 ≥ α2 > α3 or α2 > α1, α3 (includes the cases
α2 > α1 ≥ α3 and α2 > α3 > α1).

The propositions that follow address these distinct conditions.

Proposition 1. If α1 ≥ α2 > α3, then Ω(K,T ) is an empty set.

Proof. Suppose that any element of Ω (K,T ) has at least two cells congruent to
K and T , respectively, such that they are in adjacent positions, as illustrated in
Figure 2−I and α1 ≥ α2 > α3

(
α1 > π

2

)
. With the labeling of Figure 3(a), we have

θ1 = γ or θ1 = β.

1. Suppose firstly that θ1 = γ. At vertex v1 we cannot have α1 + γ = π, otherwise
there is no way to satisfy the angle-folding relation around this vertex. On the other
hand, if α1 + γ < π, it follows that γ < π

2 < α1 and α1 + γ + kα3 = π, k ≥ 1 (see
Figure 3(b)), as α1 + γ + β > π and β < γ < α2 ≤ α1. Again, there is no way to
satisfy the angle-folding relation around vertex v1.

2. Suppose now that θ1 = β (Figure 4(a)). If γ < π
2 , as illustrated in Figure 4(b),
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Figure 3: Local configurations
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Figure 4: Local configurations

there is no way to satisfy the angle-folding relation around vertex v2 (note that
α2 > β). Thus, γ = π

2 and

α1 >
π

2
= γ ≥ α2 > α3, β.

Now, we consider separately the cases α2 = π
2 and α2 < π

2 .

2.1. Suppose that α2 = π
2 . Analyzing the kite in Figure 5(a), we conclude that the

area of the upper triangle is π
2 . As 8

π
2 = Area

(
S2

)
, it follows that each hypothetical

f-tiling in this case must have less than eight kites.
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Figure 5: Local configurations

The configuration of Figure 4(a) extends in a unique way to the one illustrated in
Figure 5(b). At vertex v3 we must have α1+kα3 = π, k ≥ 1. Since any configuration
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must have less than eight kites, we have necessarily k = 1. Nevertheless, there is no
way to avoid more than eight kites, as illustrated in Figure 6(a).
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Figure 6: Local configurations

2.2. Suppose now that α2 < π
2 .

2.2.1. Firstly, we consider {
α1 + β = π

α2 + γ < π
.

With the labeling of Figure 6(b), we must have θ2 = α2 (note that θ2 = β implies
a sum of alternate angles containing α1 and γ at vertex v3, which is not possible).
Taking into account the edge lengths, at vertex v3 (see Figure 7(a)) we have α1 +
kα3 = π, k ≥ 1.
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Figure 7: Local configurations

If k = 1, the previous configuration extends in a unique way to the one illustrated
in Figure 7(b). At vertex v4 we reach a contradiction as α2+γ < π and α2+γ+γ > π
(a condition imposed by the edge lengths).

On the other hand, if k > 1 (Figure 8(a)), we also reach a contradiction at vertex
v5, as α1+α3+ρ > π, for all ρ ∈ {α1, α2, β} (note that tile 8 arises in a similar way
to tile 7).
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Figure 8: Local configurations

2.2.2. Consider now that {
α1 + β < π

α2 + γ < π
.

Analogously to the previous case, we have θ2 = α2 (Figure 8(b)). Note that if
θ3 = α3 (tile 8), we get θ4 = α1 and an incompatibility at vertex v5 cannot be
avoided. Analyzing the edge lengths, at vertices v1 and v3 we must have α1+tβ = π,
t ≥ 2, and α1 + kα3 = π, k ≥ 1, respectively.

If k = 1, the previous configuration extends in a unique way to the one illustrated
in Figure 9(a). As previously, at vertex v6 we reach a contradiction since α2+γ < π
and α2+γ+γ > π. The case k > 1 leads to an absurd at vertex v7 (see Figure 9(b)),
as there is no way to satisfy the angle-folding relation around this vertex.

Proposition 2. If α2 > α1, α3, then Ω(K,T ) is an empty set.

Proof. In this case, it follows that α2 > π
2 and again c < a < b. According to

Figure 10(a), we analyze separately the cases

α2 + γ < π and α2 + γ = π.

1. If α2 + γ < π (note that γ < π
2 < α2), it follows that α2 + γ + kα3 = π, k ≥ 1.

Taking into account the edge lengths, we get α2 + γ + kα3 = π = γ + α1 + (k −
1)α3 + α1 > 3γ > π, which is a contradiction.

2. Suppose now that α2 + γ = π (Figure 10(b)). We have

α2 > α1 > γ > β.

According to this relation and side lengths, θ cannot be α2 or α3. It also cannot
be γ, otherwise we get α1 + γ + kα3 = π, k ≥ 1, and consequently there is no
way to satisfy the angle-folding relation around vertex v1. The same argument
applies to the case θ = β (Figure 11), which implies an absurdity at vertex v2 (we
would have γ + γ + kα3 = π, k ≥ 1, which is not possible). But then θ = α1,
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Figure 9: Local configurations
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Figure 10: Local configurations

and so α1 + α1 + kα3 = π, k ≥ 0. The other sum of alternate angles must be
β + (k + 1)α3 = π. It follows that α1 + α1 = β + α3 and α2 > α3 > α1 > γ > β.
Therefore, k = 0, i.e., α1 + α1 = π = β + α3. As α2 + γ = π, these conditions
contradict our assumptions that γ > β and α2 > α3.
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2.2. γ < β

As γ < β, we have β > π
3 and a = d < b, c. In the next propositions we consider

separately each of the following situations:

α1 ≥ α2 > α3, α2 > α1 ≥ α3 and α2 > α3 > α1.

Proposition 3. If α1 ≥ α2 > α3, then Ω(K,T ) is an empty set.

Proof. Suppose that any element of Ω (K,T ) has at least two cells congruent to
K and T , respectively, such that they are in adjacent positions as illustrated in
Figure 2−I and α1 ≥ α2 > α3

(
α1 > π

2

)
. With the labeling of Figure 12(a), we have

θ1 = γ or θ1 = β.
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Figure 12: Local configurations

1. Suppose firstly that θ1 = γ.

1.1. If α1+ γ = π at vertex v1, then b = c, α3+β = π, and we get the configuration
illustrated in Figure 12(b). At vertex v2 we have α2 + γ = π or α2 + γ < π.

If α2 + γ = π, then α1 = α2 = β > γ = α3 (Figure 13(a)). Although a
complete planar representation was possible to draw, we may conclude that such
a configuration cannot be realized by an f-tiling. In fact, the dark line is a great
circle and has length 2π (vN and vS are in antipodal positions since there exist two
distinct geodesics of the same length joining them), and so 2a+ b = π. Taking into
account that tiles 2 and 3 form a spherical lune, we also conclude that a + b = π,
which leads to a contradiction.
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Figure 13: Local configurations

On the other hand, if α2 + γ < π (Figure 13(b)), then α1 = β > α2 > γ = α3

and θ3 = α3 or θ3 = γ. As we can observe in Figure 14(a), if θ3 = α3, there is no
way to satisfy the angle-folding relation around vertex v. If θ3 = γ, Figure 14(b)
illustrates that analogously to the case α2 + γ = π, we get 2a+ b = π, which is not
possible.
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Figure 14: Local configurations

1.2. If α1 + γ < π (γ < π
2 < α1), then α1 + γ + k1α3 + k2γ = π, with k1, k2 ≥ 0 and

k1 + k2 ≥ 1.
If c ̸= b (Figure 15(a)), one of the sum of alternate angles at vertex v1 must

contain β+γ+γ > π, which is not possible. Therefore, c = b and, with the labeling
of Figure 15(b), we must have

θ2 = α1 or θ2 = γ or θ2 = α3.

1.2.1. If θ2 = α1, it follows that α1 + β < π, and so α1 > β. At vertex v1, one of
the sum of alternate angles must contain α1 + γ + γ > π, which is an absurd.

1.2.2. If θ2 = γ, we get the configuration illustrated in Figure 16(a), with β + γ +
kα3 = π, k ≥ 1, and π

2 < α1 < β. According to the edge lengths, the other sum of
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Figure 15: Local configurations

alternate angles at vertex v1 has to be α1 + γ+ γ+ (k− 1)α3 = π. Nevertheless, we
obtain a contradiction at vertex v2 as α1 + β > π.
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Figure 16: Local configurations

1.2.3. Suppose finally that θ2 = α3 (see Figure 16(b)). Now, θ3 must be γ or α3.
The case θ3 = γ leads to a contradiction. In fact, this condition implies that one

of the sum of alternate angles contains α1 + γ + γ at vertex v1, and so π
2 < α1 < β.

The other sum of alternate angles at this vertex will be β+ γ+ kα3 = π, k ≥ 1, and
a similar situation to the previous case arises.

Therefore, θ3 = α3 and α1 + γ + kα3 = π = β + (k + 1)α3, k ≥ 1, as illustrated
in Figure 17(a). We have α3 < γ, and using the fact that α1+ γ = β+α3, it follows
that α3 < γ < α2 ≤ α1 < β. In a sum of alternate angles containing α1 there can
be only angles α3 or γ (θ5), and so θ4 = β by the edge lengths. At vertex v2, we
have necessarily β + γ = π, otherwise we get β + γ + γ + kα3 > π, k ≥ 1 (note that
θ6 cannot be α1). But we reach a contradiction at vertex v3, as β+ γ = π > α1 + γ.

2. Consider now that θ1 = β (Figure 12(a)). We analyze separately the cases
α1 + β < π and α1 + β = π.

2.1. If α1 + β < π, we have

α1 ≥ α2 > β > γ > α3

and it follows that α1 + β + kα3 = π, k ≥ 1, as illustrated in Figure 17(b).
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Figure 17: Local configurations

If c ̸= b, then θ2 = γ and at vertex v2 we must have α2 + γ + tα3 = π, t ≥
2. Taking into account the edge lengths, the other sum of alternate angles comes
γ + α1 + (t− 1)α3 + α1 > π.

Therefore, c = b and also θ3 = γ (note that if θ3 = β, at vertex v3 we would have
α1 + β + kα3 = π = α1 + ρ1 + (k − 1)α3 + ρ2, with k ≥ 1 and ρ1, ρ2 ∈ {α1, γ}; but
α1 + 2γ > β + 2γ > π). Moreover, θ2 = γ or θ2 = α3.

2.1.1. Suppose firstly that θ2 = γ. Taking into account the angles and side lengths,
we have 

α1 +β + kα3 = π (at vertex v1)

α1 +γ + tα3 = π (at vertex v3)

α2 +γ + lα3 = π (at vertex v2)

γ +γ + (l − 1)α3 + γ = π, l > t > k ≥ 1 (at vertex v2)

We have l > t since α2 < α1; note that α2 = π
2 since there are always vertices

of valency four, [4]. It follows that α2 + α3 = γ + γ, α1 = α2 + (l − t)α3, and so
α1 = 2γ + (l− t− 1)α3 ≥ 2γ. Using the fact that α1 + β + kα3 = π (vertex v1), we
obtain π = α1 + β + kα3 ≥ 2γ + β + kα3 > π, which is an absurd.

2.1.2. Suppose now that θ2 = α3 and, by symmetry, θ
′

2 = α3. The previous config-
uration extends to the one illustrated in Figure 18(a). At vertex v4 we must have
α1 + γ + tα3 = π, with t > k ≥ 1. Nevertheless, given the edge lengths, it is not
possible.

2.2. If α1 + β = π (β < π
2 < α1; see Figure 18(b)), then α1 ≥ α2 > β > γ and

α2 > α3.
If c ̸= b, then θ2 = γ and at vertex v2 we must have π = α2 + γ + kα3 =

γ + α1 + (k − 1)α3 + α1 > π, k ≥ 1. Then, c = b and also θ2 = γ or θ2 = α3.

2.2.1. Suppose firstly that θ2 = γ. It follows that α2 + γ + lα3 = π = γ + γ + (l −
1)α3 + γ, l ≥ 1, as illustrated in Figure 19(a). We have θ3 = γ or θ3 = β. In the
first case, at vertex v3 we have α1 + γ + tα3 = π = β + (t + 1)α3, t ≥ 1, and so
α1 + γ = β + α3. As α1 > β, it follows α3 > γ. Nevertheless, π = α2 + γ + kα3 >



12 C.P.Avelino and A.F. Santos

1 2

g

ba
3

a
2

a1

g

a1

3q1 b

g

6

v
1

a3 a1

a
2

a1

a1

a1

a1

a
3

a
2

a
2

4

5 g

v
2

a1a3

g
a

3

g
a

3
a

3 a
3

a
2

a
2

7

8

v
3

v
4

‘

(a)

1

a
3

a
2

a1

a1

a1

a1a
3

4

a
2

q1 b

3

g

g

2

g

gb

q
2

v
2

q
2
‘

(b)

Figure 18: Local configurations
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Figure 19: Local configurations

α2 + γ + kγ ≥ α2 + 2γ > β + 2γ > π, which is not possible. Thus, θ3 = β and the
last configuration extends to the one illustrated in Figure 19(b). At vertex v4 we
have α1 + γ + tα3 = π, t ≤ l. Nevertheless, θ4 = α3 implies θ5 = α1 and then a
contradiction cannot be avoided at vertex v5.

2.2.2. Suppose now that θ2 = α3 (Figure 20) and, by symmetry, we also have
θ
′

2 = α3. At vertex v we must have α1 + γ + tα3 = π, t ≥ 1. However, due to the
edge lengths, it is not possible.

Proposition 4. If α2 > α1 ≥ α3, then Ω(K,T ) ̸= ∅ iff

(i) α2 + γ = π and α1 = α3 = β = π
2 , or

(ii) α2 + γ = π, α1 + β = π, α3 = β and γ = π
3 .

In the first case, there is a single f-tiling denoted by G. A planar representation is
given in Figure 22(b) and a 3D representation is given in Figure 23.
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Figure 20: Local configuration

In the second case, there is another single f-tiling, G3. The corresponding planar
and 3D representations are given in Figure 26(a) and Figure 26(b), respectively.

Proof. Suppose that any element of Ω (K,T ) has at least two cells congruent to
K and T , respectively, such that they are in adjacent positions, as illustrated in
Figure 2−I and α2 > α1 ≥ α3

(
α2 > π

2

)
. Recall that β > γ. With the labeling of

Figure 21(a), we have
θ1 = γ or θ1 = α3.
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Figure 21: Local configurations

1. Suppose firstly that θ1 = γ. We will analyze separately the cases

α2 + γ = π and α2 + γ < π.

1.1. If α2 + γ = π, it follows that

α2 + γ = π = γ + ρ, with ρ ∈ {α2, β}.

1.1.1. If ρ = α2, then, with the labeling of Figure 21(b), we have θ2 = α1, θ2 = β or
θ2 = γ, cases that we analyze separately.

1.1.1.1. If θ2 = α1, vertex v2 may have valency four or greater than four.

1.1.1.1.1. In the first case (Figure 22(a)), if

(i) θ3 = α2 and α1 + α3 = π, then α2 > π
2 = α1 = α3 = β > γ > π

4 and the last
configuration extends to the planar representation illustrated in Figure 22(b)
(note that θ4 = α3 leads, by symmetry, to a similar representation). We shall
denote such an f-tiling by G. A 3D representation of G is given in Figure 23.
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Figure 22: Local configurations

Figure 23: f-tiling G

(ii) θ3 = α2 and α1 + α3 < π, it follows that α2 > β > π
2 = α1 > α3 > γ and

α1 + k1α3 + k2γ = π, with k1 ≥ 1, k2 ≥ 0 and k1 + k2 ≥ 2. If k2 > 0, then
b = c, which is not possible. In fact, if b = c and α1 = π

2 , α3 = π − β, γ =
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π − α2 and β, α2 ∈
(
π
2 , π

)
, we have

cos γ (1 + cosβ)

sin γ sinβ
=

cos α3

2 + cosα1 cos α2

2

sinα1 sin α2

2

cosβ + cos2 γ

sin2 γ
=

cos α2

2 + cosα1 cos α3

2

sinα1 sin α3

2

(2)

⇐⇒


− sin2 β

2

cosα2 sin
α2

2

=
sinα2 cos

α2

2

cosβ + cos2 α2

β = arccos
(
cosα2 + sin2 α2

)
=⇒ cos2 α2 − cosα2 − 1 = 0 =⇒ cosβ = 0,

which is an incongruence.

Therefore, k2 = 0 and we get the configuration illustrated in Figure 24(a). But
at vertex v3 we again obtain an impossibility.
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Figure 24: Local configurations

(iii) θ3 = β (Figure 24(b)), then α2 = β > π
2 = α1 > α3 = γ and consequently any

choice for θ4 leads to a contradiction.
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1.1.1.1.2. If v2 has valency greater than four (Figure 21(b)), i.e., α1 < π
2 , we have

α2 + α3 > π, 2α1 + α3 > π and also α1 > π
3 . Thus, α1 + α1 + kγ = π, with k ≥ 1

(Figure 25(a)).
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Figure 25: Local configurations

According to the edge lengths, both possible choices for θ3 imply that the other
sum of alternate angles becomes β + α3 + γ + (k − 1)ρ > β + γ + γ > π, for all
ρ ∈ {α1, α3, γ}.

1.1.1.2. If θ2 = β (Figure 21(b)), we have α1 + β = π or α1 + β < π.

1.1.1.2.1. Suppose that α1 + β = π.

1.1.1.2.1.1. Consider firstly that b ̸= c (Figure 25(b)). Note that θ3 = α1 would
imply θ4 = α2, which is not possible. Now, we have θ5 ∈ {α1, α3}.

If θ5 = α1, then α1 + α1 < π. In fact, if α1 = π
2 , we get β = π

2 , γ = π
3 and

equation (1) leads to α3 > π
2 , which is an absurd. Therefore, α2 > β > π

2 > α1 >
γ > α3 (observe that (α2+γ)+(α1+β)+(α1+α1+ρ) = (2α1+α2+α1)+(β+γ+ρ) >
3π, for all ρ ∈ {α1, γ}). However, as 2α1 + α2 + α3 > 2π, we get 2α1 + α3 > π.

On the other hand, if θ5 = α3 and

(i) α1 + α3 = π, then α3 = β < π
2 , and so α2 > α1 > π

2 > β = α3 > γ = π
3 .

The last configuration extends to the planar representation illustrated in Fig-

ure 26(a). From equation (1) one has β = 4arctan

√
5−2

√
5

5 . We shall denote

such an f-tiling by G3. A 3D representation of G3 is given in Figure 26(b).

(ii) α1 + α3 < π, then we have necessarily kγ = π, k ≥ 3, α1 + k̄α3 = π, k̄ ≥ 2,
and the last configuration extends to the one illustrated in Figure 27(a).
At vertex v3 we have necessarily α1 + α1 = π and consequently we obtain
α2 > π

2 = α1 = β > γ = π
3 > α3. By equation (1) it follows that α3 = 2π

3 ,
which is a contradiction.
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Figure 26: f-tiling G3
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Figure 27: Local configurations

1.1.1.2.1.2. Consider now that b = c. With the labeling of Figure 27(b), we have
θ3 = α1 or θ3 = γ.

The case θ3 = α1, illustrated in Figure 28(a), leads to an absurd. In fact, due
to vertex v1 we have α2 + α3 ≤ π, which implies α1 > π

2 > β, γ > π
4 and γ ≥ α3.

Consequently, at vertex v2 we get α1 + γ + ρ > π, for all ρ ∈ {α1, α2, β, γ}.
Using similar arguments, the other case (θ3 = γ) leads to the configuration of
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Figure 28: Local configurations

Figure 28(b). We have kγ = π, k ≥ 3. If k = 3, by solving system (2) we get

γ = π
3 , α2 = 2π

3 , α1 = α3 = 4arctan
√
−7 + 2

√
13 ≈ 98.7◦ and β = π − α1 =

2arctan

√
−5 + 2

√
13

3
≈ 81.3◦. Nevertheless, according to the angles and edge

lengths, any possible choice for θ5 leads to an absurd. If k ≥ 4, we have γ ≤ π
4 , and

so β > π
2 > α1, implying α2 + α3 > π and α2 > β > π

2 > α1 ≥ α3 > γ. In this
case we have necessarily θ5 = γ (Figure 29(a)), as α1 + ρ1 < π and α1 + ρ1 + γ > π,
for all ρ1 ∈ {α1, α3}. Now, if θ6 = α1, then θ7 = α2 and we obtain an absurdity at
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Figure 29: Local configurations

vertex v3 (Figure 29(a)) since α2 + α3 > π. On the other hand, if θ6 = γ, we have
β + γ < π and β + γ + γ > π.

1.1.1.2.2. Suppose now that α1 + β < π. Then, α1 + β + kα3 = π, k ≥ 1, and so
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α1 > β (note that 2α1 + α3 > π). Consequently, α2 > α1 > β > γ > α3, with
β < π

2 and γ > π
4 , and we obtain the configuration illustrated in Figure 29(b).

We must have θ3 = γ. In fact, if θ3 = α3, then α2 + k̄α3 = π, with k̄ ≥ 2,
which implies α1 > π

2 . As in this case θ4 = α1, we obtain a contradiction since
α1 + γ < π and α1 + γ + ρ > π, for all angle ρ. The condition θ3 = γ leads to the
configuration illustrated in Figure 30(a). But at vertex v4 we have β + β + ¯̄kα3 =

π = β + ρ1 + ρ2 + (¯̄k − 1)α3 > π, for ¯̄k ≥ 1 and all ρ1, ρ2 ∈ {α1, γ}, which is an
incongruence.
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Figure 30: Local configurations

1.1.1.3. Suppose finally that θ2 = γ (Figure 21(b)).

(i) If b ̸= c, we must have β+γ+kα3 = π, k ≥ 1, as illustrated in Figure 30(b). In
accordance with the edge lengths, the other sum of alternate angles at vertex
v3 must be of the form α1+γ+α1+(k− 1)α3 = π. However, 3π = (α2+γ)+
(β+γ+kα3)+(α1+γ+α1+(k−1)α3) > (2α1+α2+α3)+(β+γ+γ) > 3π.

(ii) On the other hand, if b = c, we have necessarily β + γ + kα3 = π, k ≥ 1
(Figure 31). At vertex v4 we get α1+β+ k̄α3 = π, k̄ ≥ 1. Taking into account
the angles and edge lengths, we conclude that θ3 = α1. Consequently, θ4 = α2

and an incompatibility at vertex v5 cannot be avoided.

1.1.2. If ρ = β, we obtain α2 = β > π
2 (see Figure 32(a)). Now, we have θ2 = γ

or θ2 = α3. In the first case, it follows that β + γ = π = α1 + β, which implies
that α1 = γ. But then α2 + γ > π, which is an absurd. Therefore θ2 = α3 and
β + α3 = π or β + α3 < π. If β + α3 = π, then α2 = β > α1 > α3 = γ and
the other sum of alternate angles at vertex v2 must be α1 + α1 = π. Nevertheless,
2π < 2α1+α2+α3 = (α1+α1)+(α2+α3) = 2π. On the other hand, if β+α3 < π,
we get α2 = β > α1 > γ > α3 and β + kα3 = π, k ≥ 2 (see Figure 32(b)). As
α2 + α3 < α2 + γ = π, we obtain α1 > π

2 . At vertex v2 it follows that β + kα3 =
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Figure 32: Local configurations

π = α1 + (k − 1)α3 + γ, i.e., θ3 = γ. At vertex v3 we must have β + kα3 = π =
γ + γ + (k − 1)α3, that implies α1 = γ, which is not possible.

1.2. Suppose now that α2 + γ < π (γ < π
2 < α2). We distinguish the cases

α3 ≥ γ and α3 < γ.

1.2.1. The condition α3 ≥ γ implies α2 > α1 ≥ α3 ≥ γ (α1 > γ). As β + γ + γ > π,
any vertex surrounded by an angle β must have valency four. Moreover, β > α2

since α2 + γ + γ ≤ π. With the labeling of Figure 33(a), θ2 can be γ or α3. Both
cases lead to a contradiction as

(i) if θ2 = γ, then, according to the edge lengths, β + γ = π = α1 + ρ, with
ρ ∈ {α2, β}; nevertheless, α1 + β > α1 + α2 > π;

(ii) if θ2 = α3, then β + α3 = π = α1 + ρ, with ρ ∈ {α1, γ}; if ρ = α1, then
2π < 2α1 + α2 + α3 = π + (α2 + α3) < π + (β + α3) = 2π; on the other hand,
ρ = γ implies α1 > α2, contradicting our initial assumption that α2 > α1 ≥ α3.

1.2.2. We assume now the condition α3 < γ, that implies α2 > α1 > γ > α3. Taking
into account the area of the kite K, we conclude that at least one of the conditions
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α1 > π
2 or α2 + α3 > π is verified. As α2 + α3 < α2 + γ < π, then α1 > π

2 , and
consequently α2 > α1 > π

2 > γ > α3.

1.2.2.1. If β ≥ α2, then β ≥ α2 > α1 > π
2 > γ > α3 and as there are always vertices

of valency four [4], we must have β + α3 = π or β + γ = π. Observing Figure 33(a),
we conclude that the first case results in a contradiction arising from the fact that
there is no way to satisfy the angle-folding relation around vertex v2.

Thus, β + γ = π, and so β > α2 > α1 > π
2 > γ > α3. As θ2 = γ (Figure 33(a))

implies an impossibility at vertex v2, we conclude that θ2 = α3 and the configuration
extends to the one illustrated in Figure 33(b). At vertex v2 it follows that β+kα3 =
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Figure 33: Local configurations

π = α1 + (k − 1)α3 + γ, k ≥ 3.

Now, if θ3 = α3 (Figure 34(a)), we reach a contradiction at vertex v3, again
resulting from an impossibility to satisfy the angle-folding relation around this vertex
(there is no way to complete the sum of alternate angles containing α2). On the
other hand, if θ3 = γ, we get the configuration in Figure 34(b). Observe that the
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Figure 34: Local configurations
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analysis for θ
′

3, θ
′′

3 , . . ., is analogous to the one made for θ3. At vertices v1 and v3
we reach a contradiction since we obtain α1 + tγ = π (around v3) and α2 + tγ = π
(around v1), for some t ≥ 2 (observe that α2 > α1).

1.2.2.2. Now we assume that β < α2. Recalling that α2 > α1 > π
2 > γ > α3, as

there must exist vertices of valency four, we have necessarily β+ρ = π, for some ρ ∈
{α1, α2, β}, and so α2 > α1 > π

2 ≥ β > γ > π
4 > α3. Analyzing the configuration of

Figure 35(a), we conclude that α2 + γ + kα3 = π = γ + θ2 + (k − 1)α3 + θ3, with
k ≥ 1 and θ2, θ3 ∈ {α1, γ}, at vertex v1.
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Figure 35: Local configurations

If θ2 = α1 (see Figure 35(b)), at vertex v2 we get α2+γ+kα3 = π = β+γ+kα3,
k ≥ 1, that implies α2 = β, which is a contradiction.

On the other hand, if θ2 = γ, we obtain the configuration of Figure 36(a). Note
that if θ3 = α1, at vertex v1 we would have the sum α1 + γ + γ + (k − 1)α3 > π.
Therefore, θ3 = γ and at vertex v1 we have α2+γ+kα3 = π = γ+γ+γ+(k−1)α3,
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Figure 36: Local configurations

k ≥ 1. According to the side lengths, θ4 cannot be β or α2. If θ4 = γ, then
β+ γ+ tα3 = π, with t > k ≥ 1. Taking into account the side lengths and the angle
relations, the sum of alternate angles containing α1 at vertex v2 must be of the form
α1 + ρ1 + (t− 1)α3 + ρ2 ≥ α1 + γ + (t− 1)α3 + γ ≥ α1 +2γ > π

2 +2π
4 = π, for some

ρ1 and ρ2. Thus, θ4 = α1 or θ4 = α3 and the same applies to θ5.
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Moreover, if θ4 = α1 (or θ5 = α1) and β + α1 < π, then β + α1 + tα3 = π,
t ≥ 1, and we reach a contradiction at vertex v2 using an analogous argumentation
as before. On the other hand, we cannot have θ4 = θ5 = α3, as at vertex v4 we
would have α1 + α1 > π.

The conclusion of the previous discussion is that (θ4, θ5) = (ρ, α1), with ρ ∈
{α1, α3}, or (θ4, θ5) = (α1, α3), and α1 + β = π (β < π

2 < α1). Both cases lead to
contradictions, as illustrated in Figure 36(b) (vertex v4) and Figure 37(a) (vertex
v3), respectively.
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Figure 37: Local configurations

2. Suppose finally that θ1 = α3 (Figure 37(b)). As α2 + α3 ≤ π, we get α1 > π
2 .

We have θ2 = β or θ3 = β, and so α1+β ≤ π, implying β < π
2 and γ > π

4 . Thus,

α2 > α1 >
π

2
> β > γ >

π

4
.

Suppose that α1+β < π. Whenever there is a sum of alternate angles containing
an angle α1, it must be of the form α1+β+kα3 = π, α1+γ+kα3 = π or α1+kα3 = π,
k ≥ 1, i.e., the number of angles α3 is greater than or equal to the number of angles
α1. Nevertheless, this is an absurd, as the number of angles α1 is twice the number
of angles α3 in every f-tiling, and therefore α1 + β = π. It remains to observe that,
under this condition, the cases θ2 = β or θ3 = β lead to an absurd. In both cases
(see Figures 38(a) and 38(b), respectively), at vertex v1 one of the sum of alternate
angles would be greater than π.

Proposition 5. If α2 > α3 > α1, then for each k ≥ 4 there is a single fold-
ing tiling, Gk, such that α2 + γ = π, α1 + α3 = π = α1 + β, γ = π

k and

β = 2arccos
(

1+
√
5

2 sin π
2k

)
. A planar representation and 3D representations for

k = 4 and k = 5 are illustrated in Figures 41(b) and 42, respectively.

Proof. Suppose that any element of Ω (K,T ) has at least two cells congruent to
K and T , respectively, such that they are in adjacent positions, as illustrated in
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Figure 38: Local configurations

Figure 2−I and α2 > α3 > α1. As α2 + αi > π, for all i = 1, 2, 3, we obtain the
configuration illustrated in Figure 39(a) and the relations

α2 > α3 > α1 > γ and α2 >
π

2
> γ.
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Figure 39: Local configurations

We will distinguish the cases

α2 + γ = π and α2 + γ < π.

1. Suppose firstly that α2 + γ = π. Then, at vertex v1 we have α2 + γ = π = γ + ρ,
with ρ ∈ {β, α2}.

The case ρ = β leads to an absurd at vertex v2, as illustrated in Figure 39(b),
since α1 + θ > π (observe that θ must be α2 or β).

On the other hand, if ρ = α2, as β + 2γ > π, α2 > α3 > α1 > γ and β > γ, we
must have β + θ = π, with θ ∈ {γ, α3, α1}, at vertices v2 and v3 (see Figure 40(a)).

If β + γ = π (vertex v2), i.e., θ = γ, we get α2 = β and it follows that β + γ =
π = α1 + ρ, with ρ ∈ {β, α2}, which is a contradiction.

If β+α3 = π (vertex v2), then the other sum of alternate angles at vertex v2 must
be α1 + α1 = π, and so α1 > α3 > α1 = π

2 > β > γ. The previous configuration
extends to the one illustrated in Figure 40(b) (note that α3+γ < π and α3+2γ > π),
yielding an absurd at vertex v4.

If β + α1 = π (vertex v2), we get the configuration of Figure 41(a). We must
have β > α1. In fact, the condition α1 ≥ β implies π

2 ≥ β > γ > π
4 and, as kγ = π,
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Figure 40: Local configurations

we have γ = π
3 . At vertex v4 we reach a contradiction since α3 + ρ > π, for all

ρ ∈ {α1, α2, α3, β}, α3 + γ < π and α3 + γ + γ > π.
Therefore α2 > α3 > α1 > γ and β > π

2 > α1. At vertex v4 we have θ4 ∈
{α1, α3, γ}.

(i) If θ4 = α1, the last configuration extends to the planar representation il-
lustrated in Figure 41(b). For each k ≥ 4 we obtain a closed planar con-
figuration. Such configuration corresponds to an f-tiling Gk in which β =

2arccos
(

1+
√
5

2 sin π
2k

)
. 3D representations of G4 and G5 are given in Figure 42.

(ii) If θ4 = α3, then α2 > β > π
2 ≥ α3 > α1 > γ. As α3 + α3 + ρ > π, for

all ρ ∈ {α1, α2, α3, β, γ}, we conclude that α3 = π
2 (Figure 43(a)). At vertex

v5 we have necessarily α1 + α1 + kγ = π since α1 + α1 + α1 = π implies
that system (2) has no solution and α1 + α1 + α1 + γ > π. We also have
b ̸= c, otherwise system (2) has no solution, and so the previous configuration
extends to the one illustrated in Figure 43(b). But a contradiction at vertex
v6 is impossible to avoid.

(iii) Finally, if θ4 = γ, we must have α3 + kγ = π, with k ≥ 2 (Figure 44). Taking
into account the angles and edge lengths, there is no way to satisfy the angle-
folding relation around vertices v5 and v6.

2. Suppose now that α2 + γ < π (Figure 39(a)); γ < π
2 < α2). As β + 2γ > π,

we conclude that β > α2, and consequently at vertex v2 we must have β + γ =
π. Nevertheless, there is no way to satisfy the angle-folding relation around this
vertex.

Concerning to the combinatorial structure of each tiling obtained before, we
follow the notation used in previous papers. Any symmetry of Gk, k ≥ 3, fixes
N = (0, 0, 1) (and consequently S = −N) or maps N into S (and consequently S
into N). The symmetries that fix N are generated, for instance, by the rotation Rz

2π
k
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Figure 41: Local configurations

Figure 42: f-tilings Gk, cases k = 4 and k = 5

(around the z axis) and the reflection ρyz (on the coordinate plane yoz), giving rise
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Figure 43: Local configurations
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Figure 44: Local configuration

to a subgroup of G(Gk) isomorphic to Dk (the dihedral group of order 2k). Now,
the map ϕ = Rz

π
k
◦ ρxy is a symmetry of Gk that permutes N and S allowing us to

get all the symmetries that map N into S. One has ϕ2k−1 ◦ ρyz = ρyz ◦ ϕ and ϕ has
order 2k. It follows that ϕ and ρyz generate G(Gk). And so it is isomorphic to D2k.

Similarly, we conclude that the symmetry group of G is D4.

3. Main theorem

In the previous section, we have proved the following main result.

Theorem 1. If K and T are a spherical kite and an isosceles spherical triangle
of internal angles (α1, α2, α1, α3), and (β, γ, γ), respectively, in case of adjacency
I (Figure 2-I), then Ω(K,T ) is composed of a single tiling G and a discrete family
Gk, k ≥ 3, with a combinatorial structure presented in Table 1. Our notation is as
follows:
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• γ0 = 2arcsin −
√
2(1−

√
5)

4 ; βk
0 is the solution of equation (1), with α1 = π − βk

0 ,
α2 = π − γ, α3 = βk

0 and γ = π
k , with k ≥ 3.

• |V | is the number of distinct classes of congruent vertices;

• N1 is the number of kites congruent to K and N2 is the number of triangles
congruent T (used in the dihedral f-tilings);

• G(τ) is the symmetry group of each tiling τ ∈ Ω(K,T ).

f-tiling α1 α2 α3 β γ |V | N1 N2 G(τ)

G π
2 π − γ0

π
2

π
2 γ0 4 8 16 D4

Gk, k ≥ 3 π − βk
0 π − γ βk

0 βk
0

π
k 4 4k 4k D2k

Table 1: Combinatorial structure of dihedral f–tilings of S2 by kites and isosceles triangles in case
of adjacency I
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