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CURRICULAR APPROACHES TO CONNECTING 

SUBTRACTION TO ADDITION AND FOSTERING 

FLUENCY WITH BASIC DIFFERENCES IN GRADE 1 

Arthur J. Baroody 
Six widely used US Grade 1 curricula do not adequately address the follow-
ing three developmental prerequisites identified by a proposed learning tra-
jectory for the meaningful learning of the subtraction-as-addition strategy 
(e.g., for 13 – 8 think “what + 8 = 13?”): (a) reverse operations (adding 8 
is undone by subtracting 8); (b) common part-whole relations (5 + 8 and 13 
– 8 share the same whole 13 and parts 5 and 8); and (c) the complement 
principle in terms of part-whole relations (if parts 5 and 8 make the whole 
13, then subtracting one part from the whole leaves the other part).  

Keywords: Fact fluency; Learning trajectories; Part-whole relations; Primary-grade 
mathematics curricula; Subtraction-as-addition strategy 

Aproximaciones curriculares para conectar la sustracción con la adición y 
promover la fluidez con las diferencias básicas en primer curso de educa-
ción primaria 
Seis currículos ampliamente usados en Estados Unidos para primero de 
primaria no tratan adecuadamente tres prerrequisitos identificados por una 
trayectoria de aprendizaje propuesta para el aprendizaje significativo de la 
estrategia de sustracción como adición (ejemplo, para 13 – 8 piensa “¿qué 
+ 8 = 13?”): (a) operaciones inversas (sumar 8 se deshace restando 8); (b) 
relaciones parte-todo comunes (5 + 8 y 13 – 8 comparten el mismo todo 13 
y las partes 5 y 8) y (c) principio de complemento en relaciones parte-todo 
(si 5 y 8 dan el todo 13, al restar una parte al todo se obtiene la otra parte). 

Términos clave: Currículos de matemáticas de primero de educación primaria; Estra-
tegia de la sustracción como suma; Fluidez informativa; Relaciones parte-todo; Tra-
yectorias de aprendizaje 
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Two key primary-level goals of the “Common Core State Standards” (Council of 
Chief State School Officers [CCSSO], 2010) are: (a) connecting subtraction to addi-
tion, and (b) achieving fluency with basic subtraction combinations. A hypothetical 
learning trajectory (HLT) based on current theory and empirical evidence is pro-
posed for achieving these goals. The proposed HLT raises issues regarding the 
make-up of primary-level mathematics curricula and the timing of addition and sub-
traction instruction.  

KEY PRIMARY GOALS 
The Common Core State Standards (CCSSO, 2010) specify as Goal 1.OA.4 (Grade 
1, operations and algebraic thinking domain, Goal 4): “Understand subtraction as an 
unknown-addend problem. For example, subtract 10 – 8 by finding the number that 
makes 10 when added to 8” (p. 15). The process of using the known sum of an addi-
tion combination to deduce the unknown difference of a related subtraction combi-
nation will hereafter be called the subtraction-as-addition strategy. Goal 1.OA.6 
stipulates that “using the relationship between addition and subtraction (e.g., know-
ing that , one knows 12 – 8 = 4)” (p. 15). Common Core Goals 1.OA.4 
and 1.OA.6 can facilitate Goal 2.OA.2: “Fluently add and subtract within 20 using 
mental strategies” (p. 19) [such as the subtraction-as-addition strategy].  

Fostering relational learning and the learning of reasoning strategies are general-
ly viewed as important to helping students achieve fluency with basic combinations. 
The meaningful memorization of a basic combination or a family of combinations 
typically involves three overlapping phases (Baroody, 1985; Steinberg, 1985; Ver-
schaffel, Greer, & De Corte, 2007). In Phase 1, children use counting strategies to 
determine an answer. In Phase 2, they use the patterns and relations discovered in 
Phase 1 to invent reasoning strategies, which they apply in a deliberate manner—
consciously and relatively slowly. In Phase 3, children achieve fluent retrieval—that 
is, they can efficiently, appropriately, and adaptively produce sums and differences 
from a memory network via automatic reasoning processes or fact recall. Phase 2 
can serve as a bridge between the relatively inefficient counting strategies of Phase 1 
and the fluent retrieval of Phase 3 (CCSSO, 2010; National Council of Teachers of 
Mathematics, 2000; National Mathematics Advisory Panel, 2008; National Research 
Council, 2001; Rathmell, 1978; Sarama & Clements, 2009; Thompson, 1997; 
Thornton, 1990; Thornton & Toohey, 1985).  

8 + 4 = 12
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HLT FOR THE SUBTRACTION-AS-ADDITION STRATEGY 
In this section, a 10-step HLT for fostering Phases 2 and 3 with the subtraction-as-
addition strategy is described. The premise of the HLT is that fostering the meaning-
ful learning of the strategy (Step 9) and its fluency (Step 10) depends on construct-
ing a deep (richly interconnected) understanding of the relations between addition 
and subtraction—what Piaget (1965) called additive composition. The HLT, deline-
ated below and summarized in Figure 1, is based on a rational task analysis (theory, 
research, and logic). 
 

Figure 1. HLT for the meaningful development of the subtraction-as-addition reaso-
ning (subtraction) strategy1 

                                                
1 All un-shaded cells are conceptual knowledge. The orange-shaded Cell 2 is an experience that can 
lead to a concept. The blue-shaded cell 9 is conscious procedural knowledge. The green-shaded cell 
10 is compiled integrated conceptual procedural knowledge of the complement principle and sub-
traction strategy.  
a A general undoing concept can evolve into formal and explicit knowledge of the inverse principle, 
which includes the ability to summarize the principle algebraically as a + b – b = a or a – b + b = a. 
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Step 1: Informal Knowledge of Addition and Subtraction as Changing an 
Initial Collection  
Children informally recognize that addition of items makes an initial collection larg-
er and taking away makes an initial collection smaller, even before they develop 
counting-based strategies (Huttenlocher, Jordan, & Levine, 1994; Jordan, Hut-
tenlocher, & Levine, 1992, 1994). Although children’s initial informal change con-
cepts of addition and subtraction involve viewing these operations as unrelated, they 
provide a direct basis for Steps 2 and 5 and an indirect basis for other succeeding 
steps. 

Step 2: Empirical Inversion  
Empirical inversion involves adding items to an original collection and then sub-
tracting the same amount from the result to restore the original collection 
—without expecting that the final outcome will be the original collection. For ex-
ample, empirical inversion would entail adding 2 item to the initial collection of 3 to 
get 5 items and then—because the final outcome cannot be foreseen—taking away 2 
items from the 5 to arrive again at 3 items. Some children may first experiment with 
empirical inversion with formal symbols instead of with objects. For 3 + 2 – 2, a 
child might add  first to get the sum 5, then—unable to anticipate the out-
come—compute the difference of 5 – 2. Alternatively, children may use a computa-
tional shortcut for symbolic inversion problem such as the associative strategy: Op-
erating from right to left and successively applying subtractive identity (as any num-
ber minus itself is zero, 2 – 2 = 0) and then additive-identity (as any number plus 
zero is itself, 3 + 0 = 3 (Baroody & Lai, 2007; Klein & Bisanz, 2000). Although 
children engage in empirical inversion because they view addition and subtraction as 
unrelated operations, restoring an original amount or number via this process, espe-
cially with small subitizeable collections or small and highly familiar numbers, can 
serve as the first step toward viewing these operations as interdependent (i.e., Step 
3).  

Step 3: Undoing Concept  
By reflecting on experiences with empirical inversion (either with concrete objects, 
mental images, or symbolic numbers), children may induce or discover an informal 
undoing concept—the idea that adding and then subtracting the same (small) amount 
or the same (familiar) number (or vice versa) undo each other and thus restores the 
starting amount/number. This concept enables children to immediately predict the 
outcome (without actual calculations) of adding a few objects (a familiar number) to 
an initial collection (number) and then subtracting the same amount (number) or 
vice versa. The informal undoing concept may only be implicit in nature and applied 
in a limited fashion—initially to adding and then subtracting one item and then to 

3+ 2
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somewhat larger numbers. In time, the concept is generalized to larger collections 
and symbolic numbers—a development that permits the logical recognition that add-
ing and then subtracting the same symbolic number (or vice versa) cancel each other 
(e.g., immediately recognizing that 5 + 3 – 3 is 5 without actual calculations). A 
generalized undoing concept is sometimes called inversion or the inverse principle. 
As a result of formal instruction, children learn that the inverse principle can be al-
gebraically represented as a + b – b = a or a – b + b = a. More germane to the pre-
sent topic, the undoing concept is hypothesized to directly support Step 4 and indi-
rectly support Steps 6 and 8.  

Step 4: Shared-Numbers Concept  
Further reflection on experiences with empirical inversion, involving small collec-
tions or familiar numbers especially, may lead to an expansion of the undoing con-
cept. Specifically, whereas the undoing concept is primarily concerned with two el-
ements (the starting amount/number and the amount/number involved in the do-
ing/undoing process), the shared number concept entails the explicit insight that all 
elements in the undoing or subtraction process (not merely the starting and end 
amount) have corresponding elements in the doing or addition process. For example, 
for  and 8 – 3 = 5, the amount added and taken away are both 3, the start-
ing point of adding and the end point of subtracting are both 5, and the outcome of 
adding  corresponds to the starting point for the undoing process (8). This ex-
pansion of the undoing concept to include all three numbers in related sums and dif-
ferences and additive commutativity (the order of adding numbers does not affect 
the outcome) results in the recognition of that there are families of number combina-
tions—a shared numbers concept (e.g., 5 + 3 = 8, 3 + 5 = 8, 8 – 3 = 5, 
and 8 – 5 = 3 are members of the same addition-subtraction family because these 
combinations share the same triad of numbers: 3, 5, and 8). A number of curricula 
underscore the shared number concept with the visual analogy of the fact triangle 
(see Figure 2). The elaboration of the shared numbers concept (Step 4) with an un-
derstanding of part-whole relations (Step 5)—described next—results in a shared-
parts-whole concept (Step 6). 

5 + 3 = 8

5 + 3
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Figure 2. Fact triangles and fact rectangles 
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Step 5: Basic Part-Whole Relations  
Children gradually supplement their informal and active view of addition and sub-
traction (i.e., a physical action that changes an initial collection by making it larger 
or smaller) with the formal (passive) meaning of these operations in terms of parts 
and whole. For example, instead of informally viewing 5 + 3 as five and three more 
and as different from 3 + 5 (three and five more) and expecting different outcomes 
for 5 + 3 and 3 + 5 (Baroody, Wilkins, & Tiilikainen, 2003), they learn that adding 
the parts 5 and 3 or parts 3 and 5 result in the same whole 8, which is larger than 
either part. With subtraction, children may realize that the whole 8 take away the 
part 3 leaves the other part 5, which must be smaller than the whole. A more formal 
understanding of addition and subtraction in terms of part-whole relations is an im-
portant conceptual leap that some scholars have hypothesized permits understanding 
missing-addend situations (Briars & Larkin, 1984; Canobi, 2005; Piaget, 1965; Ri-
ley, Greeno, & Heller, 1983; Sophian & Vong, 1995; Sophian & McCorgray, 
1994)—without an understanding of the subtraction-as-addition strategy is not pos-
sible. Step 5 is hypothesized to be critical for transforming Step 4 into Step 6. 

Step 6: Shared-Parts-and-Whole Concept  
The integration of part-whole knowledge (Step 5) and shared-numbers concept (Step 
4) creates the explicit and even more detailed knowledge of the shared-number con-
cept, namely the shared parts-and-whole concept (Step 6). Students realize, for ex-
ample, 5 + 3 = 8, 3 + 5 = 8, 8 – 3 = 5, and 8 – 5 = 3 all share the same parts 3 and 5 
and the same whole 8. Step 6 and next step pave the way for inducing Step 8. 

Step 7: Fluency with Basic Sums  
Fluency with basic sums (Step 7) may serve to foster the learning of the addition-as-
subtraction strategy (Step 9) and fluency with basic subtraction combinations (Step 
10) in two ways. One is that fluency with basic sums makes it more likely children 
will discover the complement principle (Step 8). Research indicates that children 
appear to discover and use the complement principle (use the subtraction-as-addition 
shortcut) first in cases where sums are well known such as the doubles (Baroody, 
Ginsburg, & Waxman, 1983). Discovery of the complement relation between addi-
tion and subtraction without such prerequisite knowledge would seem less likely. A 
second reason is that, logically, fluency with basic sums also serves to foster the flu-
ency with the addition-as-subtraction strategy, which involves retrieving the related 
addition combination (Step 10; Baroody, 1999; Campbell, 2008; Peters, De Smedt, 
Torbeyns, Ghesquire, & Verschaffel, 2010; Thornton, 1990). Research has consist-
ently shown that fluency with developmental prerequisites is necessary to achieve 
fluency with a reasoning strategy, including the subtraction-as-addition strategy 
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(Baroody, Eiland, Purpura, & Reid, 2012, 2013; Baroody, Purpura, Eiland, & Reid, 
2014; Baroody, Purpura, Eiland, Reid, & Paliwal, in press; Eiland, 2014). 

Step 8: Complement Principle  
A logical consequence of integrating the undoing concept (Step 3) and shared-parts-
whole concept (Step 6) is the complement principle: If Part a + Part b = Whole c, 
then the Whole c – Part a = Part b (or the Whole c – Part b = Part a). For example, if 
the parts 5 and 3 create the whole 8, then logically taking away the part 3 from the 
whole 8 should result in leaving the other part 5 (or taking away the part 5 from the 
whole 8 should result in leaving the other part 3). Step 8 (the complement principle) 
serves as the conceptual rationale for the addition-as-subtraction strategy (Step 9). 

Step 9: Deliberately Executed Subtraction-as-Addition Strategy 
The complement principle provides an explanation for why the subtraction-as-
addition strategy works. As 8 – 3 =  ?  can be viewed as the whole 8 take away the 
part 3 and  ?  can be thought of as the unknown remaining part, then solving for the 
unknown is simply a matter of determining what part must be added to the part 3 to 
make the whole 8. As with other reasoning strategies, children initially must con-
sciously or deliberately use the subtraction-as-addition strategy (Step 9). Step 9—
Phase 2 in the meaningful learning of subtraction combinations—provides children 
with a more efficient means of determining differences than Phase 1 counting-based 
strategies, which can be difficult to execute (see, e.g., Baroody, 1984, or Baroody et 
al., in press). Moreover, Step 9 serves as a basis for Step 10—Phase 3 in the mean-
ingful learning of subtraction combinations: the automatic or fluent retrieval from a 
memory network composed of facts, relations, and reasoning processes. 

Step 10: Automatically Executed Subtraction  
Reasoning strategies can aid in the meaningful memorization of basic subtraction 
combinations and thus fluent retrieval in two ways. One is that, as children achieve 
fluency with basic sums (the developmental prerequisite for fluency with subtrac-
tion-as-addition strategy) and practice implementing the subtraction-as-addition 
strategy itself, the strategy becomes automatic and can be applied efficiently without 
conscious oversight (Baroody et al., 2014; Baroody & Varma, 2006; Eiland, 2014; 
cf. Fayol & Thevenot, 2012). A second way is that they can provide an organizing 
framework for learning and storing both practiced and unpracticed combinations 
(Canobi, Reeve, & Patterson, 1998; Dowker, 2009; Rathmell, 1978; Sarama & 
Clements, 2009). Specifically, meaningful instruction, such as that outlined by the 
proposed HLT, may prompt a reorganization of retrieval system in which sums and 
differences are represented as an integrated mental fact triangle (Baroody et al., in 
press).  
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ISSUES RAISED BY THE HLT REGARDING THE MAKEUP OF 

PRIMARY MATHEMATICS CURRICULA 
If valid, the proposed HLT has clear implications regarding the instructional ele-
ments needed for the meaningful learning of the subtraction-as-addition strategy.  

Does Research Support Complement Problem Mediation?  
Theoretically, practice with complementary sums (Step 7), applying the complement 
principle (Step 8), and deliberately using the subtraction-as-addition strategy (Step 
9) should produce the automatic use of the strategy (Step 10) and complement prob-
lem mediation—greater long-term improvement in the fluency of related, but un-
practiced, subtraction combinations (Baroody, 1999; Campbell, 2008; Peters, De 
Smedt, Torbeyns, Ghesquire, & Verschaffel, 2010). Such transfer is indicative of a 
general and meaningful strategy. Although a number of intervention studies have 
failed to produce transfer from practiced sums to related, but unpracticed, differ-
ences (Baroody, 1999; Walker, Bajic, Kwak, & Rickard, 2014; Walker, Mickes, Ba-
jic, Nailon, & Rickard, 2013), these efforts may not have been particularly meaning-
ful (Baroody et al., in press). Specifically, Baroody’s (1999) intervention simply 
entailed practicing related sums and reiterating the subtraction-as-addition strategy 
without it conceptual rationale (involved Steps 7 and 9 in the HLT exclusively). One 
training condition in the Walker et al. (2013) simply involved drill of related sums 
(HLT Step 7) only, and the second condition only involved translating complete fact 
triangles into addition and subtraction equations (i.e., creating addition and subtrac-
tion family; HLT Step 4). Instruction that focuses narrowly on one or few steps of 
the HLT is not likely to be effective. Recent research revealed that a computer-
assisted intervention involving all the elements of the HLT resulted in the transfer of 
fluency to unpracticed subtraction combinations (Baroody et al., in press). 

Which Step or Combination of Steps is Most Pedagogically Useful?  
Although previous intervention with all the elements of the HLT achieved comple-
ment mediation (Baroody et al., in press), it is unclear whether all were needed and, 
if not, which step or combination of steps is the most efficacious in promoting the 
learning of the subtraction-as-addition strategy and achieving fluency with basic 
differences, including transfer to unpracticed subtraction combinations.  

Theoretically, empirical inversion and the undoing concept or the inversion 
principle would seem particularly important to include in a primary-level curricu-
lum. Baroody, Torbeyns, and Verschaffel’s (2009) conjectured that empirical inver-
sion underlies the development of complement and inversion principles. Specifically, 
empirical inversion (Step 2) should be a helpful, if not a necessary, element of a cur-
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riculum, because it directly supports the discovery of the undoing concept (Step 3) 
and the shared number concepts (Step 4)—both of which, at least indirectly, support 
the construction of a meaningful complement principle (Step 8). The localized undo-
ing concept, but not the shared number concept, is also hypothesized to be the basis 
for an explicit and general inverse principle.  

Parenthetically, it is unclear whether a local and implicit undoing concept or a 
general and explicit undoing concept (inverse principle) is needed to facilitate or 
construct an understanding of the complement principle or the learning the subtrac-
tion-as-addition strategy in a meaningful fashion (Step 9). Although the local undo-
ing concept, which includes the key ideas that addition and subtraction are related 
operation and that one can undo (at least with small or familiar quantities/numbers), 
would seem sufficient as a developmental prerequisite for Steps 4, 6, 8, and 9, a 
more general and explicit inverse principle may be helpful or even needed. The issue 
would be moot if research shows that the general inverse principle develops before 
Steps 4, 6, 8, and 9.  

Some evidence indicates that the inverse principle does develop before the com-
plement principle (Step 8) or the subtraction-as-addition strategy (Step 9). Canobi 
(2004) found children who understood the inverse principle typically also knew the 
complement principle. Nunes, Bryant, Hallett, Bell, and Evans (2009) found direct 
causal evidence that inverse knowledge can facilitate learning of the complement 
principle—that the inverse principle is the developmental prerequisite or a necessary 
condition for the complement principle and the addition-as-subtraction strategy. 
Specifically, an intervention designed to foster the inverse relation resulted in im-
proving participants’ performance on complement problems also.  

However, Canobi (2004) and Nunes et al.’s (2009) evidence does not clearly in-
dicate whether the more robust knowledge of the inverse principle (Step 3A) should 
be added to the HLT. Canobi’s evidence does not address whether inverse 
knowledge develops before Steps 4 and 6 or the direction of causation. Moreover, 
the helpful aspect of Nunes et al.’s training may have been the opportunity to engage 
in empirical inversion and constructing an undoing concept. This learning, in turn, 
may have benefitted enough participants to produce significant improvement with 
the complement principle/subtraction-as-addition strategy and the inverse principle. 
Clearly, further research is needed to examine the links among empirical inversion, 
the informal undoing concept, the more formal and general inverse principle, the 
complement principle, and the subtraction-as-addition strategy.  

Is an Analysis of all the Developmental Separate Steps Needed or Useful?  
Van den Heuvel-Panhuizen and Treffers (2009) implicitly questioned the need to 
distinguish between the complement principle (which they represent as                     
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a – b = ? → b + ? = a principle) and the inversion principle. Specifically, they ar-
gued that such a distinction is meaningless from a mathematical, psychological, 
and/or educational point of view. However, empirical inversion (a + b ⇒ c and        
c – b ⇒ a; where ⇒ indicates where the outcome cannot be predicted but must be 
determined by computing), the inverse principle (a + b – b = a or a – b + b = a), the 
complement principle (if  a + b =c, then c – a = b or c – b = a), and the subtraction-
as-addition strategy (a – b = ? → b + ? = a) each have a different algebraic repre-
sentation. More importantly, there are four reasons why it may be psychological or 
educational useful to view these constructs—including the undoing concept or in-
verse principle and the complement principle—as separate steps, especially when 
designing early childhood mathematics curricula.  

♦ For both research and pedagogical purposes, it can be useful to distinguish 
between procedural knowledge and conceptual knowledge (the motivation or 
rationale for a procedure). In the present analysis, re-representing a – b = ? as 
b + ? = a is treated as procedural knowledge (the subtraction-as-addition 
strategy or Step 9), not as conceptual knowledge as in previous analyses by 
Van den Heuvel-Panhuizen and Treffers’ (2009) and others (e.g., Baroody, 
Torbeyens, et al., 2009). Put differently, the subtraction-as-addition strategy, 
which can be learned either by rote or meaningfully, is differentiated from its 
distal conceptual rationale (e.g., the undoing principle, the shared parts and 
whole concept) and its immediate conceptual rationale (the complement prin-
ciple).  

♦ Children appear to learn a rudimentary form of the undoing concept well be-
fore formal instruction begins, the general inverse principle later, and the rel-
atively advanced complement principle even later (Baroody et al., 1983; 
Baroody & Lai, 2007; Baroody, Lai, Li, & Baroody, 2009). For example, us-
ing the magic task Starkey and Gelman (1982) found that 3-year olds could 
differentiate between changes in appearances (the re-arrangement of a small 
collection) and numerical transformation (e.g., the addition or subtraction of 
an item from a small collection) and could indicate how to undo numerical 
transformation of plus or minus one but not those involving larger numbers. 
Although empirical inversion cannot be discounted, these results are con-
sistent with children constructing an initial (albeit a highly local) understand-
ing of the undoing concept well before formal schooling. As noted previously, 
Canobi (2004) and Nunes et al.’s (2009) evidence is consistent that the de-
velopment of the inverse principle prior to that of the complement principle. 
In contrast, research indicates that the complement relation and the subtrac-
tion-as-addition strategy are not salient to young children, even those in the 
primary grades (Canobi, 2009; Putnam, deBettencourt, & Leinhardt, 1990). 
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For example, Baroody et al. (1983) found that Grade 1 to 3 pupils had but a 
local knowledge of the complement principle involving only the well-learned 
doubles.  

♦ Whereas empirical inversion and the complement principle (if Part a + Part b 
= the Whole c, then the Whole c – Part a = Part b or the Whole c – Part b = 
Part a) involve three numbers (a, b, and c) and support or are supported by 
the shared numbers and shared parts and whole concepts, the same is not true 
of the formal inverse principle (a + b – b = a or a – b + b = a), which does 
not involve the third element c. So the inverse principle may not be psycho-
logically equivalent to the shared numbers concept, the shared parts and 
whole concepts, and the complement principle.  

♦ Explicitly distinguishing among empirical inversion, the inverse principle, the 
complement principle, and the subtraction-as-addition strategy may better en-
sure that all of these steps in the HLT are included school curricula and done 
so in the appropriate developmental order—something that, as discussed in 
the following subsections, is currently not done.  

What Components of the HLT do US Curricula Have?  
One supplemental and six mainstream textbooks were analyzed for their consistency 
with HLT (see Table 1).  

Table 1 
Approaches to Teaching Subtraction by Grade 1 Curriculum 

Component 

Relevant 
Aspect(s) of the 

HLT  
(Step in Figure 1) 

Curriculum 

T1 T2 T3 T4 T5 T6 T7 

1. Reverse operations  

(e.g., the effects of adding 8 
can be reversed by subtracting 
8 or vice versa) 

Empirical inversion     
(Step 2) and 

undoing/inversion 
concept (Step 3) 

é? - é? ü ü ü ü 

2. Fact families 

(e.g., 5 + 8, 8 + 5, 13 – 8, and 
13 – 5 all share the same three 
numbers: 5, 8, and 13) 

Shared-numbers 
concept (Step 4) 

- O  é? O  O  é? O  
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Table 1 
Approaches to Teaching Subtraction by Grade 1 Curriculum 

Component 

Relevant 
Aspect(s) of the 

HLT  
(Step in Figure 1) 

Curriculum 

T1 T2 T3 T4 T5 T6 T7 

3. Common part-whole 
relations 

(e.g., fact triangle with 13 at 
the apex explicitly identified 
as the whole and 5 and 8 at 
vertices of the base clearly 
identified as the parts) 

Shared-parts-and-
whole concept 

(Step 6) 

- ✔ ✔ ✔ ✔ - ✔ 

4. Rationale for the 
subtraction as-addition 
strategy in terms of shared 
part-whole relations 

(e.g., If adding the parts 5 and 
8 make the whole 13, then 
taking the part 8 from the 
whole 13 leaves the other part 
5)  

Complement 
principle (Step 8) 

- - O  O  - - O  

5. An unknown subtraction 
combination can be solved by 
using a related known 
addition combination 

(e.g., Find  
13 – 8 = what? by thinking 
what + 8 = 13?) 

Deliberate (Phase 
2) subtraction-as-
addition strategy 

(Step 9) 

 

- O  O  O  ✔ ✔ ✔ 

Note. T1=Bridges in mathematics (Math Learning Center, 2009); T2= Everyday Mathematics 
(UCSMP, 2005); T3=Go Math! (Houghton Mifflin Harcourt, 2015); T4=Math Connects (Macmil-
lan/Mc-Graw Hill, 2009); T5= Math Expressions (Fuson, 2006), T6=Saxon Math (Larson, 2008), 
T7=Scott Foresman Mathematics (2005). Bridges in Mathematics is a supplemental program; the 
other six curricula listed are mainstream or complete programs. A (é )=clearly a substantive 
(prevalent, explicit, and systematic) characteristic that builds on prior components in the trajecto-
ry; a cross check (O )=substantive treatment that does not capitalize on prior components in the 
trajectory; a single check (✔)=an infrequent, implicit, or non-systematic characteristic;and a dash 
(-)=not characteristic; a question mark (?)=indicates a rating with qualifications or reservations.  

Although Step 1 can be assumed to develop before Grade 1, essentially all Grade 1 
curricula provide at least a cursory review of an informal change view of addition 
and subtraction. This foundational step is not discussed further. The curricula were 



 
A. J. Baroody  174 

PNA 10(3)  
 

analyzed in terms of five components that include one step or two closely related 
steps delineated in the HLT. 

Component 1 (Reverse Operations): Step 2 (Empirical Inversion) and Step 3 
(Undoing/Inverse  Concept) 
Only two of the seven curricula analyzed use reverse operations as basis for high-
lighting that addition and subtraction are related operations on a direct and sustained 
basis and earn a star in Table 1. The supplemental Bridges in Mathematics (Math 
Learning Center, 2009) program introduces both operations as hopping along a 
number line. An addition item such as  = 8, which is represented as hopping to 
the right 5 and then 3; is followed by the its related subtraction items such as  
8 – 3 = 5, which is represented as hopping from 8 in the opposite direction (to the 
left) three times. Two qualifications apply to the star for Bridges in Mathematics. 
One is that empirical inversion and the undoing concept are introduced exclusively 
using the relatively abstract model of the number line and symbolic arithmetic (in-
stead of initially with more concrete models) to help children connect their informal 
knowledge of inversion (the undoing principle) with symbolic addition and subtrac-
tion (Ernest, 1985; Fuson, 2009; National Research Council, 2001; Saxe et al., 
2010). Another is that the instruction is relatively implicit, which future research 
may or may not reveal is sufficient for children to construct the undoing concept or 
connect to formal arithmetic.  

Similarly, the mainstream curriculum Go Math! (Houghton Mifflin Harcourt, 
2015) entails a concerted effort to involve children, if only implicitly, with empirical 
inversion, (re-)discovering the undoing concept, and connecting the concept to sym-
bolic representations. For example, on p. 257E (Professional Development: Teach-
ing for Depth), the teacher’s edition includes the note that children can conceptual-
ize the relation between addition and subtraction by using differently colored con-
necting cubes. Teachers are encouraged to have children describe their connecting-
cube models (e.g., “I made a train with 5 red cubes and 4 blue cubes to show 

. I break off 4 blue cubes to show 9 – 4 = 5”). Children are given ample 
opportunities to (implicitly) notice the undoing concept concretely via modeling the 
addition of cubes to a starting number of cubes and then the subtraction the same of 
cubes from the total, semi-concretely via pictures of such models, and symbolically 
by solving sequentially presented addition items and related subtraction problems. 
For example, such activities are introduced in Lesson 5.2 by asking children to mod-
el, solve, and symbolically represent problems involving  and 8 – 1 and work-
ing through the model and pictures of the model and symbolic representations to 
show how knowing one addition fact, such as , can help find the related 
facts 9 – 5 = 4,  (via additive commutativity), and 9 – 4 = 5 (p. 261). How-

5 + 3

5 + 4 = 9

7 +1

4 + 5 = 9
5 + 4 = 9
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ever, the undoing concept is not explicitly highlighted by noting, for instance, that 
adding 4 to 5 can be undone or reversed by subtracting 4 from the sum of 5 and 4. 
Moreover, inconsistent with the undoing concept, sometimes the elements of the 
related addition and subtraction equations cancelling each other are in different posi-
tions. For example, on p. 266 and elsewhere, an addition fact such as , not 
7 + 4 = 11, is related to 11 – 4 = 7. Future research needs to gauge whether con-
sistent pairing of inverse pairs (4 + 7 = 11 with 11 – 7 = 4 and 7 + 4 = 11 with  
11 – 4 = 7 is more effective (at least initially) than mixing such pairs (e.g., relating   
4 + 7 = 11 with 11 – 7 = 4 or 11 – 4 = 7 and 7 + 4 = 11 with 11 – 4 = 7 or 11 – 7 = 4. 

Four other mainstream curricula briefly touch on empirical inversion or the un-
doing concept. Exercises in Math Connects (Macmillan/McGraw Hill, 2009) include 
showing two collections (e.g., 6 bees in a circle and 3 bees in a line) and asking a 
child to write one addition sentence (6 + 3 = 9 or 3 + 6 = 9) and one subtraction sen-
tence (9 – 3 or 9 – 6 = 9). This might implicitly involve empirical inversion if a child 
thought: “6 and 3 more is 9, and 9 take away the 3 is, oh, 6 again.” For Unit 2 in 
Math Expressions (Fuson, 2006), a teacher is encouraged to show that 8 – 3 = 5 and 
an iconic representation (ooo|ooooo) are the “reverse story of 5 + 3 = 8.” However, 
this relation is not shown in the textbook or a (seatwork or homework) worksheet, 
with one exception (an exercise for students “on [grade] level” in the “Extending the 
Lesson—Differentiated Instruction/Activities for Individualizing” section). Saxon 
Math (Larson, 2006) only briefly engages pupils in empirical inversion. One en-
richment worksheet in Scott Foresman Mathematics (2005) illustrate, for example, 1 
green interlocking cube added to 4 white cubes with equation 4 +  1  =5 and the 
statement, “Add the green cube. 4 and 1 more is 5.” Immediately below this is the 
equation 5 –  1  = 4 and the statement, “Take away the green cube. 5 take away 1 
more is 4.” Unfortunately, as an enrichment activity, it may not be used in most 
classes. 

Component 2 (Fact Families): Step 4 (Shared Numbers Concept)  
The idea that addition and subtraction complements or addition-subtraction fact fam-
ilies share common numbers—is characteristic of all six mainstream curricula sur-
veyed. For example, Math Connects (Macmillan/McGraw Hill, 2009) defines related 
addition and subtraction facts as having the same numbers (for example, 1 + 6 = 7 
and 7 – 6 = 1 or 3 + 7 = 10 and 10 – 3 = 7). Unit 6.3 of Everyday Mathematics (Uni-
versity of Chicago School Mathematics Project, 2005) goes further by introducing 
addition-subtraction families as combinations with same number triad (for example, 
3 + 5 = 8, 5 + 3 = 8, 8 – 3 = 5, and 8 – 5 = 3 all share the same three numbers), find-
ing both sums and differences using dominoes (fact triples: 3, 5, 8), and looking for 
the equivalent names for sums and differences using the same Addition/Subtraction 

4 + 7 = 11
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Fact Table. Unit 6.4 does the same sums using fact triangles (see Figure 2). Unit 6.5 
uses Addition/Subtraction Fact Table to determine differences and fact triangles to 
generate addition-subtraction fact families. 

Reverse operations (and additive commutativity) provide a mechanism for gen-
erating fact families that share the same three numbers. Two curricula earn a star in 
Table 1 because they build on reverse operations (empirical inversion and the undo-
ing concept) to introduce the shared numbers concept. Page 257E (Professional De-
velopment: Teaching for Depth) of the teacher’s edition in Go Math! (Houghton 
Mifflin Harcourt, 2015) includes the note that “related addition and subtraction facts 
show the inverse relationship of addition and subtraction for a group of numbers” 
and examples of fact families, such as, 6 + 7 = 13, 13 – 6 = 7, 7 + 6 = 13, and  
13 – 7 = 6. The work page for re-teaching Lesson 5.2 involves showing the numbers 
6, 4, and 10; pictorial models of 6 + 4 = 10, 10 – 4 = 6, 4 + 6 = 10, and 10 – 6 = 4, 
and the advice “THINK: Each number is in all four facts” (p. 261). The exercise in-
volves four sets of three of numbers. In Lesson 5.3, students are encouraged to at 
least implicitly use empirical inversion/the undoing concept to construct (partial) 
addition-subtraction families by asking pupils to use a picture of 3 yellow leaves and 
9 green leaves and 3 yellow leaves and 9 green leaves crossed out to write two facts 
(3 + 9 = 12 and 12 – 9 = 3). The reminder on page 268 is: “These are related facts. If 
you know one of these facts, you also know the other fact.” Lesson 5.3 also includes 
an exercise that involves determining the unknown of pairs of symbolic addition and 
subtraction equations and circling related facts. For example, 6 + 4 = 10 and  
10 – 4 = 6 would be circled but 6 + 3 = 9 and 12 – 3 = 9 would not be (though a 
strong argument could be made that 6 + 3 and 12 – 3 are both other names for “9” 
and, thus, are related). Lesson 5.3 further includes an interesting open-ended prob-
lem in which students are asked to use the numbers 4 to 9 and 1 to 14 to write relat-
ed addition and subtraction sentences. A number of exercises ask a student to decide 
if two facts are related (e.g., 13 – 8 = 5 and 5 + 8 = 13, yes; 5 + 7 and 7 – 5, no). 

Saxon Math’s (Larson, 2006) star in Table 1 was awarded with reservations, be-
cause the link between reverse operations and the shared numbers concept is mini-
mal and inconsistent. For instance, in Lesson 132, blue and red linking cubes are 
used to model 4 + 1 = 5 and then 5 – 1 = 4, 1 + 4 = 5 and then 5 – 4 = 1 (examples 
of empirical inversion) to introduce the concept of “addition and subtraction fami-
lies” and as a method for learning 9 – 4, 9 – 5, 9 – 3, and 9 – 6. However, although  
7 – 3, 7 – 4, 8 – 3, and 8 – 5 are used in Lesson 134 to introduce addition and sub-
traction families, these families are not related to reverse operations. 
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Component 3 (Common Part-Whole Relations): Step 5 (Part-Whole Relations) and 
Step 6 (Shared Parts and Whole Concept) 
Common part-whole relations serve to deepen further the understanding of addition-
subtraction fact families by underscoring why family members have the same three 
numbers (e.g., 3 + 5 = 8 and 8 – 5 = 3 share the same parts 5 and 3 and the same 
whole 8). This component was not utilized at all in the supplemental curriculum and 
one mainstream curriculum and only inconsistently, implicitly, incompletely, or 
non-systematically in the other five mainstream Grade 1 curricula surveyed. For in-
stance, for Unit 3, Everyday Mathematics (UCSMP, 2005) teachers are instructed: 
“Point out that the domino has a part with 3 dots and a part with 5 dots and that the 
whole domino has 8 dots” (p. 234), and children practice translating various domi-
noes into part-part-whole diagrams. However, this is not continued later (e.g., Unit 
6.2) when the focus is on addition facts and never related to subtraction facts. Indeed, 
there is no mention of “parts” and “wholes” in Unit 6.2. In brief, the models used in 
this unit, such as fact triangles only implicitly represent part-part-whole relations of 
related addition and subtraction combinations. 

Curiously, in Go Math! (Houghton Mifflin Harcourt, 2015), part-whole relations 
are noted only once in Lesson 5.4 to answer the (important) question: “Why can you 
use addition to check subtraction?” (p. 274). The answer is: “You subtract one part 
from the whole. The difference is the other part. When you add the parts, you get the 
same whole” (p. 274). Lesson 5.6 introduces fact triangles in the form of three inter-
connected squares with whole inscribed in the top square and the parts inscribed in 
the two bottom squares. However, no systematic or explicit effort is made to relate 
fact families to part-whole relations (e.g., explicitly teach the shared part-whole con-
cept) or the if-then connection between a known sum and an unknown difference 
(explicitly teach the complement principle in terms of part-whole relations).  

Component 4 (Rationale for the Subtraction-as-Addition Strategy): Step 8 
(Complement Principle)  
As Table 1 shows, the addition-subtraction complement principle is not a compo-
nent in the Grade 1 supplemental curriculum and three of the mainstream curricula 
surveyed. Although the remaining three mainstream curricula surveyed included 
substantial treatment of the complement principle, none earned a star, because they 
failed to capitalize on common part-whole relations. For example, Math Connects 
(Macmillan/McGraw Hill, 2009) includes exercises that suggests, for instance, 
“Think 5 + 9 = ☐, so 14 – 9 = ☐” and circle the addition fact that will help you 
subtract 12 – 9 = ☐). Similarly, Scott Foresman Mathematics (2005) notes: “You 
can use addition to help you subtract” and “think if 5 + 8 = 13, then 13 – 8 = what?” 
(p. 439). Unfortunately, such propositions—barren of part-whole meaning—may not 
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be transparent to many students, particularly those struggling with mathematics. 
That is, statements of the complement principle without reference to common part-
whole relations do not illuminate the logical connection between 5 + 8 = 13 and  
13 – 8 = ? In brief, none of the surveyed curricula provide an explicit and clearly 
meaningful basis for conceptually understanding the complement principle and why 
thinking of an addition combination can help determine the difference of a related 
subtraction combination.  

Component 5 (Exploiting Known Missing-Addend Addition):  Steps 9 and 10 
(Deliberate and Fluent Subtraction-as-Addition Strategy)  
As Table 1 shows, the supplemental curriculum did not have this component and 
three of the mainstream curricula had but brief or indirect treatments of the strategy. 
For example, Saxon Math (Larson, 2006) inconsistently related subtraction to addi-
tion. On one hand, for example, although adding with 1 is practiced immediately 
before subtracting by 1 is introduced in Lesson 44, the two are not related. Similarly, 
the addition facts with sums to 10 are introduced in Lessons 94 and 95. Although 
Lessons 101 and 102 begin with practicing these sums, they are not related to the 
focus of the lesson—subtracting a number from 10. Although Lesson 121, which 
introduces the “Differences of 1 Subtraction Facts,” relates 10 – 9 = 1 to using addi-
tion to check a difference (1 + 9 = 10), add-with-1 combinations are not recom-
mended as vehicle for determining the differences of such subtraction combinations. 
In Lesson 68 adding 2 to an odd or an even number with linking cubes is reviewed 
immediately before subtracting 2 from odd and even numbers is introduced with 
cubes. The former is summarized by the rule that “adding 2 is like saying the next 
add even or odd number” and the later is summarized as “subtracting 2 is like saying 
the even or odd numbers backwards by 2’s.” Although these rules may be useful, 
addition again is not used as a shortcut for determining differences. On the other 
hand, in Lesson 129, unknown subtraction combinations are linked to known addi-
tion combinations. For “subtracting half of a double” such as 14 – 7, 12 – 6, and      
8 – 4, children are asked: “What do you notice about each these problems?” [they 
are the doubles going the other way]…How can we remember these answers? We 
will call these problems the ‘subtracting half of a double facts.’’ Although the text of 
Scott Foresman Mathematics (2005) specifies that “the sum of an addition fact is the 
first number in [a related] subtraction fact” (p. 138), it does not explain that the dif-
ference (missing part) in a subtraction equation is an addend (known part) in a relat-
ed addition equation.  

Three other mainstream Grade 1 curricula surveyed provide explicit instruction 
on the subtraction-as-addition strategy but fail to take advantage of other compo-
nents, such as common part-whole relations, to teach the strategy in a deeply mean-
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ingful manner. Everyday Mathematics (UCSMP, 2005) explicitly introduces the 
subtraction-as-addition strategy in Lesson 6.5 (Using the Addition/Subtraction Facts 
Table to Solve Subtraction Problems): “To find the answer to 15 – 9, ask yourself: 
‘9 plus what number is 15?’” (p. 510). However, an analogous strategy is not explic-
itly recommended when working with other models (fact triples such as 3, 5, 8 rep-
resented by dominoes or fact triangles). A teacher note in Unit 6, specifies (p. 500): 
“For many first graders, it is helpful to think about 8 – 5 = ? as 5 + what number? = 
8. This approach encourages ‘adding up’ to subtract, a strategy that also works well 
with multidigit numbers.” Encouraging thinking of subtraction as addition and using 
a counting-up strategy to solve for the missing addends can be a meaningful and 
useful for step toward, but is not the same as recommending, using known sums as a 
vehicle for shortcutting subtraction computation—for deducing differences. 

Go Math! (Houghton Mifflin Harcourt, 2015) notes on work page 286: “You 
can use an addition fact to find a related subtraction fact.” The solution process is 
illustrated with finding the difference of 10 – 3 using a 10-3-7 fact triangle and the 
hint: “I know that 3 + _ = 10, so 10 – 3 = _.” Simplified fact rectangles were used 
sparingly to represent and solve missing-addend problems (e.g., 4 rabbits in the gar-
den, some more came, now there are 12 rabbits) and missing-subtrahend subtraction 
(e.g., 16 turtles, some swam away, 9 turtles were left on the beach). A simplified 
fact rectangle involves a rectangle divided into two parts the lengths of which were 
proportional to the magnitude of parts (e.g., for 6 + 4, the 6 part of the rectangle is 
50% longer than the 4 part) with a line running the length of the bottom of the rec-
tangle and labeled 10.) Unfortunately, this representation was not used to illustrate 
and solve missing-difference problems or to relate such problems to an addition 
complement (i.e., to teach the complement principle or subtraction-as-addition strat-
egy). Nevertheless, numerous and various reminders, activities, and exercises are 
used throughout Lesson 5 to underscore the subtraction-as-addition strategy. In addi-
tion to the page 286 reference in the previous footnote, on p. 310, students are asked 
model and draw a subtraction word problem that is accompanied by: “What is  
10 – 4? 4 + ☐ = 10. So 10 – 4 = _” and the reminder: “THINK. I can use a related 
addition fact to solve 10 – 4.” Add to Subtract Bingo, for example, involves finding 
an addition fact that helps with a subtraction fact. 

However, as Table 1 illustrates, none of the curricula earned a star by introduc-
ing the subtraction-as-addition strategy meaningful in terms of part-whole relations. 
For example, no curriculum explains: “Solving ‘the whole 13 take away the part 8 
leaves what part’ can be found by ‘thinking what part and the part 8 makes the 
whole 13?’” Furthermore, Go Math! (Houghton Mifflin Harcourt, 2015) misses op-
portunities to build on the undoing principle. Work page 280 of Lesson 5.5 instructs: 
“Use what you know about related facts to find the unknown.” The missing-addend 
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addition equation 8 + ☐ = 11 is illustrated with a train of 8 red interlocking cubes 
and 3 blue cubes. The missing-difference subtraction problem 11 – 8 = ☐ is illustrat-
ed with the “starting amount” 8 red interlocking cubes broken off from the remain-
ing train of 3 blue cubes. Building clearly on the undoing concept would entail using 
☐ + 8 = 11 to solve 11 – 8 = ☐, where 8 is the amount added to the (unknown) start-
ing amount and the amount subtracted from their total. In effect, by not building (ef-
fectively) on Components 1 to 4, current curricula do not provide a clear explanation 
of why a known sum can be used to determine an unknown difference. 

Research and Pedagogical Issues Raised by the Curriculum Analysis 
Hypothesis 1: If the proposed HLT about how a deep and interconnected under-
standing of how addition and subtraction develops is correct, then curricula that in-
clude ALL components should be more efficacious than less complete programs of 
instruction. None of the six mainstream curricula surveyed substantially—directly, 
explicitly, consistently, and systematically—involved all five components hypothe-
sized for the meaningful learning of the subtraction-as-addition strategy. If Hypothe-
sis 1 is corroborated, then five of the six and all six mainstream curricula surveyed 
would need to upgrade their treatment of reverse operations and common part-whole 
relations, respectively.  

Hypothesis 2: If the proposed HLT about how a deep and interconnected under-
standing of how addition and subtraction develops is correct, then curricula that cap-
italize effectively on earlier aspects of the HLT should be more efficacious than less 
well-connected programs of instruction. In particular, should Component 2 (fact 
families) and Component 3 (common part-whole relations) build on Component 1 
(reverse operations)? Should Components 4 (rationale for the subtraction-as-addition 
strategy and 5 (the strategy itself) build on Components 1 (reverse operations) and 3 
(common part-whole relations)? If Hypothesis 2 is supported, then all six main-
stream curricula surveyed would need to be revised to capitalize effectively on the 
reverse operations (Component 1) and part-whole relations (Component 3) in order 
to explain the logic of fact families, the complement principle, and subtraction-as-
addition strategy in clear and meaningful manner. 

Instructional Timing Issues 
Formal subtraction instruction can either follow that of addition or be done simulta-
neously. A number of unresolved questions remain, including those regarding how 
the implementation of the HLT might impact order and vice versa.  

Why is Timing Even an Issue?  
A case can be made for both the sequential/addition-first and simultane-
ous/integrated approach and some (indirect) evidence supports each approach.  
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Traditionally, instruction has been based on a sequential/addition-first approach. 
The conventional wisdom—as embodied by the HLT in Figure 1 and five of the six 
mainstream curricula surveyed—is that fluency with addition combinations should 
be fostered first and that this fluency could serve as a basis for promoting fluency 
with subtraction. James (1958) observed that meaningful and secure memorization 
of new information can be achieved by relating it to what a child already knows (cf. 
Piaget’s, 1964, concept of assimilation). Baroody, Eiland, and Thompson (2009) 
attempted to teach addition and subtraction of 1 simultaneously to at-risk preschool-
ers by relating these operations first to nonverbal tasks, then to word problems, and 
finally to symbolic expressions. Subtraction instruction was suspended, though, be-
cause switching between the operations confused the preschool participants. Moreo-
ver, Baroody et al. (1983) found that primary-grade pupils were far more likely to 
use the subtraction strategy with subtraction complements of the doubles than with 
non-doubles and concluded that this may have been due to the fact they could readi-
ly relate, for instance, 12 – 6 to the already memorized double  but failed 
to see the connection between 8 – 5 and their non-fluent knowledge of  or 

. Indeed, Steinberg (1985) concluded that, even for second graders, using 
known facts to deduce unknown basic combinations was difficult, and using the re-
lations between addition and subtraction to reason out differences was particularly 
difficult to understand. Thornton (1990) similarly concluded: “Thus, it seems that it 
might be quite important to separate addition and subtraction units to allow more 
time for children to consolidate newly-learned addition facts before trying to apply 
them to obtain solutions for subtraction” (p. 245). In brief, some (indirect) evidence 
suggests that encouraging a general use of the subtraction strategy might better be 
put off until the time children are fluent with the range of basic sums.  

Five reasons support a case for the simultaneous/integrated approach. 
♦ Some kindergartners and first-graders overgeneralize the add-1 rule and need 

additional counterexamples of the rule (Baroody, 1989, 1992; Baroody et al., 
2012, 2013; Baroody, Eiland, & Thompson, 2009; Baroody, Purpura, Eiland, 
& Reid, 2015; Dowker, 2003). Subtraction of 1 provides a clear contrast with 
adding 1.  

♦ The use of contrasting examples or non-examples has been recommended to 
help children learn a variety of concepts and skills, including the meaningful 
learning of the first few number words one and two or two and three 
(Baroody, Lai, & Mix, 2006; Bloom & Wynn, 1997; Durkin & Rittle-
Johnson, 2012; Frye et al., 2013; Mix, 2009; Palmer & Baroody, 2011; Rittle-
Johnson & Star, 2011; Sarnecka & Carey, 2008), recognition of numerals 
with a similar appearance such as 2 and 5 or 6 and 9 (Baroody, 1988; 
Baroody & Kaufman, 1993), or learning number after and before (Dyson, 

6 + 6 = 12
3+ 5 = 8

5 + 3 = 8
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Jordan, & Glutting, 2013). Hattikudur and Alibali (2010) found that teaching 
a relational meaning of equals in conjunction with non-examples—other rela-
tional symbols such as the inequality, more than, and less than symbols was 
significantly more effective than in promoting third- and fourth-grade stu-
dents conceptual understanding of equals, equation encoding, and problem 
solving than teaching the equals sign alone or regular classroom instruction. 
Rittle-Johnson and Star (2007) found that simultaneously contrasting algebra-
ic solution procedures enhanced posttest performance and transfer more than 
did sequential instruction of the two methods. 3. 

♦ Jordan (Dyson et al., 2013; Dyson, Jordan, & Hassinger-Das, in press; Jor-
dan, Glutting, Dyson, Hassinger-Das, & Irwin, 2012) has recently advocated 
a compare and contrast approach teaching n + 1 and n – 1 as a component of 
their successful number sense intervention with at risk kindergartners.  

♦ “Everyday Mathematics”, which uses a simultaneous/integrated approach, is 
more successful in promoting mathematics achievement than traditional cur-
ricula, which typically use a sequential/addition-first approach (Carroll & Is-
sacs, 2003; What Works Clearinghouse [WWC], 2006).  

♦ Practicing the subtraction-as-addition strategy can improve the fluency of re-
lated sums not practiced during the training (Baroody et al., 2014).  

What Issues Need to be Resolved?  
The HLT depicted in Figure 1 is based on the assumption of at least a partially se-
quential approach. Specifically, Step 7 (fluency with sums) is represented as a pre-
requisite for Steps 8 and 9 (discovering the complement principle and the subtrac-
tion-as-addition strategy) and achieving Step 10 (fluency with the subtraction-as-
addition strategy). However, if instruction is meaningful (i.e., involves an empirical-
ly verified learning trajectory), might children discover the complement principle 
without necessarily achieving fluency with sums first and might such instruction be 
more effective than addition-first training in helping children construct the mental 
triads needed for fluent use of the subtraction-as-addition strategy? Put differently, 
might prior instruction that facilitates Step 3 (undoing concept), Step 4 (the shared 
numbers concept), and Step 6 (the shared parts and whole concept) provide a basis 
for simultaneously learning the complement principle (Step 8) and subtraction-as-
addition strategy (Step 9) and achieving fluency with basic differences (Step 10) and 
sums (Step 7)? If so, the proposed HLT will require amendment. 

Unfortunately, a sequential and a simultaneous approach to timing have not 
been directly compared. Research, then, is needed to determine whether addition and 
subtraction should be taught successively or simultaneously in order to have the 
greater impact learning the connections between these operations and fluency with 
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basic subtraction combinations. If instruction is meaningful (i.e., involved an empir-
ically supported learning trajectory), are the two approaches to timing equally effec-
tive? If not, is a sequential/addition-first approach or simultaneous/integrated in-
struction more efficacious? If both meaningful approaches to timing prove to be 
equally effective, it would undercut the universal constraint to instructional/ curricu-
lum planning based on the assumption that order does matter. If the sequen-
tial/addition-first approach should prove to be more efficacious than the simultane-
ous/integrated approach, the widely used “Everyday Mathematics” (UCSMP, 2005), 
which uses a simultaneous approach, would need a major revision and re-
organization to be consistent with best practices. The implications for the HLT is 
that efforts to promote Step 10 (fluency with the subtraction-as-addition strategy) 
would need to be postponed until children achieve fluency with its developmental 
prerequisite, namely fluency with sums. Indeed, efforts to promote Steps 8 (the 
complement principle) and 9 (deliberate use of the subtraction-as-addition strategy) 
might also benefit from such a postponement. If the simultaneous/integrated ap-
proach should prove to be more efficacious than the sequential approach, Steps 8 to 
10 would need to be done concurrently. This would mean nearly all US Grade 1 
mathematics curricula, which are based on the assumption that addition should be 
introduced before subtraction, would need to be revised and re-organized to 
meet the standard of best practices. 

CONCLUSIONS 
Currently, there is no direct empirical evidence on which component or combination 
of components is the more/most effective in helping Grade 1 pupils achieve the two 
crucial Common Core goals of (a) connecting subtraction to addition, including 
learning the subtraction-as-addition strategy, and (b) promoting fluency with the 
subtraction strategy. Currently, it also remains unclear whether addition and subtrac-
tion should be taught sequentially or simultaneously in Grade 1 to best achieve these 
goals. Research, then, is needed to determine what component or combination of 
components and what instructional order most/more successfully promotes the 
learning of the subtraction-as-addition strategy and achieving fluency with basic 
differences. Such research might indicate the need for major changes in existing US 
mathematics primary-grade curricula.  
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