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ABSTRACT 

Visual servoing is defined as controlling robots by extracting data obtained from 

the vision system, such as the distance of an object with respect to a reference frame, or 

the length and width of the object. There are three image-based object distance 

measurement techniques: i) using two cameras, i.e., stereovision; ii) using a single 

camera, i.e., monovision; and iii) time-of-flight camera.  

The stereovision method uses two cameras to find the object’s depth and is highly 

accurate. However, it is costly compared to the monovision technique due to the higher 

computational burden and the cost of two cameras (rather than one) and related 

accessories. In addition, in stereovision, a larger number of images of the object need to 

be processed in real-time, and by increasing the distance of the object from cameras, the 

measurement accuracy decreases. In the time-of-flight distance measurement technique, 

distance information is obtained by measuring the total time for the light to transmit to 

and reflect from the object. The shortcoming of this technique is that it is difficult to 

separate the incoming signal, since it depends on many parameters such as the intensity 

of the reflected light, the intensity of the background light, and the dynamic range of the 

sensor. However, for applications such as rescue robot or object manipulation by a robot 

in a home and office environment, the high accuracy distance measurement provided by 

stereovision is not required. Instead, the monovision approach is attractive for some 

applications due to: i) lower cost and lower computational burden; and ii) lower 

complexity due to the use of only one camera.  

Using a single camera for distance measurement, object detection and feature 

extraction (i.e., finding the length and width of an object) is not yet well researched and 
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there are very few published works on the topic in the literature. Therefore, using this 

technique for real-world robotics applications requires more research and improvements. 

This thesis mainly focuses on the development of object distance measurement 

and feature extraction algorithms using a single fixed camera and a single camera with 

variable pitch angle based on image processing techniques. As a result, two different 

improved and modified object distance measurement algorithms were proposed for cases 

where a camera is fixed at a given angle in the vertical plane and when it is rotating in a 

vertical plane. In the proposed algorithms, as a first step, the object distance and 

dimension such as length and width were obtained using existing image processing 

techniques. Since the results were not accurate due to lens distortion, noise, variable light 

intensity and other uncertainties such as deviation of the position of the object from the 

optical axes of camera, in the second step, the distance and dimension of the object 

obtained from existing techniques were modified in the X- and Y-directions and for the 

orientation of the object about the Z-axis in the object plane by using experimental data 

and identification techniques such as the least square method.    

Extensive experimental results confirmed that the accuracy increased for 

measured distance from 9.4 mm to 2.95 mm, for length from 11.6 mm to 2.2 mm, and for 

width from 18.6 mm to 10.8 mm. In addition, the proposed algorithm is significantly 

improved with proposed corrections compared to existing methods. Furthermore, the 

improved distance measurement method is computationally efficient and can be used for 

real-time robotic application tasks such as pick and place and object manipulation in a 

home or office environment. 
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Chapter 1 

INTRODUCTION 

 

One of the main tasks in robotic vision is to find the position and orientation of 

the objects surrounding the robot in 3D space, relative to the reference frame. 

Determining the camera’s tilt angle in a vertical plane and the object-to-camera distance 

(the distance between the camera and the objects) is essential for localizing, navigating, 

and performing some high-level task planning. There are two common methods to 

calculate the object-to-camera distance [1]: i) using the object’s given size and the 

camera’s focal length; and ii) using the height of the camera and the point of contact 

where the object meets the ground. Unlike in the first method, the dimension of the object 

in the second method is unknown.  

1.1 Background 

For decades, researchers have been motivated to develop efficient techniques to 

transfer the computer vision capabilities to applications and products such as automotive 

safety, manufacturing, video surveillance and Visual Servoing (VS), which is an 

important robotics application. Visual servoing is a technique for controlling a robot’s 

motion using feedback information sent from a vision sensor. In VS, it is difficult to track 

the moving object if data on object distance are not accessible [2]. 

There are two different types of visual servo control: position-based visual servo 

control (PBVS) and image-based visual servo control (IBVS). The reference inputs for 

PBVS are the 3D-relative position and the orientation between the object and the robot 
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end-effector (i.e., robot’s hand) in Cartesian space. In image-based visual servo control, 

the reference input is the 2D object’s position that is obtained from the camera’s image 

plane. The IBVS approach fails where an accurate estimation of the object’s distance and 

motion is not available, especially in dynamic environments [3]. Where a camera is 

employed in the PBVS method, a small measurement error would propagate and 

significantly affect the servoing accuracy [3].  

To calculate object distance for a moving object, the object must first be tracked 

by a camera. Object tracking can be classified into four main categories: model-based, 

appearance-based (region-based), feature-based, and contour-based methods.  

Model-based tracking techniques require previous knowledge of the object’s 

shapes for the matching process in order to find the object in the scene and apply the 

exact geometrical models of the object. These techniques, however, have two 

shortcomings: i) an object that is not in the database cannot be recognized by these 

models; and ii) implementing these models is complicated and sometimes impossible [4]. 

Appearance-based methods track an object using the 2D shape of the connected 

region. This tracking approach relies on information that is provided by the entire 

region’s pixels. Motion, color, and texture are some examples of the information. 

Overall, appearance-based techniques are not robust with complex deformation [5]. 

Feature-based methods track the specific features of an object, such as points and 

edges, and have been developed in many applications. Some advantages of feature-based 

methods are their simplicity and stability for tracking the objects, but these methods are 

not efficient in real-time object tracking applications. Other shortcomings of feature-
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based techniques are their high cost and the lengthy time required when a large number 

of features occur in one object. 

Contour-based methods track the contour (boundary) of the object rather than 

tracking all of the pixels that make up the object. In contour-based methods, the contour 

of the object in the next frame captured by the camera is determined using the motion 

information of the object. Thus, the shape and position of the object’s contour in the next 

frame are improved to fit into the object. Furthermore, the object’s motion information is 

updated by any changes in the contour location [4]. One shortcoming of contour-based 

methods is their failure to track objects that are partly occluded. Nevertheless, contour-

based techniques have the following merits: i) reduced computational complexity 

compared to other methods;  ii) the ability to track rigid and non-rigid objects.  

To measure object distance for a moving object, several methods are presented in 

the literature. Zhang et al. [6] developed a 3-step algorithm to compute the 3D positions 

of a target object in a camera’s coordinate frame. This method measures the distance 

between the object’s feature (e.g., a point on the object) and the principal point (the 

central point in the image plane) based on the calculated area in the image. In the 

algorithm proposed by Zhang et al., the intrinsic camera’s parameters are first calibrated. 

Then, a model is set up to measure the moving object-to-camera distance along the 

optical axis according to the mapping relationship between the objects in the camera’s 

coordinates frame and its projection in the pixel coordinate frame. Finally, the absolute 

distance is calculated. In a method proposed by Coman and Balan [7], the application of 

object distance measurement can be a starting point for complex applications as long as 

the object’s geometry remains square-shaped. Yamaguti et al. [8] calculated object 
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surface distance using the ratio of two images taken by a monocular camera at two 

different locations and a complex log mapping method applied to the two images. 

However, the Yamaguti et al. model is very time-consuming and is only applicable to 

objects parallel to the camera’s plane. To date, the development of an efficient distance 

measurement using a single camera has not been satisfactorily addressed in the literature 

and is an open problem. 

1.2 Thesis Objectives 

The objective of this thesis is to design and develop two different vision-based 

systems using a single fixed camera and a single camera with variable pitch angle for a 

dynamic environment in order to accomplish the following goals: 

 Detect and track the desired object  

Object detection is required by every tracking methods to initialize a tracker and 

to detect the existence of known objects in a given image frame. However, in 

this thesis, object detection is described as detecting the existence of any object 

in the field of view that can be potentially manipulated. Since the main goal of 

the proposed algorithm is to analyze the movement of objects, object tracking is 

one of the system’s essential parts. In the real world, an object can move freely 

in a 3D space with 6 degrees of freedom (DOF). Due to the complexity of the 

problem, we divide the tracking problem into two sub-problems: object point 

(closest point of the object to the camera) tracking, which is related to the 

object’s movement in the xy-plane; and estimation of the object’s orientation, 

which is the object’s movement about the Z-direction. 

 Find the object distance 
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Case 1 (Single fixed camera method): Since the obtained object distance 

includes horizontal and vertical errors, an improved image processing method 

(explained in section 4.2) is proposed in this thesis, based on the point feature 

extraction.  

Case 2 (Single camera with variable pitch angle method): This method is based 

on the Taha and Jizat [49] approach (explained in section 3.9.2), which is 

versatile under illumination conditions. To overcome the problem of object 

distance measurement under varying illumination conditions, an improved 

version of the Taha and Jizat [49] approach using the least square method is 

proposed. 

 Calculate an object’s dimension (e.g., length and width) 

To find an object’s dimension, the major and minor axis of the ellipse (blob 

analysis) is corrected using orientation, horizontal and vertical error corrections, 

as explained in sections 5.4-6. 

Note that it can be a valid assumption that the appearance of an object does not 

change drastically, regardless of the illumination condition and occlusion. This 

thesis is mainly concerned with analyzing and investigating the two vision-

based systems in order to develop an accurate, fast, and efficient algorithm to 

measure object-to-camera distance. The experimental results of implementing 

the developed vision-based systems demonstrate their applicability in real-time 

robotic applications.  
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1.3 Thesis Contributions 

The main contributions of this thesis are to develop two different object distance 

measurement algorithms that are:  

 Accurate, reliable, and consistent; 

 Able to simultaneously localize the objects using point feature extraction 

and then measure the object distance using a single fixed camera and a 

single camera with variable pitch angle; 

 Able to measure the distance between the camera and moving objects 

anywhere in the camera’s field of view; and  

 Efficient in measuring an object’s dimension of unknown shape and size. 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows: in Chapter 2, a literature 

review is presented to reflect the background of object tracking, object distance 

calculation, and current visual servoing methods. Chapter 3 mainly discusses background 

and theory information on various computer vision topics, object distance measurements, 

and range finding techniques. Chapter 4 presents the object distance measurement 

method using a single fixed camera and provides the results and discussions for the 

proposed object distance measurements. Chapter 5 presents the object distance 

measurement method using a single camera with variable pitch angle and provides the 

simulation and experimental results for object distance, length and width measurements. 

Finally, Chapter 6 presents the conclusion and the contributions of the thesis, along with 

some recommendations for future work.  
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides an overview of the state of the art with a survey of existing 

techniques in object tracking, object distance measurements, and visual servoing. The 

main goal of this chapter is to give the reader a comprehensive knowledge of previous 

studies and technical information about the above-mentioned techniques. This chapter 

also classifies the techniques and then presents the strategies to efficiently tackle the 

challenges of object tracking, object distance measurements, and visual servoing.  

2.2 Object Tracking 

Object tracking is a challenging problem in robot vision due to various factors 

such as camera motion, occlusions, non-rigid object structures, and unanticipated rapid 

changes in both the object and the scene. Object tracking is relevant in the following 

topics [9]: 

 Surveillance systems, for monitoring a behavior or changing information in 

order to detect unusual activities. 

 Video indexing, for the retrieval and recovery of videos in databases.  

 Traffic monitoring, for simultaneous traffic inspection to direct traffic flow. 

 Vehicle navigation, for real-time path planning and obstacle avoidance 

capabilities in robotics. 
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2.2.1   Object Tracking Problems 

Tracking a desired object can be a complex task, since estimating the trajectory of 

a moving object in the image plane has to be accurate. The main problems related to 

object tracking are as follows [9]: 

 Information loss when projecting from a 3D world to a 2D image; 

 Existence of noise in the images; 

 Complex motion of the objects; 

 Complex characteristics of the objects, such as non-rigid/articulated objects; 

 Partial or full object occlusions; 

 Complex shapes of the objects; 

 Illumination variations in the scene; 

 Real-time processing requirements. 

2.2.2   Object Tracking Classifications 

In a tracking strategy, the object is defined as anything that is of interest in the 

scene. Therefore, the object(s) could be: i) a point or a collection of points; ii) primitive 

geometric shape(s); iii) object silhouette and contours; iv) articulated shape model(s); and 

v) skeletal model(s) [9]. 

The point object is usually set as the centroid point of a target or a set of points on 

the target. Point object representation is especially important for tracking objects in small 

regions of the image. Primitive geometric shapes, usually characterized by a regular 

shape such as a rectangle or ellipse, are suitable for representation of simple rigid and 

non-rigid target objects. In the object silhouette and contour representations, the contour 

is defined as the boundary of the object that surrounds the region inside the contour, 
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called the silhouette of the object. The object silhouette and contour are the best models 

for complex shape tracking. Articulated shape models are used to handle body parts that 

are connected with joints. The relationship between articulated shape models is 

established by kinematic motion models. Skeletal models can be extracted by applying a 

medial axis transform to the object silhouette and are mostly used for recognizing and 

modeling articulated and rigid objects. Figure 2.1 demonstrates some of the object 

representations for object tracking purposes.  

2.2.3   Object Tracking Features 

Some common features that are considered for object tracking are color, edges, 

optical flow, and texture [9]. 

Color: The color of an object depends on two factors: i) the spectral power distribution 

of the lighting; and ii) the surface reflectance of the object. Although three color spaces 

RGB (red, green, blue), L*u*v, and L*a*b are commonly used in image processing to 

represent an object’s color, there is a variety of color spaces that can be used in object 

tracking.  

Edges: The edge detection feature is able to identify strong variations in an image’s 

intensities. The edge detection feature is less sensitive to illumination variation than the 

color feature. The canny edge detector is one of the most common edge detection 

methods.  
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Figure 2.1: Various object representations: a) centroid b) set of points, c) rectangular,  

d) object contour, e) elliptical, and f) object silhouette [9]. 

Optical Flow: Optical flow is a field filled with vector displacements and represents the 

translation of each pixel in a region. Optical flow is computed by assuming the brightness 

constancy of the corresponding pixels in consecutive frames. Motion-based segmentation 

and motion-based tracking are two common applications in the optical flow feature.  

Texture: The texture feature, as a measure of a surface’s intensity variation, accounts for 

the smoothness and regularity of an object. It requires a processing step to generate 

descriptors. This feature is similar to the edge feature and is less sensitive to illumination 

variation compared to the color feature [9]. One of the most important and robust texture 

feature descriptors is the Gabor wavelet. Gabor filters can be viewed as orientation and 

scale invariance for edge and line detectors. Applying these features in a specific region 

is critical for characterizing underlying texture information [10]. 
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Yang et al. [11] extended the work of Yilmaz et al. [9] in the visual tracking field 

by describing the characteristics of the feature descriptors for visual tracking and 

summarizing the most recent advances in online learning-based tracking methods. 

Selecting the most appropriate feature descriptors (e.g., uniqueness) for visual tracking is 

a challenging task. This difficulty has motivated investigators to look for image features 

other than texture, edges, color, etc.  

Gradient features: Gradient features are mostly practiced in human detection, where the 

shape or contour represents a human body (object). Another category of the gradient-

based method is statistical summarization of gradients, for which there are numerous 

descriptor schemes, such as the Scale-invariant feature transform (SIFT) descriptor, 

Speeded up robust features (SURF), and Adaptive Contour Features (ACF) [11]. 

2.2.4   Object Tracking Methods 

Traditional template-based tracking algorithms are divided into offline and online 

classes. Offline approaches are based on using similar visual examples or learning during 

the first few frames. The two main shortcomings of offline methods are:  

i) once the model is created, it cannot be updated; and 

ii) tracking may fail due to changes in the object’s shape. 

The second type of tracking algorithms, online tracking, employs online learning 

techniques to learn about the object’s changes during the tracking period. The first online 

tracking technique was introduced by Jepson et al. [12], in which a combination of three 

components (stable, transient, and noise components) were proposed for the 

representation of the object. Another online tracking method was developed by Matthews 

et al. [13], comprised of a template update algorithm that can be updated in every frame. 
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The Matthews et al. [13] algorithm does not suffer from “drifts”, which is a small error 

initiated in the location of a template whenever it gets updated in each frame. These small 

errors accumulate and then trigger the model to gradually drift away from the object. 

Figure 2.2 shows a comparison between the three update strategies [13]. In strategy 1 of 

Figure 2.2, the template is not updated properly and the object tracking fails. In strategy 

2, the template is updated in every frame, but the template drifts away from the object. In 

strategy 3, the template is updated in every frame since a “drift correction” is added and 

the object is tracked and the template updated appropriately. 

 

Figure 2.2: Comparison of different update tracking algorithm methods [13]. 

2.3 Distance Measurement 

Vision-based pose estimation and camera tracking are two prominent areas in 

robotic applications such as localization, positioning tasks, and navigation. The main 

function of vision-based pose estimation is to estimate the position and orientation of the 
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camera and object using a set of n feature points from the object coordinates was well as 

the resulting 2D projections from the camera coordinates. The vision-based pose 

estimation, which is a perspective-n-point (PnP) problem [14], is one of the critical 

problems in photogrammetry. It can be practiced in many applications, such as computer 

vision, robotics, augmented reality, etc. [14]. The two methods currently in use for 

solving the vision-based pose estimation problem are non-iterative and iterative 

algorithms. In non-iterative algorithms, linear models are applied to obtain algebraic 

solutions, whereas in iterative methods, the pose estimation is formulated as a nonlinear 

least-squares problem with constraints. If the rotation matrix is assumed to be orthogonal, 

this problem can be solved using a nonlinear optimization algorithm such as the 

Levenberg-Marquardt method [14]. 

2.3.1   Distance Measurement Using a Single Fixed Camera 

When objects are being tracked by a camera, it is essential to determine their 

position and orientation with respect to the camera in order for the robot to navigate the 

object or for end-effector to do a task. 

The accuracy in calculating the position and orientation of remote objects is a 

critical issue in robotic vision. Tao et al. [15] proposed a new monocular vision method 

to find the pose estimation of remote objects through translation and rotation matrices 

using image feature extraction and data optimization. To reduce environmental light 

variations and achieve a better contrast between target and background, Tao et al. [15] 

used near-infrared light as the light source. Tao et al. [15] also designed a new feature-

circle-based calibration drone to accomplish automatic camera calibration. The results of 

Tao et al.’s [15] experiments demonstrated less than 8″ and less than 0.02 mm in the 
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repeatability precision of angles and the repeatability precision for displacement, 

respectively. Figure 2.3 displays Tao et al.’s [15] vision system, which is reportedly 

already being used in a wheel alignment system. 

 

Figure 2.3: Diagram of the Tao et al. measurement system [15]. 

Some researchers, such as Krishnan et al. [16], proposed an object-to-camera 

distance based on a complex log mapping method. This method has the advantage of 

measuring the distance between the camera and an object’s surface with an arbitrary 

texture pattern. The idea behind this technique is to use two images taken at two different 

camera positions to measure the object-to-camera distance. The object-to-camera 

distance, in this technique, is calculated through the ratio between the object’s sizes 

projected on the two images that are moved on the camera’s optical axis.  

Calculating the distance of the object to the defocused image has recently drawn 

the attention of some researchers. Objects positioned at a particular distance from any 

optical system are called focused, while other objects are considered defocused or 
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blurred. Subbarao[17] proposed a new method that uses the defocus or blur information 

in the images that are captured by an optical system such as a convex lens. The objects of 

interest in the Subbarao [17] method are categorized into bright points, lines, step edges, 

blobs, stripes, and smooth edges. This method is accurate for close isolated objects, with 

the presence of other objects nearby having an effect on depth estimation. The two main 

advantages of this method are: 

i) there is no restriction on the form of the point spread function of the camera 

system; and 

ii) this method can generally define the distance of a simple object by measuring 

the degree of image blurriness.  

The majority of the known methods’ procedures for pose estimation are based on 

image information such as intensity, edge, and absolute depth values. Barrois and Wöhler 

[18] proposed a 3D pose estimation scheme by comparing the input image with images 

generated by an OpenGL-based renderer. In Barrois and Wöhler [18], the information 

about the object used to do the 3D pose estimation was specified by CAD data. The error 

term produced by this comparison was then minimized by an iterative optimization 

algorithm to estimate all six degrees of freedom, using only a monocular camera. This 

method was evaluated on a toy example (rubber) and two objects in an industrial quality 

inspection. The results of the experiments for complex real-world objects at a distance of 

about 0.5 m to the camera showed accuracies of less than one degree for the rotation 

angles, 1–2 image pixels for the lateral translations, and several millimeters or about 1% 

for the object distance to the camera. 

Kendal [19] suggested a general method of horizontal and vertical object distance 

calculations, where the object plane was parallel to the image plane or was tilted in the 
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vertical plane using digital images. The size, density, and spatial distribution of a sample 

(shrubs) were also investigated in the Kendal [19] method. The experimental results 

showed a strong relationship between calculated distances and actual distances for 

different cameras, focal lengths, distances, and vertical tilt angles.  

Tinnachote and Pimprasan [20] tried to use the combination of lens equation law 

and polynomial equations to find the object’s distance to the camera. Tinnachote and 

Pimprasan [20] presented a method of regression co-efficient analysis to calculate an 

object’s distance to the camera using data extracted from captured photos. In the 

Tinnachote and Pimprasan [20] study, photos of known height objects were taken at 

different distances using two cameras. The extracted data from those photos were applied 

to build relationship equations based on the lens equation. Since a proper relationship 

equation could not be generated using the lens law, regression co-efficient analysis was 

applied in the form of a 2
nd

-degree polynomial equation. The experimental results of 

Tinnachote and Pimprasan [20] showed that the object’s distance to the camera calculated 

from a 3
rd

-order polynomial equation had a root mean square error as small as 0.25 m. 

The limitation of this method was that the polynomial equation formulation would not 

have good results with objects that are different in size than the one used in the 

polynomial equation. 

2.3.2   Distance Measurement Using a Single Camera with Variable 

Pitch Angle 

The object distance estimation in the robotic field is a key element, especially in 

tasks such as robot grasping, robot navigation, and general pick and place. Although 

achieving these tasks might appear easy at first sight, due to clearly structured and color-
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coded environments, an accurate estimation of the object’s pose and distance are required 

in practice. The contribution of this section is to provide a summary of approaches for the 

object distance measurement using a single camera with variable pitch angle. 

Jamzad et al. [21] designed a mini-sized soccer robot called “Arvand” that 

followed RoboCup rules and regulations. The robot’s software, written in C
++

, performed 

real-time image processing and object recognition. Arvand was the 2nd generation of 

robots designed by the Jamzad et al. [21] team. This mini-sized robot was comprised of a 

unique mechanics design that could simultaneously rotate around the ball center and find 

the goal’s position. Jamzad et al. [21] proposed a method for object distance calculation 

based on an object’s position on the image. This method did not depend on the object’s 

size, since the object might occasionally be unseen by the robot.  

Robot soccer games are held in a dynamic, unpredictable, and challenging 

environment where the robot must recognize its position all the time. This is known as 

robot self-localization, which is one of the most important issues influencing a robot’s 

performance. Chang et al. [22] proposed an efficient method of self-localization based on 

a single landmark for the humanoid robot. Chang et al.’s [22] localization mechanism 

was based on three components: i) information that was given by the pan/tilt motors; ii) a 

single camera that was located on the robot’s head; and iii) an artificial neural network to 

adaptively localize the humanoid robot’s position. Their experimental results showed an 

accuracy rate of 88.5% at the frame rate of 15 (fps), and an average error of 6.68 cm 

between the actual distance and the improved distance. The flow chart of Chang et al.’s 

approach is demonstrated in Figure 2.4. 
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Figure 2.4: Flow chart for improving the precision of the Chang et al. [22] method. 

Figure 2.5 shows the error related to the actual distance and improved distance for the 

Chang et al. [22] approach. The blue and red dashed lines chart are the unimproved 

distance and the improved distance, respectively.   

 

Figure 2.5: Comparison between actual and improved distances [22]. 
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Other researchers, such as Hsu et al. [23], presented an image-based distance and 

inclined angle measurement method for objects located on an oblique plane. Their 

method was based on the variation of the pixel number in Charge-couple device (CCD) 

images by referencing two arbitrary points from the image frame. To minimize radial lens 

distortion during the experiment, objects had to be located as close to the image center as 

possible. The limitation of conventional image-based methods, where objects have to be 

positioned perfectly perpendicular to the optical axis, was removed using Hsu et al.’s [23] 

method.  

Measuring the visibility distance for drivers can provide effective vehicle driving 

information ahead of time for prevention of accidents, thereby enhancing the traffic 

safety level. Hautiere et al. [24] proposed a framework for measuring visibility distances 

under foggy weather conditions using a camera mounted on a moving vehicle. Their 

research was mainly focused on detecting daytime fog conditions and estimating 

visibility distances. However, Hautiere et al.’s [24] proposed method could not function 

under nighttime foggy weather conditions. This framework enables estimating the 

“meteorological visibility distance” in each image using the region expansion technique, 

which is based on a physical diffusion model of the atmosphere. Hautiere et al.’s [24] 

proposed future work is to develop a new measuring visibility distance method that is 

functional in both daytime and nighttime foggy weather conditions. 

Researchers such as Royer et al. [25] applied a sensing device for autonomous 

robot navigation outdoors using only a camera and natural landmarks. The Royer et al. 

[25] approach was comprised of three steps, as follows: 

i) a learning step, where the robot was guided on a path and a video sequence 

was recorded with a camera; 
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ii) building a 3D map from the learning sequence using a structure from the 

motion algorithm; and 

iii) a navigation step, where the robot employed the 3D map from step 2 to 

compute its localization in real-time and followed the learning path.  

Royer et al. [25] showed approximately 2 cm and 0.1
ᵒ 
for the robot’s localization 

accuracy and orientation accuracy, respectively, following the same path. The main 

difficulty with this vision algorithm was that the updated map of the environment had to 

be given all the time. Thus, Royer et al. [25] were motivated to consider creating a 

method to update the map automatically.  

Another method of object distance measurement, proposed by Shijie et al. [26], 

concentrated on the measurement of the relative position and attitude of spacecraft 

rendezvous and docking. The two steps involved in the Shijie et al. [26] approach were: i) 

extracting the feature point from the target spacecraft; and ii) obtaining the relative 

position and attitude of the target spacecraft using a feature point-based algorithm. Since 

finding the relative position and altitude estimation is a non-linear problem (3D to 2D), it 

needs a great amount of computational work. To overcome this problem, Shijie et al. [26] 

put forward an iterative algorithm based on the inverse projection ray approach. Shijie et 

al. [26] also validated the effectiveness and rapidity of convergence of their proposed 

algorithm by using mathematical simulation. 

Orientation compensation is another method that assists in object distance 

estimation. Cheung et al. [27] proposed a structure of orientation compensation to avoid 

undesirable camera orientations and to accurately estimate the distance of a preceding 

vehicle in a driver assistance system (DAS). The three advantages to this system are: i) 

the ability to estimate a homography H for the camera pan/tilt angle compensation; ii) 
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achieving further accurate distance estimation compared with the RADAR estimates; and 

iii) the ability to accurately estimate distances in a non-planar road surface by updating 

the vanishing point.  

A rapid growth in traffic would significantly impact the number of traffic 

accidents. Chiang et al. [28] developed a driver assistance algorithm to determine a 

collision-free path by lane tracking and obstacle detection using a monocular camera. 

This lane-marking detection algorithm is applicable in different illumination and complex 

outdoor environments. Once the algorithm detects a lane departure, it will issue a signal 

to warn the driver of possible deviations. In the obstacle detection strategy, the gradient 

information is used to find the feature points of the object, after which the 3D position of 

the object is estimated by means of triangulation. The experimental results of Chiang et 

al. [28] showed the robustness of this method against curved lanes and broken lanes in 

captured road images. The average error for depth estimation was reported to be about 

4.87 cm and the corresponding standard deviation was 1.59 cm. The Chiang et al. [28] 

future work is mainly concentrated on creating a complete driver assistance algorithm 

that can be aware of all of the vehicle’s surroundings. 

2.4 Visual Servoing Methods 

The first computer vision application for control loops was in indoor and 

structured environments, where a line or known patterns were detected and followed by a 

robot [29]. Photometric visual servoing is a new technique to overcome the problem of 

the object tracking process. Object tracking is a process to estimate an object’s position 

and orientation using some known object’s features, such as a corner, edge or marker, 

that are extracted from the captured images. In photometric visual servoing, the tracking 
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process is no longer required, since the image intensity (the pure luminance signal) is 

sufficient to control the robot’s motion. Image gradient and image entropy have the same 

approaches as photometric visual servoing [30]. The image gradient technique is based 

on the extraction of information of an image which is located in its high frequency areas 

(contours). Marchand and Collewet [31] applied a method to use the square norm of the 

gradient obtained from all of the pixels in an image as visual features in visual servoing. 

In Marchand and Collewet’s [31] applied method, the final positioning task error was 

found to be 0.4 mm in the translation and 0.12 degrees in the rotation.  

Another method of visual servoing is entropy-based visual servoing, which works 

on the basis of mutual information. This type of information is mostly used in medical 

applications, as it is not sensitive to changes in lighting conditions or to many classes of 

non-linear image transformations. Entropy-based visual servoing does not require a 

matching or tracking process and could be applied under large illumination variations 

[32]. 

Wang and Liu [33] proposed a new visual servo control technique for the robotic 

manipulator, whereby a back propagation neural network would make a transition from 

the image feature to joint angles. The advantages of this technique were:  

i) eliminating the complicated calibration processes; and  

ii) reducing the amount of computations. 

To guide the two coupled robots (mini-robot and manipulator), Pomares et al. [34] 

described a dynamic image‐based control algorithm. This new method was used to 

monitor the mini-robot using dynamic control for the purpose of tracking a previously 

generated image trajectory. This algorithm was able to correctly track the desired 

trajectories in cooperation with the robotic manipulator. 
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A new technique that requires neither the metric information of the observed 

object nor the accurate camera or robot calibration parameters was proposed by Silveira 

and Malis [35]. This technique could directly extract: i) the projective parameters that 

relate the current image to the reference image; and ii) the pixel intensities to obtain these 

parameters. The projective parameters could be attained via a photo-geometric 

registration method through extracting the image’s information, even from areas where 

no image feature exists. Therefore, both the accuracy and robustness of illumination 

variation, even in color images, could be achieved. This type of non-metric control error 

can be used for path planning. 

2.5 Conclusion 

In this section, a detailed literature review of concepts related to this thesis was 

provided. Current and past research in the fields of object tracking, distance 

measurement, and visual servoing necessary for the design and implementation of the 

intended algorithm was reviewed. Object tracking methods were elaborated and classified 

into different categories, and new tracking methods along with problems related to object 

tracking were also presented.  

Next, Chapter 3 describes the background requirements for implementing the 

intended algorithm and presents some of the main concepts and techniques of object 

distance measurement for a single fixed camera and single camera with variable pitch 

angle. 
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Chapter 3 

BACKGROUND AND THEORY 

3.1 Introduction 

The main intent of this chapter is to present different methods for object distance 

measurement using a single fixed camera and a single camera with variable pitch angle. 

The value of this chapter is that it contains descriptions of some of the most common 

object distance measurement methods to date together with evaluations of the relative 

accuracy of these techniques. Also reviewed in this chapter is background information on  

different types of camera technologies, visual servoing, and existing range-finding 

techniques.  

3.2 Computer Vision 

Computer vision is one of the most interesting subjects for scientists, since it 

plays an important role in many applications such as video surveillance, robot navigation, 

road traffic analysis, etc. Machine vision has six parameters, as follows [36]:  

 Sensing, which deals with the visual image. 

 Preprocessing, which is used for noise reduction, image enhancement, etc. 

 Segmentation, which is concerned with image partitioning into the desired 

object. 

 Description, which is the computation of the object features. 

 Recognition, which is used to identify the object. 

 Interpretation, which is used for assigning meaning to the recognized object. 
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3.3 CCD and CMOS Cameras 

Vision development can be divided into the two main classes of image acquisition 

and image processing. Image acquisition is a system that employs a camera to capture 

different types of image in terms of resolution, using different lenses. Currently, there are 

two types of digital camera technologies: charged coupled device (CCD), and 

complementary metal oxide semiconductor (CMOS). The CCD camera is the most basic 

type used in robotic vision systems nowadays. The CCD chip is designed from a group of 

light sensitive picture elements called pixels and normally includes between 20,000 and 

several million pixels. These pixels are considered to be discharging capacitors that can 

be as small as 5 to 25 µm. The problem with this type of cameras is that their capacitors 

of all pixels need to be fully charged before the process of reading can occur. The reading 

process is performed at one corner of the CCD chip. This means that each charge should 

be sustainably transferred across the chip in a row and a column to reach one specific 

corner. This procedure requires a precise technique to ensure the stability of the 

transported charge. Figure 3.1 demonstrates a typical CCD chip and some cameras [37]. 

 
Figure 3.1: Typical CCD chip and CCD cameras [37]. 
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The functionality of CCD cameras depends on their parameters. Some CCD 

cameras’ parameters are pre-set (the user cannot change these parameters), while other 

parameters change constantly. Higher-end cameras are designed such that the user can 

modify the values of these parameters through software in order to capture as much of the 

desired image as possible. For instance, iris position and shutter speed are two parameters 

to regulate the amount of light measured by the camera. The iris is a mechanical opening 

that adjusts the incoming light, and the shutter speed is set for sustaining the integration 

period of the chip where the photon strikes the pixels. The shutter speed in higher-end 

cameras is between 1/30,000 and 2 seconds.  

The CMOS chip is another important technology used in cameras. Figure 3.2 

shows a typical CMOS camera that has the same array of pixels as CCD cameras, but 

with several transistors along with each pixel. During the data collection process in 

CMOS cameras, all pixels measure and amplify an individual pixel’s signal in parallel for 

every pixel in the array. This process continues until the destination is reached and there 

is no need to transfer each pixel’s charge down to the specific location. 

 

Figure 3.2: CMOS camera with lens attached [37]. 

 



27 

 

CMOS technology has a much simpler configuration than a CCD chip, which enables 

CMOS cameras to consume significantly less power (about one-hundredth of the power 

consumed by CCD chips). This starkly lower power consumption makes CMOS 

technology suitable for use in mobile robots [37]. 

3.4 Visual Servoing 

Visual servoing is defined as controlling robots by the data obtained from the 

vision system. It is classified into the two different approaches of position‐based and 

image-based systems [38]. The position-based method uses 3D information of real 

workspaces, while the image-based method employs 2D information from images taken 

by a camera [39]. The main issue for camera-based visual servo control is to find the 

relationship between the Euclidean-space and the image-space. One key factor in this 

relationship is that the image-space is a 2D projection of a 3D Euclidean-space. To 

compensate for the lack of depth information in 2D image data, some researchers have 

focused on using alternative sensors such as laser and sound ranging technologies. Others 

have investigated alternative methods of a camera-based vision system using additional 

sensors or even utilizing two cameras (stereo vision) [40]. 

3.4.1   Robot Visual Servoing 

The conventional robot visual servo control algorithm mainly depends on: 1) the 

calibration technique to determine the intrinsic parameters of the camera, 2) the hand-eye 

transformation, and 3) the parameters of the robot kinematics. Therefore, the control 

precision of the servo algorithm mainly depends on the precision of the camera 

calibration [40]. 
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There are two different approaches in using cameras in robotic applications, 

which Flandin [41] described as eye-in-hand and eye-to-hand for controlling robots. In 

the eye-in-hand method (Figure 3.3), the camera is positioned on the end-effector. In the 

eye-to-hand method (Figure 3.4), the camera is installed outside the robot to observe the 

robot workspace. Of the two methods, eye-in-hand 2D visual servoing is the more 

important research area and has been intensely studied for the past 30 years [42]. In the 

eye-in-hand configuration, there is a constant relationship between the pose of the 

camera(s) and the pose of the end-effector. For the fixed camera case, the camera(s) is 

(are) related to the base coordinate system of the robot and to the object, and the camera 

image is independent of the robot’s motion. 

In both eye-in-hand and eye-to-hand camera configurations, calibrating the 

camera prior to the visual servoing task is critical. Calibration includes tuning the 

intrinsic camera’s parameters such as focal length, pixel pitch, and the principal point. A 

fixed camera’s pose with respect to the global coordinate system should be included for 

the extrinsic camera parameters after the camera calibration procedure is applied. 

Furthermore, the relative pose should be considered for the eye-in-hand case, which is 

known as the hand-eye calibration problem [43]. 

 
Figure 3.3: Eye-in-hand configuration. 
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Figure 3.4: Eye-hand configuration. 

3.5 Perspective Projection 

The image in the camera is formed by the pinhole lens model [44]. Thus, the lens 

is an ideal pinhole that is located at the focal center of the camera, and light passing 

through this pinhole intersects the image plane. Considering m as the projection of 

M(x,y,z) (a point in the global coordinate system) onto the image plane with coordinates 

(u,v,λ), the following equation is developed for some constant s , since the points M, m 

and the origin of the camera frame are collinear: 

   
   
   
   
   
   
   



x u

s y v

z λ
                                                                                                         

(3.1) 

In this case, the corresponding projection equations are as follows: 

 




xu λ 
z
y

v λ
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(3.2) 
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3.6 The Complete Transformation 

Every point in a 3D space with respect to the global coordinate system can be 

denoted by M=[x,y,z]
 T

. The augmented vector M is shown by M’=[x, y, z, 1] 
T
, which is 

M, but adding 1 for the last element makes it a homogenous representation of M. This 

specific point is observed by a camera and then transformed into a pixel. The pixel is 

shown by m= [u, v]
 T

 and corresponds to the real point M. The augmented vector of m is 

m’ and is shown as m’= [u, v, 1] 
T
, with u, and v, in this vector being the pixel 

coordinates of the captured image [45]. If the pinhole camera model is considered, the 

relationship between 3D point M and its projected 2D point m is as follows: 

[ ]s
in

m' A RT M'
                                                                                         

(3.3) 

where
1 0

2 0
0
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 
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

s c u

s v
in

A is a 3×3 matrix of the intrinsic parameters, s is the arbitrary scale 

factor, R is a 3×3 rotation matrix and T is the 3×1 translation vector. R and T are called 

the extrinsic camera’s parameters that relate the global coordinate frame to the camera’s 

coordinate frame. The intrinsic camera’s parameters are composed of pixel coordinates of 

the principal point (u0,v0),  s1,  and s2  are  the scale factors in the image’s u and v axes, 

and c is the skewness of the two image axes. Although, the extrinsic parameters change 

once the camera moves, the intrinsic camera’s parameters are fixed for a certain camera. 

The complete transformation is shown in the following equation: 
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3.7 Existing Range-Finding Techniques 

Range-finding methods are used to determine the distance to an object or objects. 

The three major range finding techniques available are triangulation, structured light, and 

time-of-flight. These techniques are briefly described in the following sections. 

3.7.1   Triangulation 

The triangulation technique can be either active or passive. The active 

triangulation method emits a signal and then measures the reflected signals, whereas the 

passive triangulation method uses the background illumination [46]. Figure 3.5 

demonstrates the concept behind the triangulation method.  

 

Figure 3.5: Triangulation technique (reproduced 

 from reference [46]). 

In Figure 3.5, the relationship between the base line lengths L1, L2, and the base line 

angles β1, β2 is summarized in the following equation:  

H H

1 2
21

tan ( ) tan ( )
  D DL L

 
                                                                               

(3.5) 

After rearranging the above equation, the distance to the object is calculated as: 
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(3.6) 

3.7.2   Structured Light 

The structured light approach is the projection of a set of light patterns onto the 

scene. It analyzes the pattern deformation over the object in the scene. The basic 

structured light system can be implemented using a single line of the light, while the 

more advanced systems are able to scan the entire field of view using an infrared 

projector. One of the common structured light systems is the Kinect sensor used in the 

Xbox 360. This sensor has a 57
ο  

horizontal field of view and a 43
ο
 vertical field of view, 

with a 640×480 resolution and 30 fps-output video frames. One shortcoming of the 

structured light system is that the resolution highly depends on the separation between the 

camera and the light source [46].  

3.7.3   Time-of-Flight 

In the time-of-flight method, distance is measured by the time it takes for an 

emitting signal of known velocity to reflect back to an object. Two widely used time-of-

flight systems are radar and sonar. The time-of-flight range-finding approach consists of 

three methods: i) direct time-of-flight measurement; ii) shuttered light pulse; and iii) 

indirect time-of-flight measurement. The time-of-flight distance is calculated as follows: 

s
H 2


v t
D  

                                                                                                         
(3.7) 

where DH is the distance to the object, vs is the velocity of the signal, and t is the time 

taken for the signal to reflect back to the object [46].  
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3.8 Basic Lens Equation 

Lenses are specifically designed to form images by refraction in optical 

instruments such as cameras, telescopes, and microscopes. The two most common types 

of images are real and virtual. A real image is one that is formed in the back of the lens, 

whereas a virtual image is formed in the front of the lens. In order to locate the image 

formed by thin lenses and also to clarify the sign conventions, ray diagrams are used. The 

three rays used for locating the image of converging lenses are as follows: Ray 1 is 

parallel to the optical axis and, after being refracted by the lens, passes through the focal 

point on the other side of the lens. Ray 2 passes through the focal point on the front side 

of the lens and continues from the lens parallel to the optical axis. Ray 3 passes through 

the center of the lens and continues in a straight line. Figure 3.6 demonstrates a typical 

real image formation using ray diagrams for thin lenses. 

 

Figure 3.6: Real image formation by thin lens (reproduced  

from reference [47]). 
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Once the image is formed using thin lenses, the relationship between image 

distance and object distance can be calculated using the thin lens equation (Equation 3.8). 

In this equation, object distance is defined as the distance of the object along the optical 

axis to the lens, image distance is the distance of the image along the optical axis to the 

lens, and focal length is the distance of the focal point along the optical axis to the lens.  

H

1 1 1 
qDf

                                                                                                      (3.8) 

where DH is the object distance, q is the image distance and f  is the focal length of the 

lens. The sign conventions for object distance, image distance, image height, and focal 

length of lenses are classified in Table 3.1. 

Table 3.1: Sign conventions for thin lenses. 

Quantity  Positive when.... Negative when.... 

Object location (DH) Object is in front of lens 

(real object). 

Object is in back of  lens 

(virtual object). 

Image location (q) Image is in back of lens (real 

image). 

Image is in front of lens 

(virtual image). 

Image height (hi) Image is upright. Image is inverted. 

Focal length (f) Converging lens. Diverging lens. 

3.8.1   Image Magnification: 

The lateral magnification of an image can also calculated by Equation 3.9.
 

i

o H

Ima g e h eig h t

Ob jec t h eig h t
   

h q
M

h D
                                                              (3.9) 

In Equation (3.9), if M is positive, the image is upright and located on the same side of 

the lens; however, if M is negative, the image is inverted and located on the opposite side 
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of the object. As shown in Figure 3.6, since the object is located in front of the lens and 

outside the focal point of a converging lens, the image is real, inverted, and is formed on 

the back side of the lens. Another typical ray diagram is demonstrated in Figure 3.7, 

which shows a virtual image formation using a thin lens. 

 

Figure 3.7: Virtual image formation by thin lens (reproduced  

from reference [47]). 

In Figure 3.7, since the object is located between the focal point and a converging lens, 

the image is the virtual image, upright, larger than the object, and located on the front 

side of the lens. 

3.9 Different Object Distance Calculation Methods 

In the following sections, different methods of object distance measurement using 

a single fixed camera and a single camera with variable pitch angle are discussed. The 

two major object distance measurement methods used here are as follows: i) the method 

where the object’s size and the camera’s focal length are known; and ii) the method 
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where the object’s size is unknown, but the object’s point of contact with the ground is 

known. 

3.9.1  Object Distance Calculation Methods for Single Fixed Camera 

There are numerous methods for calculating object distance using a single fixed 

camera. Krishnan et al. [16] proposed the complex log mapping (CLM) method shown in 

Figure 3.8. The principle of the CLM approach is that the original images are mapped 

from the orthogonal coordinate system to the polar coordinate system. The ratio between 

two images can be calculated by CLM because these two images have concentric circles 

features. 

 

Figure 3.8: Distance measurement between camera and object (reproduced  

from reference [16]). 

Distance measurement equations using Krishnan et al.’s [16] approach are as follows: 

 H

1 1 1 
qD f

                                                                                                   
(3.10) 

HP
( 1,2) I D Oq i

                                                                                      
(3.11) 
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where O is object size, DH is object distance, q is image distance, Ip is image height, and f 

is the camera’s focal length. If the camera moves a known distance n1 from m1 to m2 along 

the optical axis: 

H1 H2
(1 ) 0   D QD f Q

                                                                              
(3.12)   

H1 H21
 n D D

                                                                                               
(3.13)

 

Furthermore, if Q (which is the ratio of IP1 to IP2) is obtained, DH1 and DH2 can be 

calculated as follows: 

H1 11
 


Q

D f n
Q                                                                                           

(3.14) 

 H2 H1 1
 D D n

                                                                                              
(3.15) 

Now, consider that a pixel (DHi, qi) from the original image is mapped on the pixel (mi, 

ni) by CLM of (cx, cy). The relationship between these two pixels by the CLM would 

then be as follows: 

0 0 Hi i
( ) ( , )

i i

zM m ,n F D q
r                                                                                

(3.16) 

In Equation (3.16), F0 (DHi, qi) is called the center of the visual field, and the gray scale at 

(mi,ni) is denoted as M0(mi, ni). The relationship between the xy-plane and mn-plane are 

as follows: 

2 2
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 
i

z D q
                                                                                               

(3.17) 
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(3.19) 

Using Equations (3.16-19), the mapping can be described as: 
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(3.20) 

where r is the mapping radius, N1 is the size of the mapped image, and mi and ni are 

calculated in terms of distance z and direction θ1 from the mapping origin (cx, cy) to the 

original image pixel (DHi,qi). There are, however, some disadvantages and limitations to 

the Krishnan et al. method: 

 The camera must move along its optical axis, which is impossible in 

practice; 

 The reference image should be as close as to the surface of the object so that 

all the image elements of reference image is included in those on adjusting 

image (final mapped image); 

 Implementing this technique is computationally expensive, since many 

processes have to be done in order to calculate the distance between the two 

images; 

 This method is specifically used to find the distance to the object, which is 

perpendicular to the optical axis. This is impractical for slanting surfaces.  

The results of the Krishnan et al. [16] experiment are shown in Table 3.2. 

Table 3.2: Distance measurement for various texture surfaces. 

Real distance (mm) Grass lawn (mm) Reptile skin (mm) Ceramic coated brick 

wall (mm) 

500.0 491.4 494.2 499.6 

600.0 606.6 589.9 601.3 

700.0 710.8 684.1 702.2 

Another method to obtain object distance measurement was proposed by Kendal 

[19]. This method calculates the horizontal and vertical object distances when the object 

plane is parallel to the image plane or is tilted in the vertical plane using digital images. 
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Figure 3.9 shows the projection of an object on an oblique image plane. In Figure 3.9, δ  

is the vertical tilt angle, DH is the distance from the optical center of the image plane to 

the object (mm), h is the distance above the perpendicular of the optical center of the 

image in object plane (mm), and f represents the focal length (mm), respectively. The 

object distance can be calculated by Equation (3.21), as follows: 

H
I D

O
f                                                                                                         

(3.21) 

where O is the object’s size in mm, I  is the image size in mm, DH is the distance from the 

image plane to the object plane (mm), and f  is the focal length of the lens (mm). In 

digital images, all units are in pixels that can be easily converted to mm only if the sensor 

size of the camera is known. The sensor dimension is different in horizontal and vertical 

planes. If the object and image are positioned in parallel, Equation (3.21) will be 

modified to Equations (3.22-23), as follows: 

 

H x
x

x

x S D
O

f p
                                                                                              

(3.22) 

H y

y
y

y S D
O

f p
                                                                                                  

(3.23)   

where Ox is the horizontal image dimension (mm), x is the horizontal image dimension 

(pixel), Sx is the horizontal sensor size (mm), Px is the horizontal sensor size (pixel), Oy is 

the vertical image dimension (mm), y is the vertical image dimension (pixel), Sy is the 

vertical sensor size (mm), and Py is the vertical sensor size (pixel). Additionally, X 

represents the true horizontal distance in an object plane (mm), and Y is the true vertical 

distance in the object plane (mm). Since the distance d, h, and f are known, the distance 



40 

 

DH from the focal point to the center of the object can be calculated using Equation 

(3.24). 

2 2

H
  D d h f

                                                                                         
(3.24) 

Moreover, the required angles δ, λ, ϕ can be calculated using the trigonometric identities:  

1
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(3.25) 

 

Figure 3.9: The geometry of a projected object on an oblique image plane  (reproduced  

from reference [19]). 
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(3.27) 

It is also possible to calculate the real object dimension by the following equations: 

tan ( ) cos sin tan( ) cos       
y y y

Y B E A λ O O λ O    
                     

(3.28) 



41 

 

Atan tan tan
cos( ) cos( )

       
 

y

x x x x

O sin
X O L O C O O

λ λ


  

 
          

(3.29) 

Table 3.3a shows the regression analysis results of different camera/sensor combinations 

for predicting distance measurements. Table 3.3b shows the regression analysis results 

for the calculated-versus-measured distances. In Tables 3.3a and 3.3b, P is defined as the 

predicted distance from the regression equation and C is obtained from the distance 

equations. 

Table 3.3: The experimental results for object distance and dimension calculations. 

Camera Axis Sensor pixels Sensor 

size(mm) 

Regression 

equation 

R-square 

Canon A70 Horizontal 2048 5.27 P = -0.3+0.98C 99.8% 

Canon A70 Vertical  1536 3.96 P = -0.1+0.96C 99.9% 

Nikon D70 Horizontal 3008 23.7    P =  0.3+0.93C 99.9% 

Nikon D70 Vertical 2000 15.6 P= -0.9+0.93C 99.8% 

Nikon 5400 Horizontal 2592 7.18 P= -0.9+1.00C 99.6% 

Nikon 5400 Vertical 1944 5.32 P= -0.8+1.00C 99.7% 

a) Results of object distance calculations 

Measurements Regression equation R-square 

Height P= 26+1.01C 96.1% 

Width P= 10+1.02C 84.2% 

b) Results of object dimension calculations  

Some shortcomings of the Kendal [19] object distance method are as follows: 

 The method is time-consuming, since it uses a set of 200 plant images; 

 The method requires the use of a high quality camera such as a Canon or 

Nikon (our proposed method is implemented by a normal webcam); 

 The largest error measurements in the hedge experiment using the Kendal 

method is due to object distance DH, tilt angle δ,  height of h, and hedge 

shadow; 
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 Cameras should be calibrated prior to use in order to check for any constant 

error before employing the equations proposed by Kendal [19]. 

Joglekar et al. [48] proposed a method to estimate depth using a monocular 

camera. The Joglekar et al. [48] method depends on the camera’s parameters and image 

geometry. Figure 3.10 shows how to calculate the focal length of the camera f for the 

Joglekar et al. [48] method using the camera’s field of view.  

 

Figure 3.10: Field of view and focal length of camera (reproduced  

from reference [48]). 
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In the experimental setup of the Joglekar et al. [48] method, the camera is mounted at 

height h, B is the distance DH1 from the back of the object to the camera’s optical center, 

and IP1 is the projection point of the object and the ground onto the image plane. The 

point of contact for the distant object C onto the image plane is shown by Ip2, which is 

smaller than IP1 (Figure 3.11). It is important to note that, in Equation (3.31), the focal 
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distance f and the image coordinates I are in pixel unit. The depth estimation equation 

(the in-path object distance) can be derived using the similarity of triangles:  

p

H

H p





I h
Df

f h
D

I

                                                                                                 (3.32) 

 

Figure 3.11: Joglekar et al.’s method  (reproduced  

from reference [48]). 

Joglekar et al. [48] defined the in-path object distance as the distance along the optical 

axis of the camera. The calculated in-path object distance, which is shown in Figure 3.12, 

is then divided by cosine of angle β to obtain the oblique distance. The oblique distance 

can be calculated as follows: 

H
O Cos( )


D
D

                                                                                                  
(3.33) 

Since the calculated oblique distance includes errors that are horizontal (average 

percentage error of 40 cm) and vertical (average percentage error of 8 cm), Joglekar et al. 

[48] integrated multiple polynomial equations to obtain the real oblique distances based 
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on the curve-fitting method. The limitations and comparisons between Joglekar et al.’s 

and the improved object distance methods are demonstrated in Tables 4.2, 4.4, and 4.5.  

 

Figure 3.12: Oblique distance calculation (reproduced 

 from reference [48]). 

3.9.2   Object Distance Calculation Methods for Single Camera with 

Variable Pitch Angle 

There are a few different object distance calculation methods for a single camera 

with variable pitch angle. Some of these methods are selected and discussed in this 

section. 

Jamzad et al. [21] proposed an object distance measurement method for mid-sized 

robots. This method is shown in Figure 3.13. By using Equations (3.34-40), the 

horizontal and vertical object distances can be calculated, as follows: 
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Figure 3.13: Object distance calculation for soccer robot (reproduced 

 from reference [21]). 
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where X0 is the number of pixels between the image bottom positions to the point that has 

the lowest y value in the object, Ip stands for the height of the object in pixels. h,  A’, and 

B’ are constant parameters and can be calculated off-line, h is the height of the camera 

from the ground surface, A’ represents the distance in the camera’s field of view (such 
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that if the object is positioned there, the bottom of the object is seen in the lower part of 

the image), and B’ is the distance (such that if the object is located at that position, the 

bottom of the object is seen in the image center). 

The Jamzad et al. [21] hardware architecture for object distance measurement is 

costly compared with the proposed object distance in this thesis, because Jamzad et al. 

[21]: 

 Used a CCD camera with a 4.5 mm lens in front and two webcams for the 

sides’ rear view (whereas our proposed method is implemented with a 

normal webcam); 

 Used a captured card with resolution of 704×510 pixels for all of the robots; 

 Used two serial ports to communicate with the control unit; 

 Used two microcontrollers in the control unit, etc. 

Another method of object distance measurement, proposed by Chiang et al. [28], is based 

on depth estimation using the triangulation approach, which is illustrated in Figure 3.14. 

In the triangulation method, the first step is to find the focal length of the lens, which can 

be calculated using Equations (3.41-44), as follows: 
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Finally, the distance between point p and the camera can be calculated using Equations 

(3.45 -47).  
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Figure 3.14: Depth estimation using triangulation method (reproduced 

 from reference [28]). 
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H2
tan( )D h ω                                                                                               (3.47) 

The object distance proposed by Chiang et al. [28] is applicable in various 

illumination and complex outdoor environments. The average error for depth estimation 

in Chiang et al. [28] was reported to be about 48.7 mm, which is higher than the proposed 

method in this thesis. The results of Chiang et al.’s [28] object distance is illustrated in 

Figure 3.15, which shows a comparison between the real and the measured object’s 

positions. 

Taha and Jizat [49] proposed a method for the collision avoidance of an 

automated guided vehicle, using monocular vision. Their method is shown in Figures 
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3.16 and 3.17, where the camera’s field of view is governed by 2θ in the X-direction and 

2α in the Y-direction. If (u,v) is a point in the image plane, (x,y), which is a point in the 

global coordinate, can be derived. 

 

Figure 3.15: Comparison of actual and measured object distances [28]. 

 

Figure 3.16: Moving car top view (reproduced 

 from reference [49]). 

Each pixel from the image corresponds to an angle (ε) of 2 ( )
( 1)
 u
m

 horizontally and an 
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angle (ζ) of 2 ( )
( 1)
 v
n

 vertically. α and θ are the characteristics of the camera, and the 

camera definition is (m×n) [49]. 
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90                                                                                                     (3.51) 

where h is the height of the camera from the floor, j  is the distance in the xy-plane from v 

= 0 to the center of the image, k is the horizontal distance in the xy-plane from the camera 

to v = 0, and l  is the horizontal distance in the xy-plane from the center image to u = 0. It 

is noteworthy that if the tilt angle δ  increases, the values of j, k, l, and β would reduce. 

The object coordinates (x, y) can be expressed in terms of image coordinates (u,v) using 

tan (ε-θ) and tan (β+ζ). Therefore, we have the following equations:  

 

Figure 3.17: Moving car side view (reproduced from reference [49]). 
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where DH is the horizontal distance of the object from the camera on the ground and Do is 

the oblique distance of the object from the camera, respectively. To improve data 

accuracy, we use Do as our experimental data to construct the improved object distance 

algorithm using the least square method. The modified object distance measurement 

equation using this method is as follows: 

2
ol 0 1 2

( )D = c +c v+c v h
                                                                                   (3.54)

 

where c0, c1, c2 coefficients can be obtained using least square equations, h is the camera 

height, and v is the pixel difference from the object to the beginning of the camera's field 

of view. The Taha and Jizat [49] technique is utilized in Chapter 5 of  this thesis to obtain 

an object distance measurement using a single camera with variable pitch angle improved 

by least square optimization. 

Another easy and accurate method of object distance measurement using a camera 

with variable pitch angle is defined by integrating the ratio of angle and pixels of a 

moving object. Figure 3.18 demonstrates the object distance estimation using the ratio 

method. In this method, the distance traveled on the ground is calculated and then used to 

calculate the oblique distance of the object from the camera, using Equations (3.55-58). 

pr

pmax
2


Nγ

Nα
                                                                                                   

(3.55) 

tan ( ) k
h


                                                                                                      

(3.56) 

H r
tan ( ) D h θ γ

                                                                                           
(3.57) 
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Figure 3.18: Object distance measurement using ratio method. 

2 2
O H
 D h D

                                                                                             
(3.58) 

where γr is the angle of object from the beginning of the camera’s field of  view, 2α  is the 

vertical angle of the camera’s field of view (field of view in the y-axis direction), Np is 

the sum of the pixels from the beginning of the field of view to the current position of the 

object, and Npmax is the total pixels in the Y-direction of the camera’s field of view. 

3.10  Conclusion 

In this chapter, the background knowledge needed for this thesis was discussed 

and some of the more common methods for calculating object distances for a single 

camera with variable pitch angle and a single fixed camera were described. The 

algorithms to be implemented in this thesis were chosen based on the methodologies 

discussed throughout this chapter. The next chapter describes object distance 

measurement in greater detail using a single fixed camera, which is partially selected 

form our conference paper.  
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Chapter 4 

OBJECT DISTANCE MEASUREMENT 

USING A SINGLE FIXED CAMERA 

 

4.1 Introduction 

Image-based distance computation techniques have recently become an area of 

major research interest in the fields of robotic and computer vision. The three approaches 

for using image-based distance computation techniques are 1) stereovision-based, 2) 

monovision-based, and 3) time-of-flight camera.  

The stereovision-based method uses two cameras to find the depth and the 

disparity map using a complex method. This technique is highly accurate but requires 

extensive computation time due to the simultaneous processing of many images of the 

same object. Moreover, implementing this technique is expensive (as it requires two 

cameras) and the accuracy of stereovision fails with increases in distance to the object 

compared with the baseline distance between two different views. On the other hand, the 

monovision-based approach is comparatively less expensive than the stereovision-based 

method, as it requires only one camera [50]. The time-of-flight depth estimation 

technique is used to find the depth information by measuring the total time required for 

light to transmit and reflect from an object. 

Generally speaking, it is difficult to separate an incoming signal, since the signal 

depends on many parameters such as intensity of the reflected light, intensity of the 

background light, and the dynamic range of the sensor [4]. Researchers always look for 
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inexpensive, uncomplicated, and accurate techniques. Applying such superior techniques 

requires researchers to tackle several other challenges like object detection, obstacle 

avoidance, and location finding.  

Two approaches for estimating the location of any object are contact and non-

contact methods. Nowadays, the non-contact distance measurement algorithm becomes 

useful in a wide range of applications where having actual physical contact with the 

object is not possible [51]. High accuracy and time saving are some advantages of using a 

non-contact measurement technique. Clarke and Williams [52] list the benefits of using a 

non-contact measurement system as lower inspection costs, better quality control, faster 

production, smaller tolerances, and fewer defects. Non-contact distance measurement is 

mainly used for quality control in manufacturing. Clarke and Williams [52] cited six 

different measurement systems to acquire surface information in one, two, and three 

dimensions. Single point optical triangulation, ultrasound, and time-of-flight techniques 

are utilized to get one-dimensional surface information. In addition, photogrammetry and 

laser tracker techniques can measure 3D surface information directly. Table 4.1 

summarizes these techniques and shows the areas in which they are practiced. 
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Table 4.1: Six non-contact measurement systems. 

Measuring system and some typical objects to be measured 

Single point optical 

triangulation 

Photogrammetry Ultrasound Time-of-flight Laser trackers 

Industrial plant 

scanning 

Aerospace 

metrology 

Liquid level 

measurement 

Civil engineering 

surveying 

Robot tracking, 

calibration, and 

testing 

Archaeological 

artifacts 

Automobile 

manufacture 

Counting 

objects on 

production 

line 

Profiling rock 

faces in quarries 

Aircraft 

manufacturing 

Printed circuit 

boards 

Gait analysis Camera 

focusing 

Tunnel profiling Verification of 

jig design 

Road surfaces Mapping Robotic 

sensing for 

navigation 

Hydrographic 

surveys of buoys, 

barge and oil rigs 

Reverse 

engineering 

Building facades Missile or plane 

tracking 

Vehicle 

obstacle 

detection 

Aerial surveys Inspection and 

alignment 

 Virtual reality Wall-to-wall 

distance 

measurement 

Range and 

bearing 

information 

Surfaces 

 

4.2 Problem Definition 

The fundamental image formation technique is based on the pinhole lens model. 

In this model, the mapping relationship between the 3D global coordinates and the 2D 

image coordinates plays an important role. Let us consider M in Figure 4.1 to be a point 
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in the global coordinate relative to the camera’s frame. In this case, m would be the 

projection of M onto the image plane. Under the pinhole assumption, these two points 

and the origin of the camera’s frame (the center of the projection) that is in the back of  

the image plane at a distance f are collinear [44]. Due to the perspective error, a set of 

straight lines on the ground plane converges to a point in the image plane, which is called 

the vanishing point. If the camera’s axis is parallel to the optical plane, the vanishing 

point would be the center of the image plane. The pinhole lens model of image formation 

is applied in the present research, where the problem of mapping the object’s location is 

described using measured distance and frame transformation. 

For visual servoing purposes, there are five “standard” frame names associated 

with a robot and its workspace: the base frame, the station frame, the wrist frame, the tool 

frame, and the goal frame. The base frame is shown as {B} and is the fixed part of the 

robot, which is sometimes called the Link 0. The station frame {S} is called the universe 

frames, since all actions of the robot are made corresponding to this frame. The wrist 

frame {W} is the last link of the manipulator and is normally defined relative to the base 

frame. The tool frame {T} is assigned at the end of any tool that a robot is holding. 

Finally, the goal frame {G} is the location to which the tools need to move [53]. Figure 

4.2 shows entire frame assignments to find the distance of the moving object with respect 

to a robot’s hand. In Figure 4.2, the oblique object distance AG (equivalent to Do) can be 

measured through the proposed algorithm in this thesis. The camera’s location with 

respect to the base frame is shown with vector BA (known by measurement), and BT is 

obtained through forward kinematics and using the DH parameter of the robot. Using this 
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information, it will be easy to find vector TG as the distance of the moving object with 

respect to the tool frame of the robot, and can be calculated using Equations (4.1-2). 

 

Figure 4.1: Camera coordinate frame (reproduced 

 from reference [44]). 

 

Figure 4.2: Standard frame assignment. 

 BA AG BG                                                                                                 (4.1) 

 TG BG BT                                                                                                  (4.2) 

The object distance is defined as the distance of the desired object from the center 

of the lens. If the desired object is not located on the optical axes, it is called oblique 

object distance. The image distance is defined as the distance from the focused image to 

the center of the lens. The proposed object distance measurement in this thesis is based 

on finding the closest point from the object to the bottom-center of the camera’s field of 
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view. Equations (4.4-12) are used to calculate the distance from the object to the camera, 

where a is a known value obtained by measurement, Do  is object distance, h is the height 

of the camera from the ground, and Cf  is the calibration factor. x3, y3,x4, y4 are the 

converted image pixels into millimeters using the calibration factor. Figure 4.3 shows the 

coordinate system and the camera’s field of view on the ground.   

 

Figure 4.3: Proposed object distance calculation method. 
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2 2
H

2 cos( )  D a b ab θ
                                                                          

(4.11) 

Finally, Do, which is the oblique object distance, can be calculated using Equation (4.12), 

as follows: 

2 2
O H
 D D h

                                                                                              
(4.12) 

 

Figure 4.4: Oblique object distance calculation method. 

where, in Equation (4.6-9), the values in the image plane (i.e., image coordinate) given in 

pixel are mapped to the coordinates attached to the physical field of view of the camera at 

point O’ using the calibration factor. To find the required scale factors, the length and 

width of the camera’s field of view are measured and used, along with the camera 

definition (640×480). In Equation (4.11), DH is the horizontal distance of the object from 

the camera on the ground. In Equation (4.12), h is the height of camera from the ground 

surface, and Do  is the oblique distance of the object from the camera.  



59 

 

4.3 The Image Processing Algorithm 

In this section, some parts of the proposed image-processing algorithms in this 

research are described. The major image processing algorithm in this section is classified 

into the following four parts: 

 Background estimation 

 Object tracking 

 Feature extraction 

 Feature analysis 

This algorithm starts with an input video source and separates the background 

from the object using a thresholding technique. Then, the desired object is tracked frame 

by frame. The object’s features are extracted after completion of the tracking process 

from the image. Finally, using the analyzed feature, the object distance, width, and length 

will be calculated.  

The color space conversion is used to change the color information into different 

color spaces. Each pixel has a unique color defined by the amount of red, green, and blue. 

If each color has a range of 0-255, then the total different possible colors that these three 

major colors can produce will be 255
3
=16,777,216 [54]. Figure 4.5 demonstrates a typical 

RGB Image. 

 The idea of segmentation is to simplify or divide an image into meaningful 

components. There are many approaches to segmentation that is concerned with finding 

features in an image, such as edges or partitioning the image into homogenous regions 

(object or background). Where each pixel classifies to either of the two regions, the 

resulting image is called a binary image. Pixels with a gray level greater than one 

threshold are considered to be objects, and pixels with a gray level less than or equal to 
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the threshold are considered to be background. In cases where multiple objects with 

pixels above the threshold are presented in an image, a unique label is assigned to each 

connected component. 

 

Figure 4.5: RGB model of the image. 

The relationship between connected components is either 4-connectivity (blob) or 8-

connectivity (blob). In other words, a 4-connectivity component has four neighbors: 

above, below, right, and left of the pixel. On the other hand, an 8-connectivity component 

has the above neighbors along with those pixels that are diagonally adjacent [44]. 

An auto threshold technique is applied in the algorithm in order to identify 

different objects in a camera’s field of view. The Otsu method [55] is a widely referenced 

threshold technique. To establish an optimum threshold, Otsu suggested minimizing the 

weighted sum of within-class variances for the object and background pixels. However, 

the minimization of such pixels stimulates the maximization of between-class scatter. 

Otsu’s method would be especially useful for dealing with a large number of pixels 

within each class with close pixel values. Figure 4.6 shows an image of a sample 

threshold using the auto-threshold technique. 
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Morphological opening can remove small objects from an image while preserving 

the shape and size of larger objects in the image. Disc structuring is applied as the 

morphological opening element to create a flat disk-shaped object with a radius of 2. 

 

Figure 4.6: Image obtained after threshold. 

4.3.1   MATLAB Function and Blob Analysis Blocks 

The MATLAB Function is used in the proposed algorithm of the thesis after the 

connected components (blobs) are labeled. The input to the MATLAB Function block is 

a frame with black and white labeled objects. The output of the MATLAB Function is the 

object distance and dimension (e.g., width and length) calculated based on the proposed 

method. The blob analysis block extracts several features from each blob in the binary 

frame that takes them as input. The output from this block is a matrix consisting of 

several features for each of the blobs in the binary frame. The object’s length and width 

calculation is based on the correction of the “Major axis”, “Minor axis”, “Centroid” and 

“Orientation” features and are shown as the output of the blob analysis block.  
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4.3.2   2D  Finite Impulse Response (FIR) Filter 

Filtering is another important technique that has to be chosen accurately to 

remove the noise from the image without reducing its sharpness. The finite impulse 

response (FIR) filter is commonly used for coding artifact removal due to the simplicity 

of the implementation and its stability characteristic. A digital FIR filter corresponding to 

pixel (i, j) of a 2D image signal can be expressed as: 

( , ) ( , )
   

   
N N

k l
k  N l  N

y i j w  x i k j l
                                                              

(4.13) 

In Equation (4.13), y(i, j) is denoted as the pixel values at point (i, j) after filtering, and 

x(i, j) is denoted as the pixel values at point (i, j) before filtering. Additionally, wkl  and N 

represent the filter coefficient and the duration of the impulse response of the FIR filter, 

respectively. The adaptive filter is used to generate filter coefficients wkl, which are the 

properties of the FIR filter [56]. For all of the simulations in this research, a predefined 

2D random Gaussian noise and averaging filter is applied so as to improve the image 

contrast.  

4.3.3   Image Complement 

An image complement is selected to compute the complement of a binary or 

intensity image. Image complements switch the values of the zero- and one-valued pixels, 

which are identical to an image negative. Figure 4.7 provides an example of an image 

complement.  
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Figure 4.7: An example of a typical image complement. 

4.3.4   Averaging Subsystem 

The averaging subsystem method is useful for stabilizing a system by applying 

consecutive measurement values for the system. In the proposed algorithm, four 

consecutive measurement values have been assigned to mediate fluctuations arising from 

noise in the system [57]. 

4.4 Experimental Setup 

In this research, Logitech Quick Cam® Communicate STX™ (Figure 4.8) is used 

to capture RGB images with a resolution of 640 × 480 pixels. The captured images are 

then converted to intensity by color space conversion, since most of the applications 

require the intensity of the image. In order to reduce the noise from the images of the 

desired object, a 2D FIR Filter is applied. Figure 4.9 shows the completed algorithm for 

the object distance measurement. 
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Figure 4.8: Logitech QuickCam® Communicate STX™. 
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Figure 4.9: The proposed algorithm for object distance measurement. 

The MATLAB Function is incorporated in this research to carry out the required 

code in the subsystem for tracking the desired object. In the next step, implemented in the 

subsystem, the desired object distance is measured using the resulting image data. From 

implementing the object distance measurements that are shown as Do1 and Do2 for a 

moving object at time t0  and t, the horizontal distance traveled by the object on the 

ground could be calculated using the law of cosines (Equation 4.14). The initial values 

are chosen as Do1=1160 mm and θ0=55
ᵒ
.  

2 2 2
 1O2 O1 H O H

2 2 2 2
1  1  1 2O O O O

H

2  cos ( ) 0

 2 cos ( ) 4 cos ( ) 4 ( )

2 

 D D D D D θ

D  θ D θ D D
D  

   

  
                     

(4.14) 

Figure 4.10 shows the horizontal distance of the object traveled on the ground.  

Figure 4.10: Distance traveled by the object on the ground. 
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4.5 Experimental Results and Discussion 

In this research experiment, the distance of the desired object using the proposed 

method and a single fixed camera is extracted. The desired object is tracked with a green 

bounding box, which is shown in Figure 4.5. Tables 4.2 and 4.4 compare the 

experimental results of the proposed method with the results of Joglekar et al. [48] for 

two different objects. In addition, Table 4.3 demonstrates the average distance error for 

the calculator. The three tables respectively show the object distance average errors for 

three different samples of one rectangular block 25.43 mm×79.22 mm (W×L), one 

calculator 84.62 mm×156 mm (W×L) and one irregular toy car 70.21 mm×145.54 mm 

(W×L), which are measured at any location in the camera’s field of view. In addition, 

Figures (4.11-13) show the tabulated results in Tables (4.2-4) in the graphical form. Two 

related works as well as the proposed method for the object distance measurement are 

compared in Table 4.5. Finally, Tables (4.6-7) show the average error for the corrected 

length and width of the calculator, respectively. It should be mentioned that the accuracy 

of the measurement using the measuring tape is 0.5
  mm. This experiment is 

implemented with a low resolution camera to check whether the proposed algorithm and 

the accuracy of the measurement could be improved by using a high-resolution camera. 

Image noise is the main unavoidable reason for producing errors during the image 

acquisition stage. Such errors can occur when finding the exact point of contact with the 

object on the ground. Another potential cause of error is the variation in image 

illumination across a camera’s field of view. 
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Table 4.2: Average distance error measurements for the rectangular block. 

Trial Real 

distance 

(mm) 

Proposed 

measured 

distance 

(mm) 

Joglekar et 

al. [48] 

measured 

distance  

(mm) 

Proposed 

distance error 

(mm) 

Joglekar et al. 

[48] distance 

error 

(mm) 

1 1181 1176 1186 5 5 

2 1213 1231 1131 18 82 

3 1215 1190 1150 25 65 

4 1272 1302 1622 30 350 

5 1320 1340 1134 20 186 

6 1323 1320 1399 3 76 

7 1367 1414 2275 47 908 

8 1432 1438 1424 6 8 

9 1436 1468 1209 32 227 

10 1481 1529 1433 48 48 

11 1513 1521 1306 8 207 

12 1548 1580 1183 32 365 

13 1585 1617 1227 32 358 

14 1621 1633 1156 12 465 

15 1630 1615 1200 15 430 

Average absolute error  23.43 269.64 

 
Figure 4.11: Object distance measurement for the rectangular block. 
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Table 4.3: Average distance error measurements for the calculator. 

Trial Real distance 

(mm) 

Proposed measured 

distance 

(mm) 

distance error 

(mm) 

1 1183 1176 7 

2 1181 1184 3 

3 1196 1201 5 

4 1219 1204 15 

5 1203 1209 6 

6 1274 1257 17 

7 1241 1259 18 

8 1253 1263 10 

9 1258 1284 26 

10 1302 1294 8 

11 1300 1349 49 

12 1319 1360 41 

13 1334 1385 51 

14 1349 1396 47 

15 1379 1397 18 

16 1413 1407 6 

17 1378 1430 52 

18 1430 1465 35 

19 1429 1483 54 

20 1450 1498 48 

21 1519 1531 12 

22 1496 1544 48 

23 1558 1564 6 

24 1526 1572 46 

25 1538 1573 35 

26 1609 1580 29 

27 1567 1599 32 

28 1571 1606 35 

 Average absolute error 27.1 
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Figure 4.12: Object distance measurement for the calculator. 

Table 4.4: Average distance error measurements for the toy car. 

Trial Real 

distance 

(mm) 

Proposed 

measured 

distance 

(mm) 

Joglekar et al. 

[48] 

measured 

distance (mm) 

Proposed 

distance error 

(mm) 

Joglekar et al. 

[48] distance 

error 

(mm) 

1 1179 1173 1184 6 5 

2 1206 1183 1160 23 46 

3 1250 1262 1155 12 95 

4 1253 1259 1204 6 49 

5 1263 1238 1196 25 67 

6 1295 1328 1953 33 658 

7 1363 1352 1341 11 22 

8 1373 1404 1196 31 177 

9 1420 1458 2057 38 637 

10 1480 1489 1344 9 136 

11 1495 1542 1370 47 125 

12 1503 1529 1202 26 301 

13 1527 1570 1310 43 217 

14 1580 1583 1236 3 344 

15 1583 1613 1164 30 419 

Average absolute error  16.50 381.50 
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Figure 4.13: Object distance measurement for the toy car. 

 

 

Table 4.5: Comparison of different methods for object distance measurement. 

Method  Characteristics 

(in terms of distance)  

Nature of the method  

Gat et al. [58]  

(Optical axis is  parallel to the 

ground) 

Along the optical axis  Linear 

 

Joglekar et al. [48] 

(Optical axis  is parallel to the 

ground) 

In-path and oblique 

 

Non-Linear 

 

Proposed Method 

(Optical axis is not  parallel to the 

ground) 

 Anywhere on the field of 

view of the camera 

Non-Linear 
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Table 4.6: Length correction for the calculator. 

Trial Actual  

length 

(mm) 

Measured 

length 

(mm) 

Corrected  

length 

(mm) 

Non-

corrected 

length error 

(mm) 

Corrected 

length  

error (mm) 

1 156 144.8 164.5 11.2 -8.5 

2 156 146.2 166.7 9.8 -10.7 

3 156 161.9 160.4 -5.9 -4.4 

4 156 145.7 183.5 10.3 -27.5 

5 156 144.4 164.6 11.6 -8.6 

6 156 161.1 171.4 -5.1 -15.4 

7 156 155.2 158.2 0.8 -2.2 

8 156 154.8 161 1.2 -5 

9 156 153.8 157.2 2.2 -1.2 

10 156 157.1 170.7 -1.1 -14.7 

11 156 153 152.2 3 3.8 

12 156 143 151.1 13 4.9 

13 156 150.7 155.8 5.3 0.2 

14 156 151.5 148.4 4.5 7.6 

15 156 134.3 146.3 21.7 9.7 

16 156 121.4 146.1 34.6 9.9 

17 156 140.7 146 15.3 10 

18 156 121.9 141.4 34.1 14.6 

19 156 121.6 139.1 34.4 16.9 

20 156 139.5 143.4 16.5 12.6 

21 156 151.3 159.6 4.7 -3.6 

22 156 118.6 128.4 37.4 27.6 

23 156 120.9 139.3 35.1 16.7 

24 156 148.9 146.6 7.1 9.4 

25 156 144.9 150.1 11.1 5.9 

26 156 110.1 136.9 45.9 19.1 

27 156 155.5 151.7 0.5 4.3 

28 156 154 153.3 2 2.7 

  Average error 12.9 2.6 

The graphical representation for Table 4.6 is shown in Appendix A (Figure 1). 
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Table 4.7: Width correction for the calculator. 

Using the method presented by [58], it is possible to measure object distance 

when the optical axis of a camera is parallel to the ground. However, to find object 

distance anywhere in the field of view of a camera, the Joglekar et al. [48] method offers 

a possible solution. In Joglekar et al. [48] the in-path object distance and the oblique 

Trial Actual 

width 

(mm) 

Measured  

width (mm) 

Corrected 

width 

(mm) 

Non-corrected 

width error 

(mm) 

Corrected width 

error 

(mm) 

1 84.62 64.72 81.22 19.9 3.4 

2 84.62 62.23 81.85 22.39 2.77 

Table 4.7 (continued) 

3 84.62 66.42 80.57 18.2 4.05 

4 84.62 60.93 84.35 23.69 0.27 

5 84.62 63.68 86.74 20.94 -2.12 

6 84.62 63.61 75.53 21.01 9.09 

7 84.62 64.4 74.48 20.22 10.14 

8 84.62 63.12 72.65 21.5 11.97 

9 84.62 65.29 75.48 19.33 9.14 

10 84.62 62.49 73.05 22.13 11.57 

11 84.62 64.02 72.02 20.6 12.6 

12 84.62 66.87 74.84 17.75 9.78 

13 84.62 64.03 71.11 20.59 13.51 

14 84.62 67.73 75 16.89 9.62 

15 84.62 70.29 78.28 14.33 6.34 

16 84.62 70.97 85.27 13.65 -0.65 

17 84.62 67.58 75.15 17.04 9.47 

18 84.62 70.03 86.62 14.59 -2 

19 84.62 68.47 80.33 16.15 4.29 

20 84.62 69.09 75.28 15.53 9.34 

21 84.62 63.31 66.74 21.31 17.88 

22 84.62 72.66 81.5 11.96 3.12 

23 84.62 71.07 79.38 13.55 5.24 

24 84.62 67.21 69.41 17.41 15.21 

25 84.62 65.32 67.48 19.3 17.14 

26 84.62 74.93 86.29 9.69 -1.67 

27 84.62 65.5 67.12 19.12 17.5 

28 84.62 64.89 65.97 19.73 18.65 

 Average error 18.2 8.1 
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object distance are defined as the distance to the object that is on the optical axis and as 

the distance to the object that is not on the optical axis, respectively. We have 

investigated whether the Joglekar et al. [48] method can be used to estimate the object 

distance anywhere on the camera’s field of view with the provided setup. The results 

from some experiments using Joglekar et al.’s [48] method show that as the object gets 

closer to the vanishing point, the object distance would rise and the error significantly 

increase. Therefore, where the camera has an angle with optical axis, methods such as 

[48] and [58] are no longer valid, as the object distance measurement would be a non-

linear function of distance. Moreover, because the oblique object distance is calculated 

from the result of the in-path object distance divided by the cosine angle between the 

optical axis and the line joining the camera point to the object’s point of contact, the error 

is relatively similar for the in-path object distance obtained. Therefore, the proposed 

vision-based object distance measurement technique is principally different from the 

optical techniques of [48] and [58]. 

4.6 Conclusion 

In this chapter, an improved method was proposed to calculate the object distance 

using a single fixed camera, even if the object surface is not parallel to the camera and the 

object is not restricted to be vertically intersecting the optical axis. The proposed method 

is able to identify the desired object and extract the object features for moving and static 

objects. The experimental results show that the object distance average error for the 

rectangular block, the irregular toy car and the calculator are 23.43 mm, 16.50 mm and 

27.1 mm, respectively.  
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Chapter 5 

OBJECT DISTANCE MEASUREMENT 

USING A SINGLE CAMERA WITH 

VARIABLE PITCH ANGLE 

 

5.1 Introduction 

Distance measurement is the capability of a robot to understand its working 

environment and remotely manipulate 3D objects located in its workspace. A distance 

measurement system typically consists of a pair of cameras or alternative sensors such as 

laser and sound ranging technologies. However, in this thesis, the distance to the object is 

measured using a single camera with variable pitch angle (i.e., rotation about the y-axis). 

For the proposed method in this section, the camera is free to move up/down in the 

vertical plane; therefore, the only information required is the height and pitch angle of the 

camera with respect to the ground. In addition, the image processing algorithm is similar 

to the object distance measurement using a single fixed camera. However, the process 

and the implementation of the proposed object distance measurement are completely 

different than the single fixed camera method.  

5.2 Problem Definition 

The object distance measurement can be modeled as the transformation from a 3D 

Euler space to a 2D Euler space. The procedure of capturing an image by a camera 

involves three coordinate systems: the image coordinate system, the camera coordinate 
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system, and the global coordinate system. The Z axis of the camera is vertical to the 

image plane so that the xy-plane will be parallel to the image plane. In Figure 5.1, the 

camera coordinate system and the global coordinate system are expressed by XYZ and 

xyz, respectively. The m is the projection of M (a point in the real world) on the mage 

plane [59]. The object distance measurement for this section is based on the method 

proposed in [49], which is improved by the least square optimization technique. In [49], 

the geometrical relations of the camera are practiced to calculate the world coordinate 

frame and the image coordinate frame. In these processes, the camera is required to be 

tilted to the point where the entire camera’s field of view intersects with the floor.  

 

Figure 5.1: Three coordinate systems (Camera, Image, and World)  

(reproduced from reference [59]). 

5.3 Image Processing Algorithm 

5.3.1   Light Intensity 

The eyes’ capability to discriminate different brightness levels is essential, since 

digital images can be shown as a discrete set of brightness points. The range of the light 

intensity for a human visual system is somewhere around 10
10 

to the glare limit. The 
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image is a 2D light-intensity function that is shown as f(x,y). In this function, the value of 

f at spatial coordinate (x, y) gives the brightness of the image at that specific point. The 

nature of the f(x,y) function can be characterized into two different components: 1) The 

amount of source light incident being viewed on the scene, and 2) the amount of light 

reflected from the object in the scene. Figure 5.2 demonstrates the color image before and 

after the brightness adaptation [60]. 

 

 

Figure 5.2: Image before and after the brightness adaptation. 

5.3.2   Thresholding 

One important approach in image segmentation is thresholding. The thresholding 

technique is used to distinguish an object from its background. Any number other than 

zero is attributed to the object, while zero refers to the background [60]. In other words, if 

the light intensity function value is more than the threshold value, the threshold image 

will be assigned a value of one. Otherwise, the threshold image will be assigned a zero 

value (Figure 5.3). A threshold image g(x,y) is defined as: 

𝑔(𝑥, 𝑦) = {
        1,          𝑖𝑓 𝑓(𝑥, 𝑦) > 𝑇ℎ

         0,           𝑖𝑓 𝑓(𝑥, 𝑦) ≤ 𝑇ℎ
                                                        (5.1) 
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Figure 5.3: Sample threshold objects in the scene. 

5.3.3   Morphological Operations 

Opening and closing are two important morphological operations whose 

tendencies are to smooth the contour of an image. The main differences between these 

operations are that morphological opening will eliminate thin protrusions and break 

narrow isthmuses, whereas morphological closing eliminates small holes, fuses narrow 

breaks, and fills the gaps between contours. The opening and closing sets A by structuring 

element B are shown below: 

                                                                         (5.2) 

                                                                         (5.3) 

where  represents dilation,  represents erosion, A B  characterizes morphological 

opening,  and A B characterizes morphological closing [60]. 

5.3.4   Median Filtering 

Most of the smoothing filtering methods make the edges and other sharp details of 

objects become blurred. If the objective is to reduce noise rather than blurring objects, 

median filters are the best choice. The gray level of each pixel in this type of filter will be 
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replaced by the median of the gray levels in the neighborhood of that pixel. This method 

is effective especially when the pattern of noise is strong and includes spike-like 

components. The advantage of median filters is that they can preserve edge sharpness 

[60]. 

5.4 Orientation Correction Using Object Length Variations 

In this section, the orientation of the object is corrected through variations in an 

object’s length in pixels as the object rotates 360º at the same position. It has been shown 

that there is a symmetric relationship between changes in length and the orientation of the 

object in degree. This relationship can be concluded using a curve-fitting analysis 

process. Table 5.1 and Figure 5.4 demonstrate the relationship between an object's length 

and the orientation variation. In addition, Table 5.2 and Figure 5.5 demonstrate the 

average percentage error calculation for object length variation when the object is rotated 

from 0 to 360º. 

Table 5.1: Orientation correction using object length variation. 

Trials Actual  

length 

(pixel) 

Measured length  

(Pixel) 

Measured 

 orientation  

(Degree) 

Length  

error 

(Pixel) 

Orientation difference 

(Degree) 

1 63.9 63.9 0.53 0 -3.000 

2 63.9 63.9 3.53 0 -3.914 

3 63.9 64.1 7.44 0.2 -3.671 

4 63.9 64 11.11 0.1 -4.550 

5 63.9 63.7 15.66 -0.2 -3.190 

6 63.9 63.5 18.85 -0.4 -7.100 

7 63.9 63.2 25.95 -0.7 -10.980 

8 63.9 61.7 36.93 -2.2 -5.810 

9 63.9 61 42.74 -2.9 -8.910 

10 63.9 59.7 51.65 -4.2 -8.450 

11 63.9 58.7 60.10 -5.2 -8.590 

12 63.9 57.8 68.69 -6.1 -7.110 

13 63.9 57.3 75.80 -6.6 -5.330 
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Table 5.1 (continued) 

14 63.9 56.9 81.13 -7 -7.770 

15 63.9 56.7 88.90 -7.2 3.850 

16 63.9 56.7 -85.05 -7.2 -6.460 

17 63.9 56.9 -78.59 -7 -6.560 

18 63.9 57.3 -72.03 -6.6 -6.710 

19 63.9 57.9 -65.32 -6 -5.560 

20 63.9 58.3 -59.76 -5.6 -7.790 

21 63.9 59.2 -51.97 -4.7 -6.420 

22 63.9 60 -45.55 -3.9 -4.190 

23 63.9 60.7 -41.36 -3.2 -5.450 

24 63.9 61.5 -35.91 -2.4 -7.080 

25 63.9 62.4 -28.83 -1.5 -5.310 

26 63.9 62.8 -23.52 -1.1 -7.280 

27 63.9 63.3 -16.24 -0.6 -8.124 

28 63.9 64.1 -8.12 0.2 -3.609 

29 63.9 63.9 -4.51 0 -3.095 

30 63.9 64.2 -1.41 0.3 -1.412 

 
Figure 5.4: Orientation correction using object length variation. 

 

 



80 

 

Table 5.2: Average percentage error calculation for object length variation. 

Trial Actual length 

(pixel) 

Measured length 

(pixel) 

Length error 

(pixel) 

Average  

percentage  

error 

1 63.9 63.9 0 0.00 

2 63.9 63.9 0 0.00 

3 63.9 64.1 0.2 0.31 

4 63.9 64 0.1 0.16 

5 63.9 63.7 0.2 0.31 

6 63.9 63.5 0.4 0.63 

7 63.9 63.2 0.7 1.10 

8 63.9 61.7 2.2 3.44 

9 63.9 61 2.9 4.54 

10 63.9 59.7 4.2 6.57 

11 63.9 58.7 5.2 8.14 

12 63.9 57.8 6.1 9.55 

13 63.9 57.3 6.6 10.33 

14 63.9 56.9 7 10.95 

15 63.9 56.7 7.2 11.27 

16 63.9 56.7 7.2 11.27 

18 63.9 57.3 6.6 10.33 

19 63.9 57.9 6 9.39 

20 63.9 58.3 5.6 8.76 

21 63.9 59.2 4.7 7.36 

22 63.9 60 3.9 6.10 

23 63.9 60.7 3.2 5.01 

24 63.9 61.5 2.4 3.76 

25 63.9 62.4 1.5 2.35 

26 63.9 62.8 1.1 1.72 

27 63.9 63.3 0.6 0.94 

28 63.9 64.1 0.2 0.31 

29 63.9 63.9 0 0.00 

30 63.9 64.2 0.3 0.47 
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Figure 5.5: Average percentage errors for object length variation. 

The discrepancy in the data for the object length in Figure 5.5 is due to the value obtained 

from the applied Simulink algorithm, which is inaccurate (the actual object length is 63.9 

pixels). In addition, these data (any values greater than 63.9) are included in the curve-

fitting method. Equation (5.4) shows the non-linear 4
th

-degree polynomial fitted curve 

equation for the graph in Figure 5.4.  

07 4 06 3 2
p O O O O

1.5e 1.1e 0.0021 0.0079 64l         
                            

(5.4) 

where xO represents the object orientation (degree) and lp is the object's length (pixel).  

To find the best polynomial curve fitting for the orientation correction using object length 

variation, a comparison between 3
rd

- and 4
th

-degree polynomial curve fitting is shown in 

Table 5.3. The comparison between these two polynomial curve fittings demonstrated the 

percentage error of 1.41 and 0.16 for 3
rd

- and 4
th

-degree polynomials, respectively.  
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Table 5.3: Comparison between 3
rd

- and 4
th

-degree polynomial curve fitting. 

Measured length  

(pixel) 

Difference pixel 

(deg) 

Third-degree 

polynomial  

curve fitting 

Fourth-degree 

polynomial  

curve fitting 

63.9 0.0 63.000 64.000 

63.9 -0.2 62.998 63.998 

64.1 0.1 63.001 64.001 

64.0 0.3 63.002 64.002 

63.7 0.2 63.001 64.001 

63.5 0.3 63.002 64.002 

63.2 1.5 62.991 64.005 

61.7 0.7 63.003 64.004 

61.0 1.3 62.996 64.005 

59.7 1.0 63.001 64.004 

58.7 0.9 63.002 64.004 

57.8 0.5 63.003 64.003 

57.3 0.4 63.002 64.003 

56.9 0.2 63.001 64.001 

56.7 0.0 63.000 64.000 

56.7 -0.2 62.998 63.998 

56.9 -0.4 62.997 63.997 

57.3 -0.6 62.996 63.995 

57.9 -0.4 62.997 63.997 

58.3 -0.9 62.996 63.994 

59.2 -0.8 62.996 63.994 

60.0 -0.7 62.996 63.995 

60.7 -0.8 62.996 63.994 

61.5 -0.9 62.996 63.994 

62.4 -0.4 62.997 63.997 

62.8 -0.5 62.997 63.996 

63.3 -0.8 62.996 63.994 

64.1 0.2 63.001 64.001 

63.9 -0.3 62.998 63.998 

64.2 0.0 63.000 64.000 

Average error  62.999 63.999 

Percentage error  1.41 0.16 

5.5 Horizontal and Vertical Error Corrections 

As an object moves away from the camera’s position, the object’s dimension 

decreases, but when an object moves closer to a camera, the object’s dimension 
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increases. In order to accurately estimate an object’s dimension, correction factors should 

be applied to get the real size of the object. In the proposed algorithm, the object’s length 

in the X- and Y-directions are initially not accurate. To correct the object’s length in the 

Y-direction, the object is moved from the beginning of the field of view on the optical 

axis (the point 0 in the image plane for the camera definition of 640×480) towards the 

end of the field of view on the optical axis (the point 480 in the image plane for the 

camera definition of 640×480). As the object moves further away from 0 (pixel) to 480 

(pixel), the object’s length in pixels increases linearly. Therefore, a linear equation can be 

used to correct the object's length in the Y-direction. Figure 5.6 demonstrates the object’s 

length variation in the Y-direction.  

 

Figure 5.6: Variation of the object’s length with y. 

Equation (5.5) demonstrates a straight line equation for the graph in Figure 5.6. In this 

process, the actual length of the object is 156 (mm), which is shown as 110.4 pixels at the 

beginning of the camera’s field of view. As the object moves further away from the 

camera up to the end of the camera’s field of view in the Y-direction, the object’s length 

increases to 152.4 pixels. In order to correct the object’s length in the Y-direction, 

Equation (5.5) (which is a straight line equation) is defined as follows:  
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p p
(0.0875 110.4) /152.4 l y

                                                                         
(5.5) 

where yp is defined as the pixel’s change in the Y-direction and lp is the length of the 

object in pixels. 

To correct the object’s length in the X-direction, the procedures are the same as 

the Y-direction correction, but the starting point is from the left side and along the 

horizontal axis. Since the object’s length in the X-direction is symmetrically decreasing, 

there is no need to find the change in the object’s length for both sides. The starting point 

in which the object can be seen in the field of view is 30 (pixel) and the end point in the 

middle of the field of view is 333 (pixel). Figure 5.7 demonstrates the object length 

variation in the X-direction, and Table 5.4 indicates the results of the calculator’s length 

corrections in the X- and Y-directions. 

 
Figure 5.7: Variation of the object’s length with x. 

Equation (5.6) demonstrates the straight line equation for the graph in Figure 5.7. 

p
p

( 0.0213 67.39)/66.75  l x
                                                                       

(5.6) 

where xp is defined as the pixel’s change in the X-direction and lP  is  the length of the 

object in pixels. 
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Table 5.4: Results of the calculator’s length corrections in X- and Y-directions. 

Real 

length 

(mm) 

Non- 

corrected  

length 

(mm) 

Y-

direction 

correction 

(mm) 

X-

direction 

correction 

(mm) 

Non-

corrected 

length 

error 

(mm) 

X-direction 

correction 

error 

(mm) 

Y-direction 

correction 

error 

(mm) 

156 161.9 182.1 174.4 -5.9 -18.4 -26.1 

156 148.3 157.2 158.8 7.7 -2.8 -1.2 

156 143.5 159.9 153.2 12.5 2.8 -3.9 

156 133.8 150.4 142.2 22.2 13.8 5.6 

156 146.5 155 156.6 9.5 -0.6 1 

156 136.9 144.9 145.7 19.1 10.3 11.1 

156 142.8 149 152.4 13.2 3.6 7 

156 117.7 136.6 124.1 38.3 31.9 19.4 

156 123.3 140.8 130.4 32.7 25.6 15.2 

156 147.2 155.9 157.4 8.8 -1.4 0.1 

156 133 158.3 141.3 23 14.7 -2.3 

156 150.7 161.7 161.5 5.3 -5.5 -5.7 

156 148.9 155.7 159.4 7.1 -3.4 0.3 

156 147.2 176.9 157.4 8.8 -1.4 -20.9 

156 153.1 153.3 164.3 2.9 -8.3 2.7 

156 136.4 147.1 145.1 19.6 10.9 8.9 

156 152 150.6 163 4 -7 5.4 

156 116.6 136 123 39.4 33 20 

156 128.7 138.1 136.4 27.3 19.6 17.9 

156 132.2 136.3 140.4 23.8 15.6 19.7 

156 116.4 129.9 122.7 39.6 33.3 26.1 

156 115.6 134.2 121.9 40.4 34.1 21.8 

156 151.1 156 161.9 4.9 -5.9 0 

  Average error 17.57 8.46 5.31 

Graphical representation of  Table 5.4 is shown in Appendix A (Figure 2). 

5.6 Length and Width Correction 

Although the video data can be used directly to measure the length of moving 

objects in real-time, the measured length will be incorrect due to uncorrected incoming 

pixels. In this part of the algorithm, the length of the object in any orientation or 
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deformation can be modified by obtaining the major axis of an ellipse that encircles the 

object. Figure 5.8 shows a part of the Simulink block diagram for the length correction. 

 

Figure 5.8: Simulink block diagram for length correction. 

The object’s width can also be estimated by extracting the minor axis of an 

ellipse. Keep in mind that the extracted width needs to be corrected in order to estimate 

the actual width of the object in any direction and orientation. Figure 5.9 demonstrates 

the correction factors that are applied for the width estimation. 

 

Figure 5.9: Simulink block diagram for width correction. 

Using the proposed method, the length and width of the objects can be calculated with 

reasonably good accuracy. Figure 5.10 compares the actual and measured lengths and 

widths for different sized object. This method was applied to objects with different sizes 

in order to validate the proposed algorithm. The selected objects for investigation were a 
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cell phone, a book, a plastic ruler, and a mouse. The results of this experiment calculated 

the length of a cell phone (with an actual length of 117.67 mm) and a book (actual length 

of 245 mm) as 114.1 mm and 223.5 mm, respectively. In addition, the width of a plastic 

ruler (actual width of 26 mm) and a mouse (actual width of 62.39 mm) were calculated as 

23.62 mm and 60.94 mm, respectively. 

 

a) Cell phone with actual length of 117.68(mm)  

 

b) Book with actual length of 245 (mm)  

 

c) Plastic ruler with actual width of 26 (mm)  

 

d) Mouse with actual width of 62.39 (mm)  

Figure 5.10: Dimension measurements (length and width) of different objects. 
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5.7 Simulink Block Diagram for Object Dimension Measurement 

In this section, the width and length of the object are calculated using blob 

analysis commands of a simulink program. The minor and major axes of the ellipse that 

encircles the object’s surface will be computed and then these extracted features will be 

used to find the corrected width and length of the object. The proposed algorithm is 

robust and reliable with respect to the orientation and position of the object and can be 

used for any moving objects with different sizes, and in any directions on the ground. For 

the moving object, the magnification decreases as the object distance increases [61]. 

Therefore, the measured dimension (i.e., length and width) does not show the original 

size. 

Since the length and width of the object reduce as the object moves farther away, 

correction factors should be applied to determine the real size of the object. To estimate 

the object’s length, two different subsystems are applied. The first subsystem corrects for 

the length reduction by using the Y-direction correction, and the other subsystem 

monitors for the length reduction correction based on the X-direction and the rotation 

correction. Finally, the original length is estimated and displayed in the output of the 

second subsystem. A schematic Simulink block diagram for the object’s length correction 

is illustrated in Figure 5.11.  

The width also reduces as the object goes further away from the camera. To 

modify this limitation, a correction subsystem is designated in which the minor axis, 

which is in pixel, is converted to millimeter by using a scale factor. Finally, by applying 

Y-direction and orientation corrections, the modified width is estimated as the output of 



89 

 

the subsystem. Figure 5.12 shows the Simulink block diagram for the object’s width 

correction. 

 

Figure 5.11: Simulink block model for the object’s length correction. 

 

Figure 5.12: Simulink block model for the object’s width correction. 
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5.8 Experimental Results and Discussion 

In this experiment, the distance of the desired object is extracted using the point 

feature extraction method. The extracted point feature is usually set as the centroid point 

of a target, but in the proposed method it is considered as a closest point of the object to 

the camera. The results of Taha and Jizat’s [49] object distances for a calculator 

measuring 84.62 mm×156 mm (W×L) and an irregular toy car measuring 70.21 

mm×145.54 mm (W×L), which are optimized by the least square method, are compared 

in Tables 5.5-6. Experimental results using the least square method confirmed the 

improvement for the object distance measurement proposed by the Taha and Jizat [49] 

approach. The experiments are applied for objects located at any direction and orientation 

in the camera’s field of view. In addition, the measurement is performed by measuring 

tape with an accuracy of 0.5
  mm. Integrating the least square approach along with the 

Taha and Jizat [49] method reduces the sensitivity to noise. As for the non-linear 

optimization process, the total projection error should be minimized after applying the 

least square method. Figures 5.13-14 are the graphical presentations of Table 5.5-6. 

Finally, Table 5.7 demonstrates the results of the object’s length and width calculations 

after the correction was applied. 

Table 5.5: Improving distance measurement methods for the calculator using least square 

optimization. 

Trial Real 

distance 

(mm) 

Taha and Jizat 

[49] distance 

(mm) 

Least square 

method 

distance 

(mm) 

Taha and Jizat 

[49] distance 

error  

(mm) 

Least square 

method 

distance 

error 

(mm) 

1 1558 1477 1517 81 41 

2 1481 1478 1518 3 -37 

3 1581 1495 1534 86 47 

4 1535 1513 1552 22 -17 

5 1618 1585 1626 33 -8 

6 1695 1643 1685 52 10 
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Table 5.5  (continued) 

7 1772 1688 1729 84 43 

8 1717 1729 1769 -12 -52 

9 1793 1731 1773 62 20 

10 1811 1810 1845 1 -34 

11 1813 1811 1845 2 -32 

12 1822 1854 1884 -32 -62 

13 1996 1896 1921 100 75 

14 1943 1982 1992 -39 -49 

15 2100 2010 2014 90 86 

16 2065 2131 2105 -66 -40 

17 2150 2224 2169 -74 -19 

18 2245 2254 2189 -9 56 

19 2205 2294 2215 -89 -10 

20 2360 2467 2319 -107 41 

 Average error 9.4 2.95 

 
Figure 5.13: Comparison of least square, real, and measured object distance 

calculations for the calculator. 
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Table 5.6: Improving distance measurement methods for the toy car using least square 

optimization. 

Trial Real 

distance 

(mm) 

Taha and Jizat 

[49] distance 

(mm) 

Least square 

method 

distance 

(mm) 

Taha and Jizat 

[49] distance 

error  

(mm) 

Least square 

method  

distance  

error  

(mm) 

1 1515 1517 1560 -2 45 

2 1600 1581 1625 19 -25 

3 1627 1580 1624 47 3 

4 1681 1695 1710 -14 -29 

5 1685 1693 1739 -8 -54 

6 1721 1654 1699 67 22 

7 1734 1696 1741 38 -7 

8 1763 1784 1825 -21 -62 

9 1766 1792 1832 -26 -66 

10 1785 1753 1796 32 -11 

11 1840 1742 1785 98 55 

12 1867 1857 1891 10 -24 

13 1896 1866 1899 30 -3 

14 1980 1889 1919 91 61 

15 1984 1967 1985 17 -1 

16 2073 2064 2061 9 12 

17 2114 2179 2144 -65 -30 

18 2142 2141 2117 1 25 

19 2193 2288 2217 -95 -24 

20 2242 2297 2223 -55 19 

 Average error 8.65 -4.7 
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Figure 5.14: Comparison of least square, real, and measured object distance 

calculations for the toy car. 

Table 5.7: Length and width correction for the calculator. 

Trial Actual 

length 

(mm) 

Actual 

width 

(mm) 

Measured 

length 

(mm) 

Measured 

width 

(mm) 

Width 

error 

(mm) 

Length 

error 

(mm) 

1 156 84.62 171.1 80.84 3.78 -15.1 

2 156 84.62 169.7 81.14 3.48 -13.7 

3 156 84.62 169.3 80.87 3.75 -13.3 

4 156 84.62 164.5 79.67 4.95 -8.5 

5 156 84.62 176.4 74.32 10.3 -20.4 

6 156 84.62 153.8 78.4 6.22 2.2 

7 156 84.62 157.6 83.57 1.05 -1.6 

8 156 84.62 146 78.73 5.89 10 

9 156 84.62 147.2 74.26 10.36 8.8 

10 156 84.62 156.2 74.05 10.57 -0.2 

11 156 84.62 155.8 75.35 9.27 0.2 

12 156 84.62 156.7 74.38 10.24 -0.7 

13 156 84.62 149.6 75.46 9.16 6.4 

14 156 84.62 152.5 71.46 13.16 3.5 

15 156 84.62 149.8 71.4 13.22 6.2 

Table 5.7 (continued) 
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5.9 Conclusion 

The presented procedure can predict the target positions relative to the robot 

system using only data that are extracted from a single camera with variable pitch angle 

and without any additional sensors. This method, which is an improved version of the 

Taha and Jizat [49] approach due to applying the least square method, is able to measure 

object distance under varying illumination conditions. The experimental results 

accomplished the object distance average error of 2.95 mm for the calculator and 4.7 mm 

for the toy car. Moreover, the discrete sample time to run the proposed algorithm is 

specified by the Simulink program to be 0.033 seconds. This inexpensive distance 

measurement method could be applied to robotic applications such as obstacle avoidance, 

soccer robot, and sorting system, as well as in automated guided vehicle (AGV) 

applications such as collision avoidance, etc. 

 

 

 

16 156 84.62 158.3 68.15 16.47 -2.3 

17 156 84.62 151.2 68.67 15.95 4.8 

18 156 84.62 153.6 76.27 8.35 2.4 

19 156 84.62 138.6 74.83 9.79 17.4 

20 156 84.62 149.7 69.14 15.48 6.3 

21 156 84.62 139 77.71 6.91 17 

22 156 84.62 138.6 80.52 4.1 17.4 

23 156 84.62 153.7 66.22 18.4 2.3 

24 156 84.62 147.5 66.67 17.95 8.5 

25 156 84.62 151 68.21 16.41 5 

26 156 84.62 140.8 69.97 14.65 15.2 

27 156 84.62 156.8 63.14 21.48 -0.8 

28 156 84.62 151.1 63.96 20.66 4.9 

 Average error 10.8 2.2 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Introduction 

Attempts to design two vision-based object distance measurement algorithms 

using a single fixed camera and a single camera with variable pitch angle were illustrated 

in this thesis. In the development of these algorithms, basic assumptions about the 

operating environment of the objects were made; however, no restrictions were placed on 

the object’s size, direction or orientation. That is, we attempted to develop an algorithm 

that can be used to calculate object distance for objects of any size or geometry.  

As is well known, image formation is fundamentally modeled by the pinhole lens 

model, with the lens considered to be an ideal pinhole located at the focal center of the 

lens. In reality, however, a vast amount of information is lost when the 3D world is 

projected onto a 2D image plane. Even when multiple views are available, depth 

information may not always be recoverable. To overcome this loss of information, 

restrictions such as nonlinearity are often introduced, such as the non-linearity correction 

suggested in this thesis. 

In the proposed approaches, the object distance measurements using a single fixed 

camera with variable pitch angle were obtained by a procedure composed of several 

image processing steps. These steps can be summarized as: i) background estimation; ii) 

object tracking; iii) feature extraction; and iv) feature analysis. This algorithm starts by 

receiving an input video source and pre-processing the image to determine the 
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background from the scene. The desired object is then tracked from the initial frame to 

the end frame. In the third step, the the object features are extracted from the desired 

tracked object in the image, and fourth and finally, the object distance, width and length 

calculation are determined. 

As stated in this thesis, robots need to identify the orientation and the distance to 

the objects in order to localize, navigate, and perform certain high-level planning tasks. 

This work was inspired by introducing examples of the two major duties of the object 

distance measurement: i) finding the distance using the size of the object and the focal 

length of the camera; and ii) finding the distance of the object of unknown size by 

integrating the height of the camera and the point of contact of the object with the 

ground. 

Although the problem of depth perception when using a single camera is of great 

importance in the mobile robotics community, the depth perception is a basic robotic 

capability which, when it is solved, immediately allows for higher-level capabilities such 

as localization, mapping, and path planning. 

6.2 Contributions 

The main contributions of this thesis are developing object distance measurement 

algorithms that are:  

 Accurate, reliable, and consistent; 

 Able to simultaneously localize the objects and then measure the object 

distance (through using a single fixed camera and a single camera with 

variable pitch angle using the feature extraction method); 
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 Able to measure the distance between the camera and moving objects 

anywhere in the camera’s field of view;  

 Efficient in measuring objects of unknown shape and size. 

Chapter 2 discussed object tracking and object distance calculation and also 

investigated some external factors that need to be considered to successfully overcome 

the difficulties in object tracking and distance measurements. In Chapter 2, full lists of 

object tracking problems and classifications were presented to provide readers with the 

necessary background knowledge about previous studies and technical information.  

Good mathematical modeling of object distance calculations using a single fixed 

camera and a single camera with variable pitch angle were presented in Chapter 3. The 

models presented in that chapter covered some of the most common object distance 

measurement methods along with an evaluation of the relative accuracy of those 

techniques. In addition, a review of the applications of computer vision, the selection 

criteria for choosing different types of cameras, and visual servoing were reviewed in 

Chapter 3. 

Two independent full robot vision implementations of the object distance 

measurement using a single fixed camera and a single camera with variable pitch angle 

techniques for robot navigation were presented in Chapters 4 and 5. In these two 

chapters, the capabilities such as continuous object tracking, feature extraction and object 

distance measurements for single cameras with variable pitch angle and single fixed 

cameras in structured environments were also provided. 
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6.3 Future Work and Recommendations 

Although the use of a single camera for measuring object distance has been 

proven feasible and economical in robot vision, certain aspects of the algorithm may be 

improved to enhance its performance. This section provides suggestions for future work, 

along with recommendations and comments on performance implications. 

A mobile robot can navigate both indoor and outdoor environments, but indoor 

and outdoor application strategies are vastly different. On the whole, outdoor applications 

are more difficult than indoor applications, since it is not possible to predict major 

problems such as rough terrain, weather conditions, and lighting variations in real-world 

environments. In this study, our object tracking and distance measurement algorithm was 

implemented for indoor applications.  

As further study, prepared algorithms can be modified to perform in outdoor 

environments. The current algorithm is susceptible to light variation and would have 

difficulties being implementing in unstructured environments. However, it probably 

could be improved through the use of an adaptive filter and changes in hardware. 

Moreover, further algorithmic developments would increase robustness, and additional 

work on the distance estimation processes would satisfy the above-mentioned issues 

while improving accuracy.  

In addition to solving outdoor robot navigation problem, future endeavors in this 

field should consider using a high-resolution camera to improve system robustness. As 

well, integrating robot vision cameras would provide better vision results and prevent 

radial and tangential distortions that are prevalent in cheap cameras and webcams.  

 

 



99 

 

REFERENCES 

[1] Jüngel, M. Mellmann, H. and Spranger, M., “Improving vision-based distance 

measurements using reference objects, ”Robocup 2007: robot soccer world cup, pp. 

89-100, 2007.  

[2] Goto, A. and Fujimoto, H., “Proposal of 6 DOF Visual Servoing for Moving Object 

Based on Real-Time Distance Identification,” SICE. Annual Conference, Japan, pp. 

3208-3213, 20-22 August, 2008. 

[3] Firouzi, H. and Najjaran, H., “Real-time monocular vision-based object tracking 

with object distance and motion estimation,” IEEE/ASME  International 

Conference on  Advanced  Intelligent Mechatronics, pp. 987-992, 6-9 July, 2010. 

[4] Shaaban, K. M. and Omar, N. M., “3D information extraction using Region-based 

Deformable Net for monocular robot navigation,” Journal of Visual 

Communication and Image Representation, vol. 23, pp. 397-408, 2012. 

[5] Cavallaro, A. Steiger, O. and Ebrahimi, T., “Tracking video objects in cluttered 

background,” IEEE Transactions on Circuits and Systems for Video Technology, 

vol. 15, no. 4, pp. 575– 584, 2005. 

[6] Zhang, Z.  Han, Y. Zhou, Y. and Dai, M., “A novel absolute localization  

estimation of a target with monocular vision,” Optik – International Journal for 

Light  and  Electron  Optics, vol. 124, no. 12, pp. 1218-1223, 2013. 

[7] Coman, M. and Balan, R., “Video Camera Measuring Application Using Matlab,” 

Solid State Phenomena, vol. 166-167, pp. 139-144, 2010. 

[8] Yamaguti, N. Oe, S. and Terada, K., “A Method of Distance Measurement by 

Using Monocular Camera,” Proceedings of the 36th SICE Annual Conference, 

Tokushima, pp. 1255-1260, 29-31 July, 1997. 

[9] Yilmaz, A. Javed, O. and Shah, M., “Object Tracking: A Survey,” ACM Journal of 

computing Surveys, vol. 38, no. 4, pp. 1-45, 2006. 



100 

 

[10] Manjunath, B. S, and Ma, W., “Texture Features for browsing and retrieval of 

image data,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 

18, no. 8, pp. 837-842, 1996. 

[11] Yang, H.  Shao, L. Zheng, F.  Wang, L. and Song, Z., “Recent Advances and 

Trends in Visual Tracking: A Review,” Neurocomputing, vol. 74, no. 18, pp. 3823-

3831, 2011. 

[12] Jepson, A. D. Fleet, D. J. and El-Maraghi, T. F., “Robust online appearance models 

for visual tracking,” IEEE Transaction on Pattern Recognition and  Machine  

Intelligence , vol. 25, no. 10, pp. 1296–1311, 2003. 

[13] Matthews, L. Ishikawa, T. and Baker, S., “The template update problem,” IEEE 

Transaction on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 810–

815, 2004. 

[14] Li, L. Deng, Z-Q. Li, B. and Wu, X., “Fast vision-based pose estimation iterative 

algorithm, ”Optik – International  Journal for Light and Electron Optics, vol. 124, 

no. 12, pp. 1116-1121, 2013. 

[15] Tao, Z. Changku, S. and Shan, C., “Monocular vision measurement system for the 

position and orientation of remote object, ”International Symposium on Photo 

electronic Detection and  Imaging, vol. 6623, 2007. 

[16] Krishnan, J. V. G. Manoharan, N. and Rani, B. S., “ESTIMATION OF 

DISTANCE TO TEXTURE SURFACE USING COMPLEX LOG MAPPING,” 

Journal of  Computer  Application, vol. 3, no. 3, 2010. 

[17] Subbarao, M., “Determining distance from defocused images of simple objects,” 

Tech. Rep. Computer vision laboratory, Dept. of Electrical Engineering, State 

University of New-York, Stony Brook, NY 11794-2350, USA, 1989. 

[18] Barrois, B. and Wöhler, C., “3D pose estimation based on multiple monocular 

cues”, Proceeding of IEEE Conference on Computer Vision and Pattern 

Recognition,  pp.1-8, 2007. 

[19] Kendal, D., “Measuring distances using digital cameras, ”Journal of Australian 

Senior Mathematics, vol. 21, no. 2, pp. 24-28, 2007. 



101 

 

[20] Tinnachote, C. and Pimprasan, K., “DISTANCE MEASURMENT FROM 

DIGITAL PHOTOGRAPH USING 3
rd 

ORDER POLYNOMIAL EQUATION,” 

The 33
RD 

Asian Conference on Remote Sensing.   

[21] Jamzad, M. Foroughnassiraei, A. Chiniforooshan, E. Ghorbani, R. Kazemi, M. 

Chitsaz, H. R. Mobasser, F. and Sadjad, S. B., “Middle sized Soccer Robots: 

ARVAND,” Proceeding of RoboCup-99: Robot Soccer world Cup III, Springer, 

pp. 61-73, 2000. 

[22] Chang, S. H, Hsia, C. H. Chang, W. H. and Chiang, J. S., “Self-Localization Based 

on Monocular Vision for Humanoid Robot,” Tamkang Journal of Science and 

Engineering, vol. 14, no. 4, pp. 323-332, 2011. 

[23] Hsu, C. C. J. Lu, M. C. and Lu, Y. Y., “Distance and Angle Measurement of 

Objects on an Oblique Plane Based on Pixel Number Variation of CCD Images,” 

IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 5, pp. 1779-

1794, 2011.  

[24] Hautiere, N. Tarel, J-P. Lavenant, J.and Aubert, D., “Automatic fog detection and 

estimation of visibility distance through use of an onboard camera” Machine  

Vision and Applications Journal, vo. 17, no. 1, pp. 8-20, 2006.  

[25] Royer, E.  Lhuillier, M.  Dhome, M. and Lavest, J. M., "Monocular Vision for 

Mobile Robot Localization and Autonomous Navigation," International Journal of 

Computer Vision, vol. 74, no. 3, pp. 237-260, 2007. 

[26] Shijie, Z. Fenghua, L. Xibin, C. and Liang, H., “Monocular vision-based two-stage 

iterative algorithm for relative position and attitude estimation of docking 

spacecraft,” Chinese  Journal of  Aeronautics, vol. 23, no. 2, pp. 204-210, 2010. 

[27] Cheung, H-K. Siu, W-C. Ng, C-S. Lee, S and Poon, L., “Accurate Distance 

Estimation Using Camera Orientation Compensation Technique for Vehicle Driver 

Assistance System”, IEEE International Conference on Consumer Electronics 

(ICCE’2011), pp. 231-232, 2012. 

[28] Chiang, Y-M. Hsu, N-Z. and Lin, K-L., “Driver Assistance System Based on 

Monocular Vision,” Lecture Notes in Computer Science, vol. 5027, pp.  1-10, 2008. 



102 

 

[29] Campoy, P. Mondragón, I. F. Olivares-Mendez, M. A. and Martinez, C., “Visual 

Servoing for UAVs,” Visual Servoing, pp. 181-216, Croatia, 2010. 

[30] Tamadazte, B. Le-Forte Piat, N. and Marchand, E., “A Direct Visual Servoing 

Scheme for Automatic Nanopositioning,” IEEE transaction on mechatronic, vol. 

17, no. 4, 2012. 

[31] Marchand, E. and Collewet, C., “Using image gradient as a visual feature for visual 

servoing,” IEEE/RSJ International Conference on Intelligent Robots and Systems, 

pp. 5687-5692, 2010. 

[32] Dame, A. and Marchand, E., “Entropy Based Visual Servoing,” IEEE International 

Conference on Robotics and Automation, pp. 707-713, 2009. 

[33] Wang, H. B. and Liu, M., “Design of Robotic Visual Servo Control Based on 

Neural Network and Genetic Algorithm,” International Journal of Automation and 

Computing, vol. 9, no. 1, pp. 24-29, 2012. 

[34] Pomares, J. Corrales, J. A. García, G.J. and Torres, F.,” Direct Visual Servoing to 

Track Trajectories in Human-Robot Cooperation, ”International Journal of 

Advance  Robotic  System, vol. 8, no. 4, pp. 129-138, 2011. 

[35] Silveira, G. and Malis, E., “Direct Visual Servoing: Vision-Based Estimation and 

Control Using Only Nonmetric Information,” IEEE Transactions on Robotics, vol. 

28, no. 4, pp. 974-980, 2012. 

[36] Longoria, R.G. Basic Vision with Lab VIEW [PowerPoint slides], 2011. Retrieved 

from 

http://www.me.utexas.edu/~longoria/me344/lab5/Basic_Vision_with_LabVIEW.pdf 

[37] Siegwart,R. and Nourbakhsh,I. R., Introduction to Autonomous Mobile Robots, 

MIT Press, 2004. 

[38] Chaumette, F. and Hutchinson, S., “Visual Servo Control, Part I: Basic 

Approaches”, IEEE Robotics and Automation Magazine, vol. 13, no. 4, pp. 82‐90, 

2006. 



103 

 

[39] Jian Chen, D. M. Dawson, W. M. Dixon, W. E. and Behal, A., “Adaptive 

Homography-Based Visual Servo Tracking for Fixed and Camera-in Hand 

Configurations, ” IEEE Transactions on Control Systems Technology, vol. 13, no. 

5, pp. 814-825, 2005. 

[40] Huang, X. H. Zeng, X. J. and Wang, M., “SVM-based identification and un-

calibrated visual servoing for micromanipulation”, International Journal of 

Automation  and  Computing, vol. 7, no. 1, pp. 47-54, 2010. 

[41] Flandin, G. Chaumette, F. and Marchand, E., “Eye-in-hand/Eye-to-hand 

cooperation for Visual Servoing, ”IEEE International Conference on Robotics and 

Automation, vol. 3, pp. 2741-2746, 2000. 

[42] Nourbakhsh, A., and Korayem, M. H., “6R Robots; How to Guide and Test them 

by Vision?”Communications in Computer and Information Science CCIS Journal, 

vol. 6, pp. 892-896, 2008. 

[43] Hutchinson, S. Hager, G. D. and Corke. P. I., “A tutorial on Visual Servo Control,” 

IEEE Transaction on Robotics and Automation, vol. 12, no. 5, pp. 651-670, 1996. 

[44] Spong, M. W.  Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control, 

John Wiley and Sons, Inc., 2006. 

[45] Aristos, D. Pachidis, T.  Lygouras, J., “Robot Path Generation by Viewing a Static 

Scene from a Single Camera,” in Proc. IEEE Int. Symposium on Robotics and 

Automation, 2002. 

[46] Drayton, B., Algorithm and design improvements for indirect time of flight range 

imaging cameras. PhD thesis, Victoria University of Wellington, NZ, 2013. 

[47] Serway, R. A. and Jewett, J. W., Jr. Physics for Scientists and Engineers (8th 

edition), Brooks/Cole, 2009.  

[48] Joglekar, A. Joshi, D. Khemani, R. Nair, S. and Sahare, S., “Depth Estimation 

Using Monocular Camera,” International Journal of Computer Science and 

Information  Technologies, vol. 2, no. 4, pp. 1758-1763, 2011. 



104 

 

[49] Taha, Z. and Jizat, J. A. M., “A comparison of Two Approaches for collision 

Avoidance of an Automated Guided Vehicle Using Monocular Vision,” Applied 

Mechanics  and  Materials, vol. 145. pp. 547-551, 2012. 

[50] Rahman, A. Salam, A. Islam, M. and Sarker, P., “An Image Based Approach to 

Compute Object   Distance, ”International  Journal  of  Computational  

Intelligence Systems, vol. 1, no. 4, pp. 304-312, 2008. 

[51] Lu, M. Hsu, C. and Lu, Y., “Image-Based System for Measuring Objects on 

an Oblique Plane and Its Applications in 2D Localization, ”IEEE  Sensors  Journal, 

vol. 12, no. 6, pp. 2249-2261, 2012. 

[52] Clarke, T. A. and Williams, M. R., “Buyers guide to six non-contact distances 

measuring techniques,” Quality Today, Buyers Guide, pp. 145-149, 1999. 

[53] Craig, J. J., Introduction to Robotics: Mechanics and Control, 3rd ed, NJ: Prentice-

Hall, 2004. 

[54] McAndrew, A., “An Introduction to Digital Image Processing with Matlab,” 

Victoria University  of  Technology, Melbourne, Australia, 2004. 

[55] Sezgin, M. and Sankur, B., “Survey over Image thresholding techniques and 

Quantitative performance  evaluation,” Journal  of  Electronic  Imaging, vol.13, no. 

1, pp. 146-168, 2004. 

[56] Zhang, S. and Salari, E., “Reducing artifacts in coded images using neural network 

aided adaptive FIR filter,” Journal of Neurocomputing, vol. 50C, pp. 249-269, 

2003. 

[57] Coman, M. Stan, S. Manic, M. and Balan, R., “Application of Distance Measuring 

with Matlab/Simulink,” Third Conference on human System Interaction, Rzeszow, 

pp. 113-118, 13-15 May, 2010. 

[58] Gat, I.  Benady, M. and Shashua, A., “A Monocular Vision Advance Warning 

System for the Automotive Aftermarket,” SAE World Congress & Exhibition, 

Detroit, USA, 8 pages, 2005. 



105 

 

[59] Deshmukh, P. D. and Dhok, G. P., “Analysis  Of  Distance Measurement System 

Of Leading Vehicle,” International Journal of Instrumentation and Control 

Systems, vol. 2, no. 1, 2012.  

[60] Gonzalez, R. C. Woods R. E. Digital Image Processing (Second Edition). Beijing: 

Publishing  House  of  Electronics Industry, 2007. 

[61] Corke, P.I. Visual control of robots High performance visual servoing (Robotics 

and Mechatronics Series 2), 1996. 

 

 

 

 

 

 

 

 

 

 

 

  



106 

 

APPENDIX A: FIGURES 

 

 

 

 

 

F
ig

u
re 1

: C
o
m

p
a
riso

n
 o

f th
e n

o
n

-co
rr

ected
 a

n
d

 co
rr

ected
 len

g
th

 

erro
r. 

 



107 

 

 

 

 

 

F
ig

u
re 2

: O
b

ject's len
g
th

 co
rre

ctio
n

s in
 X

 a
n

d
 Y

 d
irectio

n
s. 

 



108 

 

 

 

 
 

 

 

 

 

 

O
b

ject d
ista

n
ce m

ea
su

rem
en

t u
sin

g
 sin

g
le fix

ed
 ca

m
era

  

 



109 

 

 

 

 

 

O
b

ject d
ista

n
ce m

ea
su

rem
en

t u
sin

g
 sin

g
le ca

m
era

 w
ith

 v
a
ria

b
le p

itch
 a

n
g
le  

 



110 

 

 

 

 

 

 

 

C
o
m

p
a
riso

n
 o

f th
e a

ctu
a
l, ca

lcu
la

ted
 a

n
d

 lea
st sq

u
a
re m

eth
o
d

 fo
r o

b
ject d

ista
n

ce 

ca
lcu

la
tio

n
ca

lca
lm

ea
su

rem
en

ts 


