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ON SQUARES OF IRREDUCIBLE CHARACTERS
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ABSTRACT. We study the finite groups G with a faithful irreducible
character whose square is a linear combination of algebraically conjugate
irreducible characters of G. In conclusion, we offer another proof of one
theorem of Isaacs-Zisser.

There are a few papers treating the finite groups possessing an irreducible
character whose powers are linear combinations of appropriate irreducible
characters, for example, [BC] and [IZ]. Our note is inspired by these two
papers, especially, the second one.

In what follows, GG is a finite group. We use standard notation of finite
group theory (see [BZ]). Recall that if x € Irr(G), then the generalized
character x(?) (see [BZ, Chapter 4]) is defined as follows:

X (9) = x(¢%) (g € G).

Next, Char(G) denotes the set of characters of a group G and, if 0 is a
generalized character of G, then

1(0) = {x € x(G) | (6, x) # 0}
The quasikernel Z(x) of x € Char(G) is defined as follows:

Z(x) ={9 € G| Ix(9)| = x(1)}.

It is known that Z() is a normal subgroup of G containing ker(y) and
Z(G/ker(x)) < Z(x)/ker(x) with equality if, in addition, x € Irr(G). In
what follows, we use freely results stated in this paragraph.
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Let x € Irr(G). It is known that
(1) () C Tr(x?).
Indeed, ¥ = 2 — 2\’ x (see formula (22) in [BZ, §4.6]) so it suffices to
show that Irr(A% y) C Irr(x2). Next, x2 = A% x + 6, where 6 is the exterior

square of y (see [BZ, Lemma 4.16, formula (17)]) so Irr(A® x) C Irr(x?), as
desired. Therefore, if Irr(x?) = {91, ..., ¥, } and

n

(2) X* = Z a;jy;, where all a; are positive integers,
j=1
then, by (1), we have

n

(3) P = Z bjv;, where all b; are integers.
j=1

Set

(4) a=a1+---+a,, b=bi+---+0b,.

Let € be a |G|-th primitive root of 1, G = Gal(Q(€)/Q), where Q is the field
of rational numbers. The group G acts in the natural way on the set Irr(G)
as follows: if x € Irr(G) and o € G, then (ox)(9) = o(x(g)) for all g € G
(see [BZ, Chapter 3]). Characters ¢,¢’ € Irr(G) are said to be algebraically
conjugate if 1’ = o1p for some o € G. In that case, as it is easy to check,
(1) = ' (1), ker(yp) = ker(¢)') and Z(v) = Z(¢').} In what follows we will
retain the notation introduced above and in this paragraph.

DEFINITION 1. A group G with an irreducible character x possesses a
property A, if it satisfies the following conditions:
(A1) |G| is even.
(A2) x is faithful.
(A3) n>2 and v; (j =1,...,n) are algebraically conjugate with ¢ = 1
(see decomposition (2)), i.e., Y; = 0 for someo; € G (j=1,...,n).
(A4) x and 1, ..., ¥, satisfy (2) and (3).
Our main result is the following

THEOREM 2. If the group G satisfies condition A, then the following
assertions hold (here, as in part (A3) of the definition, ¥ = 1 ):

(a) G is nonabelian and x(1) > 1.
) G has only one involution u.
) ker( ) = (u).
) Z(v) is abelian.
)

e) Sylow 2-subgroups of G are cyclic.

(b
(c
(d
(

ILet us prove the second equality. Take g € ker(x). We have ¢/ (g) = o((g)) =
a(¥(1)) = (1) so ker(y)) < ker(¢’). Since o1 € G, the reverse inclusion holds as well.
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) G=P-N, a semidirect product, where P € Syly(G) and {1} < N<G.
) =

(&) x(1) =9(1) and b = 1.

(h) xn € Irr(N).

(i) All (¢ ) are irreducible and nonreal for j =1,...,n.

() If w € G with o(w) = 8, then Y(w) = m/—1, where m is an integer

dividing x(1).

PROOF. (a) It follows from (2) and (4) that x(1)? = a(1) so x(1) > 1
since a > n > 1. Therefore, G is nonabelian.

(b) Let u be an involution in G. Since ¢ (u) is a rational integer, it follows
that 1,(u) = ¥(u) since the ;’s are algebraically conjugate. Therefore,

X (u) = byp(u) (see (3) and (4)). Since x@(u) = x(u?) = x(1), we get
(5) x(1) = bip(u).

On the other hand, x(1) = x(?)(1) = by(1) so, taking into account that b # 0,
we get Y(u) = ¥(1), by (), e, u € ker(¢p) = ker(y;) for j = 1,....n
Therefore, it follows from (2) that ker(y?) = ker(¢) so u € ker(x?), i.e.,
x(u)? = x(1)2. In that case, x(u) = £x(1), and we obtain

(6) x(u) = —x(1)

since our character y is faithful. It follows that v € Z(x) = Z(G) since x
is faithful, i.e., Z(G) contains all involutions of G. Since Z(G) is cyclic (x is
faithful), we conclude that « is the unique involution in G, and (b) is proven.

(c) As we have proved in (b) (see the sentence after formula (5)), u €
ker(z)). It suffices to show that u is the unique nonidentity element of ker(v)).
Take = € ker(¢)#. Then ¢;(z) = (1) for all j so, by (2), z € ker(x?) so
that, again by (2), we have

(1% = x(2)* = ap(1), and hence x(z) = —x(1)

since x is faithful. In particular, z € Z(x) so that x(z?) = x(1) and 22 €
ker(x) = {1}, i.e., = is an involution. It follows from this and (b), that x = .
Thus ker(y)) = {1,u} = (u), as required.

(d) It follows from (c), that Z(¢) is abelian since Z(v)/ker(¢) is cyclic
(in view of irreducibility of 1) and | ker(¢)| = 2.

(e) Let P € Syly(G). By (b), P is either cyclic or generalized quaternion.
Assume, by way of contradiction, that P is generalized quaternion. Take in
P an element v of order 4. Then, by (b),

(7) v? = .
Let j € {1,...,n}. Then, by (A2), ¥, = 0,9 so that ¢;(v) = (o;¢)(v) =
oj(¥(v)). We have oje = €% for some rational integer v; such that

GCD(v4, |G]) =1 (recall that € is the primitive |G|-th root of 1 chosen above);
then v; is odd in view of (Al). Setting v; = 2); + 1 and taking into account
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that 1 (v) is a sum of powers of €, we get
(V) = 05 (Y(v)) = (") = PN H) = P(uMv) = P(v)
since u € ker(¢), by (c). Thus
(8) V() =) G=1,...,n).
Then, by (6), (8), (3) and (4), we obtain

x(u) = x(v*) = x® (v Zbg% ) = bib(v).

On the other hand, x(1) = x®)(1) = b(1) so ¥ (v) = —1(1). It follows from
this and (8), that

9) Yi(v) =—=¢1) (G=1,...,n)

It follows from (9) that, if T' is a representation of G affording the character v;,
then T'(v) = —Iy), where Iy is a ¥(1) x ¢ (1) identity matrix. Therefore,
by (2), we get

= >y (0) = —ab(1) = —x(1)*

and we conclude that

(10) x(v) = cix(1),

where ¢ = +1 and i = /—1. It follows from |y(v)| = x(1) that v € Z(x) =
Z(G), a contradiction, since the center of P, which is a generalized quaternion
group, has order 2. Thus, P € Syl,(G) is cyclic.

(f) By (e), G is 2-nilpotent so G = P - N, and N > {1} since G is
nonabelian.

(g) Since G/N = P is cyclic, then y is not ramified over N (Burnside; see
[BZ, Exercise 7 in Chapter 7]) so we get the following Clifford decomposition:

(11) XN =D b

It follows from (11) that

l
(12) Py ="
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Since |N| is odd, it follows that qbf) are distinct irreducible characters of N
for all k, and (x(?))x is a character of N.? By (9), we have

)y = b))
j=1
Let ¢1 = ¢. Since
L= (), 6P) = bi{(1h)n, ),
j=1

we get ((1s)n, ) # 0 for some s € {1,...,n}. This means that ¢(? ¢
Irr((vs)n). By Clifford’s theorem, Irr((ts)n) is a G-orbit of ¢, i.e.,

Irr((vhs)n) = {62, ..., ¢}, where ¢, = ¢.

We conclude that (1) n = 22:1 <Z),(€2) s0, by (12), (x®?)n = (¥s)n. Tt follows,
in particular, that (1) = (1) = ¢(1). Since x(1) = x@ (1) = bip(1), we get
b =1, completing the proof.

(h) Tt follows from (2) and (3) that

X=X =Y (a5 = by)y.
j=1
Since
1, 5

50 = x®) = A’x € Char(G)

(see formula (22) in [BZ, §4.6]), we get a; = b; (mod 2) for j = 1,...,n.
Summing up over all j, one obtains a = b (mod 2) so a is odd since b = 1, by
(g). As we have noticed in the proof of (a), x(1)? = at(1). Therefore, since
x(1) = ¥(1), by (g), we have x(1) = a, and hence x(1) is odd. It follows from
(11) that | = |Irr(xn)| = |G : Ig(¢)|, where I¢(¢) is the inertia group of ¢
in G, and x(1) = l¢(1) so [ is odd. Since I¢(¢) > N and |G : N| = |P| is a
power of 2, we get [ =1, i.e., xny € Irr(N), proving (h).

(i) Since I = 1, there exists s € {1,...,n} such that (¢s)ny = ¢ €
Irr(N). Since all ¢; are algebraically conjugate, we get (¢;)n € Irr(N). If
(1) is real for some j, it is the principal character 1¢ of G since |N| is odd.
It follows that ¢ (1) = ¢;(1) = 1. Then, by (g), x(1) = 1, a contradiction.
Thus, all ¥; are not real.

(j) Let w € G be of order 8. Setting v = w?, we get o(v) = 4. By (b),
v? = u. Tt follows from (10) that cix(1) = x(v) = x(w?) = X (w) so, in view

2Indeed, assume that ¢>£2) = ¢>52). Then, for z € N we have ¢;(z?) = ¢>£2)(x) = ¢>§.2) =
#;(z?), and so ¢; = ¢; since {z? | z € N} = N. This proves the first assertion. Now the
second assertion is obvious.
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of (9), we get

(13) Dbt (w) = x® (w) = cix(1)
j=1

(here i = v/—1). Recall, that 1;(w) = 1(w"7), where v; is odd integer (see the
proof of (e)). It follows from o(w) = 8 that v; € {1,3,5,7}. Since u € ker(y))
and ¥ (v) = —1p(1) (see (9)), we have (consider a representation of G affording
the character v; see two line after formula (9))

Y(w?) = Plvw) = —p(w),
Y(w®) =y (uw) = p(w),
Y(w") = P(uvw) = —p(w).
Thus, ¥;(w) € {Y(w), —y(w)}. Setting 1, (w) = ¢;9(1), where ¢; = £1, one
can rewrite (13) in the form
(14) cix(1) = dip(w),

where d = 23;1 bjc; is a rational integer. Note that

Y(w) = Pw ) =yw") = —p(w).

Therefore, (w) = im, where m is a real number. Now, (14) yields
x(1) = edm. Therefore, m = c - % is rational. Since m = —iy(w) is
an algebraic integer, it follows that m is a rational integer so m divides x(1).
This completes the proof of our theorem. O

Now we are ready to offer another proof of the following

THEOREM 3 (Isaacs-Zisser [IZ]). Let G > {1} be a group and suppose that
there is a faithful x € Irr(GQ) such that

(15) X* = ay + by,

where a,b are positive integers and ¢ € Irr(G). Then G is a direct product of
a cyclic 2-group of order not exceeding 4 and a group of odd order.

PROOF. Since 1 = 1) and 1), = 11 are algebraically conjugate, one can
apply Theorem 2 to our group G. By that theorem, P is cyclic. It remains
to prove that |P| < 4 and P is normal in G. We claim that |[Irr(x®)| = 1
(recall that x : z — x(22)). Otherwise, x(? = by3); + botbo, where by, by
are nonzero rational integers. It follows that

(X)) = b1 (1) N + ba(t2) N

(recall that (x®)y, (¥1)n, (2)n are irreducible, by Theorem 2(h,i)). We
have (x®)y = (¢s)n for some s € {1,2} (see the proof of Theorem 2(g)).
Using this and the equality by +ba = 1, we get (¥1)n = (2)n. It follows that

(¥1)n = (Y1) N, 1.€., character (11)y is real, contrary to Theorem 2(i). Thus,
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one of numbers by, by equals 0 so our claim is proven, i.e., x? € {1,192}
Assume, for definiteness, that (2 = ¢;. Thus,

x? = a1y + agthy and X = .

As above, set 1) = ). Assume that |P| > 4. Take in P an element w of order
8. Set v = w?. Then, by (10),

Y(w) = xP(w) = x(v) = cix(1), where ¢ = +1.

Since x and ¢ have the same degree, we get 1) (w) = citp(1) so |p(w)| = (1)
whence w € Z(1)). Let H € Syly(Z(v))); then H isnormalin Gso HN = HxN
and w centralizes N. Since w centralizes P € Syl,(G), by Theorem 2(e), we
see that w € Z(G) since G = P - N, and so |x(w)| = x(1). Then equalities

Po(w) = 1 (w) = =¢p(w) and [P(w)| = x(1)
imply
X(1)* = [x(w)[* = |1y (w) + azpz(w)| = [(ar — az)¥(w)]

= la1 — as||(w)] = |a1 — az|x(1).
Hence x(1) = |a1 — az|. On the other hand, x(1) = a = a1 + a2. Thus
a1 + az = |a; — az|, a contradiction since ay,az > 0. Thus |P| < 4.

Let us prove that the subgroup P is normal in G. In view of Theorem 2(b),
one may assume that |P| = 4 and P = (v). Then, by (9), ¥(v) = —(1) so
v € Z() and hence P < Z(v). Since P is characteristic in Z(¢)) (indeed, P is
a Sylow 2-subgroup of the abelian group Z(v); see Theorem 2(d)), it follows
that P is normal in GG, and the proof is complete. O
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