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Abstract. In this paper, we prove that there does not exist a set with
more than 98 nonzero polynomials in Z[X], such that the product of any
two of them plus a quadratic polynomial n is a square of a polynomial from
Z[X] (we exclude the possibility that all elements of such set are constant
multiples of a linear polynomial p ∈ Z[X] such that p2|n). Specially, we
prove that if such a set contains only polynomials of odd degree, then it
has at most 18 elements.

1. Introduction

Diophantus of Alexandria ([2]) first studied the problem of finding sets
with the property that the product of any two of its distinct elements increased
by one is a perfect square. Such a set consisting of m elements is therefore
called a Diophantine m-tuple. Diophantus found the first Diophantine
quadruple of rational numbers

{

1
16 ,

33
16 ,

17
4 ,

105
16

}

, while the first Diophantine
quadruple of integers {1, 3, 8, 120}was found by Fermat. Many generalizations
of this problem were considered since then, for example by adding a fixed
integer n instead of 1, looking at kth powers instead of squares, or considering
the problem over other domains than Z or Q.

Definition 1.1. Let n be a nonzero integer. A set of m different positive
integers {a1, a2, . . . , am} is called a Diophantine m-tuple with the property
D(n) or simply D(n)-m-tuple if the product aiaj + n is a perfect square for
all 1 ≤ i < j ≤ m.

Diophantus ([2]) found the first such quadruple {1, 33, 68, 105} with the
property D(256). The first D(1)-quadruple is the above mentioned Fermat’s
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set. The folklore conjecture is that there does not exist a D(1)-quintuple.
Baker and Davenport ([1]) proved that Fermat’s set cannot be extended to
a D(1)-quintuple. Dujella ([6]) proved that there does not exist a D(1)-
sextuple and there are only finitely many D(1)-quintuples. But, for example,
the set {1, 33, 105, 320, 18240} has the property D(256) ([3]), and the set
{99, 315, 9920, 32768, 44460, 19534284} has the property D(2985984) ([12]).
The natural question is to find upper bounds for the numbers Mn defined by

Mn = sup{|S| : S has the property D(n)}
where |S| denotes the number of elements in the set S. Dujella ([4,5]) proved
that Mn ≤ 31 for |n| ≤ 400, and Mn < 15.476 log |n| for |n| > 400.

The first polynomial variant of the above problem was studied by Jones
([13, 14]) and it was for the case n = 1.

Definition 1.2. Let n ∈ Z[X ] and let {a1, a2, . . . , am} be a set of m
nonzero polynomials with integer coefficients. We assume that there does not
exist a polynomial p ∈ Z[X ] such that a1

p
, . . . ,am

p
and n

p2 are integers. The set

{a1, a2, . . . , am} is called a polynomial D(n)-m-tuple if for all 1 ≤ i < j ≤ m

the following holds: ai · aj + n = b2ij where bij ∈ Z[X ].

We mention that for n ∈ Z the assumption concerning the polynomial p
means that not all elements of {a1, a2, . . . , am} are allowed to be constant.

In analogy to the above results we are interested in the size of

Pn = sup{|S| : S is a polynomial D(n)-tuple}.
Dujella and Fuchs ([7]) proved that P−1 = 3 and their result from [8] implies
that P1 = 4. Moreover, from [11, Theorem 1] it follows that Pn ≤ 7 for all
n ∈ Z\{0}. It is an improvement of the previous bound Pn ≤ 22, which
follows from [4, Theorem 1].

Dujella and Fuchs, jointly with Tichy ([9]) and later with Walsh ([10]),
considered the case n = µ1X + µ0 with integers µ1 6= 0 and µ0. They defined

L = sup{|S| : S is a polynomial D(µ1X+µ0)-tuple for some µ1 6= 0, µ0 ∈ Z},
and they denoted by Lk the number of polynomials of degree k in a polynomial
D(µ1X+µ0)-tuple S. The results from [10] are sharp bounds L0 ≤ 1, L1 ≤ 4,
Lk ≤ 3 for all k ≥ 2, and finally

L ≤ 12.

In this paper, we handle the case where n is a quadratic polynomial in
Z[X ], which is more complicated than the case with linear n, mostly because
quadratic polynomials need not be irreducible. Let us define

Q = sup{|S| : S is a polynomial D(µ2X
2 + µ1X + µ0)-tuple for some µ2 6= 0,

µ1, µ0 ∈ Z}.
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Let us also denote by Qk the number of polynomials of degree k in a
polynomial D(µ2X

2 + µ1X + µ0)-tuple S. The main goal of this paper is
to prove the following theorem:

Theorem 1.3. There are at most 98 elements in a polynomial D(n)-tuple
for a quadratic polynomial n, i.e.,

Q ≤ 98.

In the proof of Theorem 1.3, we also prove the following statement.

Corollary 1.4. If a polynomial D(n)-m-tuple for a quadratic n contains
only polynomials of odd degree, then m ≤ 18.

In order to prove Theorem 1.3, we follow the strategy used in [9] and [10]
for linear n. First, we estimate the numbers Qk of polynomials of degree k.

Proposition 1.5.
1) Q0 ≤ 2.
2) Q1 ≤ 4.

Proposition 1.5 completely solves the problem for constant and linear
polynomials because, for example, the set {3, 5} is a polynomial D(9X2 +
24X + 1)-pair, and the set

{2X, 10X + 20, 4X + 14, 2X + 8}(1.1)

is a polynomial D(−4X2 − 16X + 9)-quadruple. By further analysis, we get:

Proposition 1.6.
1) Q2 ≤ 81.
2) Q3 ≤ 5.
3) Q4 ≤ 6.
4) Qk ≤ 3 for k ≥ 5.

Let us mention that it is not obvious that the number Q2 is bounded, so
the result from Proposition 1.6 1) is nontrivial. Quadratic polynomials have
the major contribution to the bound from Theorem 1.3. The bound from
Proposition 1.6 4) is sharp. For example, the set

{X2l−1 +X,X2l−1 + 2X l + 2X, 4X2l−1 + 4X l + 5X}
is a polynomial D(−X2)-triple for any integer l ≥ 2, and the set

{X2l +X l, X2l +X l + 4X, 4X2l + 4X l + 8X}
is a polynomial D(4X2)-triple for any integer l ≥ 1.

In Section 2, we consider the cases of equal degrees separately and give
proofs of Propositions 1.5 and 1.6. In Section 3, we adapt the gap principle
for the degrees of the elements of S, proved in [9] for linear n, to quadratic
n. Using the bounds from Section 2 and by combining the gap principle
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with an upper bound for the degree of the largest element in a polynomial
D(n)-quadruple, obtained in [10], in Section 4 we give the proof of Theorem
1.3.

2. Sets with polynomials of equal degree

The first step which leads us to the proof of Theorem 1.3 is to estimate
the numbers Qk for k ≥ 0.

2.1. Constant and linear polynomials. Here we give the proofs of the
sharp bounds from Proposition 1.5.

Proof of Proposition 1.5 1). Suppose that, for given π ∈ Z \ {0},
there exist two different nonzero integers ν1 and ν2 such that

(2.1) πνi + µ2X
2 + µ1X + µ0 = r2i

where ri ∈ Z[X ] for i = 1, 2. From this, it follows that ri = ̺iX + κi where
̺i 6= 0, κi ∈ Z for i = 1, 2. Comparing the coefficients in (2.1), we get ̺2i = µ2,
2̺iκi = µ1, πνi = κ2i −µ0 for i = 1, 2, so ̺1 = ±̺2, κ1 = ±κ2. From that, we
obtain ν1 = ν2, a contradiction.

Proof of Proposition 1.5 2). Let {αX + β, γX + δ, εX + ϕ} be a
polynomial D(µ2X

2 + µ1X + µ0)-triple. First, we show that we may assume
that one of the polynomials in the triple is a multiple of X . Observe that
{α2X+αβ, αγX+αδ, αεX+αϕ} is a polynomialD(α2µ2X

2+α2µ1X+α2µ0)-
triple. By substituting αX = Y , we obtain a polynomial D(µ2Y

2 + αµ1Y +
α2µ0)-triple {αY +αβ, γY +αδ, εY +αϕ}. Finally, by substituting Y +β = Z,
we get a polynomial D(µ2Z

2 + (αµ1 − 2µ2β)Z + γ′)-triple

{αZ, γZ + δ′, εZ + ϕ′}
where δ′ = αδ − γβ, ϕ′ = αϕ − εβ, γ′ = α2µ0 − αβµ1 + β2µ2. This implies
that

αγ + µ2 = A2, αε+ µ2 = B2, γε+ µ2 = C2

with integers A,B,C ≥ 0. By specializing Z = 0, we see that γ′ = D2 with
D ∈ Z. Now, by comparing the coefficients in

αZ(γZ + δ′) + µ2Z
2 + (αµ1 − 2µ2β)Z +D2 = (AZ ±D)2,

it follows that δ′ =
±2AD − αµ1 + 2µ2β

α
. Analogously,

ϕ′ =
±2BD − αµ1 + 2µ2β

α
.

If we denote µ′
1 := 2µ2β − αµ1, we obtain the set

(2.2)
{

αZ, γZ +
±2AD + µ′

1

α
, εZ +

±2BD+ µ′
1

α

}

,
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which is a polynomial D(µ2Z
2 − µ′

1Z +D2)-triple. It means that

(2.3)
(

γZ +
±2AD+ µ′

1

α

)(

εZ +
±2BD+ µ′

1

α

)

+ µ2Z
2 − µ′

1Z +D2

is a square of a linear polynomial or a square of an integer. Observe that

γZ +
±2AD+µ′

1

α
=

A2Z−µ2Z±2AD+µ′

1

α
and εZ +

±2BD+µ′

1

α
=

B2Z−µ2Z±2BD+µ′

1

α
.

Assume first that (2.3) is a square of an integer P . Then, by comparing the
coefficients in (2.3), we obtain a system of three equations with unknowns
α, B and P . For each combination of the signs ± in (2.3) we get only
two possibilities B1,2 for B, so the set (2.2) can be extended at most to a
polynomial D(n)-quadruple

{

αZ,
A2Z − µ2Z ± 2AD + µ′

1

α
,
B2

1Z − µ2Z ± 2B1D + µ′
1

α
,

B2
2Z − µ2Z ± 2B2D + µ′

1

α

}

.

Assume now that (2.3) is a square of a linear polynomial. Then the
discriminant of this quadratic polynomial is equal to 0. If both signs ± in
(2.3) are equal, we obtain a discriminant which can be factored into three
factors

(2.4)

(A−B + α)(A −B − α)(4A2B2D2 + 4α2D2µ2 + 8ABD2µ2

+ 4D2µ2
2 ± 4A2BDµ′

1 ± 4AB2Dµ′

1 ± 4ADµ2µ
′

1 ± 4BDµ2µ
′

1 − α2µ′2
1

+A2µ′2
1 + 2ABµ′2

1 +B2µ′2
1 ) = 0.

By solving this equation in B, we obtain four possibilities

(2.5)

B1 = A− α, B2 = A+ α,

B3,4 =
−µ′

1A− 2µ2D ±
√

−4D2α2µ2 + α2µ′2
1

2AD + µ′
1

.

Analogously, if the signs in (2.3) are different: From

(A+B − α)(A +B + α)(4A2B2D2 + 4α2D2µ2 − 8ABD2µ2

+4D2µ2
2 ± 4A2BDµ′

1 ∓ 4AB2Dµ′

1 ∓ 4ADµ2µ
′

1 ± 4BDµ2µ
′

1 − α2µ′2
1

+A2µ′2
1 − 2ABµ′2

1 +B2µ′2
1 ) = 0,

we get

(2.6)

B1 = −A+ α, B2 = −A− α,

B3,4 =
µ′
1A+ 2µ2D ±

√

−4D2α2µ2 + α2µ′2
1

2AD + µ′
1

.

We now conclude that the set (2.2) can be extended at most to a polynomial
D(n)-sextuple. Observe first that the term −4D2µ2+µ

′2
1 in (2.5) and (2.6) is

a discriminant of a polynomial n. If that term is not a square of an integer, we
already have at most a D(n)-quadruple. Suppose now that γ ≤ ε. If α > 0,
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we obtain A2 ≤ B2, so A ≤ B. For this case, in (2.5) we have B1 < A, a
contradiction. Also, in (2.6) we have a contradiction B2 < 0. If α < 0, from
γ ≤ ε we get A2 ≥ B2, so A ≥ B. In (2.5) we have B1 > A, a contradiction.
Also, in (2.6) we obtain a contradiction B1 < 0. Analogously we conclude for
γ ≥ ε. Therefore, neither in (2.5) nor (2.6) we can have the possibilities B1

and B2 for the same D(n)-tuple.
Let us take B = B1 from (2.5) or (2.6) and consider the polynomial

D(µ2Z
2 − µ′

1Z + D2)-triple (2.2). The analogous situation is for B = B2.
Hence, we have the set

(2.7)
{

αZ, γZ +
±2AD + µ′

1

α
, εZ +

±2(A− α)D + µ′
1

α

}

where both signs ± are the same. It is sufficient to look only at the case with
positive signs ± in (2.7) because the signs depend on the sign of the integer
D.1

Let us now extend the set (2.7) with the element ζZ+
±2B3D+µ′

1

α
, obtained

by the above construction, where B3 =
−µ′

1
A−2µ2D+

√
−4D2α2µ2+α2µ′2

1

2AD+µ′

1

.

Observe that for B3 the sign ± is the same as the other signs ± in (2.7)
and depends only on the sign of D, so we may assume that this sign is +.
Inserting A−α and B3 into (2.4), instead of A and B, we obtain five solutions
for the unknown α.

1) α = 0, a contradiction.

2) α = 2
DA2+µ′

1
A+µ2D√

−4D2µ2+µ′2

1

, for which B3 = A. From αγ + µ2 = A2 and

αζ + µ2 = B2
3 we get γ = ζ, so we have two equal elements in a

quadruple, again a contradiction.

3) α = 2
DA2+µ′

1
A+µ2D

4DA+2µ′

1
+
√

−4D2µ2+µ′2

1

, for which we have B3 = A− 2α.2

4) α =
2AD+µ′

1
−

1

2

√
−4D2µ2+µ′2

1

D
, for which B3 = − 1

2

µ′

1
−2

√
−4D2µ2+µ′2

1

D
.

This is also a possible case.3

5) α = − 1
2

√
−4D2µ2+µ′2

1

D
and then B3 = − 1

2
µ′

1

D
. From αζ + µ2 = B2

3 , we
obtain ζ = α. Hence, we have a quadruple with two equal elements
αZ and ζZ, a contradiction.

We conclude that the set

(2.8)
{

αZ, γZ+
±2AD+ µ′

1

α
, εZ+

±2(A− α)D + µ′
1

α
, ζZ+

±2B3D + µ′
1

α

}

,

with equal signs ±, can be a polynomial D(µ2Z
2 − µ′

1Z +D2)-quadruple.

1For example, let n := Z2 + 6Z + 9. For D = 3 and D = −3, we get polynomial
D(n)-triples {3Z, 8Z + 8, Z + 2} and {3Z, 8Z − 12, Z − 6}, respectively.

2For example, for A = 4, we obtain the set (1.1).
3For A = 1, we obtain the polynomial D(−X2 − 8X + 9)-quadruple {X, 2X + 2, X +

8, 5X + 20}.
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We are left to check the possibility

B = B4 =
−µ′

1A− 2µ2D −
√

−4D2α2µ2 + α2µ′2
1

2AD + µ′
1

.

By the above construction, we obtain the element ηZ +
±2B4D+µ′

1

α
, which we

want to adjoin to the set (2.8). This element has the same sign ± as the
others in (2.8), which depends only on the sign of D, so it is enough to look
at the case with the positive signs. Inserting B3 and B4 into (2.4), instead of
A and B, we obtain five solutions for the unknown α.

1) α = 0, a contradiction.

2) α =

√
−4D2µ2+µ′2

1

2D , so B4 = − µ′

1

2D . From αη + µ2 = B2
4 , it follows that

η = α. Hence, we have two equal elements αZ and ηZ in a quadruple,
a contradiction.

3) α = −
√

−4D2µ2+µ′2

1

2D , for which we get a contradiction as in the previous
case.

4) α = 2

√
−4D2µ2+µ′2

1
(µ′

1
A+A2D+µ2D)

4D2µ2−µ′2

1

, from which B4 = A. We get η = γ,

a contradiction.

5) α = −2

√
−4D2µ2+µ′2

1
(µ′

1
A+A2D+µ2D)

4D2µ2−µ′2

1

, which is a contradiction as in the

case 4).

Therefore, we cannot adjoin the fifth element to the set (2.8) and Q1 ≤ 4.

2.2. Polynomials of degree k ≥ 2. Let Z+[X ] denote the set of all
polynomials with integer coefficients with positive leading coefficient. For
a, b ∈ Z[X ], a < b means that b− a ∈ Z+[X ].

Let {a, b, c} be a polynomial D(n)-triple, containing only polynomials of
degree k for some k ≥ 2 and with quadratic n ∈ Z[X ]. Let

ab+ n = r2, ac+ n = s2, bc+ n = t2(2.9)

where r, s, t ∈ Z+[X ]. Assume that a < b < c and denote by α, β, γ the
leading coefficients of the polynomials a, b, c, respectively. Observe that α, β, γ
must have the same sign, so there is no loss of generality in assuming that
a, b, c ∈ Z+[X ]. We may also assume that gcd(α, β, γ) = 1 since otherwise
we substitute Y =gcd(α, β, γ)X . This implies that α, β and γ are perfect
squares, say

α = A2, β = B2, γ = C2

where A,B,C ∈ N.
The following lemma, which is [9, Lemma 1], will play the key role in

our proofs. It is a very useful construction with the elements of a polynomial
D(n)-triple where n is a polynomial with integer coefficients.



290 A. JURASIĆ

Lemma 2.1. Let {a, b, c} be a polynomial D(n)-triple for which (2.9)
holds. Then there exist polynomials e, u, v, w ∈ Z[X ] such that

ae+ n2 = u2, be+ n2 = v2, ce+ n2 = w2.

More precisely,

(2.10) e = n(a+ b+ c) + 2abc− 2rst.

Furthermore, it holds c = a + b + e
n
+ 2

n2 (abe + ruv) where u = at − rs,
v = bs− rt.

The above construction is a direct modification from the integer case [4,
Lemma 3]. The analogous statement for polynomial D(1)-triples was proved
by Jones ([14]) and it was also used in [7] for the case n = −1. We define

(2.11) e = n(a+ b+ c) + 2abc+ 2rst.

By easy computation, we obtain the relation

(2.12) e · e = n2(c− a− b− 2r)(c− a− b+ 2r),

which we will use for determining all possible e-s. From (2.11), deg(e) = 3k
and then, from (2.12), we obtain that

(2.13) deg(e) ≤ 4− k.

Also, from (2.10), using (2.9) and the expressions for u, v, w from Lemma 2.1,
we get

e = n(a+ b− c) + 2rw,(2.14)

e = n(a− b+ c) + 2sv,(2.15)

e = n(−a+ b+ c) + 2tu.(2.16)

In order to bound the number of elements of degree k in a polynomial
D(n)-tuple, we are interested to find the number of possible c-s, for fixed a

and b, such that (2.9) holds. The first step is finding all possible e-s from
Lemma 2.1. In the following lemma, we adapt for quadratic n the important
result from [10].

Lemma 2.2. Let {a, b}, a < b, be a polynomial D(n)-pair with ab+n = r2.
Let

ae+ n2 = u2, be+ n2 = v2

where u, v ∈ Z+[X ] and e ∈ Z[X ]. Then for each such e there exists at most
one polynomial c > b such that {a, b, c} is a polynomial D(n)-triple.

Proof. Suppose that {a, b, c} is a polynomial D(n)-triple. Since u and
v are fixed up to the sign, from Lemma 2.1 it follows that, for e defined by
(2.10) and for fixed a and b, two possible c-s come from

(2.17) c± = a+ b+
e

n
+

2

n2
(abe± ruv).
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From this, we obtain

c+ · c− = b2 + a(a− 2b) +
e2

n2
− 2ae

n
− 2be

n
− 4n.

From a < b < 2b and (2.13), it follows that c− < b. Hence, the only possible
c is c+.

2.2.1. Quadratic polynomials. Let deg(a) = deg(b) = deg(c) = 2. The
proof of Proposition 1.6 1) is based on the construction from Lemma 2.1 and
the results from the next few lemmas.

Lemma 2.3. Let {a, b, c} be a polynomial D(n)-triple. Then at most one
of the polynomials a, b, c is divisible by n.

Proof. Let a and b be divisible by n. Suppose first that n is irreducible
over Q. Then, from (2.9), it follows that n|r. Hence, n2|n, a contradiction.

Assume now that n = n1n2 where n1,n2 are linear polynomials over Q.
Let n1 ∤ n2. From (2.9), it follows that n2

1|r2 and n2
2|r2, so we obtain the

contradiction n2|n again. Assume finally that n = λn2
1 where λ ∈ Q\{0}.

Now a = δ1n
2
1, b = δ2n

2
1 where δ1, δ2 ∈ Q\{0}. Since the leading coefficients

of the polynomials a and b are squares of positive integers, we have δ1 = D2
1

and δ2 = D2
2, D1, D2 ∈ Q\{0}, so D2

1D
2
2n

4
1 + λn2

1 = r2. Hence, n2
1|r2 and we

obtain

(D1D2n1 + r1)(D1D2n1 − r1) = −λ
where r1 is a linear polynomial over Q and r = n1r1. Both factors on the left
side of the previous equation must be constant. If we denote by µ1 and ̺1 the
leading coefficients of the polynomials n1 and r1, respectively, then we obtain
µ1 = ̺1 = 0, a contradiction. The proof is analogous if a and c or b and c are
divisible by n.

Let us now find all possible e-s for fixed a and b. By (2.13), we have

deg(e) ≤ 2.

Moreover, from (2.12), we will find possible common factors of n and e.
Obviously, n2 ∤ e and n1n ∤ e, if n = n1n2 and n1, n2 are linear polynomials
over Q.

Lemma 2.4. Let e ∈ Z[X ] be defined by (2.10)4 and let n|e. Then n = λn2
1

where λ ∈ Q\{0} and n1 is a linear polynomial over Q. For fixed a and b,
there is at most one such e.

4Here and also in the following lemmas, we are looking at extensions of {a, b} to a
polynomial D(n)-triple {a, b, c} with c > b and then at the corresponding e ∈ Z[X] defined
by (2.10).
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Proof. Let e = τn, τ ∈ Q\{0}. Suppose that n is irreducible over Q.
By Lemma 2.1, there exists u ∈ Z[X ] such that

aτn+ n2 = u2.

From that, we have n|u and then n|a. Analogously, we obtain that n|b, which
is a contradiction with Lemma 2.3.

Assume now that n = n1n2 where n1, n2 are linear polynomials over Q.
Let n1 ∤ n2. By Lemma 2.1, there exists u ∈ Z[X ] such that

(2.18) aτn1n2 + n2
1n

2
2 = u2.

Hence, n2
1|u2 and n2

2|u2, so n|a. Analogously, we obtain n|b, a contradiction.
So we have that n = λn2

1, λ ∈ Q\{0}. Now e = τn = τλn2
1 = νn2

1, ν ∈ Q\{0}
and thus (2.18) takes the form aνn2

1+λ2n4
1 = u2. We conclude that n2

1|u2, so
(2.19) aν + λ2n2

1 = u21

where u = n1u1 and u1 ∈ Q[X ], deg(u1) ≤ 1. Assume that, for fixed a and b,
two distinct e-s exist.5 We call them e and f . Let f = ν′n2

1 with ν′ ∈ Q\{0},
ν′ 6= ν. From (2.19), we see that a is a product of two linear polynomials.
Hence,

a = A2(X − φ1)(X − φ2)

with A ∈ N. Denote n′
1 := λn1 and assume that

u1 − n′

1 = ε1(X − φ1),

u1 + n′

1 = ε2(X − φ2)

where ε1ε2 = A2ν and ε1, ε2 ∈ Q\{0}. It implies

2n′

1 = X(ε2 − ε1) + ε1φ1 − ε2φ2.

Analogously, we have aν′ + (n′
1)

2 = u22 where af + n2 = (u′)2, u′ = n1u2 and
u2 ∈ Q[X ], deg(u2) ≤ 1. We conclude that

(2.20)
u2 − n′

1 = ϕ1(X − φ1),

u2 + n′

1 = ϕ2(X − φ2),

or

(2.21)
u2 − n′

1 = ϕ1(X − φ2),

u2 + n′

1 = ϕ2(X − φ1)

where ϕ1ϕ2 = A2ν′ and ϕ1, ϕ2 ∈ Q\{0}. Let us first consider the case (2.20).
We get

2n′

1 = X(ϕ2 − ϕ1) + ϕ1φ1 − ϕ2φ2.

Hence, ε2 − ε1 = ϕ2 − ϕ1 and ε1φ1 − ε2φ2 = ϕ1φ1 − ϕ2φ2. Consequently,
we have φ1(ε1 − ϕ1) = φ2(ε2 − ϕ2) = φ2(ε1 − ϕ1), from which it follows that

5We follow the approach from [9, Proposition 3].
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φ1 = φ2 or ε1 = ϕ1. If ε1 = ϕ1, then ε2 = ϕ2 so ν = ν′, a contradiction. If
φ1 = φ2, then from (2.20) it follows that (X − φ1)|n′

1, so we get

(2.22) (X − φ1)
2|n.

Therefore, a|n. Assume now that (2.21) holds. Then,

2n′

1 = X(ϕ2 − ϕ1) + ϕ1φ2 − ϕ2φ1.

Hence, ε2 − ε1 = ϕ2 − ϕ1 and ε1φ1 − ε2φ2 = ϕ1φ2 − ϕ2φ1. This yields
φ1(ε1 + ϕ2) = φ2(ε2 + ϕ1) = φ2(ε1 + ϕ2), so φ1 = φ2 or ε1 = −ϕ2. For
ε1 = −ϕ2, it follows that ε2 = −ϕ1 and we obtain ν = ν′, a contradiction.
If φ1 = φ2, then analogously as for the previous case, we obtain (2.22) and
we conclude that a|n. Completely analogously, for b we get a contradiction
except when b|n. Now we have a|n and b|n, a contradiction with Lemma 2.3.
Therefore, for fixed a and b, there is at most one e with the above form and
it exists only for n = λn2

1 with λ ∈ Q\{0} and n1 a linear polynomial over Q.

Lemma 2.5. Let e ∈ Z[X ] be defined by (2.10) and let n and e have
a common linear factor but n ∤ e. Then n = n1n2 where n1, n2 are linear
polynomials over Q such that n1 ∤ n2. For fixed a and b, there exist at most
two such e-s.

Proof. Suppose that e = τn1, τ ∈ Q\{0}. By Lemma 2.1, there is
u ∈ Z[X ] such that

aτn1 + n2
1n

2
2 = u2.

We have n2
1|u2, so n1|a. Analogously, we obtain that n1|b and n1|c. From

(2.9), it follows that n2
1|r2, so n = λn2

1, λ ∈ Q\{0}. Also, from (2.9), we get
that n1|s and n1|t. Since e 6= 0, by (2.10), n3

1|e which is a contradiction.
Assume now that n = n1n2 and e = τn1e1 where n1, n2, e1 are linear

polynomials over Q and τ ∈ Q\{0}. By Lemma 2.1, there exists u ∈ Z[X ]
such that

(2.23) aτn1e1 + n2
1n

2
2 = u2.

Hence, n2
1|u2. If n1 ∤ e1, then n1|a and analogously, by Lemma 2.1, we obtain

that n1|b and n1|c. As for the previous case, we get the contradiction n3
1|e.

Hence, n1|e1, so e = νn2
1, ν ∈ Q\{0}. Observe that if n1|n2, then n|e.

Therefore, n1 ∤ n2. Assume now that, for fixed a and b, there are two such
e-s. From (2.23), we see that u = n1u1 where u1 ∈ Q[X ], deg(u1) ≤ 1, so

aν + n2
2 = u21.

This equation has the same form as (2.19), so the proof follows analogously
to the proof of Lemma 2.4. The only difference is that here the proof stops
whenever we obtain (2.22). We conclude that there exists at most one e which
has the same linear factor n1 as n has. Analogously, there is at most one e
which has with n a common linear factor n2. Hence, for fixed a and b, there
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exist at most two e-s of the above form. In this case, n = n1n2 with n1, n2

linear polynomials over Q such that n1 ∤ n2.

We are left with the possibility that e and n do not have a common
nonconstant factor. For e = 0 and for fixed a and b, by Lemma 2.2, c =
a + b + 2r is the only possible c. An example for this is the polynomial
D(X2 + 2X + 1)-triple

{X2 + 1, X2 + 2X + 3, 4X2 + 4X + 8}.
For e 6= 0 we have the following lemma.

Lemma 2.6. Let e ∈ Z \ {0} be defined by (2.10). Then, for fixed a and
b, there is at most one such e.

Proof. By Lemma 2.1, there is w ∈ Z[X ] such that ce + n2 = w2.
Therefore, deg(w) = 2 and µ = ±ω where µ and ω are the leading coefficients
of n and w, respectively. Also,

(2.24) c =
(w − n)(w + n)

e

where one factor in the numerator is constant and the other has degree 2.
From (2.14), we see that deg(a+b−c) = 2. Also, by comparing the coefficients
in (2.14), we get

0 = µ(A2 +B2 − C2) + 2ABω.

Now it follows C2 = (A ± B)2. Since A − B < A ≤ C, we get ω = µ. By
(2.24), we have w − n = ξe where ξ ∈ Q\{0}. Then, from (2.14), it follows
that

e(1− 2rξ) = n(a+ b− c+ 2r).

Therefore,

(2.25) 1− 2rξ = σn,

(2.26) σe = a+ b− c+ 2r

where σ ∈ Q\{0}.
Suppose that there exists another nonzero integer f 6= e for which Lemma

2.1 holds. For a polynomial D(n)-triple {a, b, c′}, a < b < c′, by Lemma 2.1
there is w′ ∈ Z[X ] such that c′f + n2 = (w′)2. Analogously as for e,

(2.27) 1− 2rξ′ = σ′n

where a + b − c′ + 2r = σ′f , w′ − n = ξ′f and σ′, ξ′ ∈ Q\{0}. From (2.25)
and (2.27), we get

−2r(ξ − ξ′) = n(σ − σ′).

If n|r, we obtain a contradiction with (2.25). Therefore, ξ = ξ′ and σ = σ′.
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By (2.24), we get c = ξ(ξe+2n) and, inserting this into (2.26), we obtain

(2.28) e =
1

ξ2 + σ
(a+ b + 2r − 2nξ).

Analogously, it follows

f =
1

ξ′2 + σ′
(a+ b + 2r − 2nξ′).

Comparing that with (2.28), we conclude f = e. Hence, for fixed a and b,
there is at most one e ∈ Z\{0}.

Lemma 2.7. Let e ∈ Z[X ] be a linear polynomial defined by (2.10), which
does not divide n. Then, for fixed a and b, there is at most one such e.

Proof. The proof is analogous to the proof of Lemma 2.6. The only
difference is that here, in (2.24), we have w−n = θe, θ ∈ Q\{0} or w+n = qe,
q ∈ Q[X ], deg(q) = 1. From that, two possibilities for e arise.

Let us now consider the last possibility for e.

Lemma 2.8. Let {a, b, c}, a < b < c, be a polynomial D(n)-triple.
Let e ∈ Z[X ] be a quadratic polynomial defined by (2.10), which does not
have a common nonconstant factor with n. Then one of the following three
possibilities holds:

1) There is at most one polynomial c′ 6= c such that {a, b, c′}, a < b < c′,
is a polynomial D(n)-triple and f ∈ Z[X ], obtained by applying (2.10)
on that triple, is a quadratic polynomial which does not have a common
nonconstant factor with n.

2) There is at most one polynomial b′ 6= b such that {a, b′, c}, a < b′ < c,
is a polynomial D(n)-triple and f ∈ Z[X ], obtained by applying (2.10)
on that triple, is a quadratic polynomial which does not have a common
nonconstant factor with n.

3) There is at most one polynomial a′ 6= a such that {a′, b, c}, a′ < b < c,
is a polynomial D(n)-triple and f ∈ Z[X ], obtained by applying (2.10)
on that triple, is a quadratic polynomial which does not have a common
nonconstant factor with n.

Proof. Assume that for the D(n)-triple {a, b, c} there is a quadratic
polynomial e, which does not have a common nonconstant factor with n and
for which Lemma 2.1 holds. By this lemma, there exists w ∈ Z[X ] such that
(2.24) holds where deg(w) ≤ 2 and both factors in the numerator have their
degrees equal to 2. Also, e divides one of those factors or e = e1e2 where e1,
e2 are linear polynomials over Q and e1|(w − n), e2|(w + n). It is clear that
at most one of these two cases holds.

If w ± n = ψe where ψ ∈ Q\{0}, then from (2.14) we obtain

(2.29) 1− 2rψ = φn,
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(2.30) φe = a+ b− c∓ 2r

where φ ∈ Q\{0}. If we have e = e1e2 and w−n = m1e1, w+n = m2e2 where
e1, e2,m1,m2 are linear polynomials over Q, m1m2 = c, then from (2.14) we
get

(2.31)
nd1 = 2rm1 − e2,

nd2 = 2rm2 − e1

and

e1d1 = c− a− b− 2r,(2.32)

e2d2 = c− a− b+ 2r(2.33)

where d1, d2 are linear polynomials over Q.
We first treat the case e|(w±n). Assume also that for a polynomial D(n)-

triple {a, b, c′}, a < b < c′, there is a quadratic polynomial f with the same
properties as e. By Lemma 2.1, there is w′ ∈ Z[X ] such that c′f +n2 = (w′)2.

Let f = f1f2 where f1, f2 are linear polynomials over Q and assume

(2.34)
w′ − n = h1f1,

w′ + n = h2f2

where h1, h2 are linear polynomials over Q, h1h2 = c′. Analogously as for e,
we obtain

(2.35)
l1n = 2rh1 − f2,

l2n = 2rh2 − f1

with l1, l2 linear polynomials over Q. Using (2.29), from (2.35), we get

−n(ψl1 + φh1) = f2ψ − h1,

−n(ψl2 + φh2) = f1ψ − h2,

which is a contradiction unless f2ψ = h1 and f1ψ = h2. Now we have that
c′|f . Also, from (2.34), we get c′|2n, a contradiction.

Assume now that w′ ± n = ψ′f where ψ′ ∈ Q\{0}. Analogously as for e,
we have

1− 2rψ′ = φ′n,(2.36)

φ′f = a+ b− c′ ∓ 2r(2.37)

with φ′ ∈ Q\{0}. From (2.29) and (2.36), we get that φ = φ′ and ψ = ψ′. By
(2.24), c = ψ(ψe∓ 2n). Inserting that into (2.30), we obtain

(2.38) e =
1

ψ2 + φ
(a+ b∓ 2r ± 2nψ).

Analogously, using (2.37), we obtain

(2.39) f =
1

ψ′2 + φ′
(a+ b∓ 2r ± 2nψ′).
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From (2.38) and (2.39), we conclude that for fixed a and b there is at most
one f 6= e. For such f , by (2.37), we have c′ = −φ′f + a+ b∓ 2r.

Now we come to the second case, i.e., that e = e1e2 where e1, e2 are linear
polynomials over Q and e1|(w−n), e2|(w+n). By adding the equations (2.17)
(with the sign +) and (2.32), we obtain e

n
+ 2

n2 (abe+ ruv) = 2r+ d1e1. From
that, using (2.9) and (2.31), it follows that

(2.40) uv − n2 = e1(m1n− re2).

For u, v ∈ Z[X ], from Lemma 2.1, it follows that u±n = k1e1 and v±n = z1e1
where k1, z1 ∈ Q[X ], deg(k1) = deg(z1) = 1. Using that, from (2.40), we get

e1|(k1z1e21 ± k1e1n± z1e1n± n2 − n2),

so both signs in the equations u ± n = k1e1 and v ± n = z1e1 must be the
same. Analogously, from (2.17) (with the sign +), (2.33) and the equations
u ∓ n = k2e2, v ∓ n = z2e2 where k2, z2 ∈ Q[X ], deg(k2) = deg(z2) = 1, we
obtain

e2|(k2z2e22 ± k2e2n± z2e2n± n2 + n2).

Therefore, signs in the equations u ∓ n = k2e2 and v ∓ n = z2e2 must be
different. So u± n = κe1e2 where κ ∈ Q\{0} and v± n = z1e1, v∓ n = z2e2,
or v ± n = µe1e2 where µ ∈ Q\{0} and u ± n = k1e1, u ∓ n = k2e2. If we
have both possibilities at the same time, then e and n have a common linear
factor, so we obtain a contradiction.

Suppose first that

e|(u± n).

Using Lemma 2.1 and (2.16), analogously as in the case where e|(w ± n), we
obtain

(2.41)
1− 2tκ = ϑn,

a = −ϑe+ b+ c∓ 2t

where ϑ ∈ Q\{0}. Also, for fixed b and c, there is at most one f 6= e with
the properties from the assumption of the lemma. For the triple {a′, b, c},
a′ < b < c, by Lemma 2.1, there is u′ ∈ Z[X ] such that a′f + n2 = (u′)2. If
u′ ± n = κ′f , κ′ ∈ Q\{0}, we have

(2.42)
1− 2tκ′ = ϑ′n,

a′ = −ϑ′f + b+ c∓ 2t

where ϑ′ ∈ Q\{0}. Then, it follows that

e =
1

κ2 + ϑ
(b+ c∓ 2t± 2nκ)

and

f =
1

κ′2 + ϑ′
(b+ c∓ 2t± 2nκ′).
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Analogously as for (2.38) and (2.39), we have κ′ = κ, ϑ′ = ϑ, so there exists
at most one f 6= e. For e and f , we have at most one a and at most one a′,
given by (2.41) and (2.42), respectively.

Finally in the case when e|(v ± n), analogously, from Lemma 2.1 and
(2.15), it follows that for fixed a and c there exist at most two different e-s
with the properties from the assumption of the lemma. For them, we obtain
b and b′ such that {a, b, c} and {a, b′, c}, where a < b′ < c, are a polynomial
D(n)-triples.

Examples for the case 1) are the polynomial D(16X2 + 9)-triples {X2,

16X2+8, 100X2+44} and {X2, 16X2+8, 36X2+20} for which e = 273X2+
126 and f = 33X2 + 18, respectively.

Now we are ready to estimate the number Q2.

Proof of Proposition 1.6 1). Let a, b ∈ Z+[X ], a < b, be quadratic
polynomials. Let ab + n = r2 with r ∈ Z+[X ]. We want to find the number
of possible D(n)-triples {a, b, c} where c ∈ Z+[X ], c > b, is also a quadratic
polynomial. First we look for the possible e-s coming from Lemma 2.1 applied
to such a triple.

By Lemma 2.4 and Lemma 2.5, we have at most two6 quadratic
polynomials ei, i = 1, 2, with common linear or quadratic factor with n.
From Lemma 2.2, we obtain

ci = a+ b+
ei

n
+

2

n2
(abei + ruivi)

for i = 1, 2 where ui, vi ∈ Z+[X ] such that aei + n2 = u2i , bei + n2 = v2i .
Moreover, a < b < ci for i = 1, 2. For e = 0, we get

c3 = a+ b+ 2r

and a < b < c3. By Lemma 2.6, we have at most one nonzero integer e4 for
which

c4 = a+ b+
e4

n
+

2

n2
(abe4 + ru4v4)

where u4, v4 ∈ Z+[X ] such that ae4+n
2 = u24, be4+n

2 = v24 . Also, a < b < c4.
By Lemma 2.7, there is at most one linear polynomial e5 which does not divide
n. For e5, we have

c5 = a+ b+
e5

n
+

2

n2
(abe5 + ru5v5)

where u5, v5 ∈ Z+[X ] such that ae5 + n2 = u25, be5 + n2 = v25 . It holds
a < b < c5.

Finally, by Lemma 2.8, there does not exist a set {a, b, c′1, c′2, c′3, c′4, c′5},
b < c′1 < c′2 < c′3 < c′4 < c′5, of quadratic polynomials from Z+[X ] such that

6There does not exist a quadratic polynomial n for which Lemma 2.4 and Lemma 2.5
both hold.
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every three of its elements have for e a quadratic polynomial from Z[X ] which
does not have a common nonconstant factor with n. Namely, in that case for
the set {c′1, c′2, c′5} Lemma 2.8 does not hold.

Let us consider a set {a, b, c′1, c′2, c′3, c′4} with the property that every three
of its elements correspond to an e that is a quadratic polynomial from Z[X ]
which does not have a common nonconstant factor with n. We have seen that
a set with this property cannot be larger. Every two elements from this set
have at most five extensions to a polynomial D(n)-triple which does not have
the above property. If we add all this elements, then the set has the size at
most

(

6

2

)

· 5 + 6 = 81.

Clearly, in a set with more than 81 elements we would be able to find a subset
consisting of 7 elements which has the property that every three elements
contained in the set have a quadratic e which has no common nonconstant
factor with n. Since this is impossible, it follows that Q2 ≤ 81.

2.2.2. Cubic polynomials. The proof of Proposition 1.6 2) is based on the
construction from Lemma 2.1 and the following lemmas which deal with a
polynomial D(n)-triple {a, b, c} where deg(a) = deg(b) = deg(c) = 3. An
example of such a set is the following D(−7X2 + 8X)-triple

(2.43) {X3 + 2X,X3 + 4X2 + 4X − 4, 4X3 + 8X2 + 8X − 4}.
First, we are looking for the possible e-s for fixed a and b. By (2.13), we

have that

deg(e) ≤ 1.

From (2.12), we determine possible relations between e and n. We have n ∤ e
and we will prove that n and e do not have a common linear factor. For e = 0,
by Lemma 2.2, c = a+ b + 2r. An example for such a triple is (2.43).

Lemma 2.9. For fixed a and b, there is at most one e ∈ Z\{0} defined by
(2.10).

Proof. By Lemma 2.1, we have w ∈ Z[X ] for which (2.24) holds.
Observe that deg(w) = 2 and the leading coefficients of n and w are equal up
to sign. Also, one of the factors in the numerator of (2.24) has degree 1 and
the other one has degree 2. From (2.14), we obtain that ω = µ where µ, ω are
the leading coefficients of n, w, respectively. Therefore, in (2.24), w− n = ge

with g a linear polynomial over Q which divides c. From (2.14), it follows
that

(2.44) 1− 2rg = hn,

(2.45) he = a+ b− c+ 2r

where h ∈ Q[X ], deg(h) = 2.
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Assume that f 6= e is another nonzero integer for which Lemma 2.1 holds.
Then, for the polynomial D(n)-triple {a, b, c′}, a < b < c′, there is w′ ∈ Z[X ]
such that c′f + n2 = (w′)2. Analogously as for e, it holds

(2.46) 1− 2rg′ = h′n

where a + b − c′ + 2r = h′f , w′ − n = g′f , g′, h′ ∈ Q[X ] and deg(g′) = 1,
deg(h′) = 2. From (2.44) and (2.46), we obtain that g = g′ and h = h′. By
(2.24) and (2.45), we get

(2.47) e =
1

g2 + h
(a+ b+ 2r − 2ng).

Analogously, we obtain f = 1
g′2+h′

(a+ b+ 2r − 2ng′), so f = e.

Lemma 2.10. Let e ∈ Z[X ] be a linear polynomial defined by (2.10). Then
e ∤ n. For fixed a and b, there exist at most two such e-s.

Proof. Assume on the contrary, that n = n1n2 where n1, n2 are linear
polynomials over Q and e = τn1, τ ∈ Q\{0}. By Lemma 2.1, there exists
u ∈ Z[X ] such that

aτn1 + n2
1n

2
2 = u2.

We have n2
1|u2, so n1|a. Analogously, we obtain that n1|b. Now, from (2.9), we

conclude that n2
1|n and n1|s. Then, from (2.10), we get n2

1|e, a contradiction.
Therefore, e ∤ n.

By Lemma 2.1, there is w ∈ Z[X ] for which (2.24) holds. Observe that
deg(w) ≤ 2, that both factors in the numerator of (2.24) have the degree 2
and that w±n = pe where p ∈ Q[X ], deg(p) = 1. From (2.14), it follows that

(2.48) 1− 2rp = qn,

(2.49) qe = a+ b− c∓ 2r

where q ∈ Q[X ], deg(q) = 2.
Let f 6= e be another linear polynomial which does not divide n and

for which Lemma 2.1 holds. Then, for the polynomial D(n)-triple {a, b, c′},
a < b < c′, there is w′ ∈ Z[X ] such that c′f + n2 = (w′)2. Analogously as for
e, we have

(2.50) 1− 2rp′ = q′n

where a + b − c′ ∓ 2r = q′f , w′ ± n = p′f and p′, q′ ∈ Q[X ], deg(p′) = 1,
deg(q′) = 2. From (2.48) and (2.50), we have p = p′ and q = q′. Using (2.24)
and (2.49), we obtain

(2.51) e =
1

p2 + q
(a+ b∓ 2r ± 2np).

Analogously, f = 1
p′2+q′

(a+ b∓ 2r ± 2np′), so there is at most one f 6= e.

Now we are able to determine the upper bound for Q3.
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Proof of Proposition 1.6 2). Let {a, b, c}, a < b < c, be a polynomial
D(n)-triple which contains only cubic polynomials. Let us fix a and b. By
Lemma 2.9, there is at most one nonzero integer e for which Lemma 2.1 holds.
From Lemma 2.2, for such e, it follows that there is at most one possibility
for c. For e = 0 we obtain c = a+ b + 2r. By Lemma 2.10, we have at most
two linear e-s which do not divide n. For each of that e-s, by Lemma 2.2, we
obtain at most one possible c. In Lemma 2.10, we also excluded the last option
which comes from (2.12), those that e and n have a common linear factor.
Therefore, the pair {a, b} can be extended with at most 4 cubic polynomials.
From (2.44) and (2.48), we obtain that g = p and h = q, so there exist at most
two between three possible e-s, given by (2.47) and (2.51). Hence, Q3 ≤ 5.

2.2.3. Polynomials of degree 4. Now we determine the upper bound for
the number of polynomials of degree 4 in a polynomial D(n)-tuple. Let
{a, b, c} be a polynomial D(n)-triple, deg(a) = deg(b) = deg(c) = 4. By
(2.13), we have that

deg(e) ≤ 0.

For e = 0 and for fixed a and b, from Lemma 2.2 we obtain, for example, the
polynomial D(4X2)-triple

{X4 +X2, X4 +X2 + 4X, 4X4 + 4X2 + 8X}.
Lemma 2.11. Let e ∈ Z\{0} be defined by (2.10). Then, for fixed a and

b, there exist at most three such e-s.

Proof. By Lemma 2.1, there is u ∈ Z[X ] such that

(2.52) a =
(u− n)(u+ n)

e

where deg(u) ≤ 2. If we denote y := u−n
e

, then u + n = ye + 2n, y ∈ Q[X ]
and deg(y) = 2. From (2.16), we obtain that

(2.53) n|(1− 2ty).

Suppose that f 6= e is another nonzero integer for which Lemma 2.1 holds.
Hence, for the polynomial D(n)-triple {a, b, c′}, a < b < c′, there is u′ ∈ Z[X ]
such that

(2.54) a =
(u′ − n)(u′ + n)

f
.

If we denote y′ := u′
−n
f

, then u′ + n = y′f + 2n, y′ ∈ Q[X ], deg(y′) = 2. By

(2.16)

(2.55) n|(1− 2t′y′)

where bc′ + n = (t′)2. From (2.52) and (2.54), it follows that

(2.56) y2e− (y′)2f + 2n(y − y′) = 0
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and then
(y − y′)(e(y + y′) + 2n) = (y′)2(f − e).

Therefore, deg(y− y′) = 2 and deg(e(y + y′) + 2n) = 2. If

y′|(y − y′) and y′|(e(y+ y′) + 2n),

then y′|y and y′|n, so we obtain a contradiction with (2.55). Therefore, y′ =
y′1 · y′2 where y′1, y

′
2 are linear polynomials over Q and

(2.57) (y′1)
2|(y − y′) and (y′2)

2|(e(y+ y′) + 2n).

From that, y and y′ have a common linear factor y′1. If y|y′ and by (2.56),
we get y|n, which is in contradiction with (2.53). Also, from (2.57), it follows
that y′2|(ye+2n). Therefore, y′ and ye+2n have a common linear factor, but
if y′|(ye+ 2n), then we have y′1|n, a contradiction with (2.55).

Analogously, we transform (2.56) into

(y − y′)(f(y + y′) + 2n) = y2(f − e)

and we conclude that y and y′f + 2n have a common linear factor, but are
not equal up to a constant.

From (2.52) and (2.54), a = y(ye+2n) = y′(y′f +2n). Also, it must hold

a = A2(X − φ1)(X − φ2)(X − φ3)(X − φ4)

where A ∈ N and φi ∈ Q for i = 1, 2, 3, 4. Let (X − φ1)|y and (X − φ1)|y′.
If (X − φ1)|(ye + 2n), it leads to a contradiction with (2.53). Analogously,
(X − φ1) ∤ (y′f + 2n) because it contradicts (2.55). Hence, we also have
(X −φ1)

2 ∤ y and (X −φ1)
2 ∤ y′. Suppose next that y = π1(X −φ1)(X −φ2),

π1 ∈ Q\{0}. Then, we have (X − φ2)|(y′f + 2n). Also, (X − φ2) ∤ (ye +
2n) because otherwise it would be a contradiction with (2.53). Let y′ =
π2(X − φ1)(X − φ3), π2 ∈ Q\{0}. Then, we have (X − φ3)|(ye + 2n). Also,
(X − φ3) ∤ (y

′f + 2n) because otherwise it would contradict (2.55). Finally,
we have ye+ 2n = π3(X − φ3)(X − φ4) and y

′f + 2n = π4(X − φ2)(X − φ4),
π3, π4 ∈ Q\{0}.

Assume now that for g ∈ Z\{0} Lemma 2.1 also holds and that g 6= e,
g 6= f . Therefore, ag + n2 = (u′′)2 where u′′ ∈ Z[X ]. As for e and f , we
obtain that

a = y′′(y′′g + 2n)

with y′′ := u′′
−n
g

, y′′ ∈ Q[X ] and deg(y′′) = 2. Then, y′′ and y have a common

linear factor, but y′′ ∤ y. The same holds for y′′ and y′. Observe now that

(2.58) (X − φ1)|y′′ or (X− φ2)(X− φ3)|y′′.
If (X − φ1)|y′′, then (X − φ2) ∤ y′′ and (X − φ3) ∤ y′′ because we would
have that y′′|y or y′′|y′, a contradiction in both cases. We conclude that
y′′ = π5(X−φ1)(X−φ4), π5 ∈ Q\{0}. Hence, y′′g+2n = π6(X−φ2)(X−φ3),
π6 ∈ Q\{0}. If y′′ = π7(X −φ2)(X −φ3) where π7 ∈ Q\{0}, then y′′g+2n =
π8(X−φ1)(X −φ4) for π8 ∈ Q\{0}. If we have both possibilities (2.58), then



DIOPHANTINE m-TUPLES FOR QUADRATIC POLYNOMIALS 303

π5(X−φ1)(X −φ4)|π8(X−φ1)(X−φ4), a contradiction. Therefore, we have
at most one g.

Proof of Proposition 1.6 3). Let {a, b, c}, a < b < c, be a polynomial
D(n)-triple which contains only polynomials of degree 4. Let us fix a and b.
By Lemma 2.11, there are at most three nonzero integers e for which Lemma
2.1 holds. Then, from Lemma 2.2, it follows that for each such e, we have at
most one possibility for c. For e = 0, c = a+ b+ 2r. Since there are no other
possibilities for e which come from (2.12), we have Q4 ≤ 6.

2.2.4. Polynomials of degree k, k ≥ 5. We determine a sharp bound for
the number of polynomials of degree k, for k ≥ 5, in a polynomial D(n)-tuple.

Proof of Proposition 1.6 4). Let {a, b, c}, a < b < c, be a polynomial
D(n)-triple for which (2.9) holds. Let deg(a) = deg(b) = deg(c) = k ≥ 5. By
(2.13),

deg(e) ≤ −1,

which is a contradiction except for e = 0. Therefore, for fixed a and b, there
is only one possible c, which is c = a+ b+ 2r.

3. Gap principle

We will prove a gap principle for the degrees of the elements in a
polynomial D(n)-quadruple. This result will be used in the proof of Theorem
1.3, together with the bounds from Section 2 and with the upper bound for
the degree of the element in a polynomial D(n)-quadruple ([10, Lemma 1]),
given in the following lemma.

Lemma 3.1. Let {a, b, c, d}, a < b < c < d, be a polynomial D(n)-
quadruple with n ∈ Z[X ]. Then

deg(d) ≤ 7deg(a) + 11deg(b) + 15deg(c) + 14deg(n)− 4.

The proof of this lemma is based on the theory of function fields, precisely
it is obtained by using Mason’s inequality ([15]).

Now we will adjust the result from [9, Lemma 3], for linear n, to achieve
the needed gap principle.

Lemma 3.2. Let {a, b, c, d}, where a < b < c < d and deg(a) ≥ 5, be a
polynomial D(n)-quadruple for quadratic n ∈ Z[X ]. Then

deg(d) ≥ deg(b) + deg(c)− 4.

Proof. By Lemma 2.1, for a polynomial D(n)-triple {a, c, d}, there exist
e, u, w ∈ Z[X ] such that ae+n2 = u2, ce+n2 = w2. If e < 0, then ae+n2 < 0,
which is a contradiction. Therefore, e = 0 or e ∈ Z+[X ].
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Assume that n > 0. Using the relations a2 < ad + s2 = a(c + d) + n,
ad+ n = x2 and cd+ n = z2, we obtain

a2z2 < (ac+ n)(ad+ n) = s2x2.

It follows that u < 0. Analogously, c2 < cd+ s2 = c(a+ d) + n, so we have

c2x2 < (ac+ n)(cd+ n) = s2z2.

It follows that w < 0. In analogue way, if n < 0, then u,w > 0.
For e = 0, by Lemma 2.1,

(3.1) d = a+ c+ 2s.

For e > 0, by Lemma 2.1, using the relations n2 < a < c and uw > 0, we
obtain

n2d = n2(a+ c) + en+ 2(ace+ suw)

> 2n4 + n+ 2ac > 2ac.(3.2)

Analogously, applying Lemma 2.1 to the polynomial D(n)-triple {b, c, d},
we obtain that either d = b + c + 2t or n2d > 2bc. If d = b + c + 2t, then
s2 = ac+ n < bc+ n = t2, so we have s < t. Hence, a+ c+ 2s < b + c+ 2t,
which contradicts (3.1). Also,

t2 = bc+ n ≤ (c− 1)c+ n = c2 − c+ n < c2 − n2 + n < c2.

From that, we have t < c, so

n2d = n2(b + c+ 2t) < n2 · 4c < 2ac,

which is a contradiction with (3.2). Therefore,

n2d > 2bc.

Observe that Proposition 1.6 4) is a consequence of Lemma 3.2. Namely, if
{a, b, c, d} is a polynomial D(n)-quadruple where deg(a) = deg(b) = deg(c) =
deg(d) = k ≥ 5, by Lemma 3.2, we obtain the contradiction 4 ≥ k ≥ 5.

4. Proof of Theorem 1.3.

We will combine the results from Section 2 and 3, using the approach
from [10]. By [4, Theorem 1] and Propositions 1.5 and 1.6, we have Q ≤ 113.
Hence, we will improve that bound.

Proof of Theorem 1.3. Let S = {a1, a2, . . . , am}, a1 < a2 < · · · <
am, be a polynomial D(n)-m-tuple where n ∈ Z[X ] is a quadratic polynomial.
Observe that if S contains a polynomial of degree ≥ 2, then it contains only
polynomials of even or only polynomials of odd degree. By Proposition 1.5,
in S we have at most 2 nonzero constants and at most 4 linear polynomials.
By Proposition 1.6, the number of quadratic polynomials in S is at most 81,
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in S there are at most 5 cubic polynomials, at most 6 polynomials of degree
four and at most 3 polynomials of degree k for every k ≥ 5.

Assume that in S there is a polynomial of degree ≥ 2. Let us first consider
the case where the degrees of all polynomials in S are odd. First, we have

deg(a1) ≥ 1, deg(a2) ≥ 1, deg(a3) ≥ 1, deg(a4) ≥ 1,

deg(a5) ≥ 3, deg(a6) ≥ 3, deg(a7) ≥ 3, deg(a8) ≥ 3, deg(a9) ≥ 3

and
deg(a10) ≥ 5, deg(a11) ≥ 5, deg(a12) ≥ 5.

Applying Lemma 3.2 to the polynomial D(n)-quadruple {a10, a11, a12, a13}
gives deg(a13) ≥ 6 and, since this degree is odd, we conclude

deg(a13) ≥ 7.

If we continue in analogue way, we obtain

deg(a14) ≥ 9, deg(a15) ≥ 13, deg(a16) ≥ 19, deg(a17) ≥ 29,
deg(a18) ≥ 45, deg(a19) ≥ 71, deg(a20) ≥ 113, deg(a21) ≥ 181, . . .

We will separate the cases depending on the number of linear polynomials in
S. Assume first that deg(a1) = deg(a2) = deg(a3) = deg(a4) = 1. Applying
Lemma 3.1 to a polynomialD(n)-quadruple {a1, a2, a3, am}, we get deg(am) ≤
57. Hence, in this case

m ≤ 18.

Analogously, if deg(a1) = deg(a2) = deg(a3) = 1 and deg(a4) ≥ 3 . . ., we
obtain deg(am) ≤ 57. From that, it follows m ≤ 17.

Assume next that deg(a1) = deg(a2) = 1, deg(a3) = A where A ≥ 3 is an
odd positive integer. As before, we obtain

deg(am) ≤ 7 + 11 + 15A+ 28− 4 = 15A+ 42.

If A = 3, then

deg(a4) ≥ A, deg(a5) ≥ A, deg(a6) ≥ A,
deg(a7) ≥ A, deg(a8) = B, deg(a9) ≥ B,
deg(a10) ≥ B, deg(a11) ≥ 2B− 3, deg(a12) ≥ 3B− 7,
deg(a13) ≥ 5B− 13, deg(a14) ≥ 8B− 23, deg(a15) ≥ 13B− 39,
deg(a16) ≥ 21B− 65, deg(a17) ≥ 34B− 107, deg(a18) ≥ 55B− 175, . . .

where B > A and B is an odd positive integer. Again, we have m ≤ 17. If
A ≥ 5, then

deg(a4) ≥ A, deg(a5) ≥ A, deg(a6) ≥ 2A− 3, . . .,
deg(a12) ≥ 34A− 107, deg(a13) ≥ 55A− 175, deg(a14) ≥ 89A− 285, . . .

Here, we get m ≤ 13.
Suppose that deg(a1) = 1, deg(a2) = A, deg(a3) = B where 3 ≤ A ≤ B

and A, B are odd positive integers. From that, we obtain

deg(am) ≤ 7 + 11A+ 15B+ 28− 4 ≤ 26B+ 31.
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If A = B = 3, then

deg(a4) ≥ B, deg(a5) ≥ B, deg(a6) ≥ B,
deg(a7) = C, deg(a8) ≥ C, deg(a9) ≥ C,
deg(a10) ≥ 2C− 3, . . . , deg(a16) ≥ 34C− 107,
deg(a17) ≥ 55C− 175, deg(a18) ≥ 89C− 285, . . .

where C ≥ 5 is an odd positive integer, so m ≤ 17. If A = 3 and B ≥ 5, then

deg(a4) ≥ B, deg(a5) ≥ B, deg(a6) ≥ 2B− 3, . . .,
deg(a13) ≥ 55B− 175, deg(a14) ≥ 89B− 285, deg(a15) ≥ 144B− 463, . . .

Now, we have m ≤ 14. Similarly, if 5 ≤ A ≤ B, we obtain that m ≤ 13.
Finally, suppose that deg(a1) = A, deg(a2) = B, deg(a3) = C where 3 ≤

A ≤ B ≤ C and A, B, C are odd positive integers. We get

deg(am) ≤ 7A+ 11B+ 15C+ 28− 4 ≤ 33C+ 24.

If A = B = C = 3 and

deg(a4) ≥ C, deg(a5) ≥ C, deg(a6) = D,
deg(a7) ≥ D, deg(a8) ≥ D, deg(a9) ≥ 2D− 3,
deg(a10) ≥ 3D− 7, . . . , deg(a16) ≥ 55D− 175,
deg(a17) ≥ 89D− 285, deg(a18) ≥ 144D− 463, . . .

where D ≥ 5 is an odd positive integer, then m ≤ 16. If A = B = 3 and
C ≥ 5, we have

deg(a4) ≥ C, deg(a5) ≥ C, deg(a6) ≥ 2C− 3, . . .,
deg(a13) ≥ 55C− 175, deg(a14) ≥ 89C− 285, deg(a15) ≥ 144C− 463, . . .

Hence, m ≤ 14. Analogously, if A = 3 and 5 ≤ B ≤ C, then m ≤ 13. For
5 ≤ A ≤ B ≤ C, we have

deg(a4) ≥ C, deg(a5) ≥ 2C− 3, deg(a6) ≥ 3C− 7, . . .,
deg(a12) ≥ 55C− 175, deg(a13) ≥ 89C− 285, deg(a14) ≥ 144C− 463, . . .,

so m ≤ 13.
We conclude that, if S contains only polynomials of odd degree, then

m ≤ 18.
Let all polynomials in S have even degree. Now we have

deg(a1) ≥ 0, deg(a2) ≥ 0,

deg(a3) ≥ 2, deg(a4) ≥ 2, . . . , deg(a83) ≥ 2,

deg(a84) ≥ 4, deg(a85) ≥ 4, . . . , deg(a89) ≥ 4

and

deg(a90) ≥ 6, deg(a91) ≥ 6, deg(a92) ≥ 6.

Applying Lemma 3.2 to the polynomialD(n)-quadruple {a90, a91, a92, a93} we
get

deg(a93) ≥ 8.
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In analogue way, it follows

deg(a94) ≥ 10, deg(a95) ≥ 14, deg(a96) ≥ 20, deg(a97) ≥ 30,
deg(a98) ≥ 46, deg(a99) ≥ 72, deg(a100) ≥ 114, deg(a101) ≥ 182, . . .

Assume first that deg(a1) = deg(a2) = 0, deg(a3) = A where A ≥ 2 is an even
positive integer. If we apply Lemma 3.1 to a polynomial D(n)-quadruple
{a1, a2, a3, am}, it follows that

deg(am) ≤ 0 + 0 + 15A+ 28− 4 = 15A+ 24.

Let A = 2. Then

deg(a4) ≥ A, deg(a5) ≥ A, . . . , deg(a83) ≥ A,
deg(a84) = B, deg(a85) ≥ B, . . . , deg(a89) ≥ B,
deg(a90) = C, deg(a91) ≥ C, deg(a92) ≥ C,
deg(a93) ≥ 2C− 4, deg(a94) ≥ 3C− 8, deg(a95) ≥ 5C− 16,
deg(a96) ≥ 8C− 28, deg(a97) ≥ 13C− 48, deg(a98) ≥ 21C− 80, . . .

where A < B < C, and B, C are even positive integers, so

m ≤ 98.

Let A = 4. Since the set S contains at most 6 polynomials of degree 4, at most
3 polynomials of degree 6 and, by [4, Theorem 1], at most 21 polynomials of
degree ≥ 8, in this case m ≤ 32. Analogously, m ≤ 26 if A = 6 and m ≤ 23 if
A ≥ 8.

Similarly, assume that deg(a1) = 0, deg(a2) = A, deg(a3) = B where
2 ≤ A ≤ B and A, B are even positive integers. It follows that

deg(am) ≤ 0 + 11A+ 15B+ 28− 4 ≤ 26B+ 24.

If A = B = 2, then

deg(a4) ≥ B, deg(a5) ≥ B, . . . , deg(a82) ≥ B,
deg(a83) = C, deg(a84) ≥ C, deg(a85) ≥ C, . . . ,
deg(a88) ≥ C, deg(a89) = D, deg(a90) ≥ D,
deg(a91) ≥ D, deg(a92) ≥ 2D− 4, . . . ,

deg(a97) ≥ 21D− 80, deg(a98) ≥ 34D− 132, deg(a99) ≥ 55D− 216, . . .

where B < C < D and C, D are even positive integers. Again, we have

m ≤ 98.

Let A = 2 and B = 4. Since in S there are at most 6 polynomials of degree
4, at most 3 polynomials of degree 6 and, by [4, Theorem 1], at most 21
polynomials of degree ≥ 8, we conclude that m ≤ 32. Analogously, m ≤ 31 if
A = B = 4, m ≤ 26 if A = 2 or A = 4 and B = 6, m ≤ 25 if A = B = 6, and
m ≤ 23 if B ≥ 8.

Suppose finally that deg(a1) = A, deg(a2) = B, deg(a3) = C where 2 ≤
A ≤ B ≤ C and A, B, C are even positive integers. We have

deg(am) ≤ 7A+ 11B+ 15C+ 28− 4 ≤ 33C+ 24.
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If A = B = C = 2 and

deg(a4) ≥ C, . . . , deg(a81) ≥ C, deg(a82) = D,
deg(a83) ≥ D, . . . , deg(a87) ≥ D, deg(a88) = E,
deg(a89) ≥ E, . . . , deg(a96) ≥ 21E− 80,
deg(a97) ≥ 34E− 132, deg(a98) ≥ 55E− 216, . . .

where 4 ≤ D < E and D, E are even positive integers, then m ≤ 97. Also, as
before, m ≤ 32 if C = 4, m ≤ 26 if C = 6, and m ≤ 23 if C ≥ 8.

We conclude that the set S has at most 98 polynomials of even degree.
Therefore, Q ≤ 98.
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