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Abstract. It is known that the Feller property of a semigroup is
stable under a bounded perturbation of the infinitesimal generator. Ap-
plying this, we derive the Feller property for a class of integro-differential
operators including symmetric stable-like processes.

1. Introduction

Let X be a locally compact separable metric space and C∞(X) the Ba-
nach space of continuous functions on X vanishing at infinity equipped with
uniform norm. Let A be the infinitesimal generator of a Feller semigroup
on C∞(X) and B a bounded linear operator on C∞(X). It is then known
by [9, Theorem 3.7] that if A + B is dissipative, then A + B is again the
infinitesimal generator of a Feller semigroup (see also Pazy ([17]) and Ethier
and Kurtz ([10]) for related results). The purpose of this paper is to derive
the Feller property for a class of non-local operators as an application of the
stability result.

Since Fukushima ([11, Theorem 4.1]) established a one to one correspon-
dence between regular Dirichlet forms and symmetric Hunt processes, the
theory of Dirichlet forms has been one of the main tools to construct and
study stochastic processes. However, as has already been pointed out in [19],
the correspondence is only unique up to an equivalence. Here the equivalence
is defined as follows: two symmetric Hunt processes corresponding to a regu-
lar Dirichlet form possess a common properly exceptional set outside of which
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their transition functions coincide ([12, Theorem 4.2.7]). This means that we
have some ambiguity concerning starting points in constructing the process.
So the question is left whether one can find a nice version from among an
equivalence class of stochastic processes which start at each point in a natural
way. Some conditions (e.g. Feller property or some kind of the strong Feller
property) are known in order to construct stochastic processes from every
starting point.

In 1988, Bass ([2]) succeeded in constructing a Feller process generated
by the non-local operator (−∆)α(x)/2 (0 < α(x) < 2), the so-called stable-like
process, by showing the existence and the uniqueness of the solution to the
martingale problem. This process is a generalization of a symmetric α-stable
process. Motivated by this, the second author ([21]) (see also [22]) studied
some path properties of the so-called symmetric stable-like process generated
by the following regular Dirichlet form:

E(u, v) =

∫∫

Rd×Rd\D

(u(x) − u(y))(v(x) − v(y))

|x− y|d+α(x)
dxdy

F = C lip
0 (Rd)

√
E1(·,·)

,

(1.1)

where C lip
0 (Rd) stands for the set of all uniformly Lipschitz functions on R

d

with compact support, (u, v)L2(Rd) =
∫

Rd u(x)v(x) dx and E1(u, v) = E(u, v)+

(u, v)L2(Rd), and D =
{

(x, x) ∈ R
d × R

d
}

. However, as symmetric stable-like
processes are constructed by using Dirichlet form theory, we do not know
whether they are Feller.

We are interested in when the semigroup corresponding to an infinites-
imal generator or a (symmetric) Dirichlet form satisfies the Feller property.
One possible way to show this property is to use potential theory. Bass and
Levin ([6]) showed that harmonic functions associated with certain non-local
operators are Hölder continuous by using the Harnack inequality and hitting
time estimates. This implies the Hölder continuity of the resolvent of the
operator. Since then, many authors have studied regularity of harmonic func-
tions associated with non-local operators (see e.g. Chen and Kumagai ([8]),
Song and Vondraček ([20]), Bass and Kassmann ([5]) and Schilling and Ue-
mura ([19])). However, strong conditions are imposed on the jump kernels
for the Harnack inequality to hold in those papers. Husseini and Kassmann
[14] proved the Feller property of the resolvent corresponding to a jump-type
symmetric Dirichlet form under a mild assumption for the kernel without us-
ing the Harnack inequality, but using some uniform continuity assumption for
the kernel, what they called ‘a priori estimate.’ Though we do not use the
estimate they assumed, our result is closely related to theirs.

Applying a dissipative perturbation, we will show the Feller property
for the generators of certain jump-type symmetric Markov processes (The-
orem 2.2 and Corollary 3.1). We will then obtain the Feller property for a
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class of symmetric stable-like processes, since the L2-generator of a symmetric
stable-like process is obtained from that of a stable-like process by a bounded
perturbation. As a result, we can construct a symmetric stable-like process
which is Feller (see Example 3.4).

We have originally learned the perturbation approach as mentioned above
from §4 in [19]. There a given generator is recognized as the “small jumps”
part perturbed by the “big jumps” part. They proved that the strong Feller
property of the resolvent corresponding to the “small jumps” part implies the
Feller property of the generator, while we assume the Feller property of a
given operator.

It may seem curious that we derive the Feller property for the generator
of a symmetric stable-like process through a (modified) non-symmetric stable-
like process. In [23], we revealed a relation between (−∆)α(x)/2 and the
Dirichlet form (E ,F) in (1.1) through the carré du champ operator associated
with (−∆)α(x)/2. There, we also found that the order of ‘the principal (higher
order) term’ of the difference between the generator of the stable-like process
and the L2-generator of the Dirichlet form (E ,F) is the same as that of the
stable-like process (see [23, Theorem 3]). This is quite different from the case
of diffusion processes. We can not reduce ‘the principal term’ to the perturbed
operator by using a perturbation. Therefore, to show the Feller property for
the perturbed operator, we would have to prove the Feller property and solve
the martingale problem for it at the same time in general, and this means that
it is not necessarily easier to study the symmetric non-local operator than to
study the non-symmetric one.

2. Perturbations by bounded linear operators

Let X be a locally compact separable metric space and denote by C∞(X)
the Banach space of continuous functions onX vanishing at infinity with norm
‖f‖∞ = supx∈X |f(x)|. By a Feller semigroup we mean a strongly continuous,
positive contraction semigroup on C∞(X). Given a linear operator A on
C∞(X), we denote its domain by D(A). We say that the operator A is
dissipative if

‖λu−Au‖∞ ≥ λ‖u‖∞ for all u ∈ D(A) and all λ > 0.

As mentioned in §1, the following result is already known as a “dissipative
perturbation” (see Theorem 3.7 in [9]):

Proposition 2.1. Let A be the infinitesimal generator of a Feller semi-

group on C∞(X) and B a bounded linear operator on C∞(X). If A + B is

dissipative, then A + B is again the infinitesimal generator of a Feller semi-

group on C∞(X).
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In what follows, we consider the following integro-differential operator:

(2.1) Lu(x) =

∫

y 6=x

(u(y) − u(x))n(x, y)m(dy) for u ∈ C.

More precisely, letm be a positive Radon measure onX with full support. Let
n be a positive measurable function defined on the off-diagonal set {(x, y) ∈
X × X : x 6= y} such that Lu ∈ C∞(X) for any u ∈ C, where C is some
dense subset in C∞(X). Furthermore, we assume that (L, C) is closable on
C∞(X) and its closure is the infinitesimal generator of a Feller semigroup on
C∞(X). For instance, if k(x, dy) = n(x, y)m(dy) is a bounded continuous
kernel, then it is easy to see that L is a bounded linear operator on C∞(X)
satisfying the Feller property (see e.g. [10, §8.3]). Here we say that a kernel
k(x, dy) on X is bounded if k(x, dy) is a bounded measure on X for any
x ∈ X , and is continuous if x 7→ k(x, S) is a continuous function on X for any
Borel set S ⊂ X . We are also concerned with the following integro-differential
operators:

Au(x) =

∫

y 6=x

(u(y) − u(x)) (n(x, y) + n(y, x))m(dy)

and

(2.2) L̃u(x) =

∫

y 6=x

(u(y) − u(x))n(y, x)m(dy).

Here we note that even if k(x, dy) = n(x, y)m(dy) is a bounded kernel,

k̃(x, dy) := n(y, x)m(dy) may be an unbounded kernel. Let B be an integro-
differential operator defined by

Bu(x) =

∫

y 6=x

(

u(y) − u(x)
) (

n(y, x) − n(x, y)
)

m(dy).

We now state our main theorem:

Theorem 2.2. Assume that (L, C) given by (2.1) is closable on C∞(X)
and its closure is the infinitesimal generator of a Feller semigroup on C∞(X).
Assume further that the operator B is a bounded linear operator on C∞(X).

Then (A, C) and (L̃, C) are also closable on C∞(X) and their closures are the

infinitesimal generators of Feller semigroups on C∞(X), respectively.

Proof. Clearly A and L̃ satisfy the positive maximum principle, and
thus A and L̃ are both dissipative. Now for u ∈ C, we see that

Au(x) =

∫

y 6=x

(

u(y) − u(x)
)(

n(x, y) + n(y, x)
)

m(dy)

=2

∫

y 6=x

(

u(y) − u(x)
)

n(x, y)m(dy)

+

∫

y 6=x

(

u(y) − u(x)
)(

n(y, x) − n(x, y)
)

m(dy)
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and

L̃u(x) =

∫

y 6=x

(

u(y) − u(x)
)

n(y, x)m(dy)

=

∫

y 6=x

(

u(y) − u(x)
)

n(x, y)m(dy)

+

∫

y 6=x

(

u(y) − u(x)
) (

n(y, x) − n(x, y)
)

m(dy).

We can then write down A and L̃ as A = 2L+B and L̃ = L+B, respectively.
Since the closures of L and 2L on C∞(X) are respectively the genera-

tors of Feller semigroups and B is a bounded linear operator on C∞(X) by

assumption, we can extend both operators A and L̃ to closed operators on
C∞(X) that are the infinitesimal generators of Feller semigroups by making
use of Proposition 2.1.

Remark 2.3. Concerning the assumption on the operator B in Theorem
2.2, we impose a sufficient condition on n in order that B is indeed a bounded
linear operator on C∞(X):

(1) for each x, the map y 7→ n(y, x) − n(x, y) is continuous on X \ {x},
(2) there exists δ > 1 such that

sup
x∈X

(
∫

y 6=x

|n(y, x) − n(x, y)|m(dy) ∨
∫

y 6=x

|n(y, x) − n(x, y)|δm(dy)

)

<∞,

(3) there exists an increasing sequence of compact sets {Fn}∞n=1 satisfying
m(X \⋃∞

n=1 Fn) = 0 such that for all compact sets K ⊂ X ,

lim
n→∞

sup
x∈K

∫

F c
n

|n(y, x) − n(x, y)|m(dy) = 0,

(4) for any ε > 0 and compact set K ⊂ X , there exists a compact set
L ⊂ X with K ⊂ L such that

sup
x∈Lc

sup
x∈K

(n(x, y) + n(y, x)) < ε.

We can then show that, under Conditions (1)–(4), the operatorB is a bounded
linear operator on C∞(X). In the sequel, we fix u ∈ C∞(X) so that u 6≡ 0 to
avoid the triviality.

We first prove that Bu is a continuous function on X . To this end, fix
x∞ ∈ X and take a sequence {xn}∞n=1 ⊂ X such that xn → x∞ as n → ∞.
Then there exists a compact set K ⊂ X including {xn}∞n=1 ∪ {x∞}. Then it
follows from Condition (3) that for any ε > 0, there exists N ∈ N such that

(2.3) sup
x∈K

∫

F c
N

|n(y, x) − n(x, y)|m(dy) <
ε

4‖u‖∞
.



160 Y. SHIOZAWA AND T. UEMURA

For n ∈ N ∪ {∞} and y ∈ X , set

Φn(y) := (u(y) − u(xn))(n(y, xn) − n(xn, y)).

A direct calculation with (2.3) then implies that for any n ∈ N,

|Bu(xn) −Bu(x∞)| =

∣

∣

∣

∣

∫

y 6=x

(Φn(y) − Φ∞(y)) m(dy)

∣

∣

∣

∣

≤
∫

FN

|Φn(y) − Φ∞(y)|m(dy) + 2‖u‖∞
∫

F c
N

|n(y, xn) − n(xn, y)|m(dy)

+ 2‖u‖∞
∫

F c
N

|n(y, x∞) − n(x∞, y)|m(dy)

≤
∫

FN

|Φn(y) − Φ∞(y)|m(dy) + ε.

Moreover, we see from Condition (2) that

sup
n≥1

∫

FN

|Φn(y)|δm(dy) ≤ 2δ‖u‖δ∞ sup
x∈X

∫

FN

|n(y, x) − n(x, y)|δm(dy) <∞,

that is, the sequence {Φn}∞n=1 is uniformly integrable with respect to the mea-
sure m restricted on the compact set FN . Since limn→∞ Φn(y) = Φ∞(y) for
any y 6= x by the continuity of u and Condition (1), the dominated conver-
gence theorem leads us to

lim
n→∞

∫

FN

|Φn(y) − Φ∞(y)|m(dy) = 0,

whence the continuity of Bu follows.
We finally show that Bu vanishes at infinity, that is, for any ε > 0, there

exists a compact set K ⊂ X such that |Bu(x)| < ε for any x ∈ Kc. We
see from Condition (2) that M := supx∈X

∫

y 6=x |n(y, x)−n(x, y)|m(dy) <∞.

Since u ∈ C∞(X) is a uniformly continuous function vanishing at infinity, for
any ε > 0, there exist a constant λ > 0 and a compact set K ⊂ X such that

(2.4) |u(x) − u(y)| ≤ ε

3M
for any x, y ∈ X with d(x, y) ≤ λ

and

(2.5) |u(x)| < ε

3M
for any x ∈ Kc,

where d is a metric on X . In addition, Condition (4) yields that there exists
a compact set L with K ⊂ L such that

(2.6) sup
x∈Lc

sup
y∈K

(n(x, y) + n(y, x)) <
ε

3‖u‖∞m(K)
.
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Set Bx(r) = {y ∈ X | d(x, y) ≤ r} for x ∈ X and r > 0. Then for any x ∈ Lc,

|Bu(x)| ≤
∫

Bx(λ)∩{y 6=x}

|u(y) − u(x)||n(y, x) − n(x, y)|m(dy)

+

∫

Bx(λ)c

|u(y)||n(y, x) − n(x, y)|m(dy)

+ |u(x)|
∫

Bx(λ)c

|n(y, x) − n(x, y)|m(dy) =: (I) + (II) + (III).

It follows from (2.4), (2.5) and (2.6) that

(I) + (III) ≤ ε

3M
sup
x∈X

∫

y 6=x

|n(y, x) − n(x, y)|m(dy) =
ε

3

and

(II) =

∫

Bx(λ)c∩K

|u(y)||n(y, x) − n(x, y)|m(dy)

+

∫

Bx(λ)c∩Kc

|u(y)||n(y, x) − n(x, y)|m(dy)

≤m(K)‖u‖∞ sup
x∈Lc

sup
y∈K

(n(x, y) + n(y, x)) +M sup
y∈Kc

|u(y)| < 2

3
ε,

which implies the desired result.

We should note that L̃ defined in (2.2) is not the ‘adjoint operator’ of L
on L2(X ;m). In fact, if we denote by L∗ the (formal) adjoint operator of L
on L2(X ;m), then we have the following relation:

(Lu, v)L2(X;m) = (u, L̃v)L2(X;m) + (u,Kv)L2(X;m), u, v ∈ C ∩ L2(X ;m),

that is, L∗u(x) = L̃u(x)+u(x)·K(x). Here (u, v)L2(X;m) =
∫

X u(x)v(x)m(dx)
and

K(x) =

∫

y 6=x

(

n(y, x) − n(x, y)
)

m(dy), x ∈ X.

Since the function K may take both positive and negative values, we do not
know whether L∗ satisfies the positive maximum principle. Thus L∗ may not
be the generator of a sub-Markov semigroup.

3. Applications

There are many jump-type Markov processes on R
d for which the corre-

sponding generators are the following form:

(3.1) Lu(x) =

∫

y 6=x

(

u(y) − u(x) −∇u(x) · (y − x)1B(1)(y − x)
)

n(x, y)dy,
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where n(x, y) is a positive measurable function defined on the off-diagonal set,
B(r) is the closed ball at the origin with radius r and 1B(r) is the indicator
function of B(r).

Conversely, if we are given an operator of the type (3.1), then it is natural
to ask whether the operator generates a nice Markov process. Related to this
problem, many people have considered the martingale problem for operators
of this type (see the paper [3] and the books [16] for the references and related
topics). However, so far, no one has obtained general conditions on n that
guarantee the existence or the uniqueness for the problem. In the sequel,
instead of the operator (3.1), we consider the following integro-differential
operator:

(3.2) Lu(x) =

∫

y 6=x

(

u(y) − u(x)
)

n(x, y)dy for u ∈ C1
0 (Rd),

where C1
0 (Rd) stands for the set of all continuously differentiable functions on

R
d with compact support. As in §2, let n be a positive measurable function

defined on the off-diagonal set such that Lu ∈ C∞(Rd) for any u ∈ C1
0 (Rd).

We further assume that L is closable on C∞(Rd) and its closure is the in-
finitesimal generator of a Feller semigroup on C∞(Rd). As stated above, if
k(x, dy) = n(x, y)dy is a bounded continuous kernel, then L is a bounded
linear operator on C∞(Rd) satisfying the Feller property. On the other hand,
if we take n(x, y) = c(d, α)|x − y|−d−α with 0 < α < 1, then L is nothing
but −(−∆)α/2 and this generates a symmetric α-stable process on R

d, where
c(d, α) is an appropriate constant (see e.g. [18, p.217, Example 32.7]).

Corresponding to the operator L, we consider the following carré du
champ operator Γ(u, v) for u, v ∈ C1

0 (Rd) as in [23]:

Γ(u, v)(x) = L(u · v)(x) − Lu(x) · v(x) − u(x) · Lv(x), x ∈ R
d.

Then it follows from [23, Theorem 1] that

Γ(u, v)(x) =

∫

y 6=x

(u(x) − u(y))(v(x) − v(y))n(x, y)dy.

Moreover, we can associate the symmetric quadratic form on L2(Rd):

E(u, v) =

∫

Rd

Γ(u, v)(x) dx

=

∫∫

Rd×Rd\D

(

u(x) − u(y)
)(

v(x) − v(y)
)

n(x, y)dxdy,

where D = {(x, x) ∈ R
d × R

d}. Here it should be emphasized that we can
not apply the theory of carré du champ operators developed by [7] and [12]
to the operator L because the kernel n(x, y) dy is not necessarily symmetric.
In addition, our presentation above gives us a direct relation between the
generator and the Dirichlet form.
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We now consider whether we can find a Feller process associated to E from
the equivalence class by using the Feller property of L. As for the regularity
of the form, we have the following: D(E) = {u ∈ L2(Rd) : E(u, u) < ∞}
contains C1

0 (Rd) if and only if
∫

y 6=x

(1 ∧ |x− y|) ν(x, y)dy ∈ L1
loc(R

d),

where ν(x, y) = n(x, y) + n(y, x) (see [12, Example 1.2.4.], [22]). So, under
this condition, (E , C1

0 (Rd)) is a closable Markovian symmetric form on L2(Rd)
and there exists a symmetric Hunt process associated with the closure of the
form, which is denoted by (E ,F). Next we make a stronger condition on n in
order to consider a relation between the generator L and the Dirichlet form
(E ,F). To this end, we denote by (A,D(A)) the L2-generator of (E ,F). We
assume that
(3.3)
∫

y 6=x

(

1∧ |x− y|
)

ν(x, y)dy ∈ L2
loc(R

d) and

∫

B(r)

ν(x, y) dy ∈ L2(Rd \B(R))

for any r,R > 0 with R− r > 1. It is then showed in [22, Theorem 4.1] that
C1

0 (Rd) ⊂ D(A) and

Au(x) =

∫

y 6=x

(

u(y) − u(x)
)

ν(x, y)dy for u ∈ C1
0 (Rd).

Let

(3.4) L̃u(x) =

∫

y 6=x

(

u(y) − u(x)
)

n(y, x)dy for u ∈ C1
0 (Rd)

and

Bu(x) =

∫

y 6=x

(u(y) − u(x))(n(y, x) − n(x, y)) dy.

We can then restate Theorem 2.2 for this setting as follows:

Corollary 3.1. Assume that L given by (3.2) is closable on C∞(Rd) and

its closure is the infinitesimal generator of a Feller semigroup on C∞(Rd),
and that (3.3) holds. Assume further that B is a bounded linear operator on

C∞(Rd). Then A|C1

0
(Rd) and L̃ are also closable on C∞(Rd) and their closures

are the infinitesimal generators of Feller semigroups on C∞(Rd), respectively.

Remark 3.2. (i) Fukushima and Stroock ([13]) discussed a relationship
between a Markov process as a solution of the martingale problem and one
associated with a (symmetric) Dirichlet form. In particular, their results are
applicable to our setting: the closable operator A|C1

0
(Rd) on C∞(Rd) and the

Dirichlet form (E ,F). So it follows from [13, Theorem 2.9] that a symmet-
ric Hunt process associated with (E ,F) has a version that is Feller if the
conditions in Corollary 3.1 are satisfied.
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(ii) When the kernel k(x, dy) = n(x, y)dy is not bounded, we do not know
general conditions on n so that the closure of L generates a nice Markov
process as mentioned before. However, if we consider the quadratic form
defined by

η(u, v) = −(u,Lv)L2(Rd) = −
∫∫

Rd×Rd\D

u(x)
(

v(y) − v(x)
)

n(x, y) dydx

for some nice functions u, v, then we will be able to show that this quadratic
form becomes a (non-symmetric) regular Dirichlet form under an appropriate
condition on n (see [24]).

Example 3.3. (Cauchy distribution). Let ϕ(x) be a strictly positive
continuous function on |x| ≤ 1 and ψ(x) a strictly positive continuous function
on |x| ≥ 1 satisfying

∫

|x|>1

1

ψ(x)d/2
dx <∞.

Let cd = Γ((d+ 1)/2)/π(d+1)/2 and

n(x, y) =























cd ·
ϕ(x)d/2

(ϕ(x)|x − y|2 + 1)
(d+1)/2

, |x| ≤ 1

cd ·
√

ψ(x)

(|x− y|2 + ψ(x))(d+1)/2
, |x| > 1.

Here note that for t > 0,

pt(x) = cd
t

(|x|2 + t2)
(d+1)/2

is the transition function of a d-dimensional Cauchy distribution. Then

Lu(x) =

∫

y 6=x

(

u(y) − u(x)
)

n(x, y)dy

defines a bounded linear operator on C∞(Rd) and generates a Feller semigroup
on C∞(Rd). We assume that n is continuous on R

d × R
d \D.

We now prove that n satisfies the conditions in Corollary 3.1. We first
show that (3.3) is satisfied. For a compact set K ⊂ R

d,

∫

K

(
∫

y 6=x

(

1 ∧ |x− y|
)(

n(x, y) + n(y, x)
)

dy

)2

dx

≤ 2

∫

K

(
∫

y 6=x

(1 ∧ |x− y|)n(x, y)dy

)2

dx

+ 2

∫

K

(
∫

y 6=x

(1 ∧ |x− y|)n(y, x)dy

)2

dx =: 2((I) + (II)).
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Since
∫

Rd n(x, y) dy = 1 for any x 6= 0, we have (I) <∞. For (II), if we denote
by | · | the d-dimensional Lebesgue measure, then the estimate

(II) ≤ 2c2d

∫

K

(

∫

|y|≤1

ϕ(y)d/2

(ϕ(y)|x− y|2 + 1)
(d+1)/2

dy

)2

dx

+ 2c2d

∫

K

(

∫

|y|>1

√

ψ(y)

(|x− y|2 + ψ(y))
(d+1)/2

dy

)2

dx

≤ 2c2d|K|







(

∫

|y|≤1

ϕ(y)d/2dy

)2

+

(

∫

|y|>1

1

ψ(y)d/2
dy

)2






<∞

holds, whence the first condition in (3.3) is satisfied. Take r,R > 0 so that
R− r > 1. Then since |x− y|dν(x, y) is bounded, we have

∫

|x|>R

(

∫

|y|≤r

ν(x, y) dy

)2

dx

=

∫

|x|>R

(

∫

|y|≤r

|x− y|dν(x, y) 1

|x − y|d dy
)2

dx

≤Md,r

∫

|x|>R

1

(|x| − r)2d
dx <∞,

where Md,r is a positive constant depending only on d and r. This shows that
the second condition in (3.3) is satisfied.

We next show that the operator B defined by

Bu(x) =

∫

y 6=x

(u(y) − u(x)) (n(y, x) − n(x, y))dy

is a bounded linear operator on C∞(Rd) by checking Conditions (1)–(4) in
Remark 2.3. Condition (1) is obviously satisfied. We now check Condition
(2). If we fix δ ≥ 1, then

∫

y 6=x

|n(y, x) − n(x, y)|δ dy ≤ 2δ−1

∫

y 6=x

(

n(x, y)δ + n(y, x)δ
)

dy.

If |x| ≤ 1, then it follows by a change of variables that
∫

y 6=x

n(x, y)δ dy = cδd

∫

y 6=x

ϕ(x)dδ/2

(ϕ(x)|x − y|2 + 1)
(d+1)δ/2

dy

= cδdϕ(x)d(δ−1)/2

∫ ∞

0

rd−1

(1 + r2)(d+1)δ/2
dr

≤ cδd

(

sup
|x|≤1

ϕ(x)d(δ−1)/2

)

∫ ∞

0

rd−1

(1 + r2)(d+1)δ/2
dr <∞.
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By the same way, we find that if |x| > 1, then
∫

y 6=x

n(x, y)δ dy = cδd
1

ψ(x)d(δ−1)/2

∫ ∞

0

rd−1

(1 + r2)
(d+1)δ/2

dr

≤ cδd

(

inf
|x|>1

ψ(x)d(δ−1)/2

)−1 ∫ ∞

0

rd−1

(1 + r2)
(d+1)δ/2

dr <∞.

We also see that
∫

y 6=x

n(y, x)δ dy = cδd

∫

|y|≤1

ϕ(y)dδ/2

(ϕ(y)|y − x|2 + 1)
(d+1)δ/2

dy

+ cδd

∫

|y|>1

ψ(y)
δ/2

(|y − x|2 + ψ(y))
(d+1)δ/2

dy

≤ cδd

(

∫

|y|≤1

ϕ(y)dδ/2 dy +

∫

|y|>1

1

ψ(y)dδ/2
dy

)

<∞,

whence Condition (2) holds.
We next check Condition (3). For r > 0, let us denote by Bx(r) a closed

ball with radius r centered at x ∈ R
d and B(r) := B0(r). Then for any

compact set K ⊂ R
d, there exists N ∈ N such that K ⊂ B(N). Take

Fm = B(m) and let n ≥ N + 1. We then see that |y − x| ≥ |y| − |x| ≥ n−N
for any x ∈ K and y ∈ F cn. Hence if x ∈ K ∩B(1)c, then
∫

F c
n

n(x, y) dy ≤ cd

∫

Bx(n−N)c

√

ψ(x)

(|x− y|2 + ψ(x))
(d+1)/2

dy

= cd

∫ ∞

(n−N)/ψ(x)

rd−1

(1 + r2)
(d+1)/2

dr

≤ cd

∫ ∞

(n−N)/ inf|x|>1 ψ(x)

rd−1

(1 + r2)
(d+1)/2

dr −→ 0 as n→ ∞,

that is,

lim
n→∞

sup
x∈K∩B(1)c

∫

F c
n

n(x, y) dy = 0.

In a similar way to this, we see that

lim
n→∞

sup
x∈K∩B(1)

∫

F c
n

n(x, y) dy = 0.

Noting that B(1) ⊂ Fn, we get

sup
x∈K

∫

F c
n

n(y, x) dy = cd sup
x∈K

∫

F c
n

√

ψ(y)

(|y − x|2 + ψ(y))
(d+1)/2

dy

≤ cd

∫

F c
n

1

ψ(y)d/2
dy −→ 0 as n→ ∞.
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Combining the arguments above with the inequality
∫

F c
n

|n(x, y) − n(y, x)| dy ≤
∫

F c
n

(n(x, y) + n(y, x)) dy,

we find Condition (3) holds.
We finally check Condition (4). Let K and N be the same as before. For

any ε > 0, we take n > (2cd/ε)
1/d+N . Then a direct calculation implies that

n(x, y) ≤ cd
|x− y|d ≤ cd

(n−N)d
<
ε

2
for any x ∈ K and y ∈ B(n)c.

In addition, we see that n(y, x) is also less than ε/2 for any x ∈ K and
y ∈ B(n)c, which concludes that Condition (4) is satisfied by taking L = B(n).

As a result of the arguments above, the operators

Au(x) =

∫

y 6=x

(u(y) − u(x)) (n(x, y) + n(y, x))dy for u ∈ C1
0 (Rd)

and

L̃u(x) =

∫

y 6=x

(u(y) − u(x))n(y, x)dy for u ∈ C1
0 (Rd)

are closable on C∞(Rd) and their closures generate Feller semigroups on
C∞(Rd), respectively. Moreover, put

k(x, y) :=

(

ϕ(x)d/2

(ϕ(x)|x − y|2 + 1)(d+1)/2
1{|x|≤1}

+

√

ψ(x)

(|x− y|2 + ψ(x))
(d+1)/2

1{|x|>1}

)

,

and define

E(u, v) = cd

∫∫

Rd×Rd\D

(u(x) − u(y))(v(x) − v(y))k(x, y)dxdy.

Then, setting F = C1
0 (Rd)

√
E1(·,·)

, we see that (E ,F) is a regular Dirichlet
form and the corresponding symmetric Hunt process can be refined to be a
Feller process.

Before introducing another example, we give a simple but useful remark.
Let w be a bounded continuous function defined on R

d so that for some λ > 0,

λ ≤ w(x) ≤ λ−1 for all x ∈ R
d,

and define

Lwu(x) := w(x)Lu(x) = w(x)

∫

y 6=x

(

u(y) − u(x)
)

n(x, y)dy for u ∈ C1
0 (Rd),

where L is the operator given by (3.2). If all the conditions in Corollary 3.1
are satisfied, then Lw satisfies the positive maximum principle, and hence is
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dissipative. So, we can conclude that Lw is also the generator of a Feller
semigroup. In particular, the Feller process associated with Lw is a time
changed process of that associated with L.

Example 3.4. (stable-like process). Let α(x) be a positive measurable
function on R

d. Define for u ∈ C2
0 (Rd),

Lwu(x) := w(α(x))Lu(x)

:= w(α(x))

∫

h 6=0

u(x+ h) − u(x) −∇u(x) · h1{|h|≤1}(h)

|h|d+α(x)
dh,

where

(3.5) w(α) =
Γ(1 + α/2)Γ((α+ d)/2) sin((πα)/2)

21−απd/2+1
.

Then Lweiu·x = −|u|α(x)eiu·x holds (see e.g. [1, p.402]).
Assume that

(3.6) 0 < inf
x∈Rd

α(x) ≤ sup
x∈Rd

α(x) < 2,

and that for some M > 0,

(3.7) |α(x) − α(y)| ≤M |x− y| for x, y ∈ R
d.

Bass ([2]) then showed that there exists a unique strong Markov and Feller
process M = (Xt, Px) such that Px solves the martingale problem for Lw at
every starting point x ∈ R

d. Here we can see from (3.5) that if α satisfies the
conditions (3.6) and (3.7), then w(α(·)) is a bounded continuous function and
is also bounded below by some positive constant. Hence L = (1/w(α(·)))Lw
is also the generator of a Feller semigroup. So, in the sequel we consider the
operator L for simplicity. We now keep (3.7) and assume (3.8) instead of
(3.6):

(3.8) 0 < inf
x∈Rd

α(x) ≤ sup
x∈Rd

α(x) < 1.

Then for u ∈ C1
0 (Rd), we can reduce the form of Lu as follows:

Lu(x) =

∫

h 6=0

(

u(x+ h) − u(x)
)

|h|−d−α(x) dh

=

∫

y 6=x

(

u(y) − u(x)
)

|x− y|−d−α(x) dy.

Namely, this is the case n(x, y) = |x − y|−d−α(x) in (3.2). Note that (3.8)
implies (3.3) as mentioned in [22, Example 4.1].

We now show that the operator B defined by

(3.9) Bu(x) =

∫

h 6=0

(u(x+ h) − u(x))
(

|h|−d−α(x+h) − |h|−d−α(x)
)

dh
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is a bounded linear operator on C∞(Rd) directly. In fact, we first see that

∣

∣

∣
|h|−α(x) − |h|−α(x+h)

∣

∣

∣
=

∣

∣

∣

∣

∣

∫ α(x)

α(x+h)

|h|−u log
1

|h| du
∣

∣

∣

∣

∣

≤ |α(x + h) − α(x)||h|−(α(x)∨α(x+h)) log
1

|h|

≤M |h|1−α log
1

|h| for 0 < |h| < 1

in a similar way to [19, Example 2.6] (see also the proof of [15, Lemma 3.1])
and that

∣

∣|h|−α(x) − |h|−α(x+h)
∣

∣ ≤ 2|h|−α for |h| > 1, where

0 < α := inf
x∈Rd

α(x) ≤ α := sup
x∈Rd

α(x) < 1.

So the absolute value of the integrand in the right hand side of (3.9) is domi-
nated by

c‖u‖∞
(

1{|h|≤1} · |h|1−d−α log(1/|h|) + 1{|h|>1} · |h|−d−α
)

for some constant c > 0 independent to x and h, which is integrable on
{h 6= 0} with respect to the Lebesgue measure. Consequently, by virtue
of the dominated convergence theorem, we find that B is a bounded linear
operator on C∞(Rd).

Let
(3.10)

E(u, v) =

∫∫

h 6=0

(u(x+ h) − u(x))(v(x + h) − v(x))

|h|d+α(x)
dhdx for u, v ∈ C1

0 (Rd)

and F = C1
0 (Rd)

√
E1(·,·)

. Then (E ,F) generates a symmetric stable-like pro-
cess introduced in [21]. Moreover, if we denote by A the L2(Rd)-generator of
(E ,F), then Corollary 3.1 shows that

A|C1

0
(Rd)u(x) =

∫

h 6=0

(

u(x+ h) − u(x)
)

(

|h|−d−α(x) + |h|−d−α(x+h)
)

dh

is closable on C∞(Rd) and its closure generates a Feller semigroup on C∞(Rd).
Namely, the corresponding symmetric stable-like process can be refined to be
a Feller process. We see that

L̃u(x) =

∫

h 6=0

(

u(x+ h) − u(x)
)

|h|−d−α(x+h)dh for u ∈ C1
0 (Rd)

is also closable on C∞(Rd) and its closure generates a Feller process.
Finally, we consider the following operator:

L1u(x) =

∫

h 6=0

(

u(x+ h) − u(x)
) c(x, h)

|h|d+α(x)
dh for u ∈ C1

0 (Rd),
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where c(x, h) is a bounded, nonnegative and continuous function defined on
R
d × R

d. We assume that there exist positive constants M > 0 and δ > 0
with α < δ ≤ 1 such that

|c(x, h) − 1| ≤M |h|δ for x ∈ R
d and |h| ≤ 1.

We can then write down L1 as follows:

L1u(x) =

∫

h 6=0

(

u(x+ h) − u(x)
) 1

|h|d+α(x)
dh

+

∫

h 6=0

(

u(x+ h) − u(x)
)c(x, h) − 1

|h|d+α(x)
dh

=: Lu(x) +B1u(x) for x ∈ R
d.

Using the assumption for c(x, h), we can easily show that B1 is a bounded
linear operator on C∞(Rd). Therefore, we see from Proposition 2.1 that L1 is
closable and its closure generates a Feller semigroup on C∞(Rd) (c.f. Theorem
5.1 and 5.2 in [4]).

Let

G(u, v) =

∫∫

h 6=0

(u(x+ h) − u(x))(v(x + h) − v(x))
c(x, h)

|h|d+α(x)
dhdx

for u, v ∈ C1
0 (Rd)

and H = C1
0 (Rd)

√
G1(·,·)

. Then (G,H) is a regular Dirichlet form and generates
a jump-type symmetric Markov process. Let (A1,D(A1)) be the L2(Rd)-
generator of (G,H). Then

A1|C1

0
(Rd)u(x) =

∫

h 6=0

(

u(x+ h) − u(x)
)

(

c(x, h)

|h|d+α(x)
+
c(x+ h,−h)
|h|d+α(x+h)

)

dh.

Let us define the operator B̃1 by

B̃1u(x) =

∫

h 6=0

(

u(x+ h) − u(x)
)c(x+ h,−h) − 1

|h|d+α(x+h)
dh.

Then B̃1 is also a bounded linear operator on C∞(Rd). Since

A1|C1

0
(Rd)u(x) = A|C1

0
(Rd)u(x) +B1u(x) + B̃1u(x) for x ∈ R

d,

Proposition 2.1 implies that A1|C1

0
(Rd) is closable on C∞(Rd) and its closure

generates a Feller semigroup on C∞(Rd). Hence a Markov process correspond-
ing to (G,H) can be refined to be a Feller process. Set

L̃1u(x) =

∫

h 6=0

(

u(x+ h) − u(x)
)c(x + h,−h)
|h|d+α(x+h)

dh for u ∈ C1
0 (Rd).

By noting that

L̃1u(x) = L̃u(x) + B̃1u(x) for x ∈ R
d
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and for u ∈ C1
0 (Rd), the operator L̃1 is also closable on C∞(Rd) and its closure

generates a Feller semigroup on C∞(Rd).

Remark 3.5. Because of the restricted conditions on n, we can only show
the Feller property of the processes corresponding to the form (3.10) under
(3.7) and (3.8). So, the general case (3.6) still remains open.
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