
GLASNIK MATEMATIČKI
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THE COARSE SHAPE PATH CONNECTEDNESS

Nikola Koceić Bilan and Nikica Uglešić

University of Split and University of Zadar, Croatia

Abstract. The bi-pointed coarse shape category of topological
spaces is constructed and the notions of a coarse shape path and coarse
shape connectedness of a space are naturally introduced. It is proven
that the shape path connectedness strictly implies the coarse shape path
connectedness even on metrizable compacta. Furthermore, the coarse
shape path connectedness on metrizable compacta reduces to ordinary
connectedness.

1. Introduction

The coarse shape theory, abstract and standard (for topological
spaces), was recently founded by the authors ([6]). It functorially generalizes
shape theory in that there exist spaces (metrizable continua) having the same
coarse shape type and different shape types (see [4], [9] and [6]). However,
many of the well-known shape invariants are coarse shape invariants as
well (connectedness, triviality of shape, shape dimension sd ≤ n, n-shape
connectedness, movability, n-movability, being an FANR, strong movability,
stability, the Mittag-Leffler property; see [13], [5] and [12]).

Long ago J. Krasinkiewicz and P. Minc introduced in [7] the notions
of joinability and weak joinability for metrizable continua. They proved,
for instance, that solenoids are not weakly joinable. Afterwards Š. Ungar
introduced the notions of shape path and of the shape path connectedness
for topological spaces ([14]). He noticed that joinability and shape path
connectedness coincide on the class of all metrizable continua, and that this
property is a shape invariant on that class.
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In this paper we introduce the notions of a coarse shape path and of the
coarse shape path connectedness of a topological space, quite analogously to
the shape case, and we compare them to the former case as well as to ordinary
connectedness. We proved that shape path connectedness strictly implies
the coarse shape path connectedness (even on metrizable continua), and
that coarse shape path connectedness implies connectedness (Theorem 3.3).
Moreover, on metrizable compacta, connectedness and coarse shape path
connectedness coincide (Theorem 3.5). It is an open problem whether coarse
shape path connectedness strictly implies connectedness (Remark 3.10). A
possible (counter)example does not admit a countable polyhedral expansion
(Lemma 3.6).

Since in this setting one has to deal with bi-pointed morphisms, we
have firstly clarified in details how a polyhedral (ANR-) resolution of a
space induces a bi-pointed resolution (Lemma 2.3). Then, by applying the
corresponding homotopy functor, one obtains a polyhedral (ANR-) expansion
of a bi-pointed space (Theorem 2.1). The rest of Section 2 follows the general
rule of constructing a (coarse) shape category ([8, 6]) of (bi-)pointed spaces,
and at the end we point out that the classification by (bi-)pointed coarse shape
types is strictly coarser than that by (bi-)pointed shape types (Theorem 2.5).

2. The bi-pointed coarse shape category

Let Top denote the category of all topological spaces X and all (continu-
ous) mappings f : X → Y . By considering all pairs of topological spaces
(X,A) and all mappings of pairs f : (X,A)→ (Y,B), one obtains the category
of topological pairs, denoted by Top2. In the special case of all singleton
subspaces, Top2 reduces to the corresponding pointed category, denoted by
Top0. Finally, by distinguishing and fixing an ordered pair of points of a space,
(X, x0, x1), and considering all the mappings f : (X, x0, x1) → (Y, y0, y1)
satisfying f(xi) = yi, i = 0, 1, one obtains the bi-pointed category of
topological spaces, denoted by Top00.

By reducing the object classes to all polyhedra (weak topology), polyhed-
ral pairs, pointed polyhedra and bi-pointed polyhedra, one obtains the full
subcategories Pol ⊆ Top, Pol2 ⊆ Top2, Pol0 ⊆ Top0 and Pol00 ⊆ Top00,
respectively. In the same way, we consider the subcategories determined by
the class of all absolute neighbourhood retracts - ANR’s (for metric spaces).

The corresponding homotopy (quotient) categories and subcategories are
denoted by

HPol,HANR ⊆ HTop, HPol2, HANR2 ⊆ HTop2,

HPol0, HANR0 ⊆ HTop0 and HPol00, HANR00 ⊆ HTop00.

Of course, in the case of pairs, pointed case and bi-pointed case, the
homotopies are morphisms of the corresponding categories, and thus, in the
pointed and bi-pointed case they preserve the distinguished points. The
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definitions of a resolution and an expansion, as well as their main properties
including mutual relationship, one can find in [8, I.2 and I.6]. A well
known fact is that HPol, HPol2 and HPol0 (as well as HANR, HANR2

and HANR0) are pro-reflective subcategories of HTop, HTop2 and HTop0,
respectively ([8, Theorem I.6.7, Theorem I.6.2; Theorem I.6.10, Theorem
I.6.8]) (recall that the term “dense”, used in [8], has been replaced, according
to [11], by “pro-reflective”).

Theorem 2.1. HPol00 and HANR00 are pro-reflective subcategories of
HTop00.

First of all, let us prove the following simple facts (see [8, I.6.1 and
III.A1.3.1]).

Lemma 2.2. Let A be a nondiscrete topological space consisting of two
points. Then,

(i) every mapping of A to a T1-space is a constant mapping, and
consequently, every morphism

q = (qµ) : A→ Y = (Yµ, qµµ′ ,M)

of pro-Top, where all Yµ are T1-spaces, consists of constant mappings
qµ : A→ Yµ, µ ∈M ;

(ii) the trivial covering {A} of A is a normal refinement of every open
covering of A;

(iii) every morphism

p = (pλ) : A→ A = (Aλ = {aλ}, pλλ′ ,Λ)

of pro-Top is a (polyhedral and ANR-) resolution of A, especially the
trivial one

p′ = (p′1 ≡ p′) : A→ A′ = (A′
1 = {a′}, 1{a′}, {1}),

which is not an inverse limit.

Proof. Let A = {a, b} be a nondiscrete space and let f : A → Y be a
mapping to a T1-space Y . Suppose that f(a) 6= f(b). Then there exist open
V and V ′ in Y such that f(a) ∈ V \V ′, f(b) ∈ V ′ \V . Since A is not discrete,
at least for one of the points a, b, A is the minimal neighbourhood. It follows
that f(A) ⊆ V or f(A) ⊆ V ′ - a contradiction. Thus, (i) holds. To prove (ii),
observe first that, since A is not discrete, A must be a member of any open
covering of A. Moreover, {A} is a normal covering of A because the single
mapping (φ), φ = c1 : A → [0, 1] (the constant mapping to 1), is obviously
a partition of unity on A subordinated to {A} (notice that, if U = (Uj)j∈J

is a normal covering of A, and Uj′ ∈ U such that ∅ 6= Uj′ 6= A, then, for
every subordinated partition of unity (φj), it must be φj′ = c0 - the constant
mapping to 0). Finally, by (ii), {A} refines every normal covering of A. Thus,
the singleton {U0 = {A}} is cofinal in the partially ordered set Cov(A) of all
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normal coverings of A. Now, the conclusion follows by [8, Theorem I.6.7] and
its proof, and by the obvious fact that limA ≈ limA′ is a singleton.

Since a polyhedral (ANR-) expansion of a space is usually obtained via
a polyhedral (ANR-) resolution, we want to clarify some related elementary
facts in the bi-pointed case. First, we define a resolution of a bi-pointed space
in the most natural way: A morphism

p = (pλ) : (X, x0, x1)→ (X ,x0,x1) = ((Xλ, xλ, x
′
λ), pλλ′ ,Λ)

of pro-Top00 is said to be a resolution of a bi-pointed space (X, x0, x1) provided
it has properties (R1) and (R2) (see [8, I.6.1 and I.6.5]) for bi-pointed ANR’s
(Q, q0, q1). We say that such a p is a polyhedral (ANR-) resolution of
(X, x0, x1) if all (Xλ, xλ, x

′
λ) are bi-pointed polyhedra (ANR’s).

Lemma 2.3. Let X be a topological space and let x0, x1 ∈ X. Let

p = (pλ) : X →X = (Xλ, pλλ′ ,Λ)

be a polyhedral (ANR-) resolution of X and let, for each λ ∈ Λ, xλ =
pλ(x0), x

′
λ = pλ(x1) ∈ Xλ. Then,

(i) the morphism

p = (pλ) : (X, x0, x1)→ (X ,x0,x1) = ((Xλ, xλ, x
′
λ), pλλ′ ,Λ)

(of pro-Top00) is a polyhedral (ANR-) resolution of the bi-pointed
space (X, x0, x1);

(ii) the restriction

p′ = (p′λ) : {x0, x1} → {x0,x1} = ({xλ, x
′
λ}, p

′
λλ′ ,Λ)

of p (morphism of pro-Top) is a polyhedral (ANR-) resolution of the
subspace {x0, x1} ⊆ X;

(iii) the morphism

p = (pλ) : (X, {x0, x1})→ (X, {x0,x1}) = ((Xλ, {xλ, x
′
λ}), pλλ′ ,Λ)

(of pro-Top2) is a polyhedral (ANR-) resolution of the topological pair
(X, {x0, x1});

(iv) {x0, x1} ⊆ X is normally embedded.

Proof. Let p = (pλ) : X → X = (Xλ, pλλ′ ,Λ) be a polyhedral
(ANR-) resolution of a space X , and let x0, x1 ∈ X . Denote, for each
λ ∈ Λ, xλ = pλ(x0) and x′

λ = pλ(x1). First notice that, for every related
pair λ ≤ λ′, pλλ′(xλ′) = xλ and pλλ′(x′

λ′ ) = x′
λ. Thus, (X ,x0,x1) ≡

((Xλ, xλ, x
′
λ), pλλ′ ,Λ) is indeed an object of pro-Pol00 (pro-ANR00) and

p : (X, x0, x1) → (X ,x0,x1) is a morphism of pro-Top00. If x0 = x1, then
the statements reduce to the well known pointed case. Hence, without loss of
generality, we may assume that x0 6= x1. We are to show that p is a resolution
of the bi-pointed space (X, x0, x1).

Case 1. {x0, x1} ⊆ X is not a discrete subspace.
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Let (Q, q0, q1) be a bi-pointed ANR, let V be an open covering of Q and
let h : (X, x0, x1) → (Q, q0, q1) be a bi-pointed mapping. By Lemma 2.2(i),
for every λ ∈ Λ, xλ = x′

λ. If q0 6= q1, there is no such bi-pointed mapping
h, and thus condition (R1) for p is trivially fulfilled. Similarly, then there
is no bi-pointed mapping of any (Xλ, xλ, x

′
λ = xλ) to (Q, q0, q1), and hence,

condition (R2) for p is trivially fulfilled. Let q0 = q1. However, the conclusion
now follows by the ordinary pointed case. Therefore, statement (i) in this case
is proven. Further, since xλ = x′

λ for every λ ∈ Λ, statement (ii) follows by
Lemma 2.2(iii). Now, the assumption, (ii) and Corollary I.6.6 of [8] imply
that p : (X, {x0, x1}) → ((Xλ, {xλ, x

′
λ}), pλλ′ ,Λ) is a resolution of the pair

(X, {x0, x1}), which proves statement (iii). Finally, according to (iii) and (ii),
statement (iv) follows by Theorem I.6.12 of [8].

Case 2. {x0, x1} ⊆ X is a discrete subspace.
Let (Q, q0, q1) be a bi-pointed ANR, let V be an open covering of Q and

let h : (X, x0, x1)→ (Q, q0, q1) be a bi-pointed mapping. Let us first consider
the subcase q0 = q1. Choose an open covering V ′ of Q such that ClV ′ refines V
and that member V ′

0 ∈ V
′ containing q0 = q1 is the only one and contractible

(every ANR is normal and locally contractible). In the same way, let V ′′ be
chosen with respect to V ′. By property (R1) of the resolution p : X → X,
there exist a λ ∈ Λ and a mapping g : Xλ → Q such that (gpλ, h) ≤ V

′′.
Then, by the uniqueness of V ′′

0 , it holds that g(xλ), g(x
′
λ), h(x0) = h(x1)(=

q0 = q1) ∈ V ′′
0 ⊆ ClV ′′

0 ⊆ V ′
0 . Now, by means of a contraction of V ′′

0 to q0
(respectively the complement Q \ V ′

0), the mapping g can be replaced by a
bi-pointed mapping g′ : (Xλ, xλ, x

′
λ) → (Q, q0, q1 = q0) such that (g′pλ, h) ≤

V ′′ ≤ V ′ ≤ V . This proves that p : (X, x0, x1) → (X ,x0,x1) has property
(R1). In order to prove (R2) for p : (X, x0, x1)→ (X,x0,x1), let (Q, q0, q1 =
q0) be a bi-pointed ANR and let V be an open covering of Q. By property
(R2) of the resolution p : X → X, there exists an open covering V ′ of Q
such that, for every λ ∈ Λ and every pair of mappings g, g′ : Xλ → Q

satisfying (gpλ, g
′pλ) ≤ V

′, there exists a λ′ ≥ λ such that (gpλ, g
′pλ) ≤ V .

Clearly, this also holds in the special case of a pair of bi-pointed mappings
g, g′ : (Xλ, xλ, x

′
λ)→ (Q, q0, q1 = q0). Thus, p : (X, x0, x1)→ (X,x0,x1) has

property (R2) as well, and the statement (i), in the case of a discrete {x0, x1}
and q0 = q1, is proven. In the subcase q0 6= q1, choose an open covering V ′ of V
such that Cl(V ′) ≤ V and V ′ has a unique V ′

i ∈ V
′ containing qi, i = 0, 1, and

moreover, Cl(V ′
0)∩Cl(V ′

1 ) = ∅ and V ′
i is contractible to qi, i = 0, 1. Further,

choose an open covering V ′′ of Q such that Cl(V ′′) ≤ V ′ and V ′′ has a unique
V ′′
i containg qi, and V ′′

i is contractible to qi, i = 1, 2. By property (R1) of
the resolution p : X → X, there exist a λ ∈ Λ and a mapping g : Xλ → Q

such that (gpλ, h) ≤ V
′′. Then g(xλ), h(x0)(= q0) ∈ V ′′

0 ⊆ ClV ′′
0 ⊆ V ′

0 and
g(x′

λ), h(x1)(= q1) ∈ V ′′
1 ⊆ ClV ′′

1 ⊆ V ′
1 . Now, by means of contractions of V ′′

i

to qi, i = 1, 2, (respectively the complements Q \ V ′
i , i = 1, 2), the mapping g

can be replaced by a bi-pointed mapping g′ : (Xλ, xλ, x
′
λ) → (Q, q0, q1) such
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that (g′pλ, h) ≤ V
′′ ≤ V ′ ≤ V . This proves that p : (X, x0, x1)→ (X,x0,x1)

has property (R1). In order to prove (R2) for p : (X, x0, x1) → (X,x0,x1),
let (Q, q0, q1) be a bi-pointed ANR and let V be an open covering of Q. By
property (R2) of the resolution p : X → X, there exists an open covering V ′

of Q such that, for every λ ∈ Λ and every pair of mappings g, g′ : Xλ → Q

satisfying (gpλ, g
′pλ) ≤ V

′, there exists a λ′ ≥ λ such that (gpλ, g
′pλ) ≤ V .

Clearly, this also holds in the special case of a pair of bi-pointed mappings
g, g′ : (Xλ, xλ, x

′
λ) → (Q, q0, q1). Thus, p : (X, x0, x1) → (X,x0,x1) has

property (R2) as well, and the statement (i) is proven.
Statement (ii) is obviously true by applying the characterization in terms

of conditions (B1) and (B2) ([8, Theorem I.6.5 and Corollary I.6.1]). Further,
observe that, for each λ ∈ Λ, the subpolyhedron (sub-ANR) {xλ, x

′
λ} (⊆ Xλ)

is a normal space. Thus, by (ii) and Corollary I.6.6 of [8], p : (X, {x0, x1})→
((Xλ, {xλ, x

′
λ}), pλλ′ ,Λ) is a resolution of the pair (X, {x0, x1}), which proves

statement (iii). Finally, according to (iii) and (ii), statement (iv) follows by
Theorem I.6.12 of [8]. Hence, all the statements in the subcase q0 6= q1 are
proven.

Proof of Theorem 2.1. Let (X, x0, x1) be a bi-pointed space. By
Lemma 2.3(iii), for every polyhedral (ANR-) resolution p = (pλ) : X →
X = (Xλ, pλλ′ ,Λ) of X (existing by Theorem I.6.7 and Remark I.6.7 of [8]),
the same morphism p, reinterpreted as a morphism

p = (pλ) : (X, {x0, x1})→ (X, {x0,x1}) = ((Xλ, {xλ, x
′
λ}), pλλ′ ,Λ)

of pro-Top2, is a polyhedral (ANR-) resolution of the pair (X, {x0, x1}).
By applying the homotopy functor, Theorem I.6.8 of [8] implies that the
morphism

Hp = ([pλ]) : (X, {x0, x1})→ H(X, {x0,x1}) = ((Xλ, {xλ, x
′
λ}), [pλλ′ ],Λ)

of pro-HTop2 is a polyhedral (ANR-) expansion of the pair (X, {x0, x1}).
Since a homotopy which is rel {a, b} is the homotopy that is rel {a} and
rel {b} as well, it follows by our construction that the same morphism Hp,
reinterpreted as a morphism

Hp = ([pλ]) : (X, x0, x1)→ H(X ,x0,x1) = ((Xλ, xλ, x
′
λ), [pλλ′ ],Λ)

of pro-HTop00, is a polyhedral (ANR-) expansion of the bi-pointed space
(X, x0, x1). This completes the proof of the theorem.

The construction of the bi-pointed coarse shape category Sh∗
00 follows now

the general rule, i.e., it is the category Sh∗
(HTop00,HPol00)

, or equivalently,

Sh∗
(HTop00,HANR00)

(see [8, I.2-3]; [6, Sections 3-4]). Briefly, the objects

of Sh∗
00 are all bi-pointed topological spaces (X, x0, x1), while a morphism

set Sh∗
00((X, x0, x1), (Y, y0, y1)) consists of all equivalence classes F ∗ = 〈f∗〉

of morphisms f∗ : (X,x0,x1) → (Y ,y0,y1) of pro∗-HPol00 (equivalently,
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pro∗-HANR00) ranging over the corresponding expansions. Hereby, each
morphism f∗ is the equivalence class of a ∗-morphism (f, [fn

µ ]) : (X,x0,x1)→
(Y ,y0,y1) of inv

∗-HPol00 (equivalently, inv
∗-HANR00). The category pro

∗-
HPol00 (equivalently, pro∗-HANR00) is a realizing category for Sh∗

00, i.e.,

Sh∗
00((X, x0, x1), (Y, y0, y1)) ≈ pro∗-HPol00((X ,x0,x1), (Y ,y0,y1))

≈ pro∗-HANR00((X,x0,x1), (Y ,y0,y1)),

and every bi-pointed coarse shape morphism F ∗ : (X, x0, x1) → (Y, y0, y1) is
represented by a diagram (in pro∗-HTop00)

(X,x0,x1)
p

← (X, x0, x1)
f∗ ↓

(Y ,y0,y1) ←
q

(Y, y0, y1)
.

For the sake of completeness, let us briefly recall the definitions of a ∗-
morphism and the corresponding equivalence relation (in the absolute case).
A ∗-morphism (f, [fn

µ ]) : X → Y of inv∗-HTop consists of a function (the
index function) f : M → Λ and, for each µ ∈ M , of a sequence ([fn

µ ]) of the
homotopy classes of mappings fn

µ : Xf(µ) → Yµ, n ∈ N, such that

(∀µ ≤ µ′)(∃λ ≥ f(µ), f(µ′))(∃n ∈ N)(∀n′ ≥ n)fn′

µ pf(µ)λ ≃ qµµ′fn′

µ′ pf(µ′)λ.

Given a pair of ∗-morphisms (f, [fn
µ ]), (f

′, [f ′n
µ ]) : X → Y , then (f, [fn

µ ]) is
said to be equivalent to (f ′, [f ′n

µ ]), denoted by (f, [fn
µ ]) ∼ (f ′, [f ′n

µ ]), provided

(∀µ ∈M)(∃λ ≥ f(µ), f ′(µ))(∃n ∈ N)(∀n′ ≥ n)fn′

µ pf(µ)λ ≃ f ′n′

µ pf ′(µ)λ.

Further, there exists a functor S∗ : HTop00 → Sh∗
00 - the bi-pointed

coarse shape functor, keeping the objects fixed (as well as in the bi-pointed
shape case, S : HTop00 → Sh00). More precisely, by general theory ([8,
I.2.3]), for every bi-pointed mapping f : (X, x0, x1) → (Y, y0, y1) and every
pair of polyhedral (ANR-) expansions p and q of (X, x0, x1) and (Y, y0, y1)
respectively, there exists a unique f : (X ,x0,x1) → (Y ,y0,y1) of pro-
HPol00 (pro-HANR00) such that fp = q ⌊[f ]⌋, where ⌊[f ]⌋ denotes the
rudimentary embedding of [f ] into pro-HTop00. Then f represents the bi-
pointed shape morphism F ≡ S([f ]) : (X, x0, x1) → (Y, y0, y1) of Sh00.
Further, by applying the embedding functor J : pro-HTop00 → pro∗-
HTop00 which keeps the objects fixed (compare Proposition 3.24 of [6]),
one obtains J(f )J(p) = J(q)J(⌊[f ]⌋) in pro∗-HTop00, with J(f) unique.
Then J(f) ≡ f∗ represents the bi-pointed coarse shape morphism F ∗ ≡
S∗([f ]) : (X, x0, x1)→ (Y, y0, y1) of Sh

∗
00. Further, the functor J of the “pro-

categories” induces the embedding functor J : Sh00 → Sh∗
00 of the “shape”

categories such that S∗ = JS. Thus, every bi-pointed shape morphism may
be considered as a special bi-pointed coarse shape morphism.
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Remark 2.4. Similarly, and much simpler, one constructs the pointed
coarse shape category Sh∗

0 of pointed topological spaces and related functors.
Further, by Theorem 2.1 and following the general rule (see [8, I.2-3], and
[13, Sections 5-6]), one can construct the bi-pointed (pointed) weak shape
category Sh∗00 ( Sh∗0), of bi-pointed (pointed) topological spaces as well as
the corresponding functors.

Theorem 2.5. There exist a metrizable continuum X and a pair of points
x0, x1 ∈ X such that Sh(X, x0) 6= Sh(X, x1) and Sh∗(X, x0) = Sh∗(X, x1).
In addition, there exists an x′

0 ∈ X, x0 6= x′
0 6= x1, such that Sh(X, x0, x

′
0) 6=

Sh(X, x0, x1) and Sh∗(X, x0, x
′
0) = Sh∗(X, x0, x1).

Proof. Let Σ2 be the dyadic solenoid and let z0 ∈ Σ2. Further, let S1

be a 1-sphere and let x0 ∈ S1. We describe S1 by using complex numbers
z = e2πiθ, i.e.,

S1 = {z ∈ C | |z| = 1} ⊆ C.

Take X to be the wedge Σ2 ∨ S1, where z0 and x0 are identified. Consider
the polyhedral resolution (which is the inverse limit)

p = (pj) : X →X = (Xj = S1 ∨ S2, pjj′ ,N),

where S1 = S2 = S1 and pjj+1 = p∨1S2
with p(z) = z2. Notice that, for every

j ∈ N, pj(x0) = x0 is the wedge point of Xj = S1 ∨ S2. Choose z1 ∈ S1 ⊆ X1

determined by its argument θ1 = π, and for every j ≥ 2, choose inductively
zj = e2πiθj ∈ S1 ⊆ Xj by

θj =

{

θj−1

2 , j even

π +
θj−1

2 , j odd
.

Since p(z) = z2, one readily sees that (zj) is a thread of X. Thus, there is
a unique point x1 ∈ X (more precisely, x1 ∈ Σ2 \ S

1) such that pj(x1) = zj,
j ∈ N. By Lemma 2.3(i) and the proof of Theorem2.1,

p0 = (pj) : (X, x0)→ (X,x0) = ((Xj , x0), pjj′ ,N) and

p1 = (pj) : (X, x1)→ (X,x1) = ((Xj , zj), pjj′ ,N)

are polyhedral resolutions, while

Hp0 = ([pj ]) : (X, x0)→ H(X,x0) = ((Xj , x0), [pjj′ ],N) and

Hp1 = ([pj ]) : (X, x1)→ H(X,x1) = ((Xj , zj), [pjj′ ],N)

are the corresponding HPol0-expansions of the pointed spaces (X, x0) and
(X, x1), respectively. One can show, in the same way as in Example II.3.4

of [8], that
∨
π1(X, x0) = Z and

∨
π1(X, x1) = {0}, and thus, Sh(X, x0) 6=

Sh(X, x1). We are to prove that Sh∗(X, x0) = Sh∗(X, x1). Let j ∈ N. If
n ∈ N and n < j, put fn

j : (Xj , x0) → (Xj , zj) to be any pointed mapping.

If n = j, consider an arc x0zj ⊆ S1 (shorter one) in the codomain space,
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and the closed half circle C+
1 of S1 containing x0 and the closed half circle

C−
2 of S2 containing x0 (in the domain space). Then define f

j
j : (Xj , x0) →

(Xj , zj) to be (pointed) continuous, sending C+
1 ∪C

−
2 onto the arc x0zj with

the ends of C+
1 ∪ C−

2 to x0, S1 \ C
+
1 homeomorphically onto S1 \ {x0} and

S2 \ C
−
2 homeomorphically onto S2 \ {x0}. Since C+

1 ∪ C−
2 ⊆ S1 ∨ S2 is

contractible (through S1 ∨ S2) to the wedge point x0 relative to x0, f
j
j is a

pointed homotopy equivalence (see [10, Chap. I, Sec. 4]). Then, for every

k = j − 1, . . . , 1, choose f
j
k : (Xk, x0) → (Xk, zk) inductively according to

pkk+1f
j
k+1 and the commutativity (homotopy factorization through pkk+1 of

p0). As for f j
j , we infer that that all f j

k , k = 1, . . . , j, are pointed homotopy
equivalences. Therefore, this construction yields a pointed ∗-morphism

(1N, [f
n
j ]) : H(X ,x0)→ H(X,x1)

of pro-HPol0, that represents an isomorphism F ∗ : (X, x0)→ (X, x1) of Sh
∗
0.

To prove the second assertion, choose any x′
0 ∈ S2 ⊆ X , x′

0 6= x0.
It is obvious that Sh(X, x0) = Sh(X, x′

0). However, Sh(X, x0, x
′
0) 6=

Sh(X, x0, x1) because of Sh(X, x′
0) = Sh(X, x0) 6= Sh(X, x1). Let us show

that Sh∗(X, x0, x
′
0) = Sh∗(X, x0, x1). By Lemma 2.3(i) and the proof of

Theorem 2.1,

p = (pj) : (X, x0, x
′
0)→ (X,x0,x

′
0) = ((Xj , x0, x

′
0), pjj′ ,N) and

p′ = (pj) : (X, x0, x1)→ (X,x0,x1) = ((Xj , x0, zj), pjj′ ,N)

are polyhedral resolutions, while

Hp = ([pj ]) : (X, x0, x
′
0)→ H(X,x0,x

′
0) = ((Xj , x0, x

′
0), [pjj′ ],N) and

Hp′ = ([pj ]) : (X, x0, x1)→ H(X,x0,x1) = ((Xj , x0, zj), [pjj′ ],N)

are theHPol00-expansions of the bi-pointed spaces (X, x0, x
′
0) and (X, x0, x1),

respectively. Let j ∈ N. If n ∈ N and n < j, put fn
j : (Xj , x0, x

′
0) →

(Xj , x0, zj) to be any bi-pointed mapping. If n = j, consider an arc
A = x0zj ⊆ S1 (shorter one) in the codomain space and an arc B on
S2 in the domain space such that x0 is its end point and x′

0 ∈ Int(B).

Then define f
j
j : (Xj , x0, x

′
0) → (Xj , x0, zj) to be (bi-pointed) continuous,

sending S1 onto S1 by the identity, B onto A with the ends of B to the
point x0, and the open arc S2 \ B homeomorphically onto S2 \ x0. Since
B ⊆ S2 ⊆ S1 ∨S2 is deformable (through S2) onto the subarc B′ = x0x

′
0 ⊆ B

relative to B′, the mapping f
j
j is a bi-pointed homotopy equivalence (see

also [10, Chap. I, Sec. 4]). Then, for every k = j − 1, . . . , 1, choose

f
j
k : (Xk, x0, x

′
0) → (Xk, x0, zk) inductively according to pkk+1f

j
k+1 and the

commutativity (homotopy factorization through pkk+1 of p). Similarly to f
j
j ,

all f j
k , k = 1, . . . , j, are bi-pointed homotopy equivalences. Therefore, this



498 N. KOCEIĆ BILAN AND N. UGLEŠIĆ

construction yields a bi-pointed ∗-morphism

(1N, [f
n
j ]) : H(X,x0,x

′
0)→ H(X,x0,x1)

of pro-HPol00, that represents an isomorphism F ∗ : (X, x0, x
′
0)→ (X, x0, x1)

of Sh∗
00.

3. The coarse shape path connectedness

Recall the notion of a shape path ([14], see also [7]). LetX be a topological
space and let x0, x1 ∈ X . A shape path in X from x0 to x1 is a bi-pointed
shape morphism Ω : (I, 0, 1) → (X, x0, x1), where I is the unit segment of
R. X is said to be shape path connected if, for every pair x, x′ ∈ X , there
exists a shape path from x to x′. In the case of metric continua, the shape
path connectedness coincides with the approximate path connectedness (i.e.,
joinability, [7, 8]). In [7] is also introduced the notion of weak joinability -
strictly coarser than joinability. The shape path connectedness is a property
lying between the path connectedness and ordinary connectedness of a space,
and it is stronger than connectedness. We shall see that its full analogue in
the coarse shape theory is much closer to connectedness, while in the weak
shape theory the difference vanishes.

Definition 3.1. Let X be a topological space and let x0, x1 ∈ X. A
coarse shape path in X from x0 to x1 is a bi-pointed coarse shape morphism
Ω∗ : (I, 0, 1) → (X, x0, x1). X is said to be coarse shape path connected if,
for every pair x, x′ ∈ X, there exists a coarse shape path in X from x to x′.
The notions of a weak shape path and the weak shape path connectedness
are defined analogously.

Similarly to the ordinary paths and shape paths, one can “multiply” the
coarse shape paths as well. So, if there are coarse shape paths in X from
x0 to x1 and from x1 to x2, say Ω∗

0 and Ω∗
1 respectively, then Ω∗ = Ω∗

0 · Ω
∗
1,

obtained by “double speeding” (that is possible because of Lemma 2.3(i)), is
a coarse shape path in X from x0 to x2. Clearly, this yields an equivalence
relation on X .

Observe that the composite of a coarse shape path and an appropriate
bi-pointed coarse shape morphism is a coarse shape path. More precisely, if
there exists a coarse shape path Ω∗ in X from x0 to x1, then, for every bi-
pointed coarse shape morphism F ∗ : (X, x0, x1) → (Y, y0, y1), the composite
F ∗Ω∗ is a coarse shape path in Y from y0 to y1 (clearly, a full analogue of
that holds also in the bi-pointed shape theory ([14])). Hence, the next facts
are almost obvious.

Lemma 3.2. Let X and Y be topological spaces such that, for every pair
y, y′ ∈ Y , there exist a pair x, x′ ∈ X and a morphism F : (X, x, x′) →
(Y, y, y′) of Sh00 (F ∗ : (X, x, x′)→ (Y, y, y′) of Sh∗

00). If X is (coarse) shape
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path connected, then so is Y . Especially, every continuous image f(X) ⊆ Y

of a (coarse) shape path connected space X is (coarse) shape path connected,
and thus, the (coarse) shape path connectedness is a topological property.

Theorem 3.3. Consider the following topological properties:

(i) path connectedness;
(ii) shape path connectedness;
(iii) coarse shape path connectedness;
(iv) weak shape path connectedness;
(v) connectedness.

Then, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇔ (v). Moreover, the first and second
implication are strict.

Proof. First of all, it is almost trivial to show that weak shape path
connectedness is equivalent to connectedness, (iv) ⇔ (v), so we omit the
details. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) follow by the very
definitions. Let X be coarse shape path connected. Assume to the contrary,
i.e., that X is not connected. Then there exist x0, x1 ∈ X lying in different
components of X , and there exists a mapping f : X → {0, 1} ⊆ R ({0, 1}
discrete) such that f(x0) = 0 and f(x1) = 1. Then f : (X, x0, x1) →
({0, 1}, 0, 1) is a bi-pointed mapping. It induces the bi-pointed coarse shape
morphism F ∗ : (X, x0, x1) → ({0, 1}, 0, 1). Consider a coarse shape path
Ω∗ : (I, 0, 1) → (X, x0, x1) from x0 to x1. Then the composite bi-pointed
coarse shape morphism F ∗Ω∗ : (I, 0, 1)→ ({0, 1}, 0, 1) is a coarse shape path
in {0, 1} from 0 to 1. It is clear that F ∗Ω∗ : I → {0, 1} is an ordinary
coarse shape morphism as well. According to Theorem 7 of [6] and Theorem
1 of [9] (bi-pointed analogues), F ∗Ω∗ is represented in inv∗-HPol00 by a ∗-
morphism that is a sequence ([gn]) of rel-homotopy classes [gn] of bi-pointed
mappings gn : (I, 0, 1) → ({0, 1}, 0, 1). It implies that the discrete space
{0, 1} is path connected - a contradiction. To see that (ii) does not imply (i),
a counterexample is the (metric) continuum

X = ({0} × I) ∪ {(x, sin
1

x
) | x ∈

〈

0,
2

π

]

} ⊆ R
2.

Finally, (ii) strictly implies (iii) because of Example 3.4 below.

Example 3.4. Solenoids are coarse shape path connected but not shape
path connected.

To verify Example 3.4, recall the well known fact that solenoids are
(metric) continua which are not weakly joinable, and thus they are not
shape path connected ([7], 1.5. Example). In order to show that they are
coarse shape path connected, it suffices to prove, for instance, that the dyadic
solenoid Σ2 is such a space. Consider its sequential polyhedral resolution
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(which is the inverse limit)

p = (pj) : Σ2 → Σ2 = (Sj = S
1, pjj′ ,N),

where pjj+1(z) = z2. Let x, x′ ∈ Σ2, and denote xj = pj(x), x
′
j = pj(x

′) ∈ Sj ,
j ∈ N. By Lemma 2.3(i) and the proof of Theorem 2.1,

p = (pj) : (Σ2, x, x
′)→ (Σ2,x,x

′) = ((Sj , xj , x
′
j), pjj′ ,N)

is a polyhedral resolution of the bi-pointed space (Σ2, x, x
′), and

Hp = ([pj ]) : (Σ2, x, x
′)→ H(Σ2,x,x

′) = ((Sj , xj , x
′
j), [pjj′ ],N)

is the corresponding HPol00-expansion. We are going to construct a coarse
shape path in Σ2 from x to x′. Let, for every j ∈ N a (bi-pointed) mapping

ω
j
j : (I, 0, 1) → (Sj , xj , x

′
j) be chosen arbitrarily. Then, for each j and every

n ∈ N, put ωn
j : (I, 0, 1)→ (Sj , xj , x

′
j) to be

ωn
j =

{

un
j , n < j

pjnω
n
n, n ≥ j

,

where the mappings un
j : (I, 0, 1)→ (Sj , xj , x

′
j), n < j, are chosen arbitrarily

(for instance, all of them may be ω
j
j ). One trivially verifies that ([ωn

j ]) :

(I, 0, 1)→ (Σ2,x,x
′) is a ∗-morphism of inv∗-HPol00. Thus, ω

∗ = [([ωn
j ])] :

(I, 0, 1) → (Σ2,x,x
′) is a morphism of pro∗-HPol00, and consequently, the

coarse shape morphism Ω∗ = 〈ω∗〉 : (I, 0, 1) → (Σ2, x, x
′) is a desired coarse

shape path in Σ2 from x to x′.
Since the connectedness is a coarse shape invariant ([13, Lemma 11 and

Theorem 6]; [5, Theorem 3]), it seems that the implication (iii) ⇒ (v) of
Theorem 3.3 should be also strict. However, the next result shows that a
possible counterexample cannot be a metrizable continuum.

Theorem 3.5. A compact metrizable space X is connected if and only if
it is coarse shape path connected. Consequently, the weak joinability (trivially)
implies the coarse shape path connectedness, but not conversely.

In order to prove the theorem, we need the following lemma.

Lemma 3.6. Let X be a connected topological space. If X admits a
countable polyhedral resolution, then it is coarse shape path connected.

Proof. According to [2, VIII., Exercises, A.1. (p. 229)] and [13, Lemma
9], we may assume that X admits a sequential polyhedral resolution p =
(pj) : X → X = (Xj , pjj′ ,N). Moreover, since X is connected, we may
assume that each polyhedron Xj , j ∈ N, is path connected. By Lemma 2.3(i)
and the proof of Theorem 2.1, given a pair x, x′ ∈ X , the bi-pointed morphism
p : (X, x, x′) → ((Xj , xj , x

′
j), pjj′ ,N) of pro-Top00 is a polyhedral resolution

of (X, x, x′), and

Hp = ([pλ]) : (X, x, x′)→ ((Xj , xj , x
′
j), [pjj′ ],N)
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is a HPol00-expansion of (X, x, x′). Now one can construct a desired coarse
shape path Ω∗ in X from x to x′ as we did it in the verification of Example 3.4.

Proof of Theorem 3.5. The sufficiency follows by (iii) ⇒ (iv) of
Theorem 2.5. Conversely, let X be a metrizable continuum. According to the
main result of [3] and Theorems I.6.1 and I.6.2 of [8], X admits a sequential
polyhedral resolution. Hence, the converse follows by Lemma 3.6. Finally, if
a metrizable compactum is weakly joinable (see [7]) then it is connected, and,
as we just have proven, it is coarse shape path connected. The converse does
not hold because a solenoid is not weakly joinable.

By 3.1. Theorem of [7] and 7.1.6. Corollary of [1], the shape path connect-
edness is a shape invariant on the class of all metrizable compacta. Here is
the coarse shape analogue.

Corollary 3.7. The coarse shape path connectedness is a coarse shape
(and, thus, a shape) invariant on the class of all metrizable compacta.

Proof. By [13], Lemma 11 and Theorem 6 (or Theorem 3 of [5]), the
connectedness is a coarse shape invariant (on Top). Now, the conclusion
follows by Theorem 3.5.

Concerning homotopy domination, the following fact holds.

Theorem 3.8. Connectedness ((coarse) shape path connectedness) is a
hereditary homotopy property, i.e., if Y is homotopy dominated by X and X

is connected ((coarse) shape path connected), then Y is connected ((coarse)
shape path connected). Consequently, connectedness, shape path connectedness
and coarse shape path connectedness are invariants of the homotopy type on
Top.

Proof. Let X and Y be topological spaces such that Y ≤ X in HTop,
i.e., there exist mappings f : X → Y and g : Y → X satisfying fg ≃ 1Y ,
and let X be connected ((coarse) shape path connected). Then the image
subspace f(X) ⊆ Y is contained in a unique component ((coarse) shape path
component) Y ′ of Y . Let y ∈ Y be an arbitrary point. Choose a homotopy
H : Y × I → Y such that H0 = 1Y and H1 = fg. Then the bi-pointed
mapping

ωy : (I, 0, 1)→ (Y, y, fg(y)), ωy(t) = H(y, t),

is an ordinary path in Y from y to fg(y). This implies that y and fg(y)
belong to the same path component of Y . Then, by Theorem 2.5, y and
fg(y) belong to the same component ((coarse) shape path component) of Y .
Since fg(y) ∈ Y ′, it must be y ∈ Y ′ as well. Consequently, Y ′ = Y , which
proves the theorem.
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Related to implication (ii) ⇒ (iii) of Theorem 3.3, recall that, for every
metrizable continuum X , the following assertions are mutually equivalent (see
Ch. VII. of [1], [7] and II. 8. of [8]):

(a) There exists a point x0 ∈ X such that the pointed space (X, x0) is
1-movable;

(b) for every point x ∈ X , the pointed space (X, x) is 1-movable;
(c) X is shape path connected.

Thus, the following fact obviously holds.

Corollary 3.9. On the class of all pointed 1-movable metrizable com-
pacta, the shape path connectedness, coarse shape path connectedness, weak
shape path connectedness and connectedness are equivalent properties.

Remark 3.10. It is interesting and important to know whether implica-
tion (iii) ⇒ (v) of Theorem 3.3 is strict. For (see Theorem 6 of [13]), if it is
the case, then the (bi-pointed) coarse shape theory is strictly finer than the
(bi-pointed) weak shape theory.
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