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Abstract. We use combinatorial description of bases of Feigin-
Stoyanovsky’s type subspaces of standard modules of level 1 for affine

Lie algebras of types A
(1)
ℓ

and D
(1)
4 to obtain character formulas. These

descriptions naturally lead to systems of recurrence relations for which we
also find solutions.

1. Introduction

Principal subspaces were introduced by B. L. Feigin and A. Stoyanovsky
in [13] where they gave a construction of bases of standard modules L(Λ)
consisting of semi-infinite monomials and monomial bases of their principal
subspaces, and also calculated characters of both principal subspaces and

the whole standard modules for affine Lie algebra g̃ of type A
(1)
1 . A similar

approach was used by M.Primc in [19,20] where he constructed semi-infinite

monomial bases for all standard modules for affine Lie algebras of type A
(1)
ℓ

and for basic modules L(Λ0) for any classical affine Lie algebra. Instead of
principal subspaces of Feigin and Stoyanovsky, Primc used so-called Feigin-
Stoyanovsky’s type subspace. Later, in [10] it was noted that bases of Feigin-
Stoyanovsky’s type subspaces from [19] were parameterized by (k, ℓ + 1)-
admissible configurations which were studied in [10–12].

G. Georgiev generalized Feigin-Stoyanovsky’s results to a certain class of

standard modules for affine Lie algebras of type A
(1)
ℓ (see [14]). In the proof of
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linear independence, Georgiev used intertwining operators between standard
modules. S. Capparelli, J. Lepowsky and A.Milas in [8, 9] used intertwining
operators to obtain exact sequences of principal subspaces and recurrence
relations for their characters. This approach was further investigated in [3–7].

Motivated by Georgiev’s and Capparelli-Lepowsky-Milas’ way of using
intertwining operators, Primc gave in [21] a simpler proof of linear indepen-
dence of bases from [19], and in [1, 2, 22, 23] new constructions of bases in

A
(1)
ℓ and D

(1)
ℓ cases were given. Furthermore, M. Jerković in [15] used the

proof of linear independence from [21] to obtain exact sequences of Feigin-
Stoyanovsky’s type subspaces and recurrence relations for the corresponding

characters in the A
(1)
ℓ -case. By solving these relations, Jerković in [16]

obtained character formulas in the A
(1)
2 -case, which agreed with formulas from

[11, 12].
In this paper we use combinatorial description of bases of Feigin-Stoya-

novsky’s type subspaces of standard modules of level 1 from [1, 20, 23] to
obtain character formulas. These descriptions naturally lead to systems of
recurrence relations for which we also find solutions.

Let g be a simple complex Lie algebra, h ⊂ g its Cartan subalgebra, R
the corresponding root system. Let g = h+

∑

α∈R gα be a root decomposition
of g. Fix root vectors xα ∈ gα. Let 〈·, ·〉 be a normalized invariant bilinear
form on g, and by the same symbol denote the induced form on g∗. Let
Π = {α1, . . . , αℓ} be a basis of the root system R, and let {ω1, . . . , ωℓ} be
the corresponding set of fundamental weights. Fix a minuscule fundamental
weight ω and set Γ = {γ ∈ R | 〈γ, ω〉 = 1}, g1 =

∑

α∈Γ gα. The set Γ is called
the set of colors.

Let g̃ = g⊗C[t, t−1]⊕Cc⊕Cd be the associated affine Lie algebra, where
c is the canonical central element, and d is the degree operator. Elements
xα(r) = xα ⊗ tr are fixed real root vectors. Let g̃1 = g1 ⊗ C[t, t−1], a
commutative Lie subalgebra with a basis {xγ(−r) | r ∈ Z, γ ∈ Γ}. Let L(Λ) be
a standard g̃-module of level 1, with a fixed highest weight vector vΛ. A Feigin-

Stoyanovsky’s type subspace of L(Λ) is a g̃1-submodule of L(Λ) generated with
vΛ,

W (Λ) = U(g̃1) · vΛ ⊂ L(Λ).

For the Lie algebra g of type Aℓ it was shown in [20, 22] that monomial
vectors xvΛ, where x = xγn

(−rn) · · ·xγ1(−r1), γi ∈ Γ, ri ∈ N, such that x
satisfy certain combinatorial conditions called difference and initial conditions,
constitute a basis of W (Λ). The analogous fact was proved in [1, 20] for g of
type Dℓ.

To obtain character formula when Lie algebra g is of type Aℓ, we first
consider two particular cases, when ω = ω1 and ω = ωℓ; these are the cases
that were considered in [10–12, 15–17, 19], but also for higher-level modules.
For every h-weight subspace of W (Λ), we construct a bijection between the
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basis of that subspace and products of partitions of certain length. This gives
formulas (3.7) and (3.8) for the character of W (Λ), that were already known
(e.g. in [17]). In the case ω = ωm, 1 < m < ℓ, the set of colors Γ can be
decomposed into a product of ”rows” and ”columns”. The sets of rows and
columns can be regarded as sets of colors for the two particular cases that have
already been considered. For a given h-weight subspace of W (Λ), we consider
its basis elements xvΛ, where x = xγn

(−rn) · · ·xγ1(−r1), γi ∈ Γ, ri ∈ N.
To every such basis element we can attach its path p(x) = (γn, . . . , γ1), and
conversely, to every path p we can attach a basis element x(p) that will be
minimal in some sense. By the decomposition of Γ, for every path p in Γ,
we have the corresponding paths of rows and columns. We use character
formulas for the two particular cases to find “graded cardinality” of the set
of “minimal” monomials for paths corresponding to the given h-weight. From
this we obtain formula (3.21) for the character of W (Λ).

When Lie algebra g is of type D4, we decompose the set of colors into
two subsets that correspond to the cases A2, with ω = ω2, and A3, with
ω = ω2. We use character formulas (3.7) and (3.21) for the latter cases to
obtain character formula (4.35) in the D4-case.

Both in Aℓ and D4 cases, descriptions of combinatorial bases naturally
lead to systems of recurrence relations. We can find solutions of these systems
in a similar way to the one we used for calculating character formulas of Feigin-
Stoyanovsky’s type subspaces.

The outline of this paper is as follows: in Section 2 we introduce basic
definitions. In Section 3 we find character formulas in the Aℓ-case. We also
find solutions of the corresponding system of recurrence relations. In Section
4 we do the same thing in the D4-case.

2. Feigin-Stoyanovsky’s type subspace

Let g be a simple finite-dimensional Lie algebra. Let h ⊂ g be a
Cartan subalgebra of g and R the corresponding root system. Fix a basis
Π = {α1, . . . , αℓ} of R. Then we have the root decomposition g = h⊕

∐

α∈R gα
and the triangular decomposition g = n− ⊕ h⊕ n+. Let θ = k1α1 + · · ·+ kℓαℓ

be the maximal root. Let 〈·, ·〉 be a a normalized invariant bilinear form
on g such that 〈θ, θ〉 = 2; we identify h with h∗ via 〈·, ·〉. For α ∈ R let
α∨ = 2α/〈α, α〉 denote the corresponding coroot. Also for each root α ∈ R
fix a root vector xα ∈ gα. Let {ω1, . . . , ωℓ} be the set of fundamental weights

of g, 〈ωi, αj〉 = δij , i, j = 1, . . . , ℓ. Denote by Q =
∑ℓ

i=1 Zαi the root lattice,

and by P =
∑ℓ

i=1 Zωi the weight lattice of g. Denote by P+ =
∑ℓ

i=1 Z≥0ωi

the set of dominant integral weights.
Let g̃ be the associated untwisted affine Lie algebra,

g̃ = g⊗ C[t, t−1]⊕ Cc⊕ Cd,
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with commutation relations

[x(i), y(j)] = [x, y](i+ j) + i〈x, y〉δi+j,0c,

[c, g̃] = 0, [d, x(j)] = jx(j),

where x(j) = x⊗ tj for x ∈ g, j ∈ Z (cf. [18]).
Set he = h ⊕ Cc ⊕ Cd, ñ± = g ⊗ t±1C[t±1] ⊕ n±. Then g̃ also has the

triangular decomposition g̃ = ñ−⊕he⊕ ñ+. Usual extensions of bilinear forms
〈·, ·〉 onto he and (he)∗ are denoted by the same symbols (we take 〈c, d〉 = 1).
Denote by α0, α1, . . . , αℓ ∈ (he)∗ the simple roots, and by Λ0,Λ1, . . . ,Λℓ ∈
(he)∗ the corresponding fundamental weights. Then Λ0(c) = 1, Λi(c) = ki for
i = 1, . . . , ℓ.

Weight ω ∈ P is said to be minuscule if 〈ω, α〉 ∈ {−1, 0, 1} for α ∈ R. A
dominant integral weight ω ∈ P+ is minuscule if and only if 〈ω, θ〉 = 1.

Fix a minuscule weight ω ∈ P . Set

Γ = {α ∈ R | 〈α, ω〉 = 1}.

Then

g = g−1 ⊕ g0 ⊕ g1,

where

g0 = h⊕
∑

〈α,ω〉=0

gα, g±1 =
∑

α∈±Γ

gα,

is a Z-gradation of g. Subalgebras g1 and g−1 are commutative. We call
elements γ ∈ Γ colors and the set Γ the set of colors.

The Z-gradation of g induces the Z-gradation of affine Lie algebra g̃:

g̃ = g̃−1 + g̃0 + g̃1,

g̃0 = g0 ⊗ C[t, t−1]⊕ Cc⊕ Cd, g̃±1 = g±1 ⊗ C[t, t−1].

Again, g̃−1 and g̃1 are commutative subalgebras. Set g̃−1 = g̃1 ∩ ñ−.
Let L(Λk) be a standard (i.e., integrable highest weight) g̃-module of

level Λk(c) = 1. Denote by vΛk
the highest weight vector of L(Λk). Define a

Feigin-Stoyanovsky’s type subspace

W (Λk) = U(g̃1) · vΛk
= U(g̃−1 ) · vΛk

⊂ L(Λk).

Set

Γ̃ = {xγ(−r) | γ ∈ Γ, r ∈ Z}, Γ̃− = {xγ(−r) | γ ∈ Γ, r ∈ N}.

Since the subalgebra g̃1 is commutative, we have U(g̃1) ∼= C[Γ̃] and U(g̃−1 )
∼=

C[Γ̃−]. We often refer to elements of Γ̃ as to variables, elements or factors of
a monomial from U(g̃1).



CHARACTERS OF FEIGIN-STOYANOVSKY’S TYPE SUBSPACES 53

3. The case Aℓ, ℓ ≥ 1

Let g be a simple finite-dimensional Lie algebra of type Aℓ. In this case
all fundamental weights are minuscule. Fix a minuscule weight ω = ωm,
m ∈ {1, . . . , ℓ}. The set of colors Γ is parameterized by two sets of indices

Γ = {(ij) | i = 1, . . . ,m; j = m, . . . , ℓ},

where

(3.1) (ij) = αi + · · ·+ αm + · · ·+ αj ,

and thus we can think of it as a rectangle with rows ranging from 1 to m, and
columns ranging from m to ℓ (see Figure 1 in [22]). By xij ∈ g we denote the
fixed root vector corresponding to the color (ij).

Linear order < on the set of colors Γ is defined as follows: (i′j′) < (ij) if

either i′ > i or i′ = i and j′ < j. On the set of variables Γ̃ we define a linear
order by: xγ′(−r′) < xγ(−r) if either −r′ < −r or r′ = r and γ′ < γ. Since
the algebra g̃1 is commutative, we assume that variables in monomials from
C[Γ̃] are sorted ascendingly from left to right.

Let L(Λk), k = 0, . . . , ℓ be a standard g̃-module of level 1. We use a
description of a combinatorial basis of W = W (Λk) from [20, 22]. Define an
energy function E : Γ× Γ → {0, 1, 2} by

(3.2) E((i′j′), (ij)) =







0, i′ > i, j′ < j,
1, i′ ≤ i, j′ < j or i′ > i, j′ ≥ j,
2, i′ ≤ i, j′ ≥ j.

Define θ : Z → {0, 1} by

θ(n) =

{

0, n < 0,
1, n ≥ 0.

Then

(3.3) E((i′j′), (ij)) = θ(i− i′) + θ(j′ − j).

We say that a monomial

x = xinjn(−rn) · · ·xi1j1(−r1) ∈ C[Γ̃−]

satisfies difference conditions, or DC for short, if

rt+1 − rt ≥ E((it+1jt+1), (itjt)).

We say that x satisfies initial conditions for L(Λk), or IC for short, if either
r1 ≥ 2 or r1 = 1 and either i1 > k, for 1 ≤ k ≤ m, or j1 < k, for m ≤ k ≤ ℓ.
Define

(3.4) BW = {x ∈ C[Γ̃−] |x satisfies DC and IC for L(Λk)}.

Theorem 3.1 ([20, 22]). The set {xvΛk
|x ∈ BW } is a basis of W .
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For a monomial x = xγn
(−rn) · · ·xγ1(−r1) ∈ C[Γ̃−], define weight and

degree by

w(x) = γ1 + · · ·+ γn, d(x) = r1 + · · ·+ rn.

For α ∈ P , set zα = z
〈α,ω1〉
1 · · · z

〈α,ωℓ〉
ℓ . The character of W is the formal sum

χW (z1, . . . , zℓ, q) =
∑

x∈BW

qd(x)zw(x).

For a fixed α = n1α1 + · · ·+ nℓαℓ ∈ P+, define Bα
W = {x ∈ BW |w(x) = α}

and χα
W (q) =

∑

x∈Bα
W
qd(x). Obviously, χW (z1, . . . , zℓ, q) =

∑

α∈P+ χα
W (q)zα.

We sometimes use symbols Bn1,...,nℓ

W , χn1,...,nℓ

W (q) instead of Bα
W and χα

W (q).
From (3.1) it immediately follows that χα

W (q) = 0 unless 0 ≤ n1 ≤ · · · ≤
nm ≥ · · · ≥ nℓ ≥ 0.

A nondecreasing sequence of nonnegative integers λ = (λ1, . . . , λn), 0 ≤
λ1 ≤ · · · ≤ λn is called a partition of length at most n. The sum |λ| =

∑

i λi

is called weight of λ. Denote by πn the set of partitions of length at most n.
For a monomial x = xγn

(−rn) · · ·xγ1(−r1) ∈ C[Γ̃−] and a partition λ ∈
πn define monomials

x±▽ = xγn
(−rn ± (n− 1)) · · ·xγ2(−r2 ± 1)xγ1(−r1),

x± = xγn
(−rn ± 1) · · ·xγ1(−r1 ± 1),

x±r = xγn
(−rn ± r) · · ·xγ1(−r1 ± r), for r ∈ N,

x(λ) = xγn
(−n− λn) · · ·xγ1(−1− λ1).(3.5)

We emphasize that the monomial x is assumed to be sorted ascendingly from
left to right. Note that if x satisfies difference and initial conditions, then the
variables in x are sorted in this way.

3.1. Character formula in the case ω = ω1 or ω = ωℓ. Consider the
second case, ω = ωℓ; the first case can be treated analogously. Fix W =
W (Λk), 0 ≤ k ≤ ℓ.

The set of colors in this case is Γ = {(1ℓ), . . . , (ℓℓ)}. For simplicity, we
write (i) and xi instead of (iℓ) and xiℓ, for i = 1, . . . , ℓ. The formula (3.2) for
the energy function in this case takes a simpler form:

(3.6) E((i′), (i)) = θ(i− i′) + 1.

Set E′((i′), (i)) = E((i′), (i)) − 1 = θ(i − i′). We say that a monomial x =

xin(−rn) · · ·xi1 (−r1) ∈ C[Γ̃−] satisfies DC’ if rt+1 − rt ≥ E′((it+1), (it)). The
following lemma is obvious

Lemma 3.2. A monomial x satisfies DC if and only if x+▽ satisfies DC’.

Fix 0 ≤ n1 ≤ n2 ≤ · · · ≤ nℓ and set α = n1α1 + · · · + nℓαℓ. Set
n′
i = ni − ni−1, for i = 2, . . . , ℓ, and n′

1 = n1; then α = n′
1(1) + · · · +

n′
ℓ(ℓ). Let λ = (λ1, . . . , λℓ) ∈ πn′

1
× · · · × πn′

ℓ
. For i = 1, . . . , ℓ, let us
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define xi = xi(−n′
i − θ(k − i))xi(−n′

i + 1 − θ(k − i)) · · ·xi(−1 − θ(k − i)).
Set x(λ) = x1(λ

1) · · ·xℓ(λ
ℓ), and reorder variables inside so that they are

sorted ascendingly from left to right. Then obviously x(λ) satisfies DC’ and
IC for L(Λk). Hence, by lemma 3.2, x(λ)−▽ ∈ Bα

W .
Conversely, let x ∈ Bα

W . Set x′ = x+▽. Factorize x′ = x1 · · ·xℓ so that
xi = xi(−rin′

i
) · · ·xi(−ri1) and rin′

i
> · · · > ri1 > 0 (this is possible since

E′((i), (i)) = 1). Define λi
t = rit − t for i = 1, . . . , ℓ, t = 1, . . . , n′

i. Then
obviously λi = (λi

1, . . . , λ
i
n′
i
) ∈ πn′

i
. We have proved

Theorem 3.3. The map

πn1 × πn2−n1 · · · × πnℓ−nℓ−1
→ Bα

W ,

λ 7→ x(λ)−▽

is a bijection.

Obviously

d(x(λ)−▽) =|λ|+
ℓ

∑

i=1

n′
i(n

′
i + 1)

2

+
(n′

1 + · · ·+ n′
ℓ)(n

′
1 + · · ·+ n′

ℓ − 1)

2
+

k
∑

i=1

n′
i

=|λ|+
ℓ

∑

i=1

n2
i −

ℓ−1
∑

i=1

nini+1 + nk.

As a consequence, we have

Corollary 3.4. For 0 ≤ n1 ≤ n2 ≤ · · · ≤ nℓ, α = n1α1 + · · ·+ nℓαℓ,

(3.7) χα
W (Λk)

(q) =
q
∑

ℓ
i=1 n2

i−
∑ℓ−1

i=1 nini+1+nk

(q)n1 (q)n2−n1 · · · (q)nℓ−nℓ−1

,

where (q)n = (1− q) · · · (1− qn).

Remark 3.5. Analogous formula can be obtained in the ω = ω1 case; for
n1 ≥ n2 ≥ · · · ≥ nℓ ≥ 0 we have

(3.8) χα
W (Λk)

(q) =
q
∑ℓ

i=1 n2
i−

∑ℓ−1
i=1 nini+1+nk

(q)nℓ
(q)nℓ−1−nℓ

· · · (q)n1−n2

,

3.2. Character formula in the case ω = ωm, 1 < m < ℓ. Define Lie
subalgebras g′ = 〈xαi

, x−αi
, αi | i = 1, . . . ,m〉 and g′′ = 〈xαi

, x−αi
, αi | i =

m, . . . , ℓ〉 of types Am and Aℓ−m+1, respectively. We regard α1, . . . , αm

and αm, . . . , αℓ as root bases, and ω1, . . . , ωm and ωm, . . . , ωℓ as funda-
mental weights for these subalgebras. Also, we regard Λ0,Λ1, . . . ,Λm

and Λ0,Λm, . . . ,Λℓ as fundamental weights for the corresponding affine Lie
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algebras. It will be clear from the context when the symbols L(Λk), W (Λk),
k = 0, . . . , ℓ denote the standard module and the corresponding Feigin-
Stoyanovsky’y type subspace for g, when for g′ and when for g′′.

The set of colors Γ is parameterized by two sets of indices – the set of
row-indices Γ1 = {1, . . . ,m} and the set of column-indices Γ2 = {m, . . . , ℓ}.
We regard these two sets as sets of colors for g′ and g′′, for the choice of
minuscule weight ω = ωm in both cases. Energy functions for Γ1 and Γ2 are

(3.9) E1(i
′, i) = θ(i− i′) + 1, E2(j

′, j) = θ(j′ − j) + 1,

for i, i′ ∈ Γ1 and j, j′ ∈ Γ2 (see (3.6)). By (3.3), we have

E((i′j′), (ij)) = E1(i
′, i) + E2(j

′, j)− 2.

We consider the case W = W (Λ0) in detail, the other cases work in the
analogous manner.

A path is a finite sequence of colors p = (γn, . . . , γ1). The number l(p) = n
is called length of p. The sum w(p) = γ1 + · · ·+ γn is called weight of p.

To each monomial x = xγn
(−rn) · · ·xγ1(−r1) ∈ C[Γ̃−] we attach its path

p(x) = (γn, . . . , γ1). Obviously w(p(x)) = w(x).
Conversely, to a fixed path p = (γn, . . . , γ1) we attach a monomial x(p) =

xγn
(−rn) · · ·xγ1(−r1) such that

(3.10) r1 = 1, rt = rt−1 + E(γt, γt−1) for t = 2, . . . , n.

This is the “minimal” monomial of path p that satisfies difference and initial
conditions for L(Λ0). By this we mean that if λ = (λ1, . . . , λn) ∈ πn is a
partition of length at most n, then the monomial (x(p))(λ) = xγn

(−rn −
λn) · · ·xγ1(−r1 − λ1) also satisfies difference and initial conditions, and all
monomials of path p that satisfy difference and initial conditions can be
obtained in this way.

Fix 0 ≤ n1 ≤ · · · ≤ nm ≥ · · · ≥ nℓ ≥ 0 and set α = n1α1 + · · · + nℓαℓ.
The argument from the preceding paragraph shows that

(3.11) χα
W (Λ0)

(q) =
1

(q)nm

∑

p, w(p)=α

qd(x(p)),

since l(p) = nm for a path p of weight α.
Fix a path p = ((inm

jnm
), . . . , (i1j1)) in Γ of weight α. Then, by (3.1),

n1 = #{t|it = 1}, ns − ns−1 = #{t|it = s}, for s = 2, . . . ,m,(3.12)

nℓ = #{t|jt = ℓ}, ns − ns+1 = #{t|jt = s}, for s = m, . . . , ℓ− 1.(3.13)

Denote by p1 = (inm
, . . . , i1) and p2 = (jnm

, . . . , j1) the corresponding paths
in Γ1 and Γ2. Weights of p1 and p2 are α′ = n1α1 + · · · + nmαm and
α′′ = nmαm + · · ·+ nℓαℓ. Conversely, if p1 and p2 are paths in Γ1 and Γ2 of
weights α′ and α′′, respectively, then the corresponding path in Γ will be of
weight α (cf. (3.1), (3.12), (3.13)).
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Let x(p) = xinm jnm
(−rnm

) · · ·xi1j1(−r1), x(p1) = xinm
(−r′nm

) · · ·
xi1(−r′1), x(p2) = xjnm

(−r′′nm
) · · ·xj1 (−r′′1 ) be like in (3.10). Then, by (3.3),

(3.9) and (3.10), we have

(3.14) r1 = r′1 = r′′1 = 1

and

(3.15)







rt = rt−1 + θ(it−1 − it) + θ(jt − jt−1),
r′t = r′t−1 + θ(it−1 − it) + 1,
r′′t = r′t−1 + θ(jt − jt−1) + 1,

for t = 2, . . . , nm. By induction, from this we obtain

(3.16) rt = r′t + r′′t − 2t+ 1, for t = 1, . . . , nm.

This implies

(3.17) d(x(p)) = d(x(p1)) + d(x(p2))− n2
m.

Consequently

∑

p, w(p)=α

qd(x(p)) =
∑

p1, w(p1)=α′

p2, w(p2)=α′′

qd(x(p1))+d(x(p2))−n2
m

(3.18)

=
1

qn
2
m





∑

p1, w(p1)=α′

qd(x(p1))









∑

p2, w(p2)=α′′

qd(x(p2))



 .

Thus, from (3.11) we obtain

(3.19) χα
W (q) =

(q)nm

qn
2
m

χα′

g′,W (Λ0)
(q)χα′′

g′′,W (Λ0)
(q),

where χα′

g′,W (Λ0)
(q) and χα′′

g′′,W (Λ0)
(q) are character formulas for Feigin-Stoya-

novsky’s type subspaces W (Λ0) for g′ and g′′, respectively. Formulas (3.7)
and (3.8) give
(3.20)

χn1,...,nℓ

W (Λ0)
(q) =

q
∑ℓ

i=1 n2
i−

∑ℓ−1
i=1 nini+1(q)nm

(q)n1(q)n2−n1 · · · (q)nm−nm−1(q)nm−nm+1 · · · (q)nℓ−1−nℓ
(q)nℓ

.

In other cases, when 1 ≤ k ≤ ℓ, the reasoning is similar, one only needs
to slightly modify definitions of x(p), x(p1) and x(p2) by setting

r1 = r′1 = 1 + θ(k − i1), r
′′
1 = 1,

if 1 ≤ k ≤ m, or
r1 = r′′1 = 1 + θ(j1 − k), r′1 = 1,

if m < k ≤ ℓ. In the first case, x(p), x(p1) and x(p2) are the smallest
monomials of paths p, p1,p2, that satisfy difference and initial conditions for
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L(Λk), L(Λk) and L(Λ0), respectively. In the second case, these are the
smallest monomials of paths p, p1, p2 that satisfy difference and initial
conditions for L(Λk), L(Λ0) and L(Λk), respectively. Like in (3.19), for
1 ≤ k ≤ m we have

χα
W (Λk)

(q) =
(q)nm

qn
2
m

χα′

g′,W (Λk)
(q)χα′′

g′′,W (Λ0)
(q),

while for m < k ≤ ℓ we have

χα
W (Λk)

(q) =
(q)nm

qn
2
m

χα′

g′,W (Λ0)
(q)χα′′

g′′,W (Λk)
(q).

Theorem 3.6. For 0 ≤ n1 ≤ · · · ≤ nm ≥ · · · ≥ nℓ ≥ 0,
(3.21)

χn1,...,nℓ

W (Λk)
(q) =

q
∑

ℓ
i=1 n2

i−
∑ℓ−1

i=1 nini+1+nk(q)nm

(q)n1(q)n2−n1 · · · (q)nm−nm−1(q)nm−nm+1 · · · (q)nℓ−1−nℓ
(q)nℓ

.

3.3. Recurrence relations. We say that a monomial

x = xinjn(−rn) · · ·xi1j1(−r1) ∈ C[Γ̃−]

satisfies ICij if either r1 ≥ 2 or r1 = 1 and i1 ≥ i, j1 ≤ j. We say that a
monomial x satisfies IC0 if r1 ≥ 2. Denote by

Bij = {x ∈ C[Γ̃−] |x satisfies DC and ICij},

B0 = {x ∈ C[Γ̃−] |x satisfies DC and IC0}.

Note that

(3.22)







BW (Λi) = Bi+1,ℓ, for i = 1, . . . ,m− 1,
BW (Λj) = B1,j−1, for j = m+ 1, . . . , ℓ,
BW (Λ0) = B1,ℓ, BW (Λm) = B0.

The following lemma is a direct consequence of difference and initial
conditions:

Lemma 3.7. (i) Let x ∈ Bij; factorize x = x2x1 so that x1 contains

all elements of degree −1 and x2 contains elements of lower degree. Let x1 =
xinjn(−1) · · ·xi1j1(−1). Then i ≤ i1 < · · · < in ≤ m ≤ jn < · · · < j1 ≤ j.
(ii) x ∈ B0 if and only if x+ ∈ B1ℓ.

For α ∈ Q, define Bα
ij , B

α
0 , χ

α
ij(q) and χα

0 (q) like we did before.
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Proposition 3.8. Let α = n1α1 + · · · + nℓαℓ, where 0 ≤ n1 ≤ · · · ≤
nm ≥ · · · ≥ nℓ ≥ 0. Then

χα
0 (q) =qnmχα

1ℓ(q),(3.23)

χα
ij(q) =χα

i+1,j(q) + χα
i,j−1(q)− χα

i+1,j−1(q)(3.24)

+ qχ
α−(ij)
i+1,j−1(q)− qnmχ

α−(ij)
1,ℓ (q)

+ qnm

(

χ
α−(ij)
1,j−1 (q)− χ

α−(ij)
i+1,ℓ (q)− χ

α−(ij)
i+1,j−1(q)

)

,

for i, j 6= m,

χα
im(q) =χα

i+1,m(q) + qχ
α−(im)
i+1,m (q),(3.25)

χα
mj(q) =χα

m,j−1(q) + qχ
α−(mj)
m,j−1 (q),(3.26)

χα
mm(q) =χα

0 (q) + qnmχ
α−(mm)
0 (q).(3.27)

Proof. To prove the first relation note that if w(x) = α then d(x−) =
nm + d(x). The relation now follows from Lemma 3.7.

We also prove the second relation; the others are proved in a similar
manner. Let x = xinm jnm

(−rnm
) · · ·xi1j1(−r1) ∈ C[Γ̃−]. If r1 ≥ 2 or r1 = 1

and (i1, j1) 6= (i, j) then x ∈ Bα
ij if and only if x ∈ Bα

i+1,j ∪ Bα
i,j−1. Note also

that Bα
i+1,j ∩ Bα

i,j−1 = Bα
i+1,j−1. This gives the first row on the right hand

side of (3.24).
Assume r1 = 1 and (i1, j1) = (i, j). Set x2 = xinm jnm

(−rnm
) · · ·xi2j2(−r2).

If r2 = 1, then, by Lemma 3.7, x ∈ Bα
i,j if and only if x2 ∈ B

α−(ij)
i+1,j−1 \ B

α−(ij)
0 .

Together with (3.23), this gives the second row on the right hand side of
(3.24).
If r2 ≥ 2, then, by difference conditions, x ∈ Bα

i,j if and only if r2 ≥ 3 or r2 = 2

and i2 > i or j2 < j. This is equivalent to saying that x+
2 ∈ B

α−(ij)
1,j−1 ∪B

α−(ij)
i+1,ℓ .

Note also that B
α−(ij)
1,j−1 ∩ B

α−(ij)
i+1,ℓ = B

α−(ij)
i+1,j−1. This gives the last row on the

right hand side of (3.24).

Theorem 3.9. For ω = ω1 or ω = ωℓ, the solution of the system of

recursions (3.23)–(3.27) is given by formulas (3.7) and (3.8). For ω = ωm,

1 < m < ℓ, the solution of (3.23)–(3.27) is given by

(3.28)

χα
ij(q) =

q
∑

ℓ
t=1 n2

t−
∑ℓ−1

t=1 ntnt+1

(

qni−1+nj+1 + qnm
(1−qni−1 )(1−q

nj+1 )
1−qnm

)

(q)nm

(q)n1(q)n2−n1 · · · (q)nm−nm−1(q)nm−nm+1 · · · (q)nℓ−1−nℓ
(q)nℓ

,

where we set n0 = nℓ+1 = 0.

Proof. For ω = ω1 or ω = ωℓ, the claim follows from (3.22). Let ω = ωm,
1 < m < ℓ. If i = 1 or j = ℓ, formula (3.28) is exactly the character formula
for the corresponding Feigin-Stoyanovsky’s type subspace (see (3.22)).
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If i > 1 and j < ℓ, we find χα
ij(q) similarly to the way we have computed

characters in the previous subsection. We use the same notation as in
subsection 3.2. For a path p, define monomials x(p), x(p1) and x(p2) by
(3.15), but this time, instead of (3.14), we set

r1 = 1 +max{θ(i− 1− i1), θ(j1 − j − 1)},

r′1 = 1 + θ(i− 1− i1), r′′1 = 1 + θ(j1 − j − 1).

The difference from the previous case is that now formulas (3.16) and (3.17)
fail for a path p that starts with a color (i1j1) such that i1 < i and j1 > j. For
such path, we have r1 = r′1 = r′′1 = 2, so (3.16) does not hold for t = 1. This
means that formula (3.17) calculates d(x(p)) as if r1 = 3 instead of r1 = 2,
and the difference between the calculated and the actual degree for monomials
of such path is equal to l(p) = nm.

Although we cannot use (3.19) to calculate χα
ij(q), we can “repair” the

wrong character formula obtained from (3.19) by recalculating degrees of
monomials that start with a color (i1j1) such that i1 < i, j1 > j. Let

Cα
ij = {xinmjnm

(−rnm
) · · ·xi1j1(−r1) ∈ Bα

ij | i1 < i, j1 > j},

Dα
ij = {xinmjnm

(−rnm
) · · ·xi1j1(−r1) ∈ Bα

1ℓ | r1 = 1, i1 < i, j1 > j}.

Denote by χα
Cij

(q) and χα
Dij

(q) the corresponding graded cardinalities. By

observations above, we have

χα
ij(q) =

(q)nm

qn
2
m

χα′

g′,W (Λi−1)
(q)χα′′

g′′,W (Λj+1)
(q)− (1− qnm)χα

Cij
(q).

Since x ∈ Cα
ij if and only if x+r ∈ Dα

ij , for some r ∈ N, we have

χα
Cij

(q) =
qnm

1− qnm
χα
Dij

(q).

Furthermore, since Dα
ij = Bα

1ℓ \
(

Bα
1j ∪ Bα

iℓ

)

and Bα
1j ∩ Bα

iℓ = Bα
ij , we have

χα
Dij

(q) = χα
1ℓ(q)− χα

iℓ(q)− χα
1j(q) + χα

ij(q).

Consequently

χα
ij(q) =

(q)nm

qn
2
m

χα′

g′,W (Λi−1)
(q)χα′′

g′′,W (Λj+1)
(q)

− qnm
(

χα
1ℓ(q)− χα

iℓ(q)− χα
1j(q) + χα

ij(q)
)

.

Formula (3.28) now follows from (3.7) and (3.8), and Theorem 3.6.

4. The case D4

4.1. Character formula for W (Λ0). Let g be a simple finite-dimensional
Lie algebra of type Dℓ. The minuscule fundamental weights are ω1, ωℓ−1, ωℓ.
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Fix a minuscule weight ω = ω1. The set of colors is Γ = {2, . . . , ℓ, ℓ, . . . , 2},
where

(4.1)































































2 = α1,
...

ℓ = α1 + · · ·+ αℓ−1,
ℓ = α1 + · · ·+ αℓ−2 + αℓ,

ℓ− 1 = α1 + · · ·+ αℓ−2 + αℓ−1 + αℓ,
ℓ− 2 = α1 + · · ·+ αℓ−3 + 2αℓ−2 + αℓ−1 + αℓ,
ℓ− 3 = α1 + · · ·+ αℓ−4 + 2αℓ−3 + 2αℓ−2 + αℓ−1 + αℓ,

...
2 = α1 + 2α2 + · · ·++2αℓ−2 + αℓ−1 + αℓ.

Define an order on Γ by setting: 2 > · · · > ℓ > ℓ > · · · > 2. Like in the
previous section, this induces the order on Γ̃, and we assume that monomials
from C[Γ̃] are sorted ascendingly from left to right.

Let L(Λk), k ∈ {0, 1, ℓ− 1, ℓ}, be a standard g̃-module of level 1, and set
W = W (Λk). Define an energy function E : Γ× Γ → {0, 1, 2} by

(4.2) E(γ′, γ) =







0, (γ′, γ) = (2, 2),
1, γ′ < γ, (γ′, γ) 6= (2, 2) or (γ′, γ) = (ℓ, ℓ),
2, γ′ ≥ γ, (γ′, γ) 6= (ℓ, ℓ).

We say that a monomial x = xγn
(−rn) · · ·xγ1(−r1) ∈ C[Γ̃−] satisfies

difference conditions, or DC for short, if rt+1 − rt ≥ E(γt+1, γt). We say
that x satisfies initial conditions for L(Λk), or IC for short, if either r1 ≥ 2 or
r1 = 1 and γ1 ∈ {2, . . . , ℓ− 1, ℓ}, for k = ℓ − 1, or γ1 ∈ {2, . . . , ℓ}, for k = ℓ,
or γ1 ∈ {2, . . . , ℓ, ℓ, . . . , 2}, for k = 0. As before, define the set BW by (3.4).

Theorem 4.1 ([1, 20]). The set {xvΛk
|x ∈ BW } is a basis of W .

From now on we assume that the algebra g is of type D4; Γ =
{2, 3, 4, 4, 3, 2}. Like in the previous section, we define weight and degree
of monomials, and the character χW (z1, z2, z3, z4, q) of W . Furthermore, for
n1, n2, n3, n4 ≥ 0 set α = n1α1 +n2α2 +n3α3 +n4α4 and define sets Bα

W and
formal series χα

W (q) as before.
Obviously, χα

W (q) = 0 unless α can be written in the form

(4.3) α = m22 +m33 +m44 +m44 +m33 +m22,

for some m2,m3,m4,m4,m3,m2 ∈ Z≥0. Set

(4.4) 0 = 2 + 2 = 3 + 3 = 4 + 4 = 2α1 + 2α2 + α3 + α4;

then (4.3) is equivalent to

(4.5) α = m22 +m33 +m44 +m00,
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where m2,m3,m4,m0 ∈ Z, such that

(4.6) m0 ≥ −θ(−m2)m2 − θ(−m3)m3 − θ(−m4)m4.

By (4.1) and (4.4) we have

(4.7) m2 = n1 − n2, m3 = n2 − n3 − n4, m4 = n3 − n4, m0 = n4.

Therefore condition (4.6) is equivalent to

(4.8)















n1 − n2 + n4 ≥ 0, n1 − n2 + n3 ≥ 0,
n2 − n3 ≥ 0, n1 − n3 ≥ 0,
n3 ≥ 0, n2 − n4 ≥ 0,
n4 ≥ 0, n1 − n4 ≥ 0.

We first consider the caseW = W (Λ0). The other cases will be considered
in the next subsection.

Set Γ′ = {2, 4, 4, 2}, Γ′′ = {3, 3}. Define

BΓ′ = {xγn
(−rn) · · ·xγ1(−r1) ∈ BW (Λ0) | γi ∈ Γ′, i = 1, . . . , n},

BΓ′′ = {xγn
(−rn) · · ·xγ1(−r1) ∈ BW (Λ0) | γi ∈ Γ′′, i = 1, . . . , n},

Bα
Γ′ = BΓ′ ∩ Bα

W (Λ0)
and Bα

Γ′′ = BΓ′′ ∩ Bα
W (Λ0)

. Define formal series χα
Γ′ and

χα
Γ′′ in the obvious way.

By setting

(4.9) 2 = (22), 4 = (23), 4 = (12), 2 = (13),

we identify the set Γ′ with the set of colors from the case A3, ω = ω2 (see
Section 3.2). Since the energy functions agree with this identification, and
since in both cases we have the same relations between colors:

2 + 2 = 4 + 4, i.e. (22) + (13) = (23) + (12),

we conclude that the sets of monomials satisfying difference and initial
conditions coincide. Therefore we can deduce a formula for χn1,n2,n3,n4

1 (q)
from the character formula for W (Λ0) for A3, ω = ω2. Let

(4.10) α′ = n1α1 + n2α2 + n3α3 + n4α4 = m22 +m44 +m44 +m22,

for some m2,m4,m4,m2 ≥ 0. By (4.1), we have
(4.11)
n1 = m2+m4+m4+m2, n2 = m4+m4+2m2, n3 = m4+m2, n4 = m4+m2.

Note from (3.12), (3.13) and (4.9) that parameters n1, n2 − n1, n2 − n3, n3

from the case A3, ω = ω2, correspond to m2 +m4,m2 +m4,m4 +m2,m4 +
m2 from the Γ′-case, respectively. From (4.11) we see that in the Γ′-case
these parameters are equal to n4, n1 − n4, n1 − n3, n3, respectively, and are
independent of the particular choice of m2,m4,m4,m2. Moreover, n2 = n1 +
(n2 −n1) from the case A3, ω = ω2, corresponds to n1 = m2 +m4 +m4 +m2
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from the Γ′-case. Hence, from character formula (3.20) for W (Λ0) for the case
A3, ω = ω2, we get

(4.12) χα′

Γ′ (q) =
qn

2
4+n2

1+n2
3−n4n1−n1n3

(q)n3(q)n1−n3(q)n1−n4(q)n4

.

Similarly, we identify the set Γ′′ with the set of colors from the case
A2, ω = ω2 (see Section 3.1):

(4.13) 3 = (2), 3 = (1).

Let

(4.14) α′′ = n1α1 + n2α2 + n3α3 + n4α4 = m33 +m33,

for some m3,m3 ≥ 0. Then, by (4.1),

(4.15) n1 = m3 +m3, n2 = m3 +m3, n3 = m3, n4 = m3.

From (3.13) and (4.13) we see that the parameters n1, n2 − n1, n2 from the
case A2, ω = ω2 correspond to n4, n1 − n4, n1 from the Γ′′-case. Hence, from
character formula (3.7) for W (Λ0) for A2, ω = ω2, we get

(4.16) χα′′

Γ′′ (q) =
qn

2
1+n2

4−n1n4

(q)n4(q)n1−n4

.

The following procedure gives us a way to obtain a character formula
for W from formulas (4.12) and (4.16). Set Γe = Γ ∪ {2̃, 4̃} and Γ̃e = Γ̃ ∪
{xγ(−r) | γ ∈ {2̃, 4̃}, r ∈ Z}. Define 2̃ > 2 > 3 > 4 > 4̃ > 4 > 3 > 2,

and define the order on Γ̃e accordingly. Let x1 ∈ BΓ′ , x2 ∈ BΓ′′ . Denote by

x3 ∈ C[Γ̃e] a monomial obtained from x1 by replacing every pair x2(−r)x2(−r)
with a pair x2̃(−r − 1)x2̃(−r), and every pair x4(−r − 1)x4(−r) with a pair

x4̃(−r − 1)x4̃(−r). Set y = x+▽

3 x+▽

2 , and reorder variables so that they are

sorted ascendingly from left to right. Set z = y−▽; note that pairs xγ(−r −

1)xγ(−r), γ ∈ {2̃, 4̃}, from x3 correspond to pairs xγ(−r′ − 1)xγ(−r′) from z.

Let x ∈ C[Γ̃] be a monomial obtained from z by replacing every pair x2̃(−r−
1)x2̃(−r) inside z with a pair x2(−r)x2(−r), and every pair x4̃(−r−1)x4̃(−r)
with a pair x4(−r − 1)x4(−r).

Proposition 4.2. Let x, x1, x2 be as above. Then x satisfies difference

and initial conditions. Conversely, every monomial that satisfies difference

and initial conditions can be obtained in this way.

Proof. Let x = xγn
(−rn) · · ·xγ1(−r1). For t = 1, . . . , n − 1, consider

factors xγt
(−rt) and xγt+1(−rt+1). If γt, γt+1 ∈ Γ′ or γt, γt+1 ∈ Γ′′ then these

two factors obviously satisfy difference conditions since they come from the
two neighbouring factors inside x1 or x2, respectively, and the above procedure
did not change the difference between their degrees.
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If γt ∈ Γ′ and γt+1 ∈ Γ′′ or γt ∈ Γ′′ and γt+1 ∈ Γ′, then either rt+1−rt = 1
and γt+1 < γt, or rt+1 − rt ≥ 2, which means that difference conditions are
again satisfied.

Conversely, let x = xγn
(−rn) · · ·xγ1(−r1) ∈ C[Γ̃−] be a monomial that

satisfies difference and initial conditions. Let x1 and x2 be monomials
obtained by the reverse procedure. The claim will follow from the following
simple observations that can be proved inductively from (4.2):
(i) If γt, γt+1, . . . , γt+s ∈ Γ′, then rt+s−rt ≥ s−1. Moreover, rt+s−rt = s−1
if and only if s is odd and (γt, . . . , γt+s) = (2, 2, . . . , 2, 2).
(ii) If γt, γt+1, . . . , γt+s ∈ Γ′′, then rt+s − rt ≥ s+ q, where q = #{0 ≤ i ≤
s− 1 | γt+i < γt+i+1}.

First we show that x2 satisfies difference conditions. Let xγ(−r), xγ′(−r′)
be two neighbouring factors inside x2. Assume that xγt

(−rt) and xγt+s
(−rt+s)

are the corresponding factors inside x. If s = 1, then it is obvious that xγ(−r)
and xγ′(−r′) satisfy difference condition. If s > 1, then γt+1, . . . , γt+s−1 ∈ Γ′

and r′ − r = rt+s − rt − s+ 1. We need to show that either rt+s − rt ≥ s+ 1
or rt+s − rt = s and γ > γ′. By (i) and (4.2) we have:

(4.17) rt+1 − rt ≥ 1, rt+s−1 − rt+1 ≥ s− 3, rt+s − rt+s−1 ≥ 1.

Moreover, if rt+s−1 − rt+1 = s − 3, by (i) we have γt+s−1 = 2 and therefore
rt+s − rt+s−1 ≥ 2. Hence, rt+s − rt ≥ s. Assume that rt+s − rt = s (this is
the case when r′ = r + 1). Then (4.17) and (4.2) imply

(4.18) γt > γt+1.

Hence

(4.19) γt+1 6= 2

and rt+s−1 − rt+1 = s− 2, rt+s − rt+s−1 = 1. By (4.2), we see that

(4.20) γt+s−1 > γt+s.

If γt+1 = 2 then rt+s−1−rt+2 = s−4, so from (i) we see that γt+s−1 = 2. But
this is in contradiction with (4.20). If γt+s−1 = 2, then rt+s−2 − rt+1 = s− 4.
By (i), this implies γt+1 = 2 which is in contradiction with (4.19). So, if
rt+s − rt = s, then γt+1, γt+s−1 ∈ {4, 4}. By (4.18) and (4.20) we conclude
that γ = γt > γt+s = γ′. Therefore xγ(−r) and xγ′(−r− 1) satisfy difference
conditions.

In the same way we show that x1 satisfies difference conditions. Let
xγ(−r) and xγ′(−r′) be two neighbouring factors inside x1. Assume that
xγt

(−rt) and xγt+s
(−rt+s) are the corresponding factors inside x. Again, if

s = 1, the claim is obvious. Assume s > 1. Then γt+1, . . . , γt+s−1 ∈ Γ′′ and
r′ − r = rt+s − rt − s+ 1. We need to show that either rt+s − rt ≥ s+ 1 or
rt+s − rt = s and γ > γ′. By (ii) and (4.2) we have:

rt+1 − rt ≥ 1, rt+s−1 − rt+1 ≥ s+ q − 2, rt+s − rt+s−1 ≥ 1,
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where q is defined in (ii). Therefore rt+s−rt ≥ s+q. If q = 0 and rt+s−rt = s,
by (4.2), we must have γt > γt+1 > · · · > γt+s−1 > γt+s. Hence γ = γt >
γt+s = γ′ and r′ = r + 1. We conclude that, in this case, xγ(−r) and
xγ′(−r − 1) satisfy difference conditions.

By using similar arguments we can show that x1, x2 ∈ C[Γ̃−], i.e., that
factors of x1 and x2 have negative degrees. Hence, x1 ∈ BΓ′ and x2 ∈ BΓ′′ .

Let w(x1) = n′
1α1 + n′

2α2 + n′
3α3 + n′

4α4 and w(x2) = n′′
1α1 + n′′

2α2 +
n′′
3α3 + n′′

4α4. From the construction we see

d(x) = d(x1) + d(x2)−
n′
1(n

′
1 − 1)

2
−

n′′
1(n

′′
1 − 1)

2
+

(n′
1 + n′′

1 )(n
′
1 + n′′

1 − 1)

2
,

hence

(4.21) d(x) = d(x1) + d(x2) + n′
1n

′′
1 .

Fix n1, n2, n3, n4 ≥ 0 satisfying (4.8), and set α = n1α1 + n2α2 + n3α3 +
n4α4. Define m2,m3,m4,m0 by (4.7). Define

(4.22) m′ = −θ(−m2)m2 − θ(−m4)m4, m′′ = −θ(−m3)m3.

Condition (4.8) is equivalent to m0 ≥ m′+m′′ (cf. (4.6)). For i = 0, . . . ,m0−
m′ −m′′, set

(4.23) α′
i = m22 +m44 + (i +m′)0, α′′

i = α− α′
i.

By (4.1) and (4.4) we have

α′
i =(n1 − n2 + n3 − n4 + 2(i+m′))α1 + (n3 − n4 + 2(i+m′))α2

+ (n3 − n4 + i+m′)α3 + (i+m′)α4,

α′′
i =(n2 − n3 + n4 − 2(i+m′))α1 + (n2 − n3 + n4 − 2(i+m′))α2

+ (n4 − i−m′)α3 + (n4 − i−m′)α4.

Then, by Proposition 4.2, (4.7) and (4.21),
(4.24)

χα
W =

n4−m′−m′′

∑

i=0

χ
α′

i

1 (q)χ
α′′

i

2 (q)q(n1−n2+n3−n4+2(i+m′))(n2−n3+n4−2(i+m′)).

From (4.12) and (4.16) we obtain the following character formula:

Theorem 4.3.

χα
W (Λ0)

=

n4−m′−m′′

∑

i=0

qf
i(α) (q)n1−n2+n3−n4+2(i+m′)

(q)n3−n4+i+m′(q)n1−n2+i+m′(q)i+m′

(4.25)

·
1

(q)n1−n2+n3−n4+i+m′(q)n4−i−m′(q)n2−n3−i−m′

,
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where

f i(α) =n2
1 + n2

2 + n2
3 + n2

4 − n1n2 − n2n3 − n3n4(4.26)

− (i+m′)(n2 − n3 + n4 − i−m′).

Remark 4.4. For an algebra g of type Dℓ, let α = n1α1 + · · ·+ nℓαℓ be
a weight that can be written as a non-negative linear combination of colors
2, . . . , ℓ, ℓ, . . . , 2. Set 0 = 2+ 2 = · · · = ℓ+ ℓ = 2α1 + · · ·+ 2αℓ−2 +αℓ−1 +αℓ.
Define m2, . . . ,mℓ,m0 like in (4.5). Like in (4.6), we obtain the following
condition on the coefficients m2, . . . ,mℓ,m0:

m0 ≥ −θ(−m2)m2 − · · · − θ(−mℓ)mℓ.

Partition the set of colors into the sets

Γ(2) = {2, ℓ, ℓ, 2}, Γ(3) = {3, 3}, . . . , Γ(ℓ−1) = {ℓ− 1, ℓ− 1},

and regard Γ(2) as a set of colors for the case A3, ω = ω2, and Γ(3), . . . ,Γ(ℓ−1)

as sets of colors for the case A2, ω = ω2. Set m
(2) = −θ(−m2)m2−θ(−mℓ)mℓ,

m(3) = −θ(−m3)m3, . . . , m
(ℓ−1) = −θ(−mℓ−1)mℓ−1, and letm = m(2)+· · ·+

m(ℓ−1). We can apply the same procedure as before; we obtain the following
character formula:

χα
W (Λ0)

=
∑

i=(i2,...,iℓ−1)∈Z
ℓ−2
≥0

i2+···+iℓ−1=nℓ−m

qf
i(α)

(q)n1−n2+nℓ−1−nℓ+2(i2+m(2))

(q)nℓ−1−nℓ+i2+m(2)(q)n1−n2+i2+m(2)(q)i2+m(2)

·
1

(q)n1−n2+nℓ−1−nℓ+i2+m(2)

ℓ−2
∏

j=3

1

(q)ij+m(j)(q)nj−1−nj+ij+m(j)

·
1

(q)iℓ−1+m(ℓ−1)(q)nℓ−2−nℓ−1−nℓ+iℓ−1+m(ℓ−1)

,

where

f i(α) =n2
1 + · · ·+ n2

ℓ − n1n2 − · · · − nℓ−3nℓ−2 − nℓ−2nℓ−1 − nℓ−2nℓ

+

ℓ−2
∑

j=3

(ij +m(j))(nj−1 − nj + ij +m(j))

+ (iℓ−1 +m(ℓ−1))(nℓ−2 − nℓ−1 − nℓ + iℓ−1 +m(ℓ−1)).

4.2. Character formulas for other level 1 standard modules and recurrence

relations. For γ ∈ Γ, we say that a monomial

x = xγn
(−rn) · · ·xγ1(−r1) ∈ C[Γ̃−]

satisfies ICγ if either r1 ≥ 2 or r1 = 1 and either γ1 ≤ γ if γ 6= 4, or
γ1 ∈ {2, 3, 4} if γ = 4. We say that a monomial x satisfies IC0 if r1 ≥ 2.
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Denote by

Bγ = {x ∈ C[Γ̃−] |x satisfies DC and ICγ},

B0 = {x ∈ C[Γ̃−] |x satisfies DC and IC0}.

Note that

(4.27) BW (Λ0) = B2, BW (Λ1) = B0, BW (Λ3) = B4, BW (Λ4) = B4.

For n1, n2, n3, n4 satisfying (4.8), set α = n1α1+n2α2+n3α3+n4α4 and
define Bα

γ , B
α
0 , χ

α
γ (q) and χα

0 (q) as before.

Proposition 4.5. Characters χα
γ (q), γ ∈ Γ ∪ {0}, satisfy the following

recurrence relations:

χα
0 (q) = qn1χα

2 (q),

χα
2 (q) = χα

3 (q) + qn1χα−2
3 (q) + q2n1−2χ

α−2−2
2 (q),

χα
3 (q) = χα

4 (q) + χα
4 (q)− χα

3 (q) + qn1

(

χα−3
4 (q) + χα−3

4 (q)− χα−3
3 (q)

)

,

χα
4 (q) = χα

3 (q) + qn1χα−4
4 (q),

χα
4 (q) = χα

3 (q) + qn1χ
α−4
4 (q),

χα
3 (q) = χα

2 (q) + qn1χ
α−3
2 (q),

χα
2 (q) = χα

0 (q) + qn1χ
α−2
0 (q).

The proof is similar to the proof in the Aℓ-case.
Set

BΓ′′;0 = {xγn
(−rn) · · ·xγ1(−r1) ∈ BΓ′′ | r1 ≥ 2},

BΓ′′;3 = {xγn
(−rn) · · ·xγ1(−r1) ∈ BΓ′′ | r1 ≥ 2 or r1 = 1, γ1 = 3},

BΓ′;0 = {xγn
(−rn) · · ·xγ1(−r1) ∈ BΓ′ | r1 ≥ 2},

BΓ′;2 = {xγn
(−rn) · · ·xγ1(−r1) ∈ BΓ′ | r1 ≥ 2 or r1 = 1, γ1 = 2},

BΓ′;4,2 = {xγn
(−rn) · · ·xγ1(−r1) ∈ BΓ′ | r1 ≥ 2 or r1 = 1, γ1 ∈ {4, 2}},

BΓ′;4,2 = {xγn
(−rn) · · ·xγ1(−r1) ∈ BΓ′ | r1 ≥ 2 or r1 = 1, γ1 ∈ {4, 2}},

BΓ′;4,4,2 = {xγn
(−rn) · · ·xγ1(−r1) ∈ BΓ′ | r1 ≥ 2 or r1 = 1, γ1 ∈ {4, 4, 2}},

and define Bα
Γ′′;0, B

α
Γ′′;3, B

α
Γ′;0, B

α
Γ′;2, B

α
Γ′;4,2, B

α
Γ′;4,2, B

α
Γ′;4,4,2, and χα

Γ′′;0, χ
α
Γ′′;3,

χα
Γ′;0, χ

α
Γ′;2, χ

α
Γ′;4,2, χ

α
Γ′;4,2, χ

α
Γ′;4,4,2 in the obvious way.

Character formulas for these sets can be obtained in the same way as we
did for χα

Γ′ and χα
Γ′′ in the previous section, by using character formulas for
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cases A3, with ω = ω2, and A2, with ω = ω2, from Section 3.3. We get

χα′′

Γ′′;0 =
qn

2
1+n2

4−n1n4+n1

(q)n4(q)n1−n4

,(4.28)

χα′′

Γ′′;3 =
qn

2
1+n2

4−n1n4+n4

(q)n4(q)n1−n4

,(4.29)

χα′

Γ′;0 =
qn

2
4+n2

1+n2
3−n4n1−n1n3+n1

(q)n3(q)n1−n3(q)n1−n4(q)n4

,(4.30)

χα′

Γ′;2 =
qn

2
4+n2

1+n2
3−n4n1−n1n3

(q)n3(q)n1−n3(q)n1−n4(q)n4

(4.31)

·

(

qn4+n3 + qn1
(1− qn4)(1 − qn3)

1− qn1

)

,

χα′

Γ′;4,2 =
qn

2
4+n2

1+n2
3−n4n1−n1n3+n3

(q)n3(q)n1−n3(q)n1−n4(q)n4

,(4.32)

χα′

Γ′;4,2 =
qn

2
4+n2

1+n2
3−n4n1−n1n3+n4

(q)n3(q)n1−n3(q)n1−n4(q)n4

,(4.33)

χα′

Γ′;4,4,2 =χα′

Γ′;4,2 + χα′

Γ′;4,2 − χα′

Γ′;2(4.34)

=
qn

2
4+n2

1+n2
3−n4n1−n1n3

(q)n3(q)n1−n3(q)n1−n4(q)n4

(

1−
(1− qn4)(1− qn3)

1− qn1

)

,

for α′ and α′′ satisfying (4.10) and (4.14), respectively.

Proposition 4.6. Let x, x1, x2 be like in Proposition 4.2. Then:

x ∈ B2 ⇔ x1 ∈ BΓ′ , x2 ∈ BΓ′′ ,

x ∈ B3 ⇔ x1 ∈ BΓ′;4,4,2, x2 ∈ BΓ′′ ,

x ∈ B4 ⇔ x1 ∈ BΓ′;4,2, x2 ∈ BΓ′′ ,

x ∈ B4 ⇔ x1 ∈ BΓ′;4,2, x2 ∈ BΓ′′;3,

x ∈ B3 ⇔ x1 ∈ BΓ′;2, x2 ∈ BΓ′′;3,

x ∈ B2 ⇔ x1 ∈ BΓ′;2, x2 ∈ BΓ′′;0,

x ∈ B0 ⇔ x1 ∈ BΓ′;0, x2 ∈ BΓ′′;0.

The proposition can be proved by arguments similar to the ones used in
the proof of Proposition 4.2.

Fix n1, n2, n3, n4 ≥ 0 satisfying (4.8), and set α = n1α1 + n2α2 + n3α3 +
n4α4. Define m2,m3,m4,m0 by (4.7), m′ and m′′ by (4.22), and α′

i and α′′
i ,

for i = 0, . . . , n4 −m′ −m′′, by (4.23). Proposition 4.6 enables us to compute
characters by using analogues of formula (4.24) and formulas (4.28)–(4.34).
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Theorem 4.7.

χα
γ =

n4−m′−m′′

∑

i=0

riγ(α)q
fi(α) (q)n1−n2+n3−n4+2(i+m′)

(q)n3−n4+i+m′(q)n1−n2+i+m′(q)i+m′

(4.35)

·
1

(q)n1−n2+n3−n4+i+m′(q)n4−i−m′(q)n2−n3−i−m′

,

where f i(α) is defined by (4.26), and riγ(α) is defined by

riγ(α) =































































1, for γ = 2,
(

1− (1−qn3−n4+i+m′
)(1−qi+m′

)

1−qn1−n2+n3−n4+2i+2m′

)

, for γ = 3,

qn3 , for γ = 4,
qn4 , for γ = 4,

qn3+i+m′

(

1− qn1−n2 (1−qn3−n4+i+m′
)(1−qi+m′

)

1−qn1−n2+n3−n4+2i+2m′

)

, for γ = 3,
(

qn2 − qn1 (1−qn3−n4+i+m′
)(1−qi+m′

)

1−qn1−n2+n3−n4+2i+2m′

)

, for γ = 2,

qn1 , for γ = 0.
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