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Data clustering for circle detection
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Abstract. This paper considers a multiple-circle detection problem on the basis of given
data. The problem is solved by application of the center-based clustering method. For the
purpose of searching for a locally optimal partition modeled on the well-known k-means
algorithm, the k-closest circles algorithm has been constructed. The method has been
illustrated by several numerical examples.
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1. Introduction

Grouping a data set into clusters is an important problem in many applications (e.g.
facility location problem, pattern recognition, text classification, business, etc.) (see
[9, 12, 22]).

In this paper we consider a multiple-circle detection problem based on given
data. This problem appears in several areas, such as pattern recognition, earthquake
investigations, image analysis, machining of round parts, etc. (see e.g. [7, 17, 19,
20, 22]). In solving the problem we apply a center-based clustering method. The
points are grouped around circles such that the sum of distances from data points
and appropriate closest circles is minimized.

Let R2 denote the set of all points in the plane and R+ the set of nonnegative
real numbers.

A partition of the data-points set A = {Ai = (xi, yi) ∈ R2 : i = 1, . . . ,m} ⊂ R2

into k disjoint subsets π1, . . . , πk, 1 ≤ k ≤ m, such that

k∪
i=1

πi = A, πr ∩ πs = ∅, r ̸= s, |πj | ≥ 1, j = 1, . . . , k,

will be denoted by Π(A) = {π1, . . . , πk}, and the elements π1, . . . , πk of such partition
are called clusters in R2.

Let us assume that all data from the set A come from some circles that should
be reconstructed or detected.
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To each cluster πj ∈ Π we associate a corresponding circle-representative Cj(pj ,
qj , rj) with centre Sj = (pj , qj) and radius rj such that

(p⋆j , q
⋆
j , r

⋆
j ) = argmin

p,q,r∈R
Φj(p, q, r), Φj(p, q, r) =

∑
Ai∈πj

D(C(p, q, r), Ai), (1)

where D(C(p, q, r), Ai) represents the distance from the point Ai to the circle C.
There is a number of recent literature focused on this problem [1, 4, 8, 10].

If in (1) we consider that the measure of the distance from the circle C to the
point has the form

D(C,Ai) = |
√
(xi − p)2 + (yi − q)2 − r|2, (2)

then we talk about the total least squares (TLS) optimality criterion.
If we consider that the distance from the circle to the point is euclidean distance

D(C,Ai) = |
√

(xi − p)2 + (yi − q)2 − r|, (3)

then we apply the least absolute deviations (LAD) optimality criterion ([23]).
If we take that

D(Cj , Ai) = |(xi − p)2 + (yi − q)2 − r2|2, (4)

then we have the so-called algebraic fitting criterion.
If we define an objective function F : P(A, k) → R+ on the set of all partitions

P(A, k) of the set A containing k clusters in the sense of closest circles C1, . . . , Ck

by

F(Π) =
k∑

j=1

∑
Ai∈πj

D(Cj , Ai), (5)

then an optimal partition Π⋆ is a partition at which function F attains its minimum,
i.e. Π⋆ = argmin

Π∈P(A,k)

F(Π).

Conversely, for a given set of circles C1, . . . , Ck, applying the minimal distance
principle, we can define the partition Π = {π1, . . . , πk} of the set A in the following
way:

πj = {A ∈ A : D(Cj , A) < D(Cs, A), ∀s = 1, . . . , k, s ̸= j}, j = 1, . . . , k.

Therefore, problem (5) of finding an optimal partition of the set A can be reduced
to the following optimization problem

argmin
C1,...,Ck⊂R2

F (C1, . . . , Ck), F (C1, . . . , Ck) =
m∑
i=1

min
j=1,...,k

D(Cj , Ai). (6)

In general, the functional F is not differentiable and it may have several local and
global minima.

In Section 2, we look at the problem of fitting the circle, i.e. finding the optimal
parameters of the circle on the basis of given data. With regard to the problem of
data clustering by circles, in Section 3 we give an algorithm for searching for a locally
optimal partition by means of k-closest circles. In Section 4, several illustrative
examples are mentioned.
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2. Geometric and algebraic circle fits

For problem (1) of locating a circle on the basis of the given set of n fixed points
Pi = (xi, yi), i = 1, . . . , n in the plane, there exists a number of algorithms and
methods. These methods are based on different measures and various criteria for
defining a ”closest” circle (see [2, 4, 8, 16]).

Let C(p, q, r) be a circle in the plane with center S = (p, q) and radius r. If we
apply criterion (2), then we have the following optimization problem

argmin
p,q,r∈R

G2(p, q, r), G2(p, q, r) =
n∑

i=1

|
√
(xi − p)2 + (yi − q)2 − r|2, (7)

which is based on minimizing the sum of squared distances from the fitting circle to
data points. This is the (total) least squares circle fitting ([5, 10]). For solving opti-
mization problem (7), one can use various iterative algorithms which are successful
(e.g. the Levenberg-Marquardt, Landau algoritm, Späth algorithm [5]).

In addition, one can apply criterion (3) and then deal with the following opti-
mization problem

argmin
p,q,r∈R

G1(p, q, r), G1(p, q, r) =
n∑

i=1

|
√
(xi − p)2 + (yi − q)2 − r|, (8)

which is based on minimizing the sum of euclidean distances from the fitting circle
to data points. This problem has also been analysed in literature ([2, 15]) and an
exact procedure exists for this problem. However, a heuristic approach (three points
method) has also been suggested because it runs much faster than exact procedures.

On the other hand, one can apply algebraic circle fitting wherein criterion (4) is
taken into account. Then we get the following optimization problem

argmin
p,q,r∈R

G(p, q, r), G(p, q, r) =
n∑

i=1

|(xi − p)2 + (yi − q)2 − r2|2. (9)

Algebraic circle fitting refers to noniterative procedures that give good results in
many applications. There exists simple algebraic fitting - Käsa method and several
modifications such as Chernov-Oroskov modification and Pratt circle fitting ([4]).

One can also use another criterion of closeness of a circle to data, the so-called
minimax criterion, where one deals with the optimization problem

argmin
p,q,r

g(p, q, r), g(p, q, r) = max
i=1,...,n

{|
√

(xi − p)2 + (yi − q)2 − r|}.

There are algorithms for solving this problem, too ([3, 16]).

The above mentioned methods for estimation and for searching for optimal pa-
rameters have certain properties and advantages, but also disadvantages ([4, 8, 15]).
Particular problems frequently determine the choice of an appropriate criterion and
specific methods for circle fitting.
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3. K closest circles algorithm

As we have mentioned in the Introduction, the problem of finding an optimal parti-
tion of the set of points in the plane, A = {Ai = (xi, yi) ∈ R2 : i = 1, . . . ,m} ⊂ R2,
into k disjoint subsets grouped around circles Cj(Sj(pj , qj), rj), j = 1, . . . , k, can be
reduced to the following optimization problem (see (5), (6))

argmin
C1,...,Ck⊂R2

F (C1, . . . , Ck),

where

F (C1, . . . , Ck) =
m∑
i=1

min
j=1,...,k

D(Cj , Ai). (10)

Function F given by (5) and function F given by (10) coincide at optimal partition
([21]).

In general, optimization problem (10) is a nonconvex and nonsmooth optimiza-
tion problem and it could have several local minima. So, one deals with the complex
problem of finding an optimal solution.

One of the most popular clustering algorithms for searching for a locally optimal
partition is the k-means algorithm ([11, 12]). Analogously to the k-means algorithm,
we construct the k-closest circles algorithm.

Algorithm 1 (k-closest circles (KCC) algorithm).

Step 0: Input 1 ≤ k ≤ m, A = {Ai = (xi, yi) ∈ R2 : i = 1, . . . ,m}. Choose an

initial partition Π(0) = {π(0)
1 , . . . , π

(0)
k } and set µ = 0;

Step 1: Solve the optimization problem

(p
(µ)
j , q

(µ)
j , r

(µ)
j ) = argmin

p,q,r∈R
Φj(p, q, r), j = 1, . . . , k,

Φj(p, q, r) =
∑

Ai∈π
(µ)
j

D(C(p, q, r), Ai), and set C
(µ)
j = (p

(µ)
j , q

(µ)
j , r

(µ)
j );

Step 2: (Assignment step) Determine a new partition (new clusters)

Π(µ+1) = {π(µ+1)
1 , . . . , π

(µ+1)
k } according to the minimal distance principle

π
(µ+1)
1 = {Ai ∈ A : D(C

(µ)
1 , Ai) < D(C

(µ)
l , Ai), ∀l = 2, . . . , k},

π
(µ+1)
j = {Ai ∈ A \ ∪j−1

s=1π
(µ+1)
s : D(C

(µ)
j , Ai) < D(C

(µ)
l , Ai),

∀l = j + 1, . . . , k}, j = 2, . . . , k − 1,

π
(µ+1)
k = A \ ∪k−1

s=1π
(µ+1)
s .

Step 3: If Π(µ+1) = Π(µ), STOP. Otherwise, set µ = µ+ 1 and go to Step 1.

In Step 0, the input data have been introduced and the initial partition has
been chosen. In Step 1, by solving the corresponding optimization problem, the
corresponding circle-representative has been determined for each cluster. In Step 2,
in order to establish new clusters grouped around these circle-representatives, the
minimal distance principle has been applied.
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The following proposition shows that the proposed algorithm has a decreasing
property. It enables us to apply the algorithm as a method for obtaining a (locally)
optimal partition.

Proposition 1. The K-closest circles algorithm does not increase the value of the
objective function F defined by (5).

Proof. From the proposed Algorithm 1 we obtain clusters (π
(µ)
1 , . . . , π

(µ)
k ) and the

corresponding circles (C
(µ)
1 , . . . , C

(µ)
k ). It follows that

F(C
(µ)
1 , . . . , C

(µ)
k ) =

k∑
j=1

∑
Ai∈π

(µ)
j

D(C
(µ)
j , Ai)

(Step 2) ≥
k∑

j=1

∑
Ai∈π

(µ+1)
j

D(C
(µ)
j , Ai)

(Step 1) ≥
k∑

j=1

∑
Ai∈π

(µ+1)
j

D(C
(µ+1)
j , Ai) = F(C

(µ+1)
1 , . . . , C

(µ+1)
k ) .

4. Examples

In this section we give a few illustrative examples with various synthetic and em-
pirical data. We suppose that the number of clusters k is given in advance in all
examples. Calculations were done by Mathematica [24].
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(b) Initial circles: F = 99.6864

Figure 1: Initializations for the k-closest circles algorithm (k = 3)

Example 1. On the basis of three circles given in parametric form Ki = Si +
ri(cos t, sin t), t ∈ [0, 2π], i = 1, 2, 3, the set A of 85 random points is generated by
using binormal random additive errors with mean vector 0 ∈ R2 and the covariance
matrix σ2I, σ2 = 0.1 (see Fig. 1a). The sum of orthogonal distances (LAD criterion)
from these points to corresponding circles K1,K2,K3 is F = 5.94991. Circles should
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be reconstructed on the basis of the data-points set A. By using the chosen circles
shown in Fig. 1b, the initial partition has been determined according to the minimal
distance principle. In Fig. 2, the first, the third, the fifth, the seventh, and finally
the ninth iteration with the corresponding objective function value are shown. In the
end, objective function value F ⋆ = 5.66076 and circles are obtained, for which it can
be said that they represent a good reconstruction of original circles.
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(b) It 3: F = 13.23
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(c) It 5: F = 5.78
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(d) It 7: F = 5.77

0 2 4 6 8 10
0

2

4

6

8

10

(e) It 9: F = 5.66

Figure 2: A few steps of the k-closest circles algorithm (k = 3)

Original 4 circles Algebraic fitting criterion LAD criterion TLS criterion
Center Radius Center Radius Center Radius Center Radius
(3, 2) 3 (2.65, 1.66) 2.94 (2.65, 1.37) 3.20 (2.66, 1.68) 2.92

(−0.5, 0) 1 (−0.57, 0.09) 1.01 (−0.48, 0.12) 0.98 (−0.52, 0.19) 0.95
(0,−3) 2 (0.10, −2.81) 1.92 (0.05, −2.81) 1.95 (−0.10, −2.77) 1.91
(2,−2) 1.5 (2.01, −1.65) 1.51 (3.43, 0.90) 1.95 (1.68, −1.66) 1.83

Table 1: Centers and radii of circles

Example 2. On the basis of four circles, the set A of 100 pseudorandom points is
generated by adding uniformly distributed pseudorandom errors in interval [0, 0.2]
(see Fig. 3a). After that, an initial partition with k = 4 clusters is obtained by
Mathematica function FindClusters that uses the Euclidean distance and clusters the
data based on proximity (see Fig. 3a). By using the KCC-algorithm with algebraic
circle fitting - criterion (4) (see Fig. 3b), with orthogonal distances - LAD criterion
(3) (see Fig. 3c) and with TLS criterion (2), we obtained corresponding circles.
Table 1 shows centers and radii of original four circles and of circles obtained by
the KCC-algorithm for three criteria. We can say that the obtained circles-centers
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represent a good reconstruction of original circles and given data (with an exception
of the fourth circle of the LAD criterion).
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Figure 3: Circles reconstruction

Example 3. Similarly to Example 1, synthetic data are generated by four circles
with the same center and different radii. With the initial partition shown in Fig. 4a
the same KCC-locally optimal partition is obtained by using algebraic circle fitting -
criterion (4) (see Fig. 4b), by using orthogonal distances - LAD criterion (3) and by
using TLS criterion (2). The reconstructed circles by all three criteria (2), (3) and
(4) are almost the same in this case. It can be seen that the obtained circles-centers
of this partition represent a good reconstruction of the original circles.
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(b) Algebraic criterion

Figure 4: Circles reconstruction

Example 4. Similarly to Example 1, synthetic data are generated by ten circles with
different centers and the same radius. With the initial partition shown in Fig. 5a,
the KCC-locally optimal partition is obtained by using algebraic circle fitting - cri-
terion (4) (see Fig. 5b) and orthogonal distances - LAD criterion (3) (see Fig. 5c).
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In this case, TLS criterion (2) has given similar results as the LAD criterion. We
can say that circles-centers obtained by using algebraic circle fitting represent a re-
construction of original circles well enough, which cannot be said for circles-centers
obtained by using the LAD criterion.
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Figure 5: Circles reconstruction

Remark 1. In the case of synthetic data constructed as in previous examples, one
could determine a measure of quality of some partition by using Hausdorff distance
between the set of original circles and the set of reconstructed circles (see e.g. [19]).

Example 5. In paper [19], seismic activity data from a wider area of the Republic
of Croatia has been considered in order to locate the most intense seismic activity
in the observed area. It has been shown that the optimal partition with k = 13
clusters points out at 13 locations in which the most intense seismic activity in the
observed area can be expected. For the purpose of analyzing the geometric position
of circles at which some cluster centers are situated, it is interesting to find out that
position (nine points-centers have been taken into account, [19]). Two corresponding
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Figure 6: Circles reconstruction

circles have been obtained by using the KCC-algorithm: with algebraic circle fitting
- criterion (4) (see Fig. 6a), and with orthogonal distances - LAD criterion (3) (see
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Fig. 6b). In this case, TLS criterion (2) has also given two circles that are by the
location of centers and radii between the results of criteria (4) and (3).

5. Conclusions

This paper considers the multiple-circle detection problem on the basis of given data-
points set which comes from several circles in the plane. In solving the problem,
a center-based clustering method has been applied. Let us note that numerical
experiments show that the proposed KCC-algorithm has similar properties as the
k-means algorithm and it can mainly give a locally optimal partition. If we have a
good initial approximation, the KCC-algorithm can provide an acceptable solution.
In the case we do not have a good initial approximation, the algorithm should be
restarted with various random initializations, as proposed by [14]. It is assumed that
the number of clusters is given in advance.

The problem of determining the appropriate number of clusters in a partition is
a specific problem that has not been considered in this paper.

By applying the proposed KCC-algorithm, one can see a certain dependence of
results of circles reconstruction on different criteria implemented for fitting of circles.
It seems that algebraic criterion (4) has a certain advantage since it includes both
the smallest and the largest distance of the point from the circle ((d2 − r2)2 = (d−
r)2 · (d+ r)2); however, a more extensive investigation should be done with respect
to this matter.
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