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Diagrams and in general the use of visualization and manipulative material, play an 
important role in mathematics teaching and learning processes. Although several 
authors warn that mathematics objects should be distinguished from their possible 
material representations, the relations between these objects are still conflictive. In 
this paper, some theoretical tools from the onto-semiotic approach of mathematics 
knowledge are applied to analyse the diversity of objects and processes involved in 
mathematics activity, which is carried out using diagrammatic representations. This 
enables us to appreciate the synergic relations between ostensive and non-ostensive 
objects overlapping in mathematics practices. The onto-semiotic analysis is 
contextualised in a visual proof of the Pythagorean theorem. 

INTRODUCTION 
The use of different representations, visualizations, diagrams, manipulative materials, 
are proposed to favour mathematics learning by assuming that such materials make 
up representations of mathematics concepts and of the structures in which they are 
organised. It is supposed that the use of material representations is necessary, not 
only to communicate the mathematics ideas but also for their own construction. 
However, the relations between representations, objects and construction of meanings 
are still conflictive. This issue is key for mathematics education since “any didactic 
theory, at one moment or another (unless it voluntarily wants to confine itself to a 
kind of naïve position), must clarify its ontological and epistemological position” 
(Radford, 2008, p. 221). 
Researches in diagrammatic reasoning and about the use of visualizations in 
mathematics education do not usually deal with the type and diversity of 
mathematical objects. In this paper, this problem is faced using some theoretical tools 
from the onto-semiotic approach (OSA) (Godino, Batanero, & Font, 2007; Font, 
Godino, & Gallardo, 2013). Mathematical objects are considered to be abstracts 
whereas diagrams are specific and perceptible. It is necessary not confuse them, but 
the relationship between both types of objects are not dealt with explicitly. This 
situation is not strange since to clarify what abstract objects are, and their relationship 
with the empirical world is a full-scale philosophical and psychological problem, 
which is addressed from different paradigms and theoretical frameworks.  
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In the OSA it is assumed that mathematics is a human activity (anthropological 
postulate) and that the entities involved in this activity come or emerge from the 
actions and discourse through which they are expressed and communicated (semiotic 
postulate). The epistemological, semiotic, and educational problem that interests us is 
to clarify the relationship between the visual, diagrammatic or iconic representations, 
and the non-ostensive mathematical objects that necessarily are involved.  
In the following section, some characteristic features of the diagrammatic reasoning 
that point out the problem mentioned are described, that is the gap between the 
representation and the mathematical object represented. Then, the notion of 
ontosemiotic configuration of practices, objects and processes is summarised. This 
theoretical tool will be used to analyse the diagrammatic reasoning in a visual proof 
of the Pythagorean theorem. In the final section, some reflections about the type of 
understanding that the onto-semiotic approach to mathematical knowledge might 
provide to diagrammatic reasoning are included. 

DIAGRAMMATIC REASONING  
In mathematics education, talking of diagrammatic reasoning means entering into the 
field of Peircean Semiotics (Dörfler, 2005; Bakker & Hoffmann, 2005; Rivera, 
2011), although the use of diagrams as a resource of thought and scientific work is 
also found in other fields and disciplines (Shin & Lemon, 2008). 
A double conception about the notion of diagram is found: one wider conception, in 
which any type of inscription that makes use of the spatial positioning in two or three 
dimensions (right, left, forward, backward, etc.) is a diagram (geometric figures, 
graphs, conceptual, etc.). Another more restricted conception requires being able to 
carry out specific transformations, combinations or constructions with these 
representations, according to certain specific syntactic and semantic rules. In this 
research report, it is justified why this second approach should be retained. 
Diagrammatic reasoning involves three steps (Bakker & Hoffmann, 2005, p. 340):  
the first step is to construct a diagram (or diagrams) by means of a representational 
system; the second step is to experiment with the diagram (or diagrams); the third 
step is to observe the results of experimenting and reflect on them. 
Duval (2006) attributes an essential role not only to the use of different systems of 
semiotic representation (SSR) for mathematics work but also to the treatment of the 
signs within each system and the conversion between different SSR:  

The role that signs play in mathematics is not to be substituted for objects but for other 
signs! What matters is not representations but their transformation. Unlike the other areas 
of scientific knowledge, signs and semiotic representation transformation are at the heart 
of mathematical activity. (Duval, 2006, p. 107) 

Dörfler (2005) recognises that diagrams can make up a register of autonomous 
representation to represent and produce mathematics knowledge in certain specific 
fields; however, it is not complete. It requires to be complemented by 
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conceptual-verbal language in order to express notions like: continuity and 
differentiability; impossibility that specific objects exist; using the quantifiers ‘for 
all’, ‘each one’ and ‘there are’.  

For our purposes here, it is very important to make a clear distinction between 
"diagrams" and all kinds of representations, visualizations, drawings, graphs, sketches, 
and illustrations as widely used in professional mathematics and in mathematics 
education as well. Although these might be diagrams in the specific sense used here, this 
is mostly not the case. This is due to the lack of the constituting operations by which an 
inscription or visualization becomes only a diagram. (Dörfler, 2005, p. 58) 

Shin & Lemon point out another problem related to the use of diagrams: 
A central issue, if not the central issue, was the generality problem. The diagram that 
appears with a Euclidean proof provides a single instantiation of the type of geometric 
configurations the proof is about. Yet properties seen to hold in the diagram are taken to 
hold of all the configurations of the given type. What justifies this jump from the 
particular to the general? (2008, section 4.1) 

Sherry (2009) adopts an anthropological perspective on the role of diagrams in 
mathematics argumentation, which involves an objectification of the empirical 
reality. This perspective differs from the Peircean semiotic, according to which 
diagrams are an essential means in the process of hypostatic abstraction. Sherry 
analyses the role of diagrams in mathematics reasoning (geometric and numerical – 
algebraic) without resorting to the introduction of abstract objects and relying on a 
Wittgensteinian perspective of mathematics. “Recognizing that a diagram is just one 
among other physical objects is the crucial step in understanding the role of diagrams 
in mathematical argument” (Sherry, 2009, p. 65).  
In this position, the author avoids recurring to abstract conceptions which are 
conceived in an empirical-realistic way (hypostatic abstraction) in order to 
understand them as socially agreed grammatical rules, about the use of languages 
through which we describe our worlds (material or immaterial). 

I have emphasized that diagrammatic reasoning recapitulates habits of applied 
mathematical reasoning. On this view, diagrams are not representations of abstract 
objects, but simply physical objects, which are sometimes used to represent other 
physical objects. (Sherry, 2009, p. 67) 

ONTO-SEMIOTIC CONFIGURATIONS  
In the OSA framework, it is proposed that six types of objects intervene in 
mathematics practice, which can be contemplated from five dual points of view 
(figure 1) (Font et al., 2013). The non-ostensive (immaterial) entities: conceptual, 
propositional and procedural, are conceived as rules. The Wittgenstein’s 
anthropological view is assumed, according to which concepts, propositions and 
mathematics procedures are empirical propositions, which have been socially reified 
as rules. Sherry clearly and synthetically describes this Wittgensteinian conception of 
mathematical objects:  
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In order for an empirical proposition is harden into a rule, there must be 
overwhelming agreement among people, not only in their observations, but also in 
their reactions to them. This agreement reflects, presumably, biological and 
anthropological facts about human beings. An empirical proposition that has 
hardened into a rule very likely has practical value, underwriting inferences in 
commerce, architecture, etc. (Sherry, 2009, p 66) 

 

Figure 1: Objects that intervene in mathematical practices (Font et al., 2013, p. 117) 
Both the dualities and the configurations of primary objects may be analyzed from 
the process/product perspective. The objects of a configuration (problems, 
definitions, propositions, procedures and arguments) emerge through the respective 
mathematical processes of communication, problematization, definition, enunciation, 
development of procedures (algorithms, routines, etc.) and argumentation. For their 
part, the dualities give rise to the following cognitive/epistemic processes: 
institutionalization-personalization; generalization-particularization; analysis / 
decomposition - synthesis / reification; materialization / concretion - idealization / 
abstraction; expression / representation - signification.  
Behind diagrammatic reasoning, and the use of manipulative teaching materials, there 
is an implicit adoption of an empirical – realistic position about the nature of 
mathematics. This position does not recognize the essential role of language and the 
social interaction in the emergence of mathematical objects. To a certain extent, it is 
supposed that the mathematical object “is seen”, it is hypostatically detached from 
empirical qualities of the things collections. Against this position, the anthropological 
conception of mathematics proposes that concepts and mathematical propositions 
should be understood, not as hypostatic abstractions of perceptual quality, but as 
regulations of the operative and discursive practices carried out by people in order to 
describe and act in the social and empirical world in which we live.  
This anthropological way of understanding abstraction, that is, the emergence of 
general and immaterial objects forming mathematical structures, has important 
consequences for mathematics education since mathematics learning should take 
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place through students’ progressive participation in the mathematics language games. 
For example, in the current introduction of dynamic software in school is necessary 
to evolve their use according moments of exploration, illustration and demonstration 
(Lasa & Wilhelmi, 2013), which allow an understanding, reuse and construction of 
new mathematical knowledge. In this way, dialogue and social interaction take on an 
important role, in comparison with the mere manipulation and visualization of 
ostensive objects. 

ONTO-SEMIOTIC CONFIGURATION IN A VISUAL TASK 
In this section, the types of practices, objects and processes put at stake in the 
statement and demonstration of the Pythagorean theorem are analysed. Usually it is 
presented as a visual or "without words" demonstration. It is shown that, indeed: 
“picture-proofs don’t show their results on their sleeve, as it were; it’s necessary to 
study them for a while, before they reveal their treasure” (Sherry, 2009, p. 68). 
Task 
What is the relationship between the areas of the figures shaded A and B? 
 

Figure 2: A visual proof of the Pythagorean theorem 
The following sequence of operative and discursive practices is one possible answer1: 
1.  We assume that the representations in Figure 2 are squares and right triangle, and 
the lengths of their sides are indeterminate: a, b, c (Figure 3). 
2. The quadrilaterals formed by the outer segments of the figures A and B are 
congruent squares because the sides are of equal length, (a + b).  
 

Figure 3: Metrics hypothesis needed 
3. The representations of right triangles in A and B are congruent because their sides 
are of equal length. 
4. The shaded region in Figure A is equal to the shaded region in Figure B. This is 
because two squares of equal area are formed of four equal triangles. 

                                         
1 Explanatory proof (Cellucci, 2008). 
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5. The shaded area in Figure A is the sum of the squares area of sides a and b, 
respectively, a2 + b2. 
6. The shaded area in Figure B is the square's area of side c, c2. 
7. The shaded regions are interpreted as areas of the squares whose sides are the legs 
and hypotenuse of the triangle, respectively (Figure 4). 
 

Figure 4: Determination of the Pythagorean theorem 
8. Then, the square's area of the hypotenuse is equal to the sum of the squares areas 
of the other two sides: c2  = a2 + b2. 
Configuration of objects and meanings 
In the first column of the Table 1, the expressions in ordinary language (sequential) is 
summarised; such expressions are added to the diagrams to produce the justification 
and explanation necessary of the theorem. In the second column, the system of 
‘non-ostensive objects’ is included. In addition, how the ‘ostensive / non-ostensive’ 
duality, and the “example / type” (particular / general) duality are linked to the 
intervention of concepts, propositions, procedures, and arguments are shown. 

OSTENSIVE OBJECTS 
(Means of expressions) 

NON - OSTENSIVE OBJECTS  
(Concepts, propositions, procedures, 
arguments) 

Statement: 
What is the relationship between the 
areas of the figures shaded A and B? 
(Figure 2) 

Concepts: area (extension of a plane 
region), sum of areas; comparison of areas. 
Particularization: these concepts are 
particularized to the case of the figures 
given. 
The squares, triangles and the relationships 
between the areas, are generic. 

1. We assume that the representations 
in Figure 2 are squares and right 
triangle, and the lengths of their sides 
are indeterminate: a, b, c (Figure 3). 
 

Concepts: square, right triangle, side, 
indeterminate measurement of length. 
Particularization: these concepts are 
particularized to the case of the figures 
given. 
The figures refer to square and triangle 



Godino, Giacomone, Blanco, Wilhelmi, & Contreras 

 

  

generics. The lengths are generic. 

2. The quadrilaterals formed by the 
outer segments of the figures A and B 
are congruent squares because the 
sides are of equal length, (a + b). 

Proposition: the two exterior squares are 
congruent. 
Argumentation: because the sides of the 
squares have the same length. This is (a+b). 
The proposition is general; it is valid for the 
“examples” (figures) and for any “type”. 
This is an essential hypothesis in the 
explanatory process. 

...  
8. Then, the square's area of the 
hypotenuse is equal to the sum of the 
squares areas of the other two sides: c2  

= a2 + b2. 

Proposition: thesis (Pythagorean theorem) 
Justification: steps 1 to 7. It is 
geometrically interpreted (comparison of 
areas). It is also interpreted in arithmetic / 
algebraic terms (numerical relationships). 

Table 1: Configuration of objects and meanings 
Our analysis agrees with and supports Sherry´s position about the use of diagrams in 
mathematics work: rather than building an accurate diagram, what matters is the 
mathematical knowledge involved, which is not visible anywhere; it is not in the 
diagrams themselves. In the case of using dynamic software, it is essential to progress 
from moments of illustration (where objects can be manipulated with great precision) 
to moments of demonstration (where objects are not essential, rather the construction 
process of diagrams). This way, features of specific examples can progress towards 
the corresponding structural type. In general, the diagram supports or makes possible 
the necessary process of particularization of the general rule; it makes the conceptual 
object intervene in order to participate in a practice from which another new 
conceptual object will emerge (in our example, Pythagorean theorem). 

FINAL CONSIDERATIONS 
The function that we attribute to the diagrams helps to surpass ingenuous empiricist 
positions about the use of manipulatives and visualizations in the processes of 
mathematics teaching and learning: there is always a cohort of intervening non 
material objects which are essential to solve these situations accompanying the 
necessary materializations that intervene in the situations-problems and the 
corresponding mathematics practices. However, this layer of material objects should 
not prevent seeing the layer of immaterial objects that really make up the conceptual 
system of institutional mathematics. Both layers are interwoven and to a certain 
extent are inseparable. Mathematics teacher should have knowledge, understanding 
and competence in order to discriminate the different types of objects that intervene 
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in school mathematics practice, based on the use of different systems of 
representations and being aware of the synergic relations between the same. 
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