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Abstract. In this paper, we introduce an iterative scheme for a
general variational inequality. Strong convergence theorems of common
solutions of two variational inequalities are established in a uniformly
convex and 2-uniformly smooth Banach space. As applications, we, still in
Banach spaces, consider the convex feasibility problem.

1. Introduction and Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H and
A : C → H a nonlinear mapping. Recall the following definitions:

(1) The mapping A is said to be monotone if

〈Ax −Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

(2) A is said to be α-strongly monotone if there exists a constant α > 0
such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

(3) A is said to be α-inverse-strongly monotone if there exists a constant
α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

The α-inverse-strongly monotone mapping is also called α-cocoercive
mapping.
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Recall that the classical variational inequality, denoted by V I(C,A), is to
find u ∈ C such that

(1.1) 〈Au, v − u〉 ≥ 0, ∀v ∈ C.

It is well known that for given z ∈ H and u ∈ C satisfy the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ C,

if and only if u = PCz, where PC denotes the metric projection from H onto
C. From the above, we see that u ∈ C is a solution to the problem (1.1) if
and only if u satisfies the following equation:

(1.2) u = PC(u− ρAu),

where ρ > 0 is a constant. This implies that the problem (1.1) and the
problem (1.2) are equivalent. This alternative formula is very important from
the numerical analysis point of view. Many authors studied iterative methods
for the problem (1.1) provided that A has some monotonicity.

Recently, Aoyama, Iiduka and Takahashi ([1]) introduced and analyzed a
general variational inequality which can be viewed as a Banach version of the
variational inequality (1.1).

Let C be a nonempty closed convex subset of a Banach space E and E∗

the dual space of E. Let 〈·, ·〉 denote the pairing between E and E∗. For

q > 1, the generalized duality mapping Jq : E → 2E
∗

is defined by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping.
It is known that Jq(x) = ‖x‖q−2J(x) for all x ∈ E. If E is a Hilbert space,
then J = I, the identity mapping. Further, we have the following properties
of the generalized duality mapping Jq:

(1) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E with x 6= 0;
(2) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞);
(3) Jq(−x) = −Jq(x) for all x ∈ E.

Let UE = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to uniformly
convex if, for any ǫ ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ UE,

‖x− y‖ ≥ ǫ implies
∥

∥

∥

x+ y

2

∥

∥

∥
≤ 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly
convex, see [19].

A Banach space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖

t

exists for all x, y ∈ UE. It is also said to be uniformly smooth if the limit
is attained uniformly for x, y ∈ UE . The norm of E is said to be Fréchet
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differentiable if, for any x ∈ UE, the limit is attained uniformly for all y ∈ UE.
The modulus of smoothness of E is defined by

ρ(τ) = sup{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ},

where ρ : [0,∞) → [0,∞) is a function. It is known that E is uniformly

smooth if and only if limτ→0
ρ(τ)
τ

= 0. Let q be a fixed real number with
1 < q ≤ 2. A Banach space E is said to be q-uniformly smooth if there exists
a constant c > 0 such that ρ(τ) ≤ cτq for all τ > 0. Note that

(1) E is a uniformly smooth Banach space if and only if J is single-valued
and uniformly continuous on any bounded subset of E.

(2) All Hilbert spaces, Lp (or lp) spaces (p ≥ 2) and the Sobolev spaces
W p

m (p ≥ 2) are 2-uniformly smooth, while Lp (or lp) and W p
m spaces

(1 < p ≤ 2) are p-uniformly smooth.
(3) Typical examples of both uniformly convex and uniformly smooth

Banach spaces are Lp, where p > 1. More precisely, Lp is min{p, 2}-
uniformly smooth for every p > 1.

Recall that if C and D are nonempty subsets of a Banach space E such
that C is nonempty closed convex and D ⊂ C, then a map Q : C → D
is called a retraction from C onto D provided Q(x) = x for all x ∈ D. A
retraction Q : C → D is sunny provided Q(Q(x) + t(x − Q(x))) = Q(x) for
all x ∈ C and t ≥ 0 whenever Q(x)+ t(x−Q(x)) ∈ C. A sunny nonexpansive
retraction is a sunny retraction which is also nonexpansive.

The following result describes a characterization of sunny nonexpansive
retractions on a smooth Banach space.

Proposition 1.1. [16] Let E be a smooth Banach space and let C be
a nonempty subset of E. Let Q : E → C be a retraction and let J be the
normalized duality mapping on E. Then the following are equivalent:

(1) Q is sunny and nonexpansive;
(2) ‖Qx−Qy‖2 ≤ 〈x − y, J(Qx−Qy)〉, for all x, y ∈ E;
(3) 〈x−Qx, J(y −Qx)〉 ≤ 0, for all x, y ∈ E.

Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

In this paper, we use F (T ) to denote the set of fixed points of T .

Proposition 1.2. [11] Let C be a nonempty closed convex subset of
a uniformly convex and uniformly smooth Banach space E and let T be a
nonexpansive mapping of C into itself with F (T ) 6= ∅. Then the set F (T ) is
a sunny nonexpansive retract of C.

One classical way to study nonexpansive mappings is to use contractions
to approximate a nonexpansive mapping ([3],[15]). More precisely, take t ∈
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(0, 1) and define a contraction Tt : C → C by

(1.3) Ttx = tu+ (1 − t)Tx, ∀x ∈ C,

where u ∈ C is a fixed point. Banach’s contraction mapping principle
guarantees that Tt has a unique fixed point xt in C. That is,

(1.4) xt = tu+ (1− t)Txt.

It is unclear, in general, what the behavior of xt is as t → 0, even if T has
a fixed point. However, in the case of T having a fixed point, Browder ([3])
proved that if E is a Hilbert space, then xt converges strongly to a fixed
point of T . Reich ([15]) extended Broweder’s result to the setting of Banach
spaces and proved that if E is a uniformly smooth Banach space, then xt

converges strongly to a fixed point of T and the limit defines the (unique)
sunny nonexpansive retraction from C onto F (T ).

Reich ([15]) showed that if E is uniformly smooth and if D is the fixed
point set of a nonexpansive mapping from C into itself, then there is a unique
sunny nonexpansive retraction from C onto D and it can be constructed as
follows.

Theorem 1.3. Let E be a uniformly smooth Banach space and let T :
C → C be a nonexpansive mapping with a fixed point. For each fixed u ∈ C
and every t ∈ (0, 1), the unique fixed point xt ∈ C of the contraction C ∋
x 7→ tu+ (1 − t)Tx converges strongly as t → 0 to a fixed point of T . Define
Q : C → D by Qu = s− limt→0 xt. Then Q is the unique sunny nonexpansive
retract from C onto D; that is, Q satisfies the property:

〈u −Qu, J(y −Qu)〉 ≤ 0, ∀u ∈ C, y ∈ D.

Let A : C → E be a nonlinear mapping. Recall the following definitions:

(1) The mapping A is said to be accretive if

〈Ax −Ay, J(x− y)〉 ≥ 0, ∀x, y ∈ C.

(2) A is said to be α-strongly accretive if there exists a constant α > 0
such that

〈Ax−Ay, J(x− y)〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

(3) A is said to be α-inverse-strongly accretive if there exists a constant
α > 0 such that

〈Ax −Ay, J(x− y)〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

Recently, Aoyama, Iiduka and Takahashi ([1]) first considered the
following variational inequality in a smooth Banach space E. Let C be a
nonempty closed convex subset of E and A an accretive operator of C into
E. Find a point u ∈ C such that

(1.5) 〈Au, J(v − u)〉 ≥ 0, ∀v ∈ C.
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In this paper, we use BV I(C,A) to denote the set of solutions of the
variational inequality (1.5).

Aoyama et al. ([1]) proved that the variational inequality (1.5) is
equivalent to a fixed point problem. The element u ∈ C is a solution of
the variational inequality (1.5) if and only if u ∈ C satisfies the equation

(1.6) u = QC(u− λAu),

where λ > 0 is a constant and QC is a sunny nonexpansive retraction from E
onto C, see [1] for more details.

Aoyama et al. ([1]) considered the variational inequality (1.5) and
obtained a weak theorem in a uniformly convex and 2-uniformly smooth
Banach space. To be more precise, they proved the following result.

Theorem 1.4. Let E be a uniformly convex and 2-uniformly smooth
Banach space and C be a nonempty closed convex subset of E. Let QC be
a sunny nonexpansive retraction from E onto C, α > 0 and A be an α-
inverse strongly-accretive operator of C into E with BV I(C,A) 6= ∅, where
BV I(C,A) = {x∗ ∈ C : 〈Ax∗, J(x− x∗)〉 ≥ 0, x ∈ C}. If {λn} and {αn} are
chosen such that λn ∈ [a, α

K2 ] for some a > 0 and αn ∈ [b, c] for some b, c
with 0 < b < c < 1, then the sequence {xn} defined by the following manners:

x1 = x ∈ C, xn+1 = αnxn + (1− αn)QC(xn − λnAxn)

converges weakly to some element z of BV I(C,A), where K is the 2-uniformly
smoothness constant of E.

Very recently, Cho, Yao and Zhou ([5]) considered a new iterative
algorithm for approximating a solution to the variational inequality (1.5) in
a Banach space. To be more precise, they considered the following iterative
process

x0 ∈ C, xn+1 = αnu+ βnxn + γnQC(xn − λnAxn), n ≥ 0,

where u ∈ C is a fixed element, {αn}, {βn} and {γn} are control sequences
in (0, 1), QC is a sunny nonexpansive retraction from E onto its nonempty
closed and convex subset C and A is an α-inverse-strongly accretive operator
of C into E such that BV I(C,A) 6= ∅. They obtained a strong convergence
theorem under some restrictions imposed on the control sequences.

Motivated by Aoyama et al. [1], Cho et al. [5], Ceng and Yao [6], Hao
[9], Iiduka and Takahashi [10], Qin and Su [13], Qin et al. [14] and Yao and
Yao [22], we study the variational inequality (1.5). To be more precise, we
introduce a general iterative algorithm to approximation a common solution
to two variational inequalities. Note that no Banach space is q-uniformly
smooth for q > 2; see [20] for more details. We prove the strong convergence
of the purposed iterative scheme in uniformly convex and 2-uniformly smooth
Banach spaces.

In order to prove our main results, we need the following lemmas.
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Lemma 1.5. [21] Assume that {αn} is a sequence of nonnegative real
numbers such that

αn+1 ≤ (1− γn)αn + δn, ∀n ≥ 1,

where γn is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;

(2) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞ αn = 0.

Lemma 1.6. [4] Let C be a closed convex subset of a strictly convex
Banach space E. Let Tm : C → C be a nonexpansive mappings for each
1 ≤ m ≤ r, where r is some integer. Suppose that ∩r

m=1F (Tm) is nonempty.
Let {λn} be a sequence of positive numbers with

∑r
m=1 λn = 1. Then the

mapping S : C → C defined by

Sx =
r

∑

m=1

λmTmx, ∀x ∈ C

is well defined, nonexpansive and F (S) = ∩r
m=1F (Tm) holds.

Lemma 1.7. [20] Let E be a real 2-uniformly smooth Banach space with
the best smooth constant K. Then the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, Jx〉+ 2‖Ky‖2, ∀x, y ∈ E.

Lemma 1.8. [17] Let {xn} and {yn} be bounded sequences in a Banach
space E and let {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

2. Main Results

Theorem 2.1. Let E be a uniformly convex and 2-uniformly smooth
Banach space with the best smooth constant K, C a nonempty closed convex
subset of E and QC a sunny nonexpansive retraction from E onto C. Let
A : C → E be an α-inverse-strongly accretive mapping and B : C → E
a β-inverse-strongly accretive mapping, respectively. Assume that V I =
BV I(C,A) ∩ BV I(C,B) 6= ∅. Let {αn}, {βn}, {γn} and {δn} be sequences
in (0, 1). Let {xn} be a sequence defined in the following manner

(Υ)











x0 = u ∈ C,

yn = δnQC(xn − ρBxn) + (1− δn)QC(xn − λAxn),

xn+1 = αnu+ βnxn + γnyn, ∀n ≥ 0,
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where λ ∈ (0, α/K2] and ρ ∈ (0, β/K2]. Assume that the following restrictions
imposed on the control sequences are satisfied:

(a) αn + βn + γn = 1 for all n ≥ 0;
(b)

∑∞

n=0 αn = ∞, limn→∞ αn = 0;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d) limn→∞ δn = δ ∈ (0, 1).

Then the sequence {xn} generated in (Υ) converges strongly to q = QV Iu,
where QV I is the unique sunny nonexpansive retraction from C onto V I.

Proof of Theorem 2.1. The proof is divided into four steps.
Step 1. Show that the sequence {xn} is bounded.
First, we prove that the mappings QC(I − ρB) and QC(I − λA) are

nonexpansive. Indeed, for any x, y ∈ C, it follows from Lemma 1.7 that

‖QC(I − λA)x −QC(I − λA)y‖2

≤ ‖(x− y)− λ(Ax −Ay)‖2

≤ ‖x− y‖2 − 2λ〈Ax −Ay, J(x− y)〉+ 2K2λ2‖Ax−Ay‖2

≤ ‖x− y‖2 − 2λα‖Ax−Ay‖2 + 2K2λ2‖Ax−Ay‖2

= ‖x− y‖2 + 2λ(λK2 − α)‖Ax −Ay‖2

≤ ‖x− y‖2.

This shows that QC(I − λA) is nonexpansive, so is QC(I − ρB). Since
BV I(C,A) = F (QC(I − R1A)) and BV I(C,B) = F (QC(I − R2B)) for any
constants R1, R2 > 0. That is, V I = BV I(C,A) ∩ BV I(C,B) is closed and
convex. For any p ∈ V I, we have

‖yn − p‖ = ‖δn[QC(xn − ρBxn)− p] + (1− δn)[QC(xn − λAxn)− p]‖

≤ δn‖QC(xn − ρBxn)− p‖+ (1− δn)‖QC(xn − λAxn)− p‖

≤ δn‖xn − p‖+ (1− δn)‖xn − p‖

= ‖xn − p‖.

It follows that

‖xn+1 − p‖ = ‖αn(u− p) + βn(xn − p) + γn(yn − p)‖

≤ αn‖u− p‖+ βn‖xn − p‖+ γn‖yn − p‖

≤ αn‖u− p‖+ (1− αn)‖xn − p‖.

By simple inductions, we have

‖xn − p‖ ≤ ‖u− p‖,

which gives that the sequence {xn} is bounded, so is {yn}.
Step 2. Show that

(2.1) lim
n→∞

‖xn+1 − xn‖ = 0.
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Putting un = QC(xn − λAxn) and vn = QC(xn − ρBxn) for each n ≥ 0,
we have

yn+1 − yn

= δn+1vn+1 + (1− δn+1)un+1 − [δnvn + (1− δn)un]

= δn+1(vn+1 − vn) + (δn+1 − δn)(vn − un) + (1− δn+1)(un+1 − un).

It follows that

(2.2)

‖yn+1 − yn‖

≤ δn+1‖vn+1 − vn‖+ |δn+1 − δn|‖vn − un‖+ (1− δn+1)‖un+1 − un‖

≤ δn+1‖xn+1 − xn‖+ |δn+1 − δn|M1 + (1− δn+1)‖xn+1 − xn‖

= ‖xn+1 − xn‖+ |δn+1 − δn|M1,

where M1 is an appropriate constant such that M1 ≥ supn≥0{‖vn − un‖}.
Putting

en =
xn+1 − βnxn

1− βn

, ∀n ≥ 0,

we have

(2.3) xn+1 = (1− βn)en + βnxn, ∀n ≥ 0.

Now, we compute ‖en+1 − en‖. From

en+1 − en =
αn+1u+ γn+1yn+1

1− βn+1
−

αnu+ γnyn
1− βn

=
αn+1u+ (1 − αn+1 − βn+1)yn+1

1− βn+1
−

αnu+ (1− αn − βn)yn
1− βn

=
αn+1(u − yn+1)

1− βn+1
−

αn(u− yn)

1− βn

+ yn+1 − yn,

we have

(2.4) ‖en+1 − en‖ ≤
αn+1

1− βn+1
‖u− yn+1‖+

αn

1− βn

‖yn − u‖+ ‖yn+1 − yn‖.

Substituting (2.2) into (2.4), we arrive at

‖en+1 − en‖ − ‖xn+1 − xn‖

≤
αn+1

1− βn+1
‖u− yn+1‖+

αn

1− βn

‖yn − u‖+M1|δn+1 − δn|.

From the conditions (b) and (c), we get that

lim sup
n→∞

(‖en+1 − en‖ − ‖xn+1 − xn‖) ≤ 0.

It follows from Lemma 1.8 that

lim
n→∞

‖en − xn‖ = 0.
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From (2.3), we see that

xn+1 − xn = (1− βn)(en − xn).

It follows that (2.1) holds.
Step 3. Show that

(2.5) lim sup
n→∞

〈u− q, J(xn − q)〉 ≤ 0,

where q = QV Iu. Define a mapping M : C → C by

Mx = δQC(x − ρBx) + (1− δ)QC(x− λAx), ∀x ∈ C.

From Lemma 1.6, we have that M is nonexpansive such that

F (M) = F (QC(I − ρB))∩F (QC(I −λA)) = BV I(C,B)∩BV I(C,A) = V I.

Note that

yn −Mxn = δnvn + (1− δn)un − δvn − (1 − δ)un

= (δn − δ)(vn − un).

From the condition (d), we arrive at

(2.6) lim
n→∞

‖yn −Mxn‖ = 0.

On the other hand, we have that

‖xn −Mxn‖

= ‖xn − xn+1 + xn+1 − yn + yn −Mxn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn −Mxn‖

≤ ‖xn − xn+1‖+ αn‖u− yn‖+ βn‖xn − yn‖+ ‖yn −Mxn‖

≤ ‖xn − xn+1‖+ αn‖u− yn‖+ βn‖xn −Mxn‖+ (βn + 1)‖Mxn − yn‖.

This implies that

(1− βn)‖xn −Mxn‖ ≤ ‖xn − xn+1‖+ αn‖u− yn‖+ (βn + 1)‖Mxn − yn‖.

From the conditions (b), (c), (2.1) and (2.6), we obtain that

(2.7) lim
n→∞

‖xn −Mxn‖ = 0.

Let zt be the fixed point of the contraction z 7→ tu+(1−t)Mz, where t ∈ (0, 1).
That is,

zt = tu+ (1 − t)Mzt.

It follows that

‖zt − xn‖ = ‖(1− t)(Mzt − xn) + t(u − xn)‖.
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On the other hand, for any t ∈ (0, 1), we see that

‖zt − xn‖
2 = (1− t)〈Mzt − xn, J(zt − xn)〉+ t〈u − xn, J(zt − xn)〉

= (1− t)
(

〈Mzt −Mxn, J(zt − xn)〉+ 〈Mxn − xn, J(zt − xn)〉
)

+ t〈u− zt, J(zt − xn)〉+ t〈zt − xn, J(zt − xn)〉

≤ (1− t)
(

‖zt − xn‖
2 + ‖Mxn − xn‖‖zt − xn‖

)

+ t〈u− zt, J(zt − xn)〉+ t‖zt − xn‖
2

≤ ‖zt − xn‖
2 + ‖Mxn − xn‖‖zt − xn‖+ t〈u − zt, J(zt − xn)〉.

It follows that

〈zt − u, J(zt − xn)〉 ≤
1

t
‖Mxn − xn‖‖zt − xn‖, ∀t ∈ (0, 1).

In view of (2.7), we see that

(2.8) lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ 0, ∀t ∈ (0, 1).

Letting t → 0 in (2.8), we have that

lim sup
t→0

lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ 0.

So, for any ǫ > 0, there exists a positive number δ1, for t ∈ (0, δ1), such that

(2.9) lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤
ǫ

2
.

On the other hand, we see that PF (M)u = limt→0 zt and F (M) = V I. It
follows that zt → q = PV Iu as t → 0. There exists δ2 > 0, for t ∈ (0, δ2), such
that

|〈u − q, J(xn − q)〉 − 〈zt − u, J(zt − xn)〉|

≤ |〈u− q, J(xn − q)〉 − 〈u− q, J(xn − zt)〉|

+ |〈u− q, J(xn − zt)〉 − 〈zt − u, J(zt − xn)〉|

≤ |〈u− q, J(xn − q)− J(xn − zt)〉|+ |〈zt − q, J(xn − zt)〉|

≤ ‖u− q‖‖J(xn − q)− J(xn − zt)‖+ ‖zt − q‖‖xn − zt‖ <
ǫ

2
.

Choosing δ = min{δ1, δ2}, we have for each t ∈ (0, δ) that

〈u − q, J(xn − q)〉 ≤ 〈zt − u, J(zt − xn)〉+
ǫ

2
.

This implies that

lim sup
n→∞

〈u − q, J(xn − q)〉 ≤ lim sup
n→∞

〈zt − u, J(zt − xn)〉+
ǫ

2
.

It follows from (2.9) that

lim sup
n→∞

〈u − q, J(xn − q)〉 ≤ ǫ.
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Since ǫ is chosen arbitrarily, we see that (2.5) holds.
Step 4. Show that xn → q as n → ∞.
Notice that

‖xn+1 − q‖2 = 〈αnu+ βnxn + γnyn − q, J(xn+1 − q)〉

= αn〈u − q, J(xn+1 − q)〉+ βn〈xn − q, J(xn+1 − q)〉

+ γn〈yn − q, J(xn+1 − q)〉

≤ αn〈u − q, J(xn+1 − q)〉+ βn‖xn − z‖‖xn+1 − q‖

+ γn‖yn − q‖‖xn+1 − q‖

≤ αn〈u − q, J(xn+1 − q)〉+ (1− αn)‖xn − q‖‖xn+1 − q‖

≤ αn〈u − q, J(xn+1 − q)〉+
1− αn

2
(‖xn − q‖2 + ‖xn+1 − q‖2).

It follows that

‖xn+1 − q‖2 ≤ (1− αn)‖xn − q‖2 + 2αn〈u− q, J(xn+1 − q)〉.

From the condition (b), we can conclude from Lemma 1.5 the desired
conclusion easily. This completes the proof.

In a real Hilbert space, Theorem 2.1 is reduced to the followings.

Corollary 2.2. Let H be a real Hilbert space, C a nonempty closed
convex subset of E and PC the metric projection from H onto C. Let A : C →
H be an α-inverse-strongly monotone mapping and B : C → H a β-inverse-
strongly monotone mapping, respectively. Assume that V I = V I(C,A) ∩
V I(C,B) 6= ∅. Let {αn}, {βn}, {γn} and {δn} be sequences in (0, 1). Let
{xn} be a sequence defined by











x0 = u ∈ C,

yn = δnPC(xn − ρBxn) + (1− δn)PC(xn − λAxn),

xn+1 = αnu+ βnxn + γnyn, ∀n ≥ 0,

where ρ ∈ (0, 2β] and λ ∈ (0, 2α]. If the following restrictions imposed on the
control sequences are satisfied:

(a) αn + βn + γn = 1 for all n ≥ 0;
(b)

∑∞

n=0 αn = ∞, limn→∞ αn = 0;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d) limn→∞ δn = δ ∈ (0, 1),

then the sequence {xn} converges strongly to q ∈ V I, where q = PV Iu.

Further, if λ = ρ and A = B, then Corollary 2.2 is reduced to the
following.

Corollary 2.3. Let H be a real Hilbert space, C a nonempty closed
convex subset of E and PC the metric projection from H onto C. Let A : C →
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H be an α-inverse-strongly monotone mapping. Assume that V I(C,A) 6= ∅.
Let {αn}, {βn} and {γn} be sequences in (0, 1). Let {xn} be a sequence defined
by

{

x0 = u ∈ C,

xn+1 = αnu+ βnxn + γnPC(xn − λAxn), ∀n ≥ 0

λ ∈ (0, 2α]. If the following restrictions imposed on the control sequences are
satisfied:

(a) αn + βn + γn = 1 for all n ≥ 0;
(b)

∑∞

n=0 αn = ∞, limn→∞ αn = 0;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn} converges strongly to q ∈ V I(C,A), where q = PV Iu.

3. Applications

Recently, many authors consider the following convex feasibility problem
(CFP):

finding an x ∈
r
⋂

m=1

Cm,

where r ≥ 1 is an integer and each Cm is assumed to be the fixed
point set of a nonexpansive mapping Tm, m = 1, 2, . . . , r. There is a
considerable investigation on CFP in the setting of Hilbert spaces which
captures applications in various disciplines such as image restoration ([7,12]),
computer tomography ([18]) and radiation therapy treatment planning ([8]).
In this section, we study the CFP in the setting of Banach space.

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth
Banach space with the best smooth constant K, C a nonempty closed convex
subset of E and QC a sunny nonexpansive retraction from E onto C. Let Am :
C → E be αm-inverse-strongly accretive mapping, where m ∈ {1, 2, . . . , r}.
Assume that V I = ∩r

m=1BV I(C,Am) 6= ∅. Let {αn}, {βn}, {γn} and {δmn }
be sequences in (0, 1). Let {xn} be a sequence defined by

{

x0 = u ∈ C,

xn+1 = αnu+ βnxn + γn
∑r

m=1 δ
m
n QC(xn − λmAmxn), ∀n ≥ 0,

where λm ∈ (0, αm/K2] for each m ∈ {1, 2, . . . , r}. If the following restrictions
imposed on the control sequences are satisfied:

(a) αn + βn + γn =
∑r

m=1 δ
m
n = 1, for all n ≥ 0;

(b)
∑∞

n=0 αn = ∞, limn→∞ αn = 0;
(c) limn→∞ δmn = δm ∈ (0, 1) for all n ≥ 0;
(d) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn} converges strongly to q ∈ V I, where q = QV Iu and
QV I is the unique sunny nonexpansive retraction from C onto V I.
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Let E be a Banach space and C be a nonempty closed convex subset of
E. Recall that T : C → C is called a λ-strict pseudo-contraction ([2]) if there
exists a constant λ ∈ (0, 1) such that

(3.1) 〈Tx−Ty, J(x−y)〉 ≤ ‖x−y‖2−λ‖(I−T )x−(I−T )y‖2, ∀x, y ∈ C.

From (3.1), we see that

〈(I − T )x− (I − T )y, J(x− y)〉

= ‖x− y‖2 − 〈Tx− Ty, J(x− y)〉

≥ ‖x− y‖2 − (‖x− y‖2 − λ‖(I − T )x− (I − T )y‖2)

= λ‖(I − T )x− (I − T )y‖2.

This implies that (I − T ) is λ-inverse-strongly accretive mapping. We,
therefore, have the following result.

Theorem 3.2. Let E be a uniformly convex and 2-uniformly smooth
Banach space with the best smooth constant K and C a nonempty closed
convex subset of E. Let TA : C → C be an α-strict pseudo-contraction
and TB : C → C a β-strict pseudo-contraction, respectively. Assume that
F = F (TA) ∩ F (TB) 6= ∅. Let {αn}, {βn}, {γn} and {δn} be sequences in
(0, 1). Let {xn} be a sequence defined by











x0 = u ∈ C,

yn = δn[(1− ρ)xn + ρTBxn] + (1− δn)[(1 − λ)xn + λTAxn],

xn+1 = αnu+ βnxn + γnyn, ∀n ≥ 0,

where λ ∈ (0, α/K2] and ρ ∈ (0, β/K2]. If the following restrictions imposed
on the control sequences are satisfied:

(a) αn + βn + γn = 1 for all n ≥ 0;
(b)

∑∞

n=0 αn = ∞, limn→∞ αn = 0;
(c) limn→∞ δn = δ ∈ (0, 1);
(d) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

then the sequence {xn} converges strongly to q ∈ F , where q = QFu and QF

is the unique sunny nonexpansive retraction from C onto F .

Proof of Theorem 3.2. Putting A = I−TA and B = I−TB, we have
that A is α-inverse-strongly accretive and B is β-inverse-strongly accretive,
respectively. We also have F (TA) = BV I(C,A) and F (TB) = BV I(C,B),
respectively. Noticing that

QC(xn − ρBxn) = (1− ρ)xn + ρTBxn

and
QC(xn − λAxn) = (1− λ)xn + λnTAxn,

we can conclude from Theorem 2.1 the desired conclusion immediately. This
completes the proof.
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