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Abstract 

A generalized electronic diabatic model for chemical reactions includes a physical mechanism 

for the transition from a reactant-like to a product-like quantum state, namely, an external field. 

In our model, an external electric field couples states and modifies effective potential energy 

surfaces thereby allowing to treat a reaction as a fully quantum process. Through semi-classical 

models of two-state reactions, we show that we can control the identity of the most stable nuclear 

configuration by varying the form and intensity of the external field’s coupling potential. We 

group topologically equivalent potential energy curves in phase diagrams for a manifold of 

simple two-state models. We also illustrate the method’s implementation in a fully quantum-

mechanical approach by considering two diabatic states in the radical HBN⇄BNH isomerization. 

To ensure diabaticity, these states are built on a grid of floating Gaussian orbitals and the 

potential energy curves are constructed by moving the nuclei.  
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Diabatic functions, potential energy surfaces, external fields, semi-classical models 
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1. Introduction 

Introductory chemistry courses present chemical reactions as processes that unfold on a single 

potential energy surface.[1] Within this interpretation, by way of collisions with other molecules 

or by interacting with photons, the reaction system gains enough energy to overcome reaction 

barriers and rearrange electronically. These semi-classical concepts, an inaccurate quantum 

representation at best, can be traced to the separate treatment of nuclei and electrons given in the 

Born-Oppenheimer (BO) approximation.[2] This approximation works well for vibrational 

frequencies and simple thermal processes. It does not work well, however, where electronic and 

nuclear motions are coupled such as in the formation or dissociation of bonds. The failure is 

complete where the motions are strongly coupled, for example, at conical intersections where 

electronic states cross.[3] On a more fundamental level, the BO approximation lacks a ‘reaction 

driver’ that is to say an external force that ‘makes a reaction go’. When we consider the 

possibility of reaction control with lasers or more generally with external fields [4-7], the need 

for an adequate explanation becomes more pressing.  

In this thesis, we employ an alternative approach based on a generalized electronic diabatic 

model.[8-16] For this model, the external force is an electric field. This external electric field is 

the ‘driving force’ lacking in the BO approximation. With this field, we will be able to account 

for many of the features that characterize a chemical process as a change in quantum state taking 

place over an effective surface. Using semi-classical potential energy curves, we can determine 

general trends in how the external field via its coupling potential can change an effective 

potential energy surface.  

The various models of energy surfaces can be grouped into ‘phases’ where each region would 

represent an archetypical shape of a total energy surface as characterized by a topological 

criterion. One of the main objectives of this thesis is to predict these possible ‘phases’ over an 

entire ensemble of model diabatic potentials for two-state chemical processes. The diagrams, or 

‘topology maps’, help illustrate the subtle variations in the effective potential energy curve as the 

model parameters and the field coupling’s potential’s shape and intensity are varied.  
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As a complement, we present a quantum-mechanical approach to build diabatic electronic 

eigenfunctions on a grid of orbitals that are not centred on any nuclei. This methodology, 

recently used for a three-state process [8], is adapted here to study a simple two-state radical 

isomerization. From an optimal grid, we then extract the potential energy surfaces by moving the 

nuclei along different plausible reaction trajectories. 

1.1 Review of the Born-Oppenheimer Approximation 

The BO approximation represents a cornerstone in quantum mechanics and remains a standard to 

which new approaches are compared.[17] This thesis is no exception. A brief overview of the 

BO approximation and its deficiencies shall serve as a motivation for developing a more physical 

description of chemical reactions consistent with the quantum nature of the process.  

In the analysis of any quantum mechanical problem, the starting point is to find a solution to a 

Schrödinger equation, either time dependent or independent. The BO approximation attempts a 

solution of the time-independent Schrödinger equation for systems with several degrees of 

freedom, written as follows: 

Ĥmol(𝐫, 𝐑)Ψ(𝐫, 𝐑) = E(𝐑)Ψ(𝐫, 𝐑) Equation 1 

where r represents the electronic position operator, while R is a vector of nuclear coordinates in 

the laboratory frame. Both act as variables for the set of basis functions, {Ψ}, for the Hilbert 

space of quantum states. Ĥmol, as given in Equation 2, is the molecular Hamiltonian operator and 

consists of the electronic and nuclear kinetic energy operators as well as the system’s potential 

energy operator. This last operator includes the electronic, the nuclear and electronuclear 

potential operators: 

Ĥmol = T̂e + T̂N + Û(𝐫, 𝐑)  

 = −
1

2
∑∇𝐫i

2

i

−
1

2
∑

∇𝐑α
2

Mα
α

+∑
1

‖𝐫i − 𝐫j‖i<j

+∑
ZαZβ

‖𝐑α − 𝐑β‖α<β

−∑
Zα

‖𝐫i −𝐑α‖
i,α

 

Equation 2 
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where α and β refer to the nuclei and i and j refer to the electrons. Furthermore, we use atomic 

units, equivalent to 
ħ2

|e|2me
= 1, and measure distances in Bohrs, nuclear masses in terms of the 

electron’s mass me and charges in electron charges |e|. The BO approach begins by introducing 

the expansion of the total time-independent molecular eigenfunction of Ĥmol, Ψ, as the 

superposition of the product of two functions [18,19]: 

Ψ =∑φi(𝐫; 𝐑)χi(𝐑)

𝑖

 Equation 3 

The so-called electronic eigenfunctions φi depend on the electronic coordinates and also 

parametrically on the nuclear coordinates. The part of the molecular eigenfunction that is 

associated to the dynamics of the nuclei as quantum particles is given as χi(R). Due the great 

difference between nuclear and electronic masses (Mα ≥ 1836 in electron masses me =1), their 

coordinates are treated differently in the BO approximation. The electrons form the fast 

coordinates and the nuclei are the slow coordinates. With this separation, the nuclear kinetic 

energy operator is then neglected. The effect of this is physically equivalent to keeping the 

nuclear coordinates fixed, thereby defining an electronic Hamiltonian [19,20]: 

Ĥe = T̂e + Û(𝐫, 𝐑) Equation 4 

From a semi-classical point of view, this separation of coordinates would no longer be justified if 

the classical nuclear velocities were substantial. However, in this range of velocities, the very 

notion of a “classical” molecule is inappropriate; the nuclei and electrons form a quantum 

plasma. On the other hand, fixing the nuclear positions is unfeasible in chemical reactions where 

bonds are broken and formed. The nuclear coordinates change and the electronic eigenfunctions, 

being parametrically dependent on these, must change as well. 

Born and Oppenheimer expanded the expression for a system’s energy, 〈Ψ|ĤmolΨ〉𝐫, as a power 

series in (me/M)
1/4

 where me is the electronic mass and M is a nuclear mass.[19,21] The terms 

comprising vibration, translation and rotation, correspond to different powers in (me/M)
1/4

; where 

these motions can be separated, as usual, using nuclear coordinates denoted by Q, and 

coordinates referring to the centre of mass, RCM.[18,19] 
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At this point there are two main options on how to deal with nuclear dynamics. The first option 

is to continue the quantum mechanical treatment. One can solve for the nuclear portion of the 

molecular Hamiltonian’s eigenfunction under the assumption that the separation of coordinates is 

valid:  

⟨φi(𝐫; 𝐑)|ĤmolΨ(𝐫,𝐑)⟩𝐫 = Ui(𝐑)χi(𝐑) Equation 5 

where Ui(R), the electronic potential energy, is the eigenvalue of the electronic Hamiltonian.[18] 

The second choice is to take the electronic potential energy, Ui(R), as the surface on which 

nuclear trajectories are treated classically via Newtonian or Langevin dynamics.[22,23]  

Both the electronic and nuclear parts contain nuclear coordinates and hence they are affected by 

the nuclear kinetic energy operator. This gives rise to what are called non-adiabatic coupling 

terms (NACTs) which measure the nuclear dependence of the electronic part of the molecular 

Hamiltonian’s eigenfunction. The BO approximation, which is also called adiabatic, lies in 

neglecting the non-adiabatic coupling terms.[18] If the coupling terms are small, the expression 

for the molecular energy can be improved by their reintroduction. The reintroduction helps 

account for transitions between potential energy surfaces, for example between the electronic 

ground and excited states. However, a central complication arises: the non-adiabatic coupling 

terms diverge at points where the probability for a transition is highest, that is the set of points 

where the potential energy surfaces cross. These terms are given by [18]: 

〈φj(𝐫; 𝐑)|∇𝐑φi(𝐫; 𝐑)〉𝐫 =
⟨φj(𝐫; 𝐑)|∇𝐑Ĥe|φi(𝐫; 𝐑)⟩𝐫

Ui(𝐑) − Uj(𝐑)
= 𝐅ij(𝐑) Equation 6 

where ∇𝐑 is the gradient in nuclear coordinates. These crossings, known as conical intersections, 

represent the ultimate breakdown of the BO approximation. 

1.2 Conical Intersections 

As stated above, the adiabatic approximation is invalid whenever two or more potential energy 

surfaces cross within the BO approximation (see Equation 6).[18] Unfortunately, previous and 

ongoing research demonstrates the ubiquitous nature of conical intersections.[3, 18,24-26] What 

was initially thought to be a exoticism of highly symmetrically systems – such as with N3 radical 
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or alkali triatomics which have D3h symmetry – is now shown to occur in non-symmetric 

systems as well.[27-29] In both cases, conical intersections affect reaction kinetics by offering 

radiationless pathways – a ‘spontaneous’ jump from one energy surface to another.  

Let us take the example of a bond dissociation or formation reaction with an energy barrier. By 

following the adiabatic reaction coordinate, the electronic eigenfunction changes considerably at 

the reaction barrier. At this point, if the separation between two surfaces is small, the reaction 

may not proceed adiabatically to the product configuration. Instead of taking on the product’s 

characteristics, the electronic eigenfunction may retain those of the reactant. The molecule would 

then have made a non-adiabatic ‘hop’ to the upper bound surface. The non-adiabatic recrossing 

of the energy barrier will reduce the rate constant for that reaction. Situations such as these, 

where there is a decoupling between nuclear configuration and electronic structure, are well-

known in the active site for several proteins involved in hydrogen transfer and electron 

transfer.[30-32] 

These conical intersections need not even be along the minimum energy reaction path (see 

Figure 1) for the non-adiabatic terms to become significant.[33] The influence of the conical 

intersection extends far beyond the point of intersection because the derivative couplings remain 

large for a volume surrounding that point in nuclear configuration space. For this reason, even 

though the conical intersections take up virtually no volume of coordinate space, they influence 

nuclear motion to a large extent. In other words, if they are energetically accessible, they must be 

accounted for.  

In the context of eliminating the shortcomings of the BO approximation, conical intersections 

must be included for a complete description of a reaction’s evolution. It is, therefore, important 

either to know where they occur or how to avoid diverging non-adiabatic coupling terms they 

produce with post-BO methods. We explain below some basic concepts to locate conical 

intersections. These notions provide a proper context to understand the alternative procedure we 

follow, based on diabatic functions as opposed to correcting the adiabatic BO solutions by 

including non-adiabatic coupling terms near conical intersections.  
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Figure 1. Example of a conical intersection 

Figure 1 shows a conical intersection between the excited and ground state potential energy 

surfaces for the isomerization of a polyeniminium cation. On the photoisomerization path, the 

electronically excited species reaches the product state through the conical intersection. The 

transition structures along the thermal isomerization path are in the vicinity of the conical 

intersection. Significant non-adiabatic effects are thus expected for both isomerization paths. 

Figure adapted from [34] 
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Symmetry is generally used to classify conical intersections: 

1. The first known type of conical intersections is called symmetry-required intersections. These 

occur in highly symmetrical molecules between states belonging to the same degenerate 

irreducible representation.[35] The symmetry-required conical intersections occur when the 

nuclear configuration reaches an energetically unstable point of higher symmetry and this 

degeneracy is lifted by linear displacements in nuclear coordinates thus giving rise to the Jahn-

Teller effect.[36] 

2. The other two types of conical intersections are called “accidental” since their presence is not 

caused by symmetry and cannot be predicted from simple properties of the molecular 

Hamiltonian. Accidental symmetry-allowed conical intersections involve the crossing of two 

states of distinct symmetry, that is belonging to different irreducible representations.[25] The 

accidental same-symmetry conical intersections are, as the name implies, the crossing of two 

states belonging to the same symmetry. The states may have the same symmetry, that is they 

may belong to the same irreducible representation, but they do not necessarily belong to the 

solutions of the same attractor equilibrium geometry.[25,26]  

Apart from causing divergence in the derivative couplings, conical intersections have another 

distinguishing feature, a wave function phase known as the Berry phase.[37] The Berry phase 

changes sign for electronic eigenfunctions that have completed a loop around an odd number of 

conical intersections.[26] This phase must be carefully monitored in post-BO schemes to ensure 

that one stays in the correct reaction channel during nuclear dynamics. Conical intersection 

location schemes are based either on locating derivative divergences or the change in sign in the 

Berry phase.[25]  

1.3 Methodologies beyond the Born-Oppenheimer approximation 

To provide context and contrast to the non-adiabatic methodology used in this thesis, we will 

briefly describe other methods of solving potential energy curve problems near conical 

intersections. The usual method to overcome the divergent non-adiabatic coupling terms is to 

consider a transformation from the adiabatic basis to a diabatic basis, that is a set of functions 
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that are strictly independent of nuclear coordinates.[37] We briefly show that through such 

transformations, one can, at best, only achieve a quasi-diabatic basis set, nearly independent of 

nuclear coordinates for a region of configurational space. 

Can one get rigorously diabatic states through a transformation of adiabatic states? The answer is 

a very restricted “yes”. It is possible to build diabatic states from an orthogonal transformation of 

a small subset of adiabatic states such that the derivative couplings vanish, at least in a finite 

region of configurational space.[38] This small subset would typically contain strongly coupled 

states, well-separated from all others in a relevant range of nuclear coordinates. The 

transformation matrix can then be applied to the strongly coupled adiabatic basis functions. For 

instance in the case of a two-state problem, the diabatic basis functions, (φ1
d, φ2

d), would be 

obtained from the strongly coupled adiabatic solutions, (φ1, φ2) by applying a transformation 

matrix: 

(
φ1
d

φ2
d
) = ST(𝐐) (

φ1
φ2
)  Equation 7 

where the “rotation” transformation matrix is given as: 

S(𝐐) = (
cos α(𝐐) sin α(𝐐)
− sin α(𝐐) cos α(𝐐)

) Equation 8 

where the mixing angle, α(Q), rotates the system in the two states’ internal coordinate space, Q. 

The purpose of this transformation is to eliminate the derivative couplings Fij,[38]  at least over 

some region of the Q-space. This is achieved by choosing the rotational angle, α(Q), as follows 

[39]:  

𝐅ij
d = −∇𝐐α(𝐐) + 𝐅ij = 0  Equation 9 

If we restrict ourselves to a single nuclear coordinate, the mixing angle obtained by the 

integration of Equation 9 produces a set of basis functions that are diabatic along that nuclear 

coordinate.[38] Most reactions require multiple coordinates for their description and therefore 

the applicability of this procedure is restricted to diatomic molecules. 
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If we do not restrict integration to a single dimension, the mixing angle, α(Q), may be path 

dependent. The path dependence can be avoided if the complete set of interacting electronic 

states is included in the transformation matrix S(Q), which, for all but very simple systems, 

contradicts our choice of a small subset. Thus, in general, rigorously diabatic basis sets produced 

from a finite adiabatic basis set do not exist.[38] There are, however, several methods to create 

“quasi-diabatic basis sets”. Indeed, the recent literature on new diabatization schemes involves 

quasi-diabatization schemes.[38-44] Quasi-diabatic states still give non-zero derivative 

couplings, but the singularity in Equation 6 is removed and the remaining couplings are 

considered ‘small’ for most applications. 

There are, in general, two approaches to quasi-diabatization. The first is known as dynamical 

diabatization which minimizes the non-adiabatic coupling terms so they may be neglected or 

accounted for perturbatively.[39] The second is known as structural diabatization and it aims to 

find a new wave function whereby the electronic structure maintains certain characteristics 

throughout the region where the adiabatic solution changes rapidly.[40,41] We briefly explain 

the basic concepts for each approach in the following subsections. 

1.3.1 Dynamical quasi-diabatization 

The dynamical quasi-diabatization schemes separate the derivative coupling into a removable 

part and a non-removable part.[45] There will always be residual couplings due to the finite basis 

set; this forms the non-removable part. The schemes in the literature are distinguishable by how 

much of the removable coupling they eliminate.[38] An example of a dynamical quasi-

diabatization scheme focuses on the vicinity of a conical intersection and restricts the coordinates 

to a plane, or a hyper plane, containing the conical intersection.[39] The choice of coordinate 

system determines in which coordinate the derivative coupling is singular. If one uses the so-

called branching space, where the local degeneracy of the crossing states is removed linearly, the 

singularity can be removed. Equation 9 is then rearranged as [39]: 

𝐅ij
d = [−∇𝐐α0(𝐐) + 𝐅ij] − ∇𝐐α1(𝐐) = 𝐅̃ij − ∇𝐐α1(𝐐) Equation 10 

In this equation, the mixing angles α0 and α1 eliminate the singularity and the remaining 

removable part respectively. Since 𝐅̃ij is not singular, one can use Helmholtz’s theorem to 
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decompose the derivative coupling (Equation 10) into longitudinal and transverse parts.[42,43] 

Specifically, the Helmholtz theorem states that a vector field can be represented as the sum of 

two vectors, one of which has zero curl and the other has zero divergence.[46] The 

decomposition can be rearranged in terms of a scalar potential, β(Q), and a vector potential, 

A(Q):  

𝐅̃ij = 𝐅̃ij
lon + 𝐅̃ij

tra = ∇β + ∇ × 𝐀 Equation 11 

where F̃ij
lon corresponds to the longitudinal part and F̃ij

tracorresponds to the transversal part. One 

may take full advantage of this theorem and compute the divergence of the derivative couplings 

in Equation 10, by solving the following Poisson equation for β numerically [47]: 

∇F̃ij = ∇F̃ij
lon = ∇ ∙ ∇β = 0  Equation 12 

In this way, the singular and longitudinal parts of the derivative coupling are removed, but the 

transversal derivative coupling remains. There are also residual couplings from solving Equation 

9 in a restricted coordinate space. As a result, the new basis set is not strictly diabatic. However, 

these remaining derivative couplings can either be considered negligible or accounted for 

perturbatively.[43] This method is highly accurate because it directly calculates the derivative 

couplings. A serious disadvantage for this method, however, is the computational expense of 

calculating these couplings directly. 

Another dynamical scheme proposed by Thiel and Köppel only requires knowing the adiabatic 

potential energy surfaces.[43] The procedure relies on the assumption that the coupled states are 

energetically well separated from all others. They use a transformation matrix as in Equation 8 

with an approximate mixing angle, assuming the residual derivative coupling is negligible.[43] 

This method is inherently more approximate, but the adiabatic potential energy surfaces are 

easier to calculate than the “exact” derivative couplings. 

1.3.2 Structural quasi-diabatization 

Under diabatization schemes that consider the electronic structure, we find Atchity and 

Ruedenberg’s concept of configurational uniformity [40], furthered in the so-called ‘fourfold 
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way’ by Truhlar and co-workers.[41,44,48] They consider a set of N adiabatic states, {φi}, which 

are all described in terms of the same set of M orthonormal electronic configurations, {γj} (the 

latter being molecular states given by Slater determinants built with molecular orbitals {ukj}). 

That is to say, each adiabatic state is represented as a superposition of electronic configurations 

with expansion coefficients {cij}:  

φi =∑cjiγj

M

j

 Equation 13 

A function built in this manner resembles those used in the post-Hartree-Fock multi-

configurational self-consistent field. Within the set of M configurations there are subsets that are 

particular to each molecular electronic state. The subset represents a small number of {γj} 

configurations that dominate the electronic structure of that state.[40] Any changes in electronic 

structure are due to the changes in the configurational expansion coefficients. In this context, it is 

said that there is ‘configurational uniformity’ if the dominating {γj} configurations remain the 

same along a given path in nuclear configurational space, thus giving rise to an electronic φi 

solution that is in practice a diabatic state.[40] The molecular orbitals, ukj, that would generate 

these γj electronic configurations are found by maximizing the functional J1 which is the sum of 

occupation numbers, pkk
j

, while varying the molecular orbitals {ukj}, in an adiabatic state, φi: 

J1 =∑∑(pkk
j
)2

M

i

η

k

,       Equation 14.1 

J1
∗ = max

{ukj}
 J1 Equation 14.2 

Normally, occupation numbers take integer values of 0, 1 or 2 representing how many electrons 

are in an orbital. In cases such as in Equation 13, where there is a multi-configurational 

description for the electronic eigenfunction, we may have fractional occupation numbers. The 

occupation numbers, pkk
j

, in Equation 14 are the diagonal elements of the electronic population 

density matrix, where η is the number of molecular orbitals and M is the number of electronic 

configurations γj. The quasi-diabatization must be extended to the {ukj} orbitals themselves since 
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they may not always lead to clearly dominant configurations upon which the diabatic states are 

built.[41]  

State-averaged “natural orbitals” can be used as diabatic orbitals where there is strong 

coupling.[49] Natural orbitals can be distinguished by the fact that they diagonalize the electron 

density matrix. They are not considered diabatic, however, if the diagonal elements of the 

density matrix are degenerate or nearly so. This problem is solved by modifying the state-state 

averaged natural orbital with a natural orbital diabatization functional.[41] This functional 

involves the diagonal elements of a density matrix that has been averaged over all states and is 

added to Equation 14. Maximization of the augmented functional still does not help to 

distinguish adiabatic from diabatic orbitals for some strongly coupled excited states because, in 

regions where their coupling dominates, the functionals for each type of orbitals are nearly equal.  

We may recall that the diabatic basis set is constructed from a small subset of electronic 

configurations; the most ‘diabatic’ set is then the smallest subset possible. (In the case of this 

thesis, the set will contain only two electronic diabatic states.) One technique [41] relies on the 

transition density matrix to build this optimal (minimal) diabatic basis set. The transition density 

matrix shows how many electrons in a molecular orbital ukm, for an electronic configuration γm, 

also appear in the orbital ukn for the γn configuration. A minimum diabatic basis set can then be 

ensured by maximizing the sum of diagonal elements in the transition density matrix. The so-

called “diabatization functional”, J2, is then maximized: 

J2 ={αON∑∑(pkk
j
)2

M

j

η

k

+ αNON∑(p̅kk)
2

η

k

+ αTD
2

N − 1
∑∑(pkk

mn)2
M

m<n

η

k

} Equation 15.1 

J2
∗ = max

{ukj}
 J2 Equation 15.2 

where the coefficients’ subscripts refer to occupation number (ON), natural orbital (NO), and 

transition density (TD), respectively. Each of αON, αNO, and αTD are arbitrary fixed coefficients 

that determine the contribution of each term to the diabatization. Whereas the occupation number 

term gives the density of electrons in an orbital ukj for a γj configuration, the transition density 
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term evaluates the how much electron density has been transferred from an orbital ukm to the 

orbital ukn.  

When the system has an odd number of electrons and the N states are strongly coupled, Equation 

15 cannot differentiate between adiabatic and diabatic orbitals. In other words, the functional 

produces similar values for diabatic and adiabatic basis sets for certain couplings of radical 

excited states. As a final correction, molecular orbital uniformity is enforced explicitly. In order 

to do this, a reference nuclear configuration is chosen, Qref, where diabatic states are 

approximately the same as adiabatic states. [41] At these nuclear coordinates, the condition that 

states interact weakly and Equation 15 is valid; the diabatization functional is then maximized 

and η diabatic molecular orbitals, {ukj}, are obtained for the γj configuration. If there are λ pairs 

of molecular orbitals with degenerate occupation numbers, then molecular orbital uniformity can 

be achieved by maximizing the sum of the squares of the orbital overlap at the reference 

geometry, Qref, and the nuclear geometry of interest. The λ molecular orbitals are a subset of the 

η and act as reference orbitals. Since this maximization changes the density matrices, the 

diabatization functional must be reapplied to the remaining η-λ molecular orbitals.[44] 

1.3.3 Other alternatives for studying molecular dynamics in multiple electronic 

states 

There are other methods that describe nuclear dynamics in a reaction by incorporating the 

interaction between several electronic states. For example, the surface hopping method uses 

classical nuclear trajectories on potential energy surfaces.[50] The trajectories may ‘hop’ to 

another surface depending on a transition probability. The usual method to determine the 

transition probability is to calculate the time-dependent Schrödinger equation along a 

trajectory.[51] It must be followed by a correction that takes into account that surface hopping 

tends to artificially transfer energy from the classically moving nuclei to the quantum 

electrons.[52] More recently, Cederbaum has devised a new method to get nuclear motions to 

proceed along a single potential energy surface.[8] The initial approach is still the same as in 

Equation 3, which is to represent the molecular Hamiltonian’s eigenfunction as a product, but as 

a single product instead of a sum of products. In order to achieve this, one introduces a modified 
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‘electronic’ Hamiltonian, H̅e, that includes operators based on the nuclear part of the molecular 

eigenfunction as indicated in Equation 16:  

H̅e = Ĥe −
ħ

M
(∇𝐐lnχ) ∙ ∇𝐐 + T̂N(𝐐) + CK Equation 16 

All variables are defined as before in Equation 3 and Equation 4; CK is a function of the total 

linear momentum. The total nuclear kinetic energy is a linear combination of the kinetic energy 

due to internal motions, T̂N(𝐐), and the kinetic energy associated with centre of mass translation. 

The electronic energy on which nuclear dynamics unfolds thus depends more explicitly on the 

nuclear coordinates. 

1.4 Generalized electronic diabatic model 

We can now contrast the previous approaches with the one followed in this thesis. In our present 

generalized electronic diabatic (GED) model, electrons are classified as quantum particles and 

the nuclei as classical (that is massless) background charges.[9] The electronic Hamiltonian is 

defined as: 

Ĥe(𝐪̂, 𝛏) = T̂e(𝐪̂) + V̂ee(𝐪̂, 𝐪̂′) + V̂eN(𝐪̂, 𝛏) + V̂NN(𝛏, 𝛏
′) Equation 17 

where V̂ee(𝐪̂, 𝐪̂′), V̂eN(𝐪̂, 𝛏), and V̂NN(𝛏, 𝛏
′) are, respectively, the electronic, the electronuclear 

and the nuclear-nuclear Coulombic operators. Our notation for the coordinate systems, {𝐪̂, 𝛏} 

differs from the previous sections to emphasize that the electronic coordinates are diabatic 

quantum operators, while the nuclear coordinates are classical. The set {ψj(𝐪̂)} are 

eigenfunctions of the electronic Hamiltonian calculated at a single point in nuclear space. Each 

eigenfunction, ψj(𝐪̂), is associated with a nuclear configuration ||𝛏j||. In turn this nuclear 

configuration corresponds to a minimum in an uncoupled diabatic potential energy curve, minξU, 

which we call an attractor [8-13]: 

Ĥe(𝐪̂, 𝛏𝐣)ψj(𝐪̂) = Ej(𝛏j)ψj(𝐪̂) = min𝛏 {Uj(𝛏, [ψj(𝐪̂)])ψj(𝐪̂)} Equation 18 

where the diabatic potential energy function, Uj(𝛏), is computed from the ψj(𝐪̂) function 

evaluated at the attractor of interest: 
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〈ψj(𝐪̂)|Ĥe(𝐪̂, 𝛏)ψj(𝐪̂)〉 = Uj(𝛏, [ψj(𝐪̂)]) Equation 19 

There exist two types of attractors. The first is associated with bound states, with a confining 

potential energy functional. The second corresponds to unbound states or asymptotically 

separated species where the potential energy describes a continuum.[9] In our approach, the 

eigenfunctions calculated at geometries other than those corresponding to a given attractor, for 

example, at the attractor corresponding to a different electronic species, will still produce the 

same set, although their energy ranking may differ. These electronic eigenfunctions are strictly 

diabatic by construction, as they are evaluated at a single nuclear attractor configuration 𝛏𝐣, and 

thus completely independent of nuclear coordinates. On the other hand, the potential energy 

functional then depends on nuclear coordinates through the electro-nuclear and nuclear-nuclear 

Coulombic operators.  

Each resulting eigenfunction, ψj, represents an electronic “diabatic state” of an isolated 

molecule. Without some external factor, there is no physical reason for a transition to even take 

place between states. That factor is introduced by an external field vector potential operator, 

𝐀̂.[9] Using Maxwell’s equations of electromagnetism [46], we can relate this operator to an 

external electric field  and a magnetic field with the following identities: 

𝐄̂ = −(
∂𝐀̂

∂t
+ ∇V̂) Equation 20 

𝐁̂ = ∇ × 𝐀̂ Equation 21 

whereby 𝐄̂ is the operator for the electric field and ∇V̂ is the gradient of the scalar electric 

potential with respect to the all displacement coordinates, 𝛏 and 𝐪̂. The external field vector 

potential operator couples with the electronic momentum to produce an effective kinetic energy 

operator [8,9]: 

T̂e(q̂) =
1

2me
(𝐩̂e −

e

c
𝐀̂(𝛏, t))

2

 Equation 22 

In this equation, 𝐩̂e is a vector operator of one-electron momentum operators, that is 

−iħ(∇1, ∇2…∇n). If we limit ourselves to weak fields and neglect the ||𝐀̂(𝛏, t)||2 terms as being 
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too small, we may regain the original electronic kinetic energy operator and define an external 

field potential operator as [9]: 

V̂e−field ≈ −
e

mec
𝐀̂ ∙ 𝐩̂e Equation 23 

In the GED approach, this operator is the “external force” solely responsible for coupling the 

diabatic states. The actual molecular electronic states are coherent superpositions (or mixed 

states) of these diabatic basis functions where the coefficients depend on the nuclear coordinates 

and the external field: 

Φ(𝐪̂, 𝛏) =∑cs(𝛏, 𝐀̂)

s

ψs(𝐪̂) Equation 24 

With this formalism, reactions are represented as changes in the electronic state due to a shift in 

the coefficients {cs(𝛏, 𝐀̂)}, not the diabatic eigenfunctions {ψs(𝐪̂)}.  

Since the external field potential operator, V̂e−field, involves the electronic momentum, for a pair 

of diabatic states to be coupled they must have different parities with respect to an inversion, 

rotation or reflection in 𝐪̂-coordinate space.[10] If the diabatic states have the same parities, they 

would remain uncoupled even in the presence of an external field. In this case, a third diabatic 

state with a different parity must be introduced for a reaction, that is a change in quantum state, 

to occur.[8-14] While there may be a manifold of diabatic states, constraints such as boundary 

conditions and accessible windows of energies indicate that a finite set of diabatic functions may 

be sufficient to describe a significant range laboratory observations.[11]  

In practice, a minimalist set of diabatic functions is chosen depending on the reaction paths to be 

studied. In this thesis, we consider two types of transitions between two diabatic states: 

1. a simple dissociation process, where the bound state’s spatial parity is different from the 

unbound state.  

2. a transition between two bound states representing an isomerization. In a reaction between two 

closed-shell species, the parity would be even with respect to 𝐩̂e and thus their coupling would 
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vanish. As a result, a simple two-state model of isomerization requires that we consider radical 

(unpaired spin) species. 

The diabatic states, {ψj(𝐪̂)}, diagonalize the Hamiltonian matrix at any nuclear configuration. 

[9-12,14] One can represent a Hamiltonian operator at any 𝛏 as a perturbed Hamiltonian at an 

attractor, say 𝛏i, that is, treating the difference between 𝛏 and 𝛏i as a first order perturbation ΔU. 

Since the set {ψj(𝐪̂)} are eigenfunctions of Ĥe(𝐪̂, 𝛏i), and ∆U(𝛏i, 𝛏, 𝐪̂) has the same symmetry as 

Ĥe(𝐪̂, 𝛏i) in electronic and nuclear coordinates, the following equality holds: 

〈ψj(𝐪̂)|Ĥe(𝐪̂, 𝛏i)ψi(𝐪̂)〉 = 〈ψj(𝐪̂)|∆U(𝛏i, 𝛏, 𝐪̂)ψj(𝐪̂)〉 = 0 ⇔ i ≠ j Equation 25 

This shows that, although they may be energetically ‘shuffled’, that is ordered differently in their 

eigenvalues, the same diabatic states are found regardless of the attractor’s location. In other 

words, we need only compute these states at a single nuclear configuration, for simplicity, the 

attractor configurations, 𝛏i, for each relevant chemical species. 

The external field potential operator and the electronic Hamiltonian now define the full 

electronic Hamiltonian denoted by Ĥfull. For a two-state model in an external field, the full 

Hamiltonian matrix one must diagonalize in order to obtain an effective potential energy surface 

takes the form 

[Ĥfull(𝐪̂, 𝛏, Â)] = [
H11 H12
H12 H22

] , where Hij = ⟨ψi(𝐪̂)|Ĥfull(𝐪̂, 𝛏, Â)ψj(𝐪̂)⟩   Equation 26 

From the equality given in Equation 25, it is clear that the off-diagonal term H12, in Equation 26, 

is entirely due to the external field potential operator, while the diagonal terms depend only on 

Ĥmol. In other words, we find the following matrix elements: 

[
H11 H12
H12 H22

] = [
U1 V12
V12 U2

] Equation 27 .1 

Hii = Ui = ⟨ψi(𝐪̂)|Ĥmol(𝐪̂, 𝛏, Â)ψi(𝐪̂)⟩, ⟨ψi(𝐪̂)|V̂e−field(𝐪̂, 𝛏, Â)ψi(𝐪̂)⟩ = 0 Equation 27 .2 
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H12 = V12 = ⟨ψ1(𝐪̂)|V̂e−field(𝐪̂, 𝛏, Â)ψ2(𝐪̂)⟩, ⟨ψ1(𝐪̂)|Ĥmol(𝐪̂, 𝛏, Â)ψ2(𝐪̂)⟩ = 0  Equation 27 .3 

Since V12 is proportional to the external field vector, for simplicity, we shall call it the “external 

field coupling”. The effective or full potential energy surface is then given by the lowest 

eigenvalue of Equation 27.1 [9,13,15]:  

Efull(𝛏) = U1 +
1

2
[∆U12 − |∆U12|√1 + 4 (

V12
∆U12

)
2

] Equation 28 

where Ui = Ui(𝛏), while V12 may or may not depend on 𝛏-configurations, depending on the 

chosen model. We can build effective potential energy surfaces quantum mechanically through 

the construction of the diabatic states and positioning of the system’s nuclei as done in sections 5 

and 6. To discover general trends in the effective potential energy surfaces, however, we can use 

semi-classical functions to represent the potential energy curves for the reactant and product. All 

of these ideas are developed fully in the following sections of this thesis. 
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2. Objectives 

The main purpose of this thesis is to investigate the effects of various external field couplings on 

a manifold of semi-classical models associated with both simple dissociation and isomerization 

reactions. We will characterize some aspects of the topology of all the possible potential energy 

curves Efull(𝛏) (see Equation 28) in the external field, and then organize the two-state models into 

“phase diagrams” according to these topological features. These diagrams convey qualitatively 

the effective potential energy curve’s dependence on the shape and intensity of the external field, 

as well as the uncoupled diabatic potential curves {Ui}.  

To complement these semi-classical models, we shall illustrate an implementation of the 

generalized diabatic model by applying it to the hydrogen boronitride radical isomerization 

(HBN ⇄ BNH). In order to describe this concrete example from a quantum mechanical 

perspective, the diabatic electronic states associated with the attractors are built on an optimal 

grid of floating Gaussian orbitals. We focus solely on the diabatic states and potential energy 

curves as we consider the isomerization to be controlled by a variable external electric field. The 

uncoupled diabatic potential energy curves corresponding to the radical isomerization are 

constructed using various tentative paths in nuclear configurational space, loosely speaking 

“nuclear trajectories”, while the Gaussian orbital positions in the grid are fixed. The different 

“trajectories” will permit a glimpse of which electronic state dominates the superposition of 

electronic eigenfunctions for different points in the nuclear configurational space. We explore 

how this description depends on the chosen basis set and the choices of grids for the floating 

Gaussian orbitals. We present those approaches as a prototype calculation that illustrates how to 

construct and use a diabatic basis set.  
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3. Semi-classical models and methodology 

In the next few subsections of this section, we discuss in detail how the characterization and 

classification of effective semi-classical potential energy surfaces into “phase diagrams” are 

implemented in practice. These phase diagrams will be generated by applying various models for 

the external field on a manifold of chemical processes involving two diabatic quantum states. 

Results of this approach will be discussed in detail in section 4. In section 5, we contrast this 

semi-classical approach with a possible fully quantum mechanical formalism involving the 

construction of actual electronic diabatic eigenfunctions, that is, a nuclear coordinate 

independent basis set built on a grid of fixed atomic orbitals. For the sake of clarity, the 

methodology for the fully quantum model will be discussed in its corresponding section. 

3.1 Semi-classical models 

For bound states, energy minimization algorithms ensure the neighbourhood around each 

attractor is, in a first approximation, a harmonic minimum.[12] It is, therefore, a reasonable 

approximation to represent semi-classically the uncoupled diabatic potential energy surfaces as 

quadratic functions. In our case, the external field coupling will give rise to any anharmonicities. 

For the purpose of observing the trends in a large set of effective potential energy surfaces, two 

types of semi-classical potentials suffice. We shall denote the uncoupled reactant as U1 and the 

product as U2.  

For a dissociative model, the product’s diabatic potential can be represented by a decaying 

exponential or the repulsive part of a Lennard-Jones potential function (see Figure 2A). The 

exponential has convenient mathematical properties while the repulsive Lennard-Jones is 

empirically more reasonable. For the radical isomerization model, a shifted harmonic represents 

the product’s diabatic potential (see Figure 2B). In both models, the reactant’s diabatic potential, 

U1, is given by a harmonic potential. In summary, the functions chosen to represent the diabatic 

potentials are:  
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U1 =
1

2
kx2 Equation 29 

 

Dissociative U2 =

{
 
 

 
 

se−x + t
 

s(x + r)−10 + t
 

s(x + r)−12 + t

 

Equation 30 

Equation 30 

Equation 30 

.1 

.2 

.3 

Isomerization U2 =
1

2
s(x − r)2 + t Equation 31  

The parameters k and s can be likened to force constants. The variable x and the constant r 

represent relative nuclear displacements, while t is comparable to a zero-point energy. For 

simplicity, we confine ourselves to the cases where both r and t are positive.  

To characterize these semi-classical potentials, another useful parameter would be the height of a 

pseudo reaction barrier, ∆, that is to say, the energy difference between the crossing point of the 

uncoupled diabatic potentials, where U1 = U2, and the zero-point energy of the product, t (see 

Figure 2). We refer to it as a pseudo barrier because the potential curves, U1 and U2, are 

uncoupled; there can be no reaction. It does, however, provide a useful comparison to the actual 

reaction barrier present in the effective potential energy curve which can be modified through 

manipulation of the external field coupling V12.  

Although the position and height of the pseudo barrier is easily determined for our radical 

isomerization model, the same cannot be said of the dissociative model, since then equality 

U1=U2 is a transcendental equation. We can however estimate the barrier height in some limit 

cases. A simple mathematical analysis of Taylor series leads us to the following results [15]: 

for large k and U2 = se
−x + t,we find: ∆≈ s − s√

2t + 2s

k
+
st + 2s2

k
 Equation 32 .1 

for small k, then ∆≈ e
−√

2t
k  

Equation 32 .2 

for large k and U2 = s(x + r)
−2p, we find: ∆≈

s

r2p
− 2psrp+3√

2(s + t)

k
 Equation 32 .3 
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for small k, ∆≈
s

2
(√

2t

k
+ r)

−2p

 (t ≠ 0) Equation 32 .4 

The manifolds of semi-classical models were built in one dimension in increments along the 

nuclear coordinate, Δx = 0.05 and Δx = 0.1, for the isomerization and the dissociative models 

respectively. The independent variable, x, which shall henceforth be called the nuclear 

coordinate, can represent distance along a vibrational mode. For example, in the dissociative 

model, x can be related to a bond elongation. As discussed in a following subsection, the 

interpretation and role of this elongation changes depending on the molecular orientation. 

In the dissociative model (limx→∞ U2 < ∞), the product’s force constant, s, and the separation 

along the nuclear coordinate, r, in the Lennard-Jones type potentials (Equation 30.2, 30.3) are 

fixed as s = 1, r = 1. For the radical isomerization model (limx→∞ U2 → ∞), in order to make the 

distinction between an uncoupled potential corresponding to an excited state and an 

isomerization, the following inequality must be obeyed: 

k ≥
2t

r2
 Equation 33 

This ensures U2(r) ≤ U1(r), where r is the location of the product attractor, the U2 minimum. 

According to Equation 33, the product’s attractor is allowed to lie on the reactant’s diabatic 

curve, but it is not contained by the reactant’s diabatic curve. When both force constants are 

independently varied through the range k, s ϵ [0.1; 20], the product’s zero-point energy, t, is kept 

fixed. As the product’s zero-point energy is scanned as 0 ≤ t ≤ 50, the product’s force constant, s, 

is either fixed or a multiple of the reactant’s force constant, k. The range for the reactant’s force 

constant is increased to [0.1; 100] to compensate for the reduced parameter space when scanning 

t. Similar steps were taken when the field coupling intensity was varied. Typical examples of k, 

s, t, r values are illustrated in Figure 2.  
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A: Dissociative model 

 

B: Isomerization model 

 

Figure 2. Semi-classical model parameters 

U1 and U2 represent the reactant and product’s uncoupled diabatic potential energy curves 

respectively. ∆ is the pseudo-barrier of the reaction, the value of the reaction barrier in the limit 

of zero field. The parameter t is the product’s zero-point energy and r is the distance along the 

nuclear coordinate x between the two diabatic eigenfunctions.  
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3.2 Modeling the external coupling 

Considering the ever-growing number of experiments demonstrating how reactions can be 

controlled via tuning of a laser [4,8,53], it is thus desirable to explore several different types of 

external field couplings. For example, a constant field coupling can be related to field produced 

by a catalyst’s flat surface (see Equation 34.1). We may expand upon this analogy to include 

surface defects by making the V12 coupling a discontinuous (Equation 34.5) or a non-smooth 

function (Equation 34.6). The discontinuous field coupling can also represent a different 

crystallographic plane (or facet) found on a surface.[54,55]  

The function describing the field coupling, V12, will also depend on the molecule’s orientation in 

the field. For example, if a diatomic’s dissociation occurs parallel to the catalyst’s surface, the 

field coupling is constant. (The assumptions are that the bond-breaking leads to adsorbed 

species, each remaining at the same distance from the surface as for the reactant species, hence 

leading to a uniform V12 value for both states involved.) If, however, the dissociation occurs 

perpendicularly to the surface, within a certain range, the field coupling may be approximated as 

linear (see Equation 34.2, Figure 3).  

Other functional representations for V12 are also worth considering. Scanning tunneling 

microscope (STM) tips have been found to accelerate adsorption onto surfaces.[56] The field 

coupling produced by an STM tip is locally strong, falling rapidly to zero away from the tip and 

may thus be modelled by a Lorentzian function (Equation 34.4). An inverse Lorentzian function 

(Equation 34.3), which is locally weak and nearly constant everywhere else, can describe a flat 

capacitor with a small hole or defect. In summary, these are the model V12 couplings that we will 

test and explore in this thesis: 
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V12 =

{
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

a Equation 34 .1 

ax + b Equation 34 .2 

a(x − c)2

b + (x − c)2

 

 Equation 34 .3 

a

1 + b(x − c)2
 Equation 34 .4 

a1 (x ≤ x
∗), a2 (x > x∗) Equation 34 .5 

a1x + b1 (x ≤ x∗), a2x + b2 (x > x∗)|(a1 − a2)x
∗ = b2 − b1 Equation 34 .6 

 

We shall refer to the external field coupling parameter ‘a’ as the external field coupling intensity. 

We do not explicitly explore external field couplings of degree larger than two in nuclear 

coordinates, x. We can deduce, however, from Equation 28, that the effective reactive potential 

converging with the lowest uncoupled diabatic potential curve – as the nuclear coordinate goes to 

infinity – is now uncertain. This is due to the asymptotic limit of the term (
V12

∆U12
) not reaching 

zero if V12 is of degree larger than two. By examining external field couplings of order less than 

two, we further restrict ourselves to Efull potential energy curves where the reaction is bound, that 

is trapped as a single minimum at very high field intensities.  
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A. Linear V12 

 

B. Constant V12

 

Figure 3. Molecular orientation and shape of external field coupling 

The external field strength of a supporting surface is inversely proportional to the distance from 

that surface. The field coupling potential is represented by the dashed grey line. In A, the active 

bond is perpendicular to the surface, then, for a certain range of nuclear coordinates, we can 

approximate the field strength and the field coupling potential as a linear function. In B, 

however, the nuclear motion is parallel to the surface, the dissociation occurs in a field of 

constant strength, and in turn the field coupling potential V12 is constant as well. 
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3.3 Characterizing the potential energy surfaces: a simple topological phase 

diagram 

The basic information conveyed by critical point topology, or “Morse theory”, is the total 

number of maxima and minima found on the potential energy surface [57]. This topological 

index serves as rough guide on whether, with such system and field parameters, a reaction is 

feasible. We shall denote the topological index that is the number of non-trivial extrema as μ, 

that is excluding the asymptotic extrema for x → ±∞. We may extend this idea to a manifold of 

models to create “phase” diagrams, or simple topology maps in a two parameter space. Initially 

we chose the reactant’s force constant, k (Equation 29), and the pseudo-barrier, Δ, as the two 

parameters. In other words, the (∆,k)-plane is partitioned into regions, or phases, where the 

manifold of two-state models gives rise to effective potential energy functions Efull with the same 

topological characteristics, that is the same μ-index. In some practical applications, however, it is 

more important to understand how the potential energy surface changes with a field intensity 

parameter. In these cases, topology maps in the (a,k)-plane, corresponding to the reactant’s force 

constant and the field intensity, were also created.  

In terms of extracting the topological information using the derivative of the equation for the 

effective potential energy surface, the simplicity of the model diabatic potential energy curves is 

deceptive. Excepting those models with some symmetrical feature and a linear or constant 

external field coupling, finding the number and type of critical points becomes a numerical 

approximate procedure for an already approximate model. 

Numerical methods to determine the number of extrema using the derivative of Equation 28 

require a range or a starting point; whether the method converges to a particular value is not 

always guaranteed. Evaluating the derivative of the effective potential energy curve analytically 

is only helpful in determining the number of extrema in the most symmetrical cases. 

Numerically, a critical point is obtained by analyzing the slope of two consecutive points and 

comparing it to that of a previous pair of points. In other words, a local critical point is located 

numerically if the following conditions are found (see Figure 4):  
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A: Dissociative model 

 

B: Isomerization model 

 

Figure 4. Applying an external field coupling and extracting topological features 

This figure illustrates the Efull potential energy surfaces generated by applying a constant external 

field leading to V12 = 1 (A) and 50 (B) to the systems shown in Figure 2. The resulting Efull curve 

A has two minima and a maximum corresponding to an effective reaction barrier. In contrast, the 

Efull curve B shows a single minimum. All local extrema are indicated by bold crosses. Our 

topological classification then assigns them the codes μ = 3 and μ = 1, respectively. Trivial 

(asymptotic) extrema are not counted in the classification. The next task is to obtain this 

classification by an efficient computational algorithm.   
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Efull(xi) ≤ Efull(xi + ∆x) and Efull(xj) ≥ Efull(xj + ∆x), j > i (a maximum) Equation 35 .1 

Efull(xi) ≥ Efull(xi + ∆x) and Efull(xj) ≤ Efull(xj + ∆x), j > i (a minimum) Equation 35 .2 

Each topological map is drawn with at least 40 000 model effective curves (see Figure 5). It is 

not necessary, however, to show all 40 000 models as points on the topological map. We need 

only the set of models that determine the border of a topological phase. The manifold of models 

is scanned along two parameters; whenever a model gives a topology that is different from the 

previous model, that model is recorded. 

The increasing roughness of the borders between topological phases at low force constants can 

be corrected by lowering the force constant increment, ∆k, in that region of the phase diagram. 

On the other hand, roughness at higher force constants is due to the potential energy curve 

scanning increment not being small enough. Especially for the dissociative model, as the force 

constant increases, relevant topological features (the location and number of critical points) 

become so compressed in space that they are no longer detected by a certain ∆x. While this can 

lead to miscategorising the topology of a model under a particular field, one might also present 

the argument that the overlooked features correspond to models with extreme k, ∆ values that are 

not physically relevant. 

All effective potential energy curves, Efull, and topological maps in the (∆,k) and (a,k) spaces 

were made using a Fortran programme the author designed. The code for the programme can be 

found in appendix A1. 

Figure 5 shows a typical example of the (∆,k) plane for a collection of two-state models of 

isomerization with the range of k ≤ 100 and t ≤
kr2

2
. In this case, the external field coupling is 

linear in the elongation variable: V12 = 10x. The top diagram gives the location of three 

illustrative examples of Efull, having different topological μ-labels. The bottom diagram shows 

the final phase regions, where we can recognize the location of the three Efull curves highlighted 

before. The topological phases are simply labelled by the total number of critical points, μ. 
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Figure 5. Constructing phase diagrams 

The top diagram gives the parameter space studied and three examples of Efull curves. The 

number of local extrema on the effective potential energy surface determines which phase the 

model belongs to. The bottom diagram gives the partitioning of the (∆,k) space into three 

topological phases, using the topological index, μ, previously defined as the total number of non-

trivial critical points. A regularized scan of model parameters is done first in order to determine 

how many different or separate phases there are. We use a finer scan to identify the phase 

borders. For example there appears to be a small region at low k
1/2

 where μ = 1 and μ = 2, these 

are artifacts due to the local minima lying outside the range of x scanned  
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4. Results and discussion: semi-classical models 

According to Equation 28, for a dissociative model under a field that reaches a constant value at 

infinite distance, the effective potential energy, Efull, converges with the product’s attractor (see 

Figure 4A). For the isomerization model (Equation 30, Figure 4B), the effective potential 

converges with the lowest diabatic potential. The situation differs when the field coupling does 

not reach a constant, in a linear V12 coupling for example. As can be seen in Figure 6, the 

dissociative model does not converge with the product’s attractor in the limit of infinite distance. 

Rather, the effective potential energy, Efull, converges to a new value (see Equation 36) which 

also depends on the field coupling’s intensity and the reactant’s force constant: 

lim
x→∞

Efull = t −
2a2

k
,where t = lim

x→∞
U2 Equation 36 

A similar adjustment to the isomerization’s effective potential can be given as 

lim
x→∞

Efull = min{U1, U2} −
2a2

|k − s|
 Equation 37 

The following equation rearranges the derivative of the effective potential energy in order to 

locate its roots: 

V12
2 (U2

′ + U1
′ )2 − 2V12V12

′ (U2
′ − U1

′ )(U2 − U1) − 4V12
2 V12

′2 +
       U2

′U1
′ (U2 − U1)

2 = 0  
Equation 38 

The largest power in Equation 38 determines the number of roots, thereby giving the number of 

extrema on the effective potential energy curve. Looking first at the dissociative model (Equation 

30), we can only comment on the topological behaviour in the limits of the field intensity, since 

the number of critical points must be obtained numerically. Inserting the exponential form of 

Equation 30 into Equation 38, we have the following:  

a2(kx − se−x)2 − 4ksxe−x (se−x + t −
1

2
kx2)

2

= 0 Equation 39 

In Equation 39, we recover the attractors and the diabatic crossing in the limit of zero field 

(V12→0). At the opposing limit of infinite field, we are faced with another transcendental 
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equation which, if we approximate the exponential as a truncated Taylor series, gives the 

position of the single minimum as 

x = k + s ± √k2 + 2ks + s2,   if k ≥ −s + s√2 Equation 40 

While we cannot perform the same analysis for the Lennard-Jones type diabatic potential energy 

function U2 for the product, we can content ourselves in the knowledge that the trends are similar 

to the exponential version of U2.  
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Figure 6. Linear vs constant coupling: dissociative model potential energy curves 

In Figure 6, U1 is given by 
1

2
4x2, and U2 is given by e

-x
. Unlike the effective potential energy 

surface under a constant field coupling, the effective potential energy Efull under a linear field 

coupling does not converge with the dissociated product’s attractor, t. Instead it converges to a 

lower value that depends both on the reactant’s force constant and the field intensity ‘a’ of the 

external field coupling (see Equation 36). 
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4.1 Two-state dissociative model 

4.1.1 Constant field coupling 

Figure 7 demonstrates that since the pseudo-barrier, ∆, is higher for larger force constants, a 

higher field intensity is necessary to suppress it. According to the uncoupled diabatic potentials, 

the topological index, μ, for low constant field intensities should be 2, that is a local minimum 

and a local maximum excluding the asymptotic extrema as x → ± ∞. The topological map, given 

in Figure 7, shows that a topological index, μ = 3 dominates the (Δ,k) space for the lowest field 

coupling. The case of μ = 2 is still found at low intensities for the exponential model of U2, but 

the applicable intensities for this μ-value are much lower (see Figure 8). The intensities required 

to observe a phase with μ = 2 with the repulsive Lennard-Jones model for U2 are lower still. This 

is a natural consequence of the lower barriers exhibited in these models. A μ = 3 phase, which 

occurs at low to intermediate field intensities, is due to a small shallow minimum that appears a 

finite distance after the barrier. Whether or not this shallow minimum can ‘trap’ the dissociated 

products within a fixed distance of each other will depend on the actual nuclear dynamics for the 

nuclear masses. 
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Figure 7. Effects of increasing coupling intensity: (Δ,k) space, dissociative model, U2 = se
-x 

+ t 

In Figure 7, larger pseudo-barriers occur for larger force constants and for lower product zero-

point energy. The upper border of the parameter space corresponds to t = 0 while the lower 

border corresponds to t = 50. The border between regions with topological indices μ = 1 and μ = 

3 shifts to larger force constants as the field coupling intensity increases.  



36 

 

 

 

Figure 8. Topological phases at low field intensity: (Δ,k) space, dissociative model 

There is a factor of two orders of magnitude between the constant field couplings necessary to 

see the border between the phases with μ = 2 and μ = 3 in the same region of the (Δ,k) space as 

the border between μ =3 and μ =1 (see Figure 7).  
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4.1.2 Linear field coupling 

For linear field couplings, we can observe a region with μ = 0, that is, with no critical points for 

finite x. This index implies that the reaction is spontaneous and unbound. In the (a,k) space, this 

new topological index occupies a narrow part between two regions of μ = 2 (see Figure 9). As 

seen in the potential energy curves, μ = 0 is the result of the reactant’s attractor becoming an 

inflection point instead of a minimum. This inflection point appears when the nuclear 

coordinates for the attractor and the field coupling’s intersection with the x-axis are the same. As 

the field intensity, a, increases, the reactant’s attractor becomes a transition structure, that is to 

say a maximum on the potential energy curve (see Figure 9). If we turn to the (Δ,k) space where 

the field has a small energy intercept, a topological region of μ = 4 appears (see Figure 10A). We 

might expect the additional extrema to appear near the reactant’s attractor as a result of the field 

coupling’s potential not quite coinciding with a diabatic attractor. This is not the case; new 

topological features occur on the product’s side of the pseudo-reaction barrier. Again, whether or 

not these features correspond to certain geometries being trapped experimentally will depend on 

the nuclear dynamics for the nuclear masses.  
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Figure 9. Increasing the V12 field coupling intensity, a, in the linear field coupling for the 

dissociative model  

As the field intensity increases, the reactant configuration transitions from a minimum to an 

inflection point and finally to a maximum (see inset). The parameter space shows two separate 

phases characterized by the topological index μ = 2. The corresponding minima in Efull, however, 

are quite different. The minimum on the effective potential energy curve is still situated at the 

reactant’s attractor for low-a field couplings. Beyond a critical field intensity ac, the minimum in 

Efull corresponds to a compressed bond, that is xmin < 0. 
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A 

 

B 

 

Figure 10. Effects of a small shift in the point where a linear V12 vanishes 

Figure 10 shows dramatic changes in the topological phases and the portion of parameter space 

that they occupy. The absence of μ = 0 for V12 = x – 0.01 (A) underlies the importance of 

keeping the point where V12(x) = 0 outside the range of relevant reaction coordinates for a 

barrier-less reaction as present in B.  
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4.1.3 Inverse Lorentzian field coupling 

For low intensities, the topological partitioning of (∆,k) space for an inverse Lorentzian field 

coupling resembles the phase diagrams for a constant field coupling (see Figure 11). To 

appreciate the difference despite the similar topology maps, some example potential energy 

curves are also given in Figure 12. The inverse Lorentzian field coupling (see Equation 34.3) is 

locally weak and, since it is centred at the reactant’s attractor, the diabatic reactant geometry is 

not as stable as under a constant field coupling. When the inverse Lorentzian field coupling’s 

intensity increases, the differences between the topological maps and the potential energy curves 

become more noticeable. Since the field coupling intensity is exactly zero at a single point (x = 

0) and greater than zero everywhere else, that point becomes the reaction barrier on the effective 

potential energy surface for a particular a ≥ ac value, a critical field intensity. This particular field 

coupling is therefore inefficient at producing a barrier-less effective potential energy curve, Efull. 

Equation 28 involves the square of the field coupling – the absolute value of the field coupling 

increases on either side of the point where V12 = 0 – thereby producing Efull curves with μ = 5 (3 

minima, 2 maxima). Additional minima form on either side of the reactant attractor when the 

inverse Lorentzian field coupling is centred on the reactant attractor. Unlike the linear field 

coupling, however, the inverse Lorentzian field coupling rapidly reaches a constant intensity. 

Thus the dissociated products will always reach their uncoupled diabatic zero-point energy at 

x→ ∞ instead of a lower value. Scaling with the experimental data will determine whether the 

additional minimum at x > 0 will accommodate vibrational states. Even if this minimum does not 

allow any vibrational states, its modest energy difference will affect nuclear dynamics via 

quantum scattering. 
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A Constant field coupling 

 

B Inverse Lorentzian field coupling 

 

Figure 11. Constant vs inverse Lorentzian V12 field couplings: (Δ,k) space, dissociative model 

In Figure 11, for low field intensities, the topological partitioning of the (∆,k) space for the 

constant (A) and inverse Lorentzian (B) field couplings do not differ greatly. This is in part due 

to the small difference between the maximum and minimum values found in the inverse 

Lorentzian field coupling.  
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A 

 
B 

 
C 

 

Figure 12. Constant vs inverse Lorentzian V12 couplings: dissociative model potential energy 

curves  

Although the topological index for the curves in A and B remain the same (μ = 3 and μ = 1 

respectively), it is clear that the effective potential energy curves can differ greatly depending on 

the |ΔU12| where the inverse Lorentzian is centred. Indeed, B has a larger |ΔU12| and the effective 

potential energy curve with the inverse Lorentzian coupling does not differ greatly from the 

curve produced by the constant field coupling. C exhibits μ = 5 with the inverse Lorentzian V12 

and μ = 1with a constant V12.  
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4.1.4 Lorentzian field coupling 

This V12 coupling produces a larger effect in both of the repulsive Lennard-Jones forms of the 

dissociated product’s diabatic potential than for the exponential form (see Equation 30). The 

phase diagrams with repulsive Lennard-Jones potentials have a larger barrier-less phase (μ = 1) 

and resemble the constant field coupling phase diagrams more closely (see Figure 13). Each 

form of the dissociation model has in principle an infinitely broad reaction barrier. In practice, 

however, there is a defined distance where the chemical species are considered dissociated. 

Alternatively there is a distance where the energy is degenerate or nearly degenerate with the 

system’s energy at infinite separation. The initial rate of decay in the exponential form of the 

product’s potential simply indicates that the ‘practicable’ barrier for the repulsive Lennard-Jones 

potentials are not as broad. With the exponential form, the barrier is broader, therefore to achieve 

a phase diagram with a similar or larger barrier-less phase, the field intensity, ‘a’, must increase 

or the intensity must decay more slowly. If the maximum of the Lorentzian field coupling 

coincided with the exact location of the diabatic crossing, the barrier-less phase would be larger. 

For a single molecule, this may represent an energetically efficient way of stabilizing a 

configuration. This field coupling would also be effective for selective adsorption or desorption. 

If we were to adsorb several molecules onto a surface, however, the constant field coupling V12 

represents a better choice. 
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Figure 13. Comparison between phase diagrams: Lorentzian vs constant field coupling for the 

exponential and Lennard-Jones form of U2. 

The borders given correspond to those separating the μ = 1 and μ = 3 phases, where μ = 1 is the 

region above and μ = 3 is the region below any given border. For simplicity, the borders between 

the μ = 2 and μ = 3 regions that occur with the Lorentzian field coupling have been omitted (they 

would appear for the largest k
1/2

 values and the smaller field intensity constant values). The 

larger difference in the phase border position with respect to the type of field coupling for the 

exponential form of dissociation is attributed to the larger barrier width. In comparison, the 

repulsive Lennard-Jones models have a much narrower barrier and a Lorentzian coupling is wide 

enough to be considered approximately constant everywhere. (In the case of the repulsive 

Lennard-Jones models, the abscissa is scanned for x > -1; in contrast, the exponential form of U2 

is scanned from x = -4.) 
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4.1.5 Discontinuous and non-smooth field couplings 

Both the discontinuous field coupling and the Lorentzian field coupling can be locally more 

efficient than the constant V12 field coupling. There is a portion of nuclear coordinate space that 

can be more stable than others because the field coupling is locally stronger there. Of course, the 

effective reaction features, that is the number and location of local extrema, will depend on the 

position of the discontinuity and the intensities of each section of the V12(x) function. We have 

observed previously that a constant field coupling shifts the most stable configuration to larger 

positive nuclear coordinates. By placing the discontinuity at the diabatic reactant configuration, 

that is at x = 0, and letting the V12 section for x ≥ 0 be greater than the section for x < 0, the 

barrier will disappear. This will only work if we find μ = 1 when a2 = a where a is the intensity 

for a global constant field coupling; otherwise the barrier still appears although it is much 

reduced. Alternatively we may greatly stabilize the reactant’s attractor and maintain the reaction 

barrier if the intensities of the sections corresponding to x ≥ 0 and x < 0 are reversed. If the 

purpose is to keep a single stable geometry, that is to trap the quantum system in a reactant-like 

state, this type of coupling is worth considering. The discontinuities in the field coupling 

translate to discontinuities in the potential energy surface. By increasing the number of 

discontinuities, we can produce a potential energy surface that resembles a series of finite wells 

(see Figure 14). For our discontinuous field coupling, regardless of the number of discontinuities, 

the V12 function is sectionally constant, therefore the product’s attractor will never be more 

stable than the reactants. This can be remedied if the field coupling is non-smooth and the linear 

section is placed over the attractor one seeks to stabilize.  

By increasing the number of discontinuities, we can, in principle modify the topological index at 

will. In practice, however, the features on a surface that would give rise to such field couplings 

are larger in nuclear coordinate space than depicted in Figure 14. For a more realistic setting, we 

shall restrict ourselves to field couplings with only one discontinuity in their 0
th

 or their 1
st
 

derivative with respect to the nuclear coordinate. 
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A 

 

B 

 

Figure 14. Effects of multiple discontinuities and non-smooth sections in the V12 field coupling 

on Efull 

In Figure 14, the number of detectable critical points in Efull increases with the number of 

discontinuous (A) or non-smooth (B) sections in the V12 function for the range of coordinates 

where 0≤|ΔU12| < ∞. Within this range, several configurations between the reactant and products 

can be stabilized.  
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All of the phase borders in the topological partitioning of the (a,k) space for a non-smooth field 

coupling coincide with borders found in the map with a purely linear field coupling (see Figure 

15). The topological indices, μ, are naturally different and more extrema can be found on the 

effective potential energy surface with a linear coupling because there is a point where the 

coupling is exactly zero. (At the point where V12 = 0, the diabatic basis functions are uncoupled 

and the effective potential energy curve coincides with the lower of the two Ui functions. This 

may result in additional critical points.) We must also take into account the fact that the energy 

axis intercept for both the linear coupling and the linear section of the non-smooth coupling are 

the same and that the linear part starts at the reactant’s attractor, in this case, V12(0) = 1. In this 

case the linear section of the V12 field coupling is applied to the nuclear coordinates that are 

relevant to the reaction. Similarities between linear and non-smooth field coupling topology 

maps are not found without these two factors. We should note that the phase with μ = 0, that is 

an unbound Efull function, extends to larger force constants as the field coupling’s intensity, a, 

increases. Compared to the linear case, it is much simpler to obtain a region with μ = 0 using a 

non-smooth field coupling. Any field intensity constant a ≥ ac for a given section with a constant 

V12 value suffices with a non-smooth field coupling. In contrast, to get a μ = 0 phase, we would 

be limited to single value for the linear field coupling’s intensity. Another advantage of the non-

smooth field coupling over the linear field coupling is that the μ = 0 region in (a,k) space does 

not shrink much when the product’s zero-point energy is increased (see Figure 16). This is not 

true when the section switch occurs at x > 0 (see Figure 17, Figure 18). For a given switch point 

there is a maximum force constant k for the diabatic reactant where the diabatic crossing occurs a 

certain distance after the switch between the constant and linear segments. For models with force 

constants below this maximum, the barrier is supressed and the resulting phase region is 

characterized by a topological index of μ = 1 or μ = 0. For models above this maximum k value, 

the reaction barrier appears before or near the switch though some may have an index μ = 1. This 

phase corresponds to sections with low intensity linear V12(x) couplings. The effective minimum 

energy configuration resembles the reactant more closely than the models below the maximum k 

whose stable configurations are much more relaxed. Despite these reservations, out of all the 

field couplings analyzed, the non-smooth field coupling is the most effective in promoting 

dissociation, that is, in generating an effective product-like minimum energy configuration.  
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Figure 15. Effects of the linear and non-smooth V12(x) field coupling in the (a,k) space for the 

dissociative model 

In Figure 15, the topological partitioning of the (a,k) space for a linear V12(x) coupling shares 

some phase regions with the non-smooth V12(x) function, which is overlaid in the same graph. 

The values for the topological index, μ, for the linear field coupling are indicated in parentheses. 

The different μ values and phase borders can be attributed to the fact that the external field 

coupling reaches zero for a linear coupling. In other words, the differences are due to the field 

couplings being represented by different functions for x < 0. 
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Figure 16. Topological partitioning of (a,k) space for models with different t values for the zero-

point energies: case of the non-smooth V12 coupling and the dissociative model  

In Figure 16, the region with topological index μ = 0 for higher product zero-point energies 

(here, t = 5) shrinks because the diabatic reactant potential energy function U1 is comparatively 

deeper. This leads to effective potential energy curves with μ > 0. The models with larger t 

values require, therefore, larger field intensity a-values in the linear section of V12(x) to lower the 

portion corresponding to the unbound state. The intersection of the borders for the μ = 1 and μ = 

3 regions is due to the interplay of the height of the pseudo-reaction barrier, ∆, and the field 

coupling’s intensity, a. Field couplings with linear segments at low field intensity a-values give 

topological maps similar to those for a global constant coupling; with larger product zero-point 

energies, t, for the same force constant, the barrier is easily suppressed. 
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Figure 17. Topological partitioning of the (a,k) space for a non-smooth field coupling with a 

switch from constant to linear behaviour not centred at one the diabatic attractors 

The larger number of phases in Figure 17, compared to Figure 16, is an effect of displacing the 

switch from critical geometries in the uncoupled diabatic potentials, that is, the uncoupled 

attractors, and the pseudo-barrier. We find that, for a given switch point for increasing the a-

values for the field intensity, a critical force constant is reached for the transition between the 

phases characterized by the topological indices μ = 2 and μ = 0. Likewise, by increasing the force 

constant, k for the diabatic reactant, a critical value for the intensity is achieved (a = ac) that 

divides the phase (a,k) space into regions with μ =2 and μ = 3.   
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A 

 

B 

 

Figure 18. Effects of non-smooth field coupling V12 with a switch not centred at a diabatic 

attractor 

For smaller force constants (A), the single minimum is significantly displaced from the 

uncoupled reactant attractor (here, min(Efull) ≈ -1.1327, at x ≈ 3.0). The single minimum in 

models with larger force constants (B) does not shift significantly from the uncoupled reactant 

attractor (here, min(Efull) ≈ -0.6318 at x ≈ 0.1).   
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4.2 Two-state isomerization model 

4.2.1 Constant field coupling 

For the isomerization model (Equation 30), the highest order term in Equation 38 is of order six 

in the reaction coordinate, x, therefore there should be at most six non-trivial extrema. Let us 

consider first a symmetrical model, where the reactant and product force constants and zero-

point energies are equal, that is k = s and t = 0. Under a constant external field we obtain the 

following: 

0 = (x −
1

2
r)
2

(a2 + k2r2x (x −
1

2
r)) Equation 41 

Clearly x=r/2 is a doubly degenerate critical point, invariant with respect to the field intensity. 

The other extrema must vary with the field as: 

x =
r ± √r2 − 16(

a2

k2r2
)

2
 

Equation 42 

We can see that when the field is zero, we recover the extrema on the uncoupled diabatic 

potential energy surface, x = 0 and x = r for the diabatic reactant and product attractor 

respectively. The doubly degenerate root x = r/2 is the coordinate value for the diabatic curve 

crossing. It is apparent that the non-degenerate extrema are field-modified reactant and product 

configurations. We may discern a critical field intensity, ac, when the topological index switches 

from μ = 3 to μ = 1. All four roots become degenerate when  

ac =
1

4
kr2 Equation 43 

(see Figure 19).  
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Figure 19. Constant coupling phase transition: analytic solution vs parameter scan 

In Figure 19, any point along the line a = ac =
1

4
kr2 is at a critical field intensity where the 

topological index, μ, changes. This is corroborated by the line produced as the topological 

classification of each curve is analyzed using the numerical method to detect critical points 

discussed in section 3. The small discrepancy at higher force constant values can be attributed to 

the numerical limitations in our procedure to scan for critical points on Efull which are discussed 

in the section 3.2. 
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At field intensities greater than or equal to the critical intensity, (a ≥ ac = 
1

4
kr2) the transition 

structure between the reactant and product diabatic states, found at x = r/2, is energetically the 

most stable configuration. Such closed form solutions are not possible if the symmetry is broken 

either through different force constants or different zero-point energies. We can, however, 

predict the position of the single minimum in asymmetric models (k ≠ s or t ≠ 0) when the field 

coupling reaches infinite intensities: 

xmin =
sr

s + k
 Equation 44 

At infinitely large field couplings, if the product’s force constant is larger than the reactant’s, that 

is s > k, the stable configuration will resemble the product’s attractor (see Figure 20). This 

convenient result is true regardless of the zero-point energies. 

It is interesting to note that the line corresponding to the equality of the force constants acts as a 

line of symmetry in the topological partitioning of (∆,k) space. This aspect appears only when 

the external field coupling is symmetrical with respect to all curve crossings in the manifold of 

diabatic potentials, {Ui}, examined. One might argue that representing such a set of parameters is 

redundant since they can be obtained by a reflection about the crossing point and a translation. 

Without considering the external field this is, of course, mathematically true. When the field is 

not symmetrical with respect to all the crossing point in the manifold, however, symmetries in 

the topological phases are not found in the same (Δ,k) space. To illustrate this point, we extend 

the idea of a symmetrical effect to discontinuous field couplings. The difference in this case is 

that the symmetry is between a pair of topological phase diagrams instead of within a single 

map. For example, the topological regions for a field coupling V12 = 1 for x < x
*
 and V12 = 2 for 

x ≥ x
*
 where x

*
 = 0.5 are mirrored in the map where the sections’ field intensities are switched 

(Figure 21B, Figure 21C). This is a natural consequence of x
*
 = 0.5 also being the position of the 

totally symmetric diabatic potential energy curve crossing (k = s, t =0). This effect continues 

even if the discontinuity in V12 does not coincide with the symmetrical model’s diabatic 

crossing. This fact is best exemplified by the phase diagrams with the same intensities but where 

the discontinuities are placed at x = 0.25 and 0.75 respectively (Figure 22). 
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B 

 

Figure 20. Stable configurations in asymmetric models with large constant field coupling 

For identical or approximately identical zero-point energies, in the limit of infinite field coupling 

intensity, the larger force constant determines the identity of the most stable configuration. In A, 

a reactant-like structure is stable with k > s, while in B, a product-like structure is more stable 

with k < s.  
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Continued on following page  
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C 

 

Figure 21. Topological phases mirrored about k = s for constant (A) and discontinuous (B, C) 

V12 couplings in the (∆,k) space for an isomerization with the product’s zero-point energy t = 0. 

In graph A, all the topological phases on one side of line Δ(k) for k = s are “reflected” on the 

other side of the line for a constant field. In graph B, the field is discontinuous at the diabatic 

crossing for the set of symmetric models. The topological features in one map are mirrored in the 

other about the line Δ(k) for k = s (dashed line), when the field intensities constants are reversed 

around the switching point as seen in graph C.  



58 

 

 

 

 

Figure 22. Symmetry in phase diagrams for discontinuous field couplings 

In Figure 22, despite the discontinuity in the V12 coupling not being placed at the diabatic 

pseudo-barrier for the symmetric model (k =s and t = 0), the ‘mirror image’ topological map A 

can be found by switching the V12 values of each section of the discontinuous coupling and 

shifting the discontinuity an equal amount to the other side of x = r/2 as shown in B.  
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4.2.2 Linear field coupling 

We can extend the notion of symmetry in the topological partitioning of (∆,k) parameter space to 

the linear field couplings as well. The (Δ,k) phase diagrams for the following field couplings are 

identical although the potential energy curves that produce them are not (Figure 23): 

V12 = ax  Equation 45 .1 

V12 = a(x − r)  Equation 45 .2 

These findings are the result of both zero-point energies being identical, that is minU1 = minU2. 

No such symmetry is found, however, in the maps where the product diabatic potential is raised 

to t=1.  

Inserting either form of Equation 45 into Equation 38 guarantees a root for the derivative of the 

effective potential where the field coupling satisfies V12 = 0. For V12 = ax, the root at x = 0 is 

doubly degenerate if the following is true: 

a2 =
1

2
k(
1

2
sr2 + t) Equation 46 

Alternatively, we find a root at x = r if a2 =
1

2
kt. Incidentally, for a completely symmetric 

model, when the field coupling’s intersection with the nuclear coordinate axis coincides with the 

diabatic curve crossing, the positions of all three extrema are known. The root at x = r/2 is 

doubly degenerate and is a maximum. This comes as no surprise as it corresponds to the apex of 

the reaction barrier. Since the external field coupling is zero at that point, there is nothing to 

reduce the barrier. The position of nuclear configurations corresponding to the minima, however, 

are given as 

x =

1
2 kr

(a2 + 2r2) ± √
1
4 k

2r2(a2 + 2r2)2 + a2(a2 + r2) (
1
4 k

2r2 + a2)

k(a2 + r2)
 

Equation 47 

Admittedly, this is not as impressive a result when one deduces that all models where both the 

product and reactant share the same zero-point energy also have a topological index μ = 3 (2 
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minima, 1 maximum). This is easily understandable when one considers that although the field 

coupling may not be exactly zero at the diabatic crossing, it is very small. As the field intensity 

increases, we may then anticipate that the maxima will shift from the diabatic crossing to where 

the field coupling vanishes (dashed line in Figure 25). The minima will also shift from the 

attractor geometries away from position where V12 = 0. Both species are stabilized by the field at 

slightly different geometries. If the zero-point energies are equal, then determining which species 

is the most stable depends on where the field coupling is greatest. Such a simple conclusion is 

not possible when the zero-point energies are unequal (t > 0, Figure 26). 

In the topological phase diagrams, there is only a narrow part of (∆,k) parameter space with an 

index μ = 1. In fact, with infinite precision, the narrow wedge would reduce to a line: this phase 

occurs when the point where the field coupling is zero becomes an inflection point in Efull. As the 

field intensity increases, the inflection point becomes an unstable transition structure (Figure 27). 

The stability of a configuration over another is linked to the strength of the field coupling at that 

configuration; the linear field coupling provides an excellent example. Whichever uncoupled 

attractor, say the reactant, is lower in energy will define the most stable configuration for a low 

intensity linear field coupling. This is true even if the field coupling vanishes at the diabatic 

reactant attractor. If we increase the field coupling’s intensity, however, the nuclear 

configuration corresponding to the product becomes the most stable even if it is not for the 

uncoupled diabatic states. In this case, the field strength over the product’s attractor is 

significantly larger than over the reactant’s attractor. This effect matches the experimental 

situation where the external field stabilizes a structure that would be unstable at zero field.[8] 
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B 

 

Figure 23. Identical topological partionings of (∆,k) space for linear couplings that vanish at 

either diabatic attractor where each has the same zero point energy 

Figure 23 shows how the topology maps for linear field couplings V12 that vanish at either 

attractor, at x = 0 (A) or x = r (B), are the same although the potential energy curves are not (see 

Equation 45 and Figure 24).  
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B 

 

Figure 24. Samples of diabatic models with t = 0 and a linear V12 that vanishes at a diabatic 

attractor configuration. 

The field coupling V12 vanishes at the reactant attractor when V12 = x and at the product attractor 

when V12 = x – 1. Although the effective potential energy curves produce the same topological 

index, both Efull curves in A have μ = 3 and those in B have μ = 1, the minimum energy 

configuration is not the same.  
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Figure 25. Effect of increasing the field intensity when using V12 linear couplings on the 

effective isomerization potential energy curve 

In Figure 25, though all curves exhibit the same topological index (μ = 3), the maximum’s 

position shifts towards the location where the field coupling vanishes (marked by the dotted 

line). The most stable reactant configuration is compressed (the product’s configuration is 

relaxed) as demonstrated by the minima shifting to increasingly negative (positive) values. 
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Figure 26. Effects due to the field intensity and the ΔU12 functions on the effective potential 

energy surface Efull 

In Figure 26, although the field coupling is stronger over the product’s attractor than over the 

reactant’s attractor (V12(r) > V12(0) ), the product may not be the most stable configuration if the 

zero-point energies are unequal (t > 0). Comparing graphs A and B, we can deduce the existence 

of a critical field intensity, a=ac, when a minimum corresponding to a product configuration will 

have at most the same energy as a reactant configuration. A closed form equation for the critical 

field intensity, ac, can be obtained from the roots of quartic equation derived from Equation 38.  
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Figure 27. Occurrence and shift of stable configuration in Efull when using linear V12 field 

couplings 

In Figure 27, as the field coupling’s intensity, a, increases, the reactant’s attractor shifts from a 

minimum at V12=2x to an inflection point at V12=4.5x and finally a transition structure or 

maximum at V12=7x. The isomerization to the product at V12=4.5x is spontaneous and 

exothermic as the reaction barrier is completely supressed and the product is energetically lower 

than the reactant on the effective potential energy surface. Increasing the field intensity to a = 7, 

however, re-establishes a barrier, but the stable reactant geometry is now compressed, that is, 

xmin < 0. 
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4.2.3 Inverse Lorentzian field coupling 

Similar observations can be made for an inverse Lorentzian field coupling (Equation 34.3). 

However, in the vicinity of the field coupling’s minimum, the field strength increases more 

slowly than in the case of a linear field (refer to Equation 34.2, Equation 34.3). The slower field 

increase creates a third phase with the topological index μ = 5 (3 minima, 2 maxima) as shown in 

Figure 28A. This phase may only be observed if the field is correctly ‘tuned’. For example, if the 

inverse Lorentzian field coupling is centred at the reactant’s attractor (x = 0) and we find μ = 5, 

the reactant’s attractor is a weakly stable geometry. The other minima correspond to a 

‘compressed’ reactant geometry and a relaxed product-like configuration. As with the phase μ = 

1 in the linear V12 coupling, this present μ = 5 phase also occupies a narrow strip of parameter 

space (Figure 28). At low field intensity, the fact that the point for uncoupling (V12 = 0) 

coincides with an attractor’s geometry has little effect on the effective potential energy. As the 

intensity increases, however, that geometry becomes weakly stable and eventually a transition 

structure (Figure 29). 
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B 

 

Figure 28. Topological phase diagrams in (a,k) space for the isomerization model using an 

inverse Lorentzian V12 coupling 

The region with topological index μ = 5 in A plays a similar role as the region with μ = 1 in B. 

Both occupy a narrow portion of the (a,k) parameter space. Unlike the linear field coupling, 

however, the inverse Lorentzian coupling will not reduce this phase region to a single line with 

infinite surface scanning precision (refer to section 4.2.2).  
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Figure 29. Effects of increasing the inverse Lorentzian coupling intensity, a, on potential energy 

curves 

In Figure 29, by increasing the inverse Lorentzian field coupling’s intensity a, the stability of the 

reactant’s configuration decreases until it becomes a transition structure. As the a-value 

increases, the most stable configurations are increasingly compressed reactants and relaxed 

products as shown by the minima’s shift. 
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4.2.4 Lorentzian field coupling 

The Lorentzian field coupling (Equation 34.4) has quite the opposite effect on the potential 

energy curves compared to the inverse Lorentzian coupling. The phase diagrams in (a,k) 

parameter space for the Lorentzian V12 coupling resemble those produced by a constant field 

coupling as shown by the green and red lines respectively in Figure 30. The maps’ resemblance 

in (Δ,k) space is less noticeable because the Lorentzian field coupling is not symmetrical with 

respect to all the diabatic crossings in the manifold of models examined. The similarity in (a,k) 

space can be explained when one considers that the field strength is approximately the same over 

the relevant values of the reaction coordinates. Although the pseudo-barrier can be higher in the 

isomerization models, unlike the dissociative reaction models, the pseudo-barrier has a finite 

width. Since the product is not an asymptotic minimum, a local high-intensity field coupling is 

more effective for this reaction. Comparing the effective potential energy curves for a constant 

field coupling and a high-intensity Lorentzian field coupling, the latter can select an attractor 

over another if the position for the V12 minimum is chosen carefully. Also, the effective potential 

energy curve, Efull, forms a narrower well around the stable configuration; the effective reaction 

force constants are not only degenerate, but also greater than those required with a constant field 

coupling.   
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Figure 30. Comparing the borders between the μ = 3 and μ = 1 phase regions when using 

constant and partially constant V12 couplings for isomerization models 

In Figure 30, while using a Lorentzian field coupling proves to be more efficient at removing the 

reaction’s energy barrier for an isomerization model (k=s, t=0, r=1), the same cannot be said for 

a dissociative reaction (U2 = e
-x

, see Figure 13). The differing behaviour is not due to the height 

of the diabatic barrier, ∆. Indeed, the barrier height reaches a maximum of ∆ = 1 in the limit of 

infinite force constant. Rather, the difference is due to the product attractor’s position along the 

nuclear axis. Put another way, the barrier in the dissociative model is much wider, thereby 

requiring a broader field coupling to suppress it. Hence, the phase with topological index μ = 1 

occurs at significantly larger values of the Lorentzian field coupling intensity a. 
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4.2.5 Discontinuous and non-smooth field couplings 

For discontinuous field couplings applied to the radical isomerization model, if the section with 

the largest V12 value covers the range [0, r], the topological characterization is the same as if that 

V12 were applied everywhere. This field gives a conceptually simple effect: to obtain μ = 1 

phase, it is only necessary to have a greater intensity over the relevant reaction coordinates, for 

the purpose of our model: [0,r]. Additional topological features may appear when the lower 

intensity branch of the discontinuous V12 covers [0,r].  

Unlike with the dissociative model, the non-smooth field coupling produces topology maps for 

the isomerization model that are more similar to those for a constant field coupling when the 

linear section covers the relevant range of the reaction coordinate. The reason is that, unlike a 

purely linear field, the discontinuous field coupling V12 never vanishes. As shown in Figure 30, 

for a given constant segment, the non-smooth field coupling will be more effective than a larger 

global field coupling for smaller force constants. As shown in previous sections, if the model 

parameters for each attractor are equal, then whichever attractor geometry has the greatest field 

coupling will the most stable geometry on the effective potential energy surface. Unlike a global 

constant coupling, for a totally symmetric model, the segment with linear V12 coupling can bias 

the effective potential energy curve so that a geometry closer to, say, the product’s attractor 

geometry is favoured. For a fixed constant segment and larger force constants, the non-smooth 

field coupling is no longer more effective than the constant or the Lorentzian field coupling in 

supressing the reaction barrier. The models with larger force constants have higher pseudo-

barriers therefore when beginning with a small constant V12 coupling the critical intensity ac that 

suppresses the pseudo-barrier is much larger. The borders between the μ = 3 and μ = 1 phases for 

the constant and non-smooth field coupling will cross at much larger force constant values if the 

section where V12 is constant increases in intensity.  

The topological map changes drastically if the switch between the constant and linear segments 

occurs between the two diabatic attractors, that is, within [0, r]. When the switch coincides with 

the symmetric diabatic pseudo-barrier, the border between the μ = 1 and μ = 3 phases is 

determined by Equation 43 (see Figure 31). The topology maps changes again when the switch is 

shifted to r (see Figure 32). Together, these maps show how the position of the switch affects this 
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field coupling’s effectiveness in producing not only a barrier-less reaction, but also in biasing the 

effective potential energy surface so that the desired outcome is energetically favoured (see 

Figure 33). 

The non-smooth field coupling can compensate for the product’s larger zero-point energy, that is 

a larger t value. We have shown that for equal zero-point energies, the attractor with the largest 

field coupling will be most stable (see section 4.2.2). At what point is this true for different zero-

point energies? Suppose the field coupling over the reactant’s attractor is V12(0) = A and the field 

coupling over the product’s attractor is V12 = B. By taking Efull at the attractor geometries and 

expanding the root in Equation 28, we have the following conditional statements: 

t >
1

2
kr2  Efull(r) < Efull(0)  B

2 > (t −
1

2
kr2)(

A2

1
2 sr

2 + t
+
1

2
kr2) 

t <
1

2
kr2  Efull(r) < Efull(0)  B

2 > (
1

2
kr2 − t)(

A2

1
2 sr

2 + t
+ t) 

Equation 48 

 

These complementary equations show that square of the field coupling over the product must be 

proportional to the difference between the potential energy curves at r (see also Figure 34). This 

can only work for non-smooth couplings which can bias the effective potential energy surface so 

that the minima will resemble the attractor configurations. Constant and discontinuous fields, 

however, will tend to produce minima in accordance with Equation 44, that is to say, the stable 

configurations will tend to be some average between the two attractors. (Note that the implicit 

assumptions for Equation 48 are that the field coupling V12 is continuous, positive and 

asymmetric. 
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Figure 31. Borders between topological phases in (a,k) parameter space when using non-smooth 

coupling with switch at midway between diabatic attractors with equal zero-point energies 

In Figure 31, when the non-smooth field coupling switches at the pseudo-barrier for the totally 

symmetric model, the border between the μ = 1 and μ = 3 phases is determined by the line 

corresponding to ac =
1

4
kr2, where ac = b1 and a1 = 0 (see Equation 34.5). The barrier is 

suppressed for force constants below b1 =
1

4
kr2. The most stable configuration, however, 

resembles the product more than the configuration at the pseudo-barrier. For larger force 

constants, the barrier still exists, but the product is energetically favoured. 
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Figure 32. Borders between topological phases in (a,k) parameter space when using non-smooth 

coupling with switch at the position of the product attractor, x = r, for the case of equal zero-

point energy, t = 0 

In Figure 32, the borders between the μ = 3 and μ = 5 phases are defined by the same line giving 

the border between the μ = 1 and μ = 3 phases in Figure 31. As shown in Figure 20, increasing 

constant field will draw stable configurations together until there is a single stable configuration, 

that is μ = 1. Increasing the a-value of a linear field coupling, however, will push the stable 

configurations farther apart in nuclear configurational space (see Figure 25). Hence, we have a 

splitting of stable product configurations as a result of the switch coinciding with the product’s 

attractor at x = r. The vertical part of the border between the regions defined by μ = 5 and μ =3 is 

a result of the constant section of the V12 function being too weak to cause any splitting. If V12=a 

everywhere, the minimum around the product’s attractor would not have shifted enough from 

x=r to be detectable. The diagonal section of the latter phase border is due to the fact that the 

coupling intensity, a, is too small to cause any splitting at the product’s attractor. The μ = 1 

topological region occurs when the linear section of the discontinuous V12 couplings has very 

low field intensity.  
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Figure 33. Examples of Efull for increasing intensity of non-smooth coupling with switch at the 

product’s attractor, x = r, (r = 1) 

The Efull produced with low field intensities resemble the Efull produced by a globally constant 

V12. The majority of models with µ = 1 would have had the same topology if the V12 were 

globally constant. Increasing the field coupling intensity causes a splitting at the position of the 

switch, here at the product attractor. For models with larger force constants as shown in A, both a 

relaxed and compressed product configuration are energetically stable. For models with smaller 

force constants as shown in B, we observe a stable transition structure and a relaxed product 

configuration (xmin > r).  
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Figure 34. External field stabilization of an isomer whose diabatic attractor has a higher zero-

point energy (here t = 1) 

In Figure 34, we can observe use Equation 48 is as a guideline to determine the most stable 

attractor. For instance, we see that when a = 1, B = 2 and A = 1, we find 4 < 3.5(
1

5.5
+ 1) thus 

product is not the most stable configuration. If the field intensity constant is increased to a = 6, 

however, the product is the most stable configuration, since B = 7 leads to 49 > 3.5(
1

5.5
+ 1). 

Equation 48 only acts as a guide; it does not show which attractor the absolute minimum 

resembles more but which attractor geometry is more stable. 
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5. HBN ⇄ BNH isomerization: illustration of a fully quantum approach to 

using a two-state diabatic model  

In the previous section, we mapped all possible potential energy curves, or Efull, generated in the 

presence of an external field for a manifold of two-state one-dimensional models of a chemical 

process. In this case, we have resorted to using two already built diabatic attractor potentials U1 

and U2 modeled by simple semi-classical functions. Even though this approach is sufficient to 

illustrate general trends in external field effects and explore the central ideas in the GED 

methodology, in a fully quantum mechanical approach, these potential energy functions must be 

built from actual electronic diabatic functions. In this section, we show how to implement one 

such approach [8] using a simple isomerization process whose essential properties can be 

captured by a two-state system coupled in an external field. We consider the HBN ⇄ BNH 

isomerization (hydrogen boronitride to hydrogen boroisonitride) which involves radical species 

in their ground states. (As previously explained, the species need to be radicals in order to have 

the symmetry required to use a two-state model.) This problem has been studied in the literature 

using standard techniques [58] and will be presented here from the point of view of the GED 

approach. 

5.1 Floating Gaussian orbitals 

Each electronic structure is usually calculated as an optimized linear combination of basis 

functions; in the linear combination of atomic orbitals (LCAO) approach, these are centred on 

the nuclei. When atoms join to form molecules, however, the electron density is not necessarily 

centred on the nuclei. The same concern may be raised when a molecule is in an external field. 

By including polarization functions, that is, atomic orbitals with higher angular momenta, one 

may account for such deformations. Nevertheless, a normal basis set where atomic orbitals are 

centred on the nuclei will not produce a diabatic solution as these orbitals will “move” with the 

nuclei thereby changing the electronic function by default. As recently proposed in the literature, 

floating Gaussian orbitals provide a natural alternative.[8] Floating functions are centred at 

points in space, for example on a grid instead of at a nucleus. In other words, they provide a 

natural, partial decoupling between the models representing electronic and nuclear behaviours. 
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Over the last half century these orbitals have been used to calculate electric properties, optimize 

geometries and most recently for molecular dynamics.[59] More floating Gaussian orbitals may 

be added to a system to allow for shell separation. While these orbitals offer significant 

improvement, they are computationally demanding for near Hartree-Fock limits for electronic 

properties and energies.[60]  

The quantum-mechanical implementation of the GED model uses an irregular grid of floating 

Gaussian orbitals.[8] Since they are not anchored on any nucleus, they provide a conceptually 

simple diabatization scheme. The same orbital grid must sustain all the diabatic electronic basis 

functions at the attractor geometries.[8,13] We may use a single grid to capture both electronic 

basis functions since neither species is asymptotically fragmented.[13] In other words, the 

optimal grid will give a minimum energy with respect to all orbitals and nuclei for all the 

attractors included in the model. (The grid is the same, but, of course, the floating orbitals will be 

combined in a different linear superposition for the reactant and product diabatic functions.) 

With regards to optimizing the orbital positions, the orbital symmetry should be the same as the 

nuclear framework corresponding to the attractors – it avoids spurious components of electronic 

properties.[8,60] This procedure has already been used to analyze a three-state, closed-shell 

isomerization.[8] In the following sections, we illustrate its implementation for a two-state 

system. 

5.2 HBN ⇄ BNH radical isomerization 

Optimizing a grid of floating Gaussian orbitals is a nonstandard, possibly lengthy process, 

because the available quantum mechanical computer codes are not designed to build, or use, 

truly diabatic basis functions. We are thus confronted with a molecular and electronic size limit 

for the practical and rapid computation of radical isomers. The peroxide (OOH) radical and the 

hydrogen boronitride (HBN) radical represent two of the smallest radical isomerization 

possibilities.[58,61] While both species have interesting industrial and environmental 

applications, we chose the hydrogen boronitride isomerization for the following practical 

reasons: i) it has fewer electrons thereby decreasing CPU calculation time, and ii) the 

isomerization is complementary to the semi-classical models discussed in section 4. The two 

species, HBN and BNH, have both different zero-point energies and different force constants.  
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This system corresponds to a semi-classical model where s ≠ k and t > 0 (see Equation 29, 

Equation 31). The explicit construction of a grid allows us to explore different types of 

configurational paths and their effects on the Efull profile. 

5.3 Creating optimal grids for the HBN ⇄ BNH isomerization 

Optimizing the grid, building the diabatic potential energy curves, U1 and U2, and constructing 

the Fukui path were done using Gaussian 98.[62] In this program, floating Gaussian orbitals are 

also called ‘ghost’ orbitals and given the symbol Bq. They are not to be confused with ‘dummy’ 

atoms which are merely a point of reference to break the symmetry and no basis set is assigned 

to them. 

For illustrative purposes, we use a linear grid (Figure 35) and the simpler 3-21+G and 6-31G 

basis sets to construct the electronic eigenfunctions for the HBN ⇄ BNH isomerization. (When 

larger basis sets are used for a grid with several floating Gaussian-type orbitals (GTOs), we often 

found difficulties in finding rapid convergence of self-consistent field (SCF) cycles) 

The basis set’s name shows how many Gaussian functions are assigned to a certain electron. In 

the 3-21+G basis set for example, the ‘3’ means the orbital for a pair of core electrons is 

represented by a sum of 3 Gaussian functions. The dash indicates that valence electrons will be 

treated differently. Each valence electron is then assigned a sum with two Gaussian functions 

and another with one Gaussian function. A single ‘+’ symbol shows that each atom that is not 

hydrogen or helium also has a single diffuse function. Two ‘+’ indicate that all atoms have a 

diffuse function. The purpose of the diffuse function is to describe regions farther away from the 

nucleus with low, yet non-negligible, electron densities; this is achieved by using GTOs with 

smaller exponents. As explained below, the optimization of a fixed grid is a time consuming 

effort, even when using these simple basis sets. More complex basis sets may be necessary for 

more complex or nonlinear molecules, but there are preliminary indications that some of the 

corresponding calculations may exhibit convergence problems at the Hartree-Fock SCF level. 

Note that, even though the construction of the diabatic functions on a floating grid is time 

consuming, once built, they are not modified while building the diabatic potential energy 
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functions along desired configurational paths. The only dependence on the nuclear coordinates 

will be via the coefficients of the coherent superposition of diabatic basis functions. 

5.3.1 Linear grid 

Although both isomers are linear, the grids were built with small alternating noise in the 

directions orthogonal to the isomers’ axis (refer to Table 1). The noise breaks the symmetry and 

lifts the degeneracy that occurred between the sixth and seventh eigenvalues for the α (“spin up”) 

electrons which appeared to impede the convergence in some of the unrestricted Hartree-Fock 

(UHF) calculations.  

The algorithm to create the grid is as follows: the initial geometries for the linear grid were taken 

by overlapping two grids of four orbitals, that is H-B-N-Bq and Bq-B-N-H where the boron 

orbitals coincide and the Bq corresponds to a ‘ghost’ orbital. Four orbitals, however, are not 

sufficient to describe the isomerization because the isomers have different BN bond lengths. 

Also, the optimal position for the ghost orbital, Bq, in one isomer is too different from the 

position of the hydrogen nucleus in the other. In order to accommodate the differences between 

the isomers, the number of orbitals in the grid is augmented to seven (refer to Figure 35). In this 

case, the atomic orbitals of one isomer become the ghost orbitals around the other isomer.  

In our case, we choose to centre the boron nucleus on the location of the same floating orbital for 

the single grid that describes both isomers. (In other words, only for boron we find a grid orbital 

that coincides with always with a traditional atomic orbital.) In this way, the boron atom serves 

not only as a point of reference between the two isomers, but it also reduces the number of 

variational parameters. (The approach would be the same had the nitrogen been the reference 

orbital.) Upon finding a minimum energy configuration for an isomer, say HBN, we fix the 

positions of the hydrogen, nitrogen and the additional ghost orbitals needed to accommodate the 

other attractor, that is they are not “floated”. These orbitals become in turn floating Gaussian 

orbitals when we switch to optimized BNH. The switching between isomers continues iteratively 

until the orbital positions on the grid converge to the stable positions for the respective isomer 

attractors (see Figure 35 for details in the structure of the grid). 
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5.3.2 Extended grids 

A background classical charge without a nearby ghost orbital (loosely speaking, a ‘bare’ nucleus) 

greatly increases the electronuclear energy thereby artificially increasing the diabatic pseudo-

barrier for the reaction. Since the linear grid has no floating orbitals along the minimum energy 

(Fukui) path, that is, a trajectory for the H nucleus off the HBN or BNH internuclear line, an 

exaggerated energy barrier is expected. In order to avoid this grid artifact, we first try a pair of 

off-linear floating Gaussian orbitals for the H nucleus. A pair is used, since there is an equal 

probability for the isomerization path from above and below the isomer’s axis (the z-axis, see 

Figure 36). Both off-linear orbitals are equally distanced for the isomer’s axis, forming a cross-

shaped grid. We took the linear grid and kept the orbitals that remained ghost orbitals for both 

isomers fixed and optimized the position of the off-linear orbitals manually. The hydrogen and 

nitrogen orbitals were allowed to freely optimize along the z axis. A coarse scan for the off-

linear orbitals in either isomer shows several minima, some of which seem to coincide for both 

isomers (see Figure 37). Absolute minima appear to fall in a region that requires a large number 

of SCF cycles, that is outside the region shown in Figure 37. Convergence within three decimal 

places for the orbital positions as achieved with the linear grid was not possible for any of the 

local minima. The position of the off-linear orbitals along the z axis would alternate between the 

isomers – which is perhaps unsurprising as neither isomer is symmetric along the z axis. In 

contrast with the linear grid, the cross grid had no floating orbital in the added dimension that 

related to the other isomer. In view of these considerations, a second pair of off-linear floating 

Gaussian orbitals was added.  

In order to determine whether or not the act of simply adding another pair of off-linear orbitals 

would solve the lack of convergence to a single stable grid for both attractors, the same 

optimization procedure as the cross grid was used. Since convergence in the y-axis was achieved 

within 0.01 Å in the cross grid, this parameter was initially fixed in the new grid which we shall 

call the ‘line-box’ grid (Figure 38). The separation between the pairs of off-linear orbitals was 

initially fixed at 1.000Å and the y coordinate was set to ±1.000Å. For each isomer, the position 

of the box formed by the off-linear orbitals along the z axis was varied. Unfortunately, this 

procedure also does not produce a convergent optimization.  



83 

 

 

 

Figure 36. Cross grid for the location of the diabatic HBN and BNH attractors 

The first adjustment to the linear grid was to add a pair of off-linear ghost orbitals in order to 

avoid artificially large reaction barriers for typical curved Fukui paths for the H nucleus. For this 

grid, the only active ghost orbitals are the off-linear ghost orbitals.  
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Figure 37. Cross grid coarse scans for optimal off-linear Bq position (see Figure 36) 

In Figure 37, the initial scans for the optimal position of a single pair of off-linear ghost orbitals. 

No optimal geometry could be found for |y| < 0.6 Å as these geometries did not converge within 

the maximum number of SCF cycles given. It was conjectured that the off-linear orbitals would 

converge near the local minima shown here for HBN ([0.1; 1.7], [1.2; 1.1]) and for BNH ([0.0; 

1.6], [1.4; 1.1]), but this did not occur. All grid position are in Å.  
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To completely discard the possibility that non-convergence was due to an insufficient number of 

variational parameters, we optimized the box’s width and z coordinate. Convergence to within 

0.001Å as in the linear grid was not achieved for either parameter. The convergence of the box’s 

z coordinate, however, improved to be within 0.1Å, a factor 2 improvement on the previous 

optimization scheme’s convergence limit. Nevertheless, this factor is too low to suggest that the 

convergence limit desired would be reached by simultaneously optimizing the box’s width, 

height, and z coordinate. The lack of an anchoring set of floating Gaussian orbitals in the added 

dimension then appears as the cause of the non-convergence. A pair of off-linear floating 

Gaussian orbitals was then assigned to each isomer (Figure 38). The z coordinate and the 

absolute value of the y coordinate for the ‘active’ pair were finally optimized while the 

coordinates for the other pair remained fixed until the next isomer iteration. 
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Figure 38. ‘line-box’ grid for the location of the diabatic HBN and BNH attractors 

In Figure 38, the nitrogen and hydrogen positions in each isomer are allowed to freely optimize 

their z coordinate. Initially y1 = y2 and the width between the pairs of floating Gaussian orbitals 

is fixed. It was determined that the lack of an anchor in the second dimension hampered 

convergence. The off-linear BqH orbitals with orbitals y = ±y2 were assigned to HBN where they 

were manually optimized in that isomer’s iteration. The ±y1 BqH orbitals which were assigned to 

BNH were manually optimized in the BNH iteration. All other ghost orbitals are kept fixed.  
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5.4 Mapping possible paths for the reactions coordinates 

Three different tentative trajectories and their variations were used to create the uncoupled 

potential energy curves for the ‘path’ followed by the H-nucleus in the HBN ⇄ BNH 

isomerization. We used the largest smooth part of the Fukui path produced with the 3-21+G basis 

set. The Fukui trajectory was obtained by fixing the bond angle and letting the bond lengths 

freely optimize by using the standard Born-Oppenheimer adiabatic approach. (The BO 

approximation was only used for the sake of creating a reasonable “reaction path” to build the 

diabatic {Ui} potential energy functions and then monitor the Efull function in an external field. 

The BO wave function was, of course, not used in the GED approach)  

Following this procedure, a small jump discontinuity in the energy profile is observed when the 

HBN bond angle is between 151
o
 and 152

o
. Similar and more frequent discontinuities were 

observed with the 6-31G basis set (see Figure 39). At higher angles, coefficients for orbitals 

along the x and y axes including the s orbitals are zero, while those along the z axis are non-zero. 

The reverse occurs at lower angles. It is significant that we do not observe similar discontinuities 

when the BNH bond angle is near 150
o
. Since Li and co-workers found no discontinuity in the 

Fukui path observed when using a cc-pVQZ basis set [58], we may attribute such features to the 

size of basis set we use. In particular, this demonstrates the inability of our basis sets to properly 

capture the nature of the BH bond at non-equilibrium bond angles.  

The Fukui path involves changing the BN bond length outside the range prescribed by the 

distance between the boron and nitrogen-like orbitals in the grid. Allowing the nitrogen nucleus 

to move along this path creates an unphysical barrier between the two attractors (see Figure 40). 

When the nitrogen nucleus is fixed on its starting orbital, however, or when its position is 

linearly interpolated between those for the two orbitals, the barrier disappears. This demonstrates 

that the exaggerated barrier is an artifact of the grid (Figure 40).  

We also used an interpolating parabola on the yz plane through the transition structure as 

determined by the Fukui path transition structure as an initial geometry. The parabolic trajectory 

offers a natural extension outside the reaction coordinates so that we may observe that the 

attractor is indeed a minimum on the uncoupled diabatic potential energy surface. An unphysical 
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barrier was observed as the nitrogen moved along the Fukui path. An unphysical barrier was also 

observed when its trajectory was parabolically interpolated. This is not unexpected in a grid that 

is strongly biased for linear structures and thus not well adapted for a hydrogen path that 

significantly deviates from the line of grid orbitals. 

The creation and analysis of the Gaussian input and output respectively, was done with a Fortran 

programme the author created. The code can be found in the appendix. The results that follow 

are presented only as an illustrative prototype of how to build the U1 and U2 diabatic curves 

quantum-mechanically with a grid of floating orbitals. A more accurate description of the 

HBN⇄BNH isomerization will certainly require a much denser (not quasi-linear) planar grid. 

The present grid is probably better adapted for a donor-acceptor reaction between radical species 

(for example D–H  ···A ⇄ D ··· H–A).  
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Figure 39. HBN ⇄ BNH Fukui path for the H transfer in terms of the HBN bond angle 

The apparent discontinuities in the Fukui paths shown in Figure 39 are associated with a 

significant jump in the BN bond length. The fact that these features are not observed with a much 

larger basis set shows that the cause is likely the inability of the smaller basis sets to capture the 

electronic behaviour of the radical species in the BO approach. 
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Figure 40. Tentative hydrogen nucleus paths on the yz plane to build the diabatic {Ui) potential 

energy functions 

The hydrogen nucleus follows the trajectories in Figure 40 for 3-21+G linear grid (see Figure 35) 

on a plane perpendicular to the internuclear x axis for HBN and BNH. For the HBN and BNH 

attractors, the hydrogen nucleus will move on the planes described by x=0.001Å and x=0.000 

respectively. The Fukui path remains the same for all grids. The parabolic and circular 

trajectories are slightly modified for the other grids: so, the nucleus passes through the 

appropriate ghost orbital when it lands (approximately) on the z axis.  
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6. Results and discussion: fully quantum two-state model using grid-

based diabatic electronic functions 

6.1 HBN ⇄ BNH isomerization optimal grids 

The optimal 3-21+G linear grid was confirmed within five isomer optimizations, whereas the 

optimal 6-31G linear grid was achieved in six. Qualitatively, the manually optimized ghost 

orbitals occupy the same positions with respect to the other orbitals in the grid. This suggests the 

grid’s structure is moderately invariant with respect to the basis set used. 

Table 1. Optimal linear grid geometries (all positions in Å) 

 3-21+G 6-31G 

orbital X Y Z Z 

H 0.000 0.001 -1.1636 -1.1597 

B 0.001 0.000 0.0000 0.0000 

N 0.001 0.000 1.2603 1.2445 

BqH 0.001 0.000 -1.206 -1.213 

BqH 0.000 0.001 1.719 1.581 

BqH * 0.001 0.000 2.2266 2.2099 

BqN * 0.000 0.001 1.2440 1.2309 

* These orbitals become H and N for the BNH geometry. 

The largest difference between the two linear grids is the position of the H-like ghost orbital 

situated between the N and H in the BNH isomer. 

Convergence for the off-linear Bq orbital positions in the line-box was achieved within six 

isomer optimizations. The grid is only partially optimized since the atomic orbitals on the line 
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have shifted but the Bq orbitals have not. The largest shift occurs with the H and N orbitals for 

the BNH isomer. 

Table 2. Optimal ‘line-box’ grid geometry for the 3-21G basis set (all positions in Å) 

Orbital X Y Z 

H 0.000 0.001 -1.1637 

B 0.001 0.000 0.000 

N 0.001 0.000 1.2601 

BqH 0.001 0.000 -1.206 

BqH 0.000 0.001 1.719 

BqH* 0.001 0.000 2.2281 

BqN* 0.000 0.001 1.2452 

BqH** 0.000 1.652 0.144 

BqH** 0.000 -1.652 0.144 

BqH 0.000 1.142 1.177 

BqH 0.000 -1.142 1.177 

*These orbitals become H and N for the BNH isomer. 

**During the ‘anchored geometry’ optimization process, these orbitals are fixed in the HBN 

geometry. 

The difference in energy between the 3-21+G linear grid and the augmented ‘line-box’ grid is 

insignificant compared to the difference between the 3-21+G linear grid and the 6-31G linear 

grid (see Figure 41). The average differences with the 3-21+G linear grid and the ‘line-box’ grid 

are 0.0051 Ha and -0.0021 Ha for the HBN and BNH trajectories, respectively. With the 6-31G 

linear grid, the average differences are -0.37 Ha and -0.37 Ha. The ‘line-box’ grid’s diabatic 
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curves are only slightly lower in energy than the linear grid’s diabatic curves for intermediate 

hydrogen nucleus positions [0.74Å; 1.90Å]. Since the purpose of the off-linear orbitals was to 

reduce the energy barrier caused by a completely bare hydrogen nucleus, this effect was 

expected. The energy reduction, however, is not significant enough to justify the additional 

computations necessary to fully optimize the off-linear orbital positions. Of course, since the 

atomic orbitals on the line changed position during the ‘line-box’ optimization, it is possible that 

the positions for the ghost orbitals that remained invariant in the grid were no longer optimal. 

With this consideration, the energetic gains to be had by a ‘line-box’ grid may perhaps be greater 

if these orbitals are eventually re-optimized as well. 
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Figure 41. Diabatic potential for elliptical H-paths with N fixed 

In Figure 41, where the nitrogen nucleus is fixed, a larger basis set given by 6-31G is more 

effective in lowering the potential energy curves than a partially optimized augmented grid. 

There is no significant difference between the 3-21+G linear and ‘line-box’ grids, indicating that 

the positions of the ghost orbitals in the line should have been re-optimized. Note that only the 

main branch of the diabatic attractors’ potential energy curves is given. For z < zH (HBN) and z > 

zH (BNH) the curves increase rapidly, thereby completing the form of the reactant and product 

attractors. The resulting {Ui(zH)} functions are clearly anharmonic. 
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Table 3. Optimized nuclear configurations: comparison between the small basis set calculation 

with the BO approach and the present GED grid calculations. (The bottom entry corresponds to 

the “exact” results obtained with a post-Hartree-Fock complete-active-space calculation with a 

large basis set.[58]) 

 isomer zH (Å) zN (Å) 

BO 3-21+G 

HBN -1.1582 1.2537 

BNH 2.2327 1.2471 

BO 6-31G 

HBN -1.1565 1.2447 

BNH 2.2172 1.2378 

Linear 3-21+G 

HBN -1.1636 1.2603 

BNH 2.2266 1.2440 

Linear 6-31G 

HBN -1.1597 1.2445 

BNH 2.2099 1.2309 

‘line-box’ 3-21+G 

HBN -1.1637 1.2601 

BNH 2.2281 1.2452 

CASPT2/cc-PVQZ* 

HBN -1.1702 1.3128 

BNH 2.2304 1.2390 

*from Ref. [58] 

The boron is kept at zB = 0 for each geometry optimization 

The most significant difference observed is that between any of the present HBN geometries and 

the HBN geometry obtained by Li and co-workers.[58] We attribute this large difference to the 

different basis sets used. While the HBN geometry for the 6-31G basis set agrees with its BO 

homologue to within a few mÅ, the bond lengths in the BNH attractor are compressed. In fact, it 
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appears as though all of the grids have the same compressing effect upon the BNH attractor 

geometry. The HBN geometries in the 3-21+G grids are more relaxed compared to the 

equivalent BO geometry. Qualitatively, however, the present grid provides a reasonable 

description of both attractors. 

6.2 Diabatic potentials for HBN and BNH using different paths for the H 

transfer 

From Figure 42, we can see that following a parabolic or a Fukui path produces diabatic 

potential energy curves, U1 and U2, that seemingly contradict the notion of a single pair of 

attractors. There are several possible reasons for this odd behaviour. The BO transition structure 

has a much larger BN bond length than that in either attractor, thus for intermediate zH values, 

the nitrogen nuclear charge does not coincide with either of the two BqN in all of our grids. A 

‘bare’ nitrogen nucleus (with charge q = 7) will artificially raise the potential energy for those 

configurations thereby creating unphysical reaction barriers. On the HBN diabatic potential 

energy surface, U1, both the hydrogen and nitrogen nuclei are no longer bare when in the BNH 

configurations, thus producing a minimum for the Fukui and parabolic trajectories. We should 

also be mindful that the calculated Fukui paths also depend on the basis set used. Indeed, if we 

look at the BN bond length in the transition structure Li and co-workers calculated at the 

CASPT2/cc-PVQZ level, it is between the BN bond lengths for their optimized BNH and HBN 

geometries. Apart from emphasizing our basis sets’ inability to properly describe the BN bond, 

this comparison justifies dropping these trajectories for the nitrogen nucleus in favour of a linear 

interpolation between their positions at the respective attractor geometries. In order to correct the 

artificially high potential energies at intermediate zH values, one could use a larger basis set, 

include polarization functions or add another nitrogen-like ghost orbital to the grid. 

Although the diabatic crossing for trajectories where N is linearly interpolated occurs at larger 

zH, all types of trajectories appear to coincide at the crossing point (see Figure 43). For the N 

fixed trajectories, the crossing point occurs at much lower zH decreasing in the following order 

for the paths: parabolic > Fukui > circular. The linearly interpolated nitrogen trajectories give an 

HBN bond angle of approximately 78
o
 at the crossing point. The HBN angle increases to about 
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102
o
 when the nitrogen nucleus is kept fixed. This angle defines the pseudo-barrier in our semi-

classical models, thus for a globally low intensity in the V12 field coupling, the angle at this point 

approximates a transition structure geometry. The linearly interpolated nitrogen trajectories 

produce a pseudo-transition structure closer to that given by Li et co-workers, with θ(HBN) of 

85.9
o
. Intriguingly, although the circular trajectory for the hydrogen nucleus does not resemble 

the Fukui trajectory, they are quite similar when comparing the diabatic potential energy curves, 

more so when the nitrogen nucleus is linearly interpolated. A circular or elliptical path in the yz 

plane between the reactant and product attractors may be a better approximation for the Fukui 

path than a path given by a regression polynomial interpolated through a transition structure. 

This may perhaps be generally true for 2-state reactions, but we do not expect the same 

approximation to be valid for reaction requiring more states, for example a non-radical 

isomerization. In fact, small differences between the diabatic potentials along different 

trajectories remain, but they are greatly reduced since moving the nitrogen nucleus clearly has a 

much greater effect on the diabatic potential energy curves than the smaller charge of the 

hydrogen nucleus (q = 1). A similar effect was already observed by Arteca and Tapia when using 

the GED approach for the umbrella transition in NH3.[8] Together, these observations highlight 

the crucial role of the N nucleus’ position in the energetics of the isomerization. For reactions in 

general, our observations underline the greater importance in having floating Gaussian grid 

orbitals along the path of larger nuclei. 
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Table 4. Net isomerization enthalpies (energy differences between product and reactant 

attractors) 

 ∆EHBN⇄BNH 

(mHa) 

3-21+G BO 55.81 

6-31G BO 56.94 

3-21+G linear grid 52.77 

3-21+G ‘line-box’ grid 51.02 

6-31G linear grid 56.19 

CASPT2//CASPT2* 35.27 

* From ref. [58] (the ‘//’ symbol indicates that both the reactant and product geometries and 

energies are computed at the CASPT2 level) 

All isomerization energies obtained from the grid attractors are lower than the corresponding BO 

UHF energy (1-9%), however, they are still much higher (40-60%) than the exact isomerization 

energies given by a CASPT2//CASPT2. This last point is not unexpected; it is a higher level of 

post Hartree-Fock theory which takes the contribution of higher energy states into account 

whereas our present analysis does not.  
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Figure 42. Effect of Fukui and parabolic interpolation H-paths on the diabatic potential energy 

curves {Ui} 

In Figure 42, the N nucleus is interpolated linearly between the two attractors for the circular 

path. For the parabolic trajectory, zN is parabolically interpolated through the transition structure. 

The nitrogen nucleus follows its Fukui trajectory as the hydrogen nuclear charge follows its 

Fukui trajectory. If the N nucleus is moved according to the 3-21G Fukui path, the diabatic 

crossing occurs very near a BNH geometry at zH ~ 2.1Å instead of a more intermediate value 

between the BNH and HBN z coordinates for H. Also, the diabatic curves reach much larger 

energies after the crossing, than originally predicted. Note the occurrence of additional local 

minima when building U1(zH) and U2(zH) using ‘trajectories’ derived from the Fukui path. This 

behaviour is unacceptable in the context of the GED approach, thus indicating that the Fukui 

path can only be used in our case by substantially enlarging the off-linear components of an 

optimized grid of floating Gaussian functions. More acceptable {Ui} functions are given in 

Figure 43.  
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Figure 43. Diabatic potentials U1 and U2, built as functions of zH for fixed and linearly 

interpolated N nuclear charge 

In Figure 43, graph A, shallow minima appear in the potential energy curve Uj(zH) for the N 

fixed parabolic and Fukui trajectories. These features are contrary to the GED model and 

preclude the use of these functions. In contrast, graph B shows that these anomalies disappear 

when using the path that interpolates the N position between the two attractors. Accordingly, the 

{Ui} functions in Figure 43 B are acceptable candidates for a strictly diabatic two-state model of 

the HBN ⇄ BNH radical isomerization.  
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Table 5. Comparing the energies for the reactant and product geometries when using the BO 

approximation and the optimized grids of floating Gaussian functions for diabatic basis functions 

 HBN 

(mHa) 

BNH 

(mHa) 

HBN* 

(mHa) 

BNH* 

(mHa) 

3-21+G linear grid -30.63 -27.58 -30.70 -27.60 

3-21+G ‘line-box’ grid -31.80 -27.00 -31.88 -27.03 

6-31G linear grid -10.30 -9.54 -10.30 -9.62 

*Compared to BO energies using the grid’s atomic orbital coordinates 

Each attractor is energetically lower than the corresponding BO UHF optimized geometries and 

the BO energies at the grid’s atomic orbital coordinates. In the absence of any ghost orbital, the 

energies obtained by the GED and the BO approach will be the same at the attractor geometry. 

Here, we obtain lower attractor energies due to the additional floating Gaussian orbitals that 

make up the grid.  

The diabatic potential energy curves for HBN and BNH shown in Figures 38-40 are the quantum 

mechanically derived forms of U1 and U2 discussed in section 4. In this case, zH = x from the 

semi-classical equations. As discussed previously, the {Ui(zH)} functions in Figure 43 B are the 

best representation consistent with the concepts of the GED model. One can now use the 

quantum diabatic basis functions with various V12 field couplings to produce effective potential 

energy curves, Efull, as shown in section 4.  
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7. Conclusion 

We have investigated the effects of six different external field coupling potentials on two semi-

classical two-state models. Our aim has been to describe and understand qualitatively the role of 

this external field in modulating the interconversion of two chemical species. We associate these 

species to two diabatic basis functions, and the quantum states of the reaction system appear as 

coherent superpositions of these functions coupled with an electric field. As a result, the 

chemical process emerges as a quantum transition with an associated effective potential energy 

function Efull whose topological properties, for example the number and type of critical points, 

can be affected by manipulating the shape and intensity of the applied field. By creating “phase 

diagrams” for the manifolds of models in terms of the critical point topology of the Efull potential 

energy function, we have observed the gradual and drastic changes that occur as model and 

coupling parameters are modified. We have performed a detailed numerical analysis over a large 

range of two-state models. Closed form solutions for the extrema on the effective potential 

energy surface Efull are only available for the simpler totally symmetric radical isomerization 

models and only for the simplest field couplings. 

We find that, in general, as the field intensity constant ‘a’ increases globally, the effective 

reaction barrier in Efull disappears. For a given isomerization model, a constant V12 field coupling 

can eliminate the effective reaction barrier, however, the most stable nuclear configuration will 

be a transition structure. In order to stabilize one attractor-like geometry over another, we find 

that a well-placed Lorentzian or a non-smooth V12 is preferable.  

Our analysis shows that the barrier for the two-state dissociation models is infinitely broad and 

the effective potential energy surface simply reaches the product’s zero-point energy at infinite 

separation. In contrast, the reactant geometries are stabilized compared to the uncoupled reactant 

potential. Thus, to get an electronically exothermic dissociation, a non-smooth field coupling is 

the best choice. On the other hand, if we wish to maintain the barrier yet stabilize each attractor, 

a well-placed linear field coupling would work for both two-state reactions, the bond breaking 

and the isomerization processes. An inverse Lorentzian V12 function would also work for the 
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radical isomerization because the finite range of reaction coordinates involved no asymptotic 

attractors.  

 We have also used a quantum mechanical approach to compute the diabatic potential energy 

functions for the reactant and the product. To this end, we use grids of floating Gaussian orbitals, 

which are a conceptually simple and natural way to build the U1 and U2 functions. For reasons of 

symmetry in the electronic coordinate space, the simplest single-grid two-state model 

corresponds to a radical isomerization, in our case, the HBN to BNH interconversion. Our 

present work has demonstrated that grids of floating Gaussian orbitals must be completely re-

optimized when using a different basis set or a different grid geometry. The resulting quantum 

diabatic potential energy curves, U1 and U2, are highly dependent on the paths taken by the 

nuclear charges. The larger charge displaced from its attractor position will have a greater effect 

on the potential energy than the smaller nuclear charge. The different basis sets and grid 

geometries had little effect on the overall shape of the diabatic potential curves. The grid 

produced with a larger basis set did, however, produce significantly lower diabatic potential 

energy curves for both HBN and BNH. We find that the best model for the quantum diabatic 

potential energy functions {Ui} uses a simple geometric path for the H nucleus and interpolates 

among the optimized positions for the other nuclei in the respective attractors. 

Immediate future work should investigate the effective potential energy curves produced by 

entangling the diabatic states for HBN and BNH in an external field. Alternate and competing 

reaction pathways should be included for a more complete description of a reaction system. We 

may extend the GED model to multi-state systems that include intermediate or excited states. In 

particular, the model should be tested with more systems where the Born-Oppenheimer 

approximation is known to be inadequate. In this endeavour, we should also consider how to 

model more complex external fields, especially for reactions such as enzyme catalysis where the 

geometry and charge distribution around the active site determine the outcome of the reaction. 

Finally, a crucial step in advancing a generalized diabatic model as a computationally efficient 

alternative to Born-Oppenheimer approximation techniques would be the complete automation 

of the grid optimization procedure. 
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Appendix A 

A1. Fortran code for the semi-classical models 

C23456789012345678901234567890123456789012345678901234567890123456789012 

C This programme gives as output: potential energy curves, topology  

C maps, map borders and the surfaces of parameter space 

 

 character*30 output 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5),type(52000,19),surf(102,102) 

 dimension imat(2,8),bor(1,20) 

 

C matrix type for the topologies reduces size of output 

C & makes formatting in Excel easier 

 

 ai=0.d0 

 na=0 

 da=0.d0 

 bi=0.d0 

 nb=0 

 db=0.d0 

 ci=0.d0 

 nc=0 

 dc=0.d0 

 c2i=0.d0 

 nc2=0 

 dc2=0.d0 

 gi=0.d0 

 ng=0 

 dg=0.d0 

 si=0.d0 

 ns=0 

 ds=0.d0 

 ti=0.d0 

 nt=0 

 dt=0.d0 

 ri=0.d0 

 nr=0 

 dr=0.d0 

 xi=0.d0 

 nx=0 

 dx=0.d0 

 pg=1.d0 

 ins10=3 

 par=0.d0 

  

 write(6,*)'Give output file.' 

 read(5,*)output 

 open(20,file=output,status='unknown') 

 

300 write(6,*)'1.Ecurves 2.types 3.surfaces 4.borders' 
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 read(5,*)ins1 

 if((ins1.LT.1).OR.(ins1.GT.4))GO TO 300 

  

 if(ins1.EQ.3)then 

310 write(6,*)'1.k vs t 2.k vs s 3.k vs r *only 100 steps' 

 read(5,*)ins2 

 if((ins2.LT.1).OR.(ins2.GT.3))GO TO 310 

 endif 

 

 if(ins1.EQ.4)then 

320 write(6,*)'1.top&bottom 2.top 3.bottom 4.neither' 

 read(5,*)ins3 

 DO i=1,2 

 DO j=1,6 

 imat(i,j)=0 

 ENDDO 

 ENDDO 

 if((ins3.LT.1).OR.(ins3.GT.4))GO TO 320 

 endif 

 

 if(ins1.NE.3)then 

  

330 write(6,*)'V12= 1.a 2.ax+b 3.a(x+c)^2/(b+(x+c)^2)' 

 write(6,*)'4.a/(1+b(x+c)^2) 5.x<x*,c1,x>=x*,c2 6.c_ax+b_c2' 

 read(5,*)ins4 

 if((ins4.LT.1).OR.(ins4.GT.6))GO TO 330 

 

 if(ins4.EQ.1)then 

400 write(6,*)'1.dE vs SQRTk 2.a vs SQRTk' 

 read(5,*)ins9 

 if((ins9.LT.1).OR.(ins9.GT.2))GO TO 400 

 write(6,*)'Give initial V12, steps, increment.' 

 read(5,*)ai,na,da 

 

 else if(ins4.EQ.2)then 

410 write(6,*)'1.dE vs SQRTk 2.a vs SQRTk 3.b vs SQRTk' 

 read(5,*)ins9 

 if((ins9.LT.1).OR.(ins9.GT.3))GO TO 410 

 write(6,*)'Give initial a, steps, increment.' 

 read(5,*)ai,na,da 

 write(6,*)'Give initial b, steps, increment.' 

 read(5,*)bi,nb,db 

 

 else if((ins4.EQ.3).OR.(ins4.EQ.4))then 

420 write(6,*)'1.dE vs SQRTk 2.a vs SQRTk 3.b vs SQRTk 4.c vs SQRTk' 

 read(5,*)ins9 

 if((ins9.LT.1).OR.(ins9.GT.4))GO TO 420 

 write(6,*)'Give initial a, steps, increment.' 

 read(5,*)ai,na,da 

 write(6,*)'Give initial b, steps, increment.' 

 read(5,*)bi,nb,db 

 write(6,*)'Give initial c, steps, increment.' 

 read(5,*)ci,nc,dc 
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 else if(ins4.EQ.5)then 

430 write(6,*)'1.dE vs SQRTk 2.c1 vs SQRTk 3.c2 vs SQRTk 4.x* vs SQRTk' 

 read(5,*)ins9 

 if((ins9.LT.1).OR.(ins9.GT.4))GO TO 430 

 write(6,*)'Give initial c1, steps, increment' 

 read(5,*)ai,na,da 

 write(6,*)'Give initial c2, steps, increment' 

 read(5,*)bi,nb,db 

 write(6,*)'Give initial x*, steps, increment' 

 read(5,*)ci,nc,dc 

 

 else if(ins4.EQ.6)then 

440 write(6,*)'1.dE vs SQRTk 2.a vs SQRTk'  

 write(6,*)'3.b vs SQRTk 4.c1 vs SQRTk 5.c2 vs SQRTk' 

 read(5,*)ins9 

 if((ins9.LT.1).OR.(ins9.GT.5))GO TO 440 

  if(ins9.NE.1)then 

450  write(6,*)'fix line int w/ 1.c1 2. c2 3. neither' 

  read(5,*)ins10 

  if((ins10.LT.1).OR.(ins10.GT.3))GO TO 450 

  endif 

 write(6,*)'Give initial c, steps, increment.' 

 read(5,*)ci,nc,dc 

 write(6,*)'Give initial a, steps, increment.' 

 read(5,*)ai,na,da 

  if(ins10.NE.3)then 

  write(6,*)'Give initial xint, steps, increment' 

  else 

  write(6,*)'Give initial b, steps, increment.' 

  endif 

 read(5,*)bi,nb,db 

 write(6,*)'Give initial c2, steps, increment.' 

 read(5,*)c2i,nc2,dc2 

  

 endif 

 endif 

 

340 write(6,*)'U2= 1.t+s*e^-x 2.t+s(x-r)^-10'  

 write(6,*)'3.t+s(x-r)^-12 4.t+s/2*(x-r)^2' 

 read(5,*)ins5 

 if((ins5.LT.1).OR.(ins5.GT.4))GO TO 340 

  

 write(6,*)'Give initial k, steps, increment.' 

 read(5,*)gi,ng,dg 

 

 if(ins5.EQ.4)then 

 write(6,*)'keep k = cs? 1.no 2.yes' 

 read(5,*)ins8 

 endif 

 

 write(6,*)'Give initial s, steps, increment.' 

 read(5,*)si,ns,ds 
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 write(6,*)'Give initial t, steps, increment.' 

 read(5,*)ti,nt,dt 

 

 if(ins5.NE.1)then 

370 write(6,*)'Give initial r, steps. increment.' 

 read(5,*)ri,nr,dr 

 if((ins5.NE.4).AND.(ri.GT.0.d0))GO TO 370 

 endif 

 

 if(ins1.NE.3)then 

 write(6,*)'Give initial x, steps, increment.' 

 read(5,*)xi,nx,dx 

 endif 

 

 if(ins5.EQ.2)then 

 ie=-10 

 else if(ins5.EQ.3)then 

 ie=-12 

 else if(ins5.EQ.4)then 

 ie=2 

 endif 

  

 index=0 

 index1=0 

 index2=0 

 index3=0 

 index4=0 

 index5=0 

 index6=0 

 index7=0 

 index8=0 

 index9=0 

 id1=-1 

 oldg=0.d0 

 

 DO i=1,102 

 DO ii=1,102 

 surf(i,ii)=0.d0 

 ENDDO 

 ENDDO 

  

 DO i=1,52000 

 DO ii=1,19 

 type(i,ii)=0.d0 

 ENDDO 

 ENDDO 

 

 DO 100 ja=1,na+1 

 a=ai+(ja-1.d0)*da 

 DO 110 jb=1,nb+1 

 b=bi+(jb-1.d0)*db 

 DO 120 jc=1,nc+1 

 c=ci+(jc-1.d0)*dc 
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 DO 130 jc2=1,nc2+1 

 c2=c2i+(jc2-1.d0)*dc2 

 DO 140 jg=1,ng+1 

 g=gi+(jg-1.d0)*dg 

 if(ins8.EQ.2)then 

 pg=g 

 endif 

 DO 150 js=1,ns+1 

 s=pg*(si+(js-1.d0)*ds) 

 DO 160 jt=1,nt+1 

 t=ti+(jt-1.d0)*dt 

 DO 170 jr=1,nr+1 

 r=ri+(jr-1.d0)*dr 

 

C call subroutines to determine diabatic curve crossing, energy barrier 

 

 if((ins5.NE.1).AND.(ie.EQ.2).AND.(2*t.GT.g*r*r))GO TO 170 

 if(ins1.NE.1)then 

 if(ins5.EQ.1)then 

 CALL DELTA(g,s,t,d3) 

 else 

 CALL DELTA2(g,s,t,r,ie,d3) 

 endif 

 endif 

 

C call subroutines for Efull and topology analysis 

 

 if(ins1.NE.3)then 

 if(ins4.EQ.1)then 

  if(ins5.EQ.1)then 

  CALL GEN1(g,s,t,xi,nx,dx,a,Ef,id) 

  else 

  CALL GEN1b(g,s,t,r,ie,xi,nx,dx,a,Ef,id) 

  endif 

 else if(ins4.EQ.2)then 

  if(ins5.EQ.1)then 

  CALL GEN2(g,s,t,xi,nx,dx,a,b,Ef,id) 

  else 

  CALL GEN2b(g,s,t,r,ie,xi,nx,dx,a,b,Ef,id) 

  endif 

 else if(ins4.EQ.3)then 

  if(ins5.EQ.1)then 

  CALL GEN3(g,s,t,xi,nx,dx,a,b,c,Ef,id) 

  else 

  CALL GEN3b(g,s,t,r,ie,xi,nx,dx,a,b,c,Ef,id) 

  endif 

 else if(ins4.EQ.4)then 

  if(ins5.EQ.1)then 

  CALL GEN4(g,s,t,xi,nx,dx,a,b,c,Ef,id) 

  else 

  CALL GEN4b(g,s,t,r,ie,xi,nx,dx,a,b,c,Ef,id) 

  endif 

 else if(ins4.EQ.5)then 
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  if(ins5.EQ.1)then 

  CALL GEN5(g,s,t,xi,nx,dx,a,b,c,Ef,id) 

  else 

  CALL GEN5b(g,s,t,r,ie,xi,nx,dx,a,b,c,Ef,id) 

  endif 

 else if(ins4.EQ.6)then 

  if(ins5.EQ.1)then 

  CALL GEN6(g,s,t,xi,nx,dx,c,a,b,c2,Ef,id,ins10) 

  else 

  CALL GEN6b(g,s,t,r,ie,xi,nx,dx,c,a,b,c2,Ef,id,ins10) 

  endif 

 endif 

 endif 

 

C defining topology map phase space 'x' vs SQRT(g) 

  

 if(ins9.EQ.1)then 

 par=d3 

 else if(ins9.EQ.2)then 

 par=a 

 else if(ins9.EQ.3)then 

 par=b 

 else if(ins9.EQ.4)then 

 par=c 

 else if(ins9.EQ.5)then 

 par=c2 

 endif 

  

 if(ins1.EQ.1)then 

 write(20,600)g,s,t,r,a,b,c,c2 

 write(20,610)((Ef(i,ii),ii=1,5),i=1,nx+1) 

 GO TO 170 

 endif 

 

C Topology sort 

  

 if(ins1.EQ.2)then 

  if(id.EQ.1)then 

  index1=index1+1 

  type(index1,1)=dsqrt(g) 

  type(index1,2)=par 

  GO TO 170 

  endif 

   

  if(id.EQ.2)then 

  index2=index2+1 

  type(index2,3)=dsqrt(g) 

  type(index2,4)=par 

  GO TO 170 

  endif 

 

  if(id.EQ.3)then 

  index3=index3+1 
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  type(index3,5)=dsqrt(g) 

  type(index3,6)=par 

  GO TO 170 

  endif 

   

  if(id.EQ.4)then 

  index4=index4+1 

  type(index4,7)=dsqrt(g) 

  type(index4,8)=par 

  GO TO 170 

  endif 

   

  if(id.EQ.5)then 

  index5=index5+1 

  type(index5,9)=dsqrt(g) 

  type(index5,10)=par 

  GO TO 170 

  endif 

 

  if(id.EQ.6)then 

  index6=index6+1 

  type(index6,11)=dsqrt(g) 

  type(index6,12)=par 

  GO TO 170 

  endif 

   

  if(id.EQ.7)then 

  index7=index7+1 

  type(index7,13)=dsqrt(g) 

  type(index7,14)=par 

  GO TO 170 

  endif 

   

  if(id.EQ.8)then 

  index8=index8+1 

  type(index8,15)=dsqrt(g) 

  type(index8,16)=par 

  GO TO 170 

  endif 

   

  if((id.GT.8).OR.(id.LT.1))then 

  index9=index9+1 

  type(index9,17)=dsqrt(g) 

  type(index9,18)=par 

  type(index9,19)=id 

  GO TO 170 

  endif 

 endif 

 

 if(ins1.EQ.3)then 

 surf(1,jg+1)=g 

  if(ins2.EQ.1)then 

  surf(jt+1,1)=t 
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  surf(jt+1,jg+1)=d3 

  GO TO 170 

  else if(ins2.EQ.2)then 

  surf(js+1,1)=s 

  surf(js+1,jg+1)=d3 

  GO TO 170 

  else 

  surf(jr+1,1)=r 

  surf(jr+1,jg+1)=d3 

  GO TO 170 

  endif 

 endif 

 

C defining phase borders in topology map 

 

 if(ins1.EQ.4)then 

 DO iu=1,20 

 bor(1,iu)=0.d0 

 ENDDO 

 if((id.NE.id1).AND.((g.EQ.oldg).OR.(par.EQ.oldpar)))then 

 ju=0 

  DO iu=1,8 

  ju=iu 

  if((id1.EQ.imat(1,iu)).AND.(id.EQ.imat(2,iu)))then 

  GO TO 350 

  endif 

  ENDDO 

  

  DO iu=1,8 

  ju=iu 

  if((imat(1,iu).EQ.0).AND.(imat(2,iu).EQ.0))then 

  imat(1,iu)=id1 

  imat(2,iu)=id 

  GO TO 350 

  endif 

  ENDDO 

 

 ju=8 

350 bor(1,2*ju-1)=dsqrt(g) 

 bor(1,2*ju)=par 

 

 

 if((jt.EQ.1).AND.(js.EQ.1).AND.(jr.EQ.1))then 

  if((ins3.EQ.1).OR.((ins3.EQ.2).AND.(nt.NE.0)) 

     1   .OR.((ins3.EQ.3).AND.(nt.EQ.0)))then 

  bor(1,17)=dsqrt(g) 

  bor(1,18)=par 

  endif 

 else if((jt.EQ.nt+1).AND.(js.EQ.ns+1).AND.(jr.EQ.nr+1))then 

  if((ins3.EQ.1).OR.((ins3.EQ.2).AND.(nt.EQ.0)) 

     1   .OR.((ins3.EQ.3).AND.(nt.NE.0)))then 

  bor(1,19)=dsqrt(g) 

  bor(1,20)=par  



116 

 

 

  endif 

 endif 

 write(20,620)(bor(1,ii),ii=1,20) 

 endif 

 endif 

 

 oldg=g 

 oldpar=par 

 id1=id 

 

170 CONTINUE 

160 CONTINUE 

150 CONTINUE 

140 CONTINUE 

130 CONTINUE 

120 CONTINUE 

110 CONTINUE 

100 CONTINUE 

 

 if(ins1.EQ.2)then 

 it=max(index1,index2,index3,index4,index5,index6,index7, 

     1  index8,index9) 

 write(20,630)((type(i,ii),ii=1,19),i=1,it) 

 endif 

  

 if(ins1.EQ.3)then 

 write(20,640)((surf(i,ii),ii=1,102),i=1,102) 

 endif 

 

600 FORMAT(8(F7.3,2x)) 

610 FORMAT(F7.3,2x,E16.10,2x,E16.10,2x,E16.10,2x,E16.10) 

620 FORMAT(20(E16.10,2x)) 

630 FORMAT(18(E16.10,2x),I4) 

640 FORMAT(102(E16.10,2x)) 

 

 close(20) 

 end 

 

C energy barrier for U2=t+s*exp(-x) 

 

 SUBROUTINE DELTA(g,s,t,d3) 

 implicit real*8 (a-h,o-z) 

  

 d1=0.d0 

 d2=0.d0 

 x=0.d0 

  

 DO 50 j=1,19 

 ai=3.d0-j 

 aj=10.d0**(ai) 

  

 DO 60 k=1,10 

 ak=k 
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 y=x+(ak-1.d0)*aj 

 z=x+ak*aj 

 u1=0.5d0*g*y*y 

 v1=0.5d0*g*z*z 

 u2=t+s*dexp(-y) 

 v2=t+s*dexp(-z) 

   

 d1=u2-u1 

  

 if(d1.EQ.0.d0)then 

 d3=u2-t 

 GO TO 40 

 endif 

  

 d2=v2-v1 

 

 if(d2.EQ.0.d0)then 

 d3=v2-t 

 GO TO 40 

 endif 

  

 if((d1*d2).LT.0.d0)then 

  d3=u2-t 

  x=y 

  GO TO 50 

 endif  

 

60 CONTINUE 

50 CONTINUE 

40 RETURN 

 end 

 

C energy barrier for U2=t+s(x-r)^ie 

 

 SUBROUTINE DELTA2(g,s,t,r,ie,d3) 

 implicit real*8 (a-h,o-z) 

  

 d1=0.d0 

 d2=0.d0 

 x=0.d0 

  

 if(ie.EQ.2)GO TO 360 

 

 DO 50 j=1,19 

 ai=3.d0-j 

 aj=10.d0**(ai) 

  

 DO 60 k=1,10 

 ak=k 

 y=x+(ak-1.d0)*aj 

 z=x+ak*aj 

 u1=0.5d0*g*y*y 

 v1=0.5d0*g*z*z 
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 u2=t+s*(y-r)**(ie) 

 v2=t+s*(z-r)**(ie) 

   

 d1=u2-u1 

  

 if(d1.EQ.0.d0)then 

 d3=u2-t 

 GO TO 40 

 endif 

  

 d2=v2-v1 

 

 if(d2.EQ.0.d0)then 

 d3=v2-t 

 GO TO 40 

 endif 

  

 if((d1*d2).LT.0.d0)then 

  d3=u2-t 

  x=y 

  GO TO 50 

 endif  

 

60 CONTINUE 

50 CONTINUE 

 

360 if(ie.EQ.2)then 

 rd=g*s*r*r+2.d0*g*t-2.d0*s*t 

  if(dabs(s-g).GT.1.d-10)then 

  xc=(s*r+dsqrt(rd))/(s-g) 

   if((xc.LT.0.d0).OR.(xc.GT.r))then 

   xc=(s*r-dsqrt(rd))/(s-g) 

   endif 

  else 

  xc=(s*r*r+2*t)/(2*s*r) 

  endif 

 d3=0.5d0*g*xc*xc-t 

 endif  

 

40 RETURN 

 end 

 

C Constant V12, U2=t+s*exp(-x) 

  

 SUBROUTINE GEN1(g,s,t,xi,nx,dx,a,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 last=0 

 V12=a 

 id=0 

 int=0 
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 xj=xi 

  

 DO 20 i=1,1100 

 DO 30 j=1,5 

 Ef(i,j)=0.d0 

30 CONTINUE 

20 CONTINUE 

 

 DO 40 i=1,nx+1 

  

 x=xj+(i-1.d0)*dx 

 x2=xj+i*dx 

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 U2= t+s*dexp(-x) 

 U22= t+s*dexp(-x2)  

  

 delta12=U2-U1 

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

 

 adelta12=dabs(delta12) 

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

  

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

  

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

  

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V12/delta22)*(V12/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

  

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 
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  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

 RETURN 

 END 

 

C Constant V12, U2=t+s*(x-r)^ie 

  

 SUBROUTINE GEN1b(g,s,t,r,ie,xi,nx,dx,a,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 last=0 

 V12=a 

 id=0 

 int=0 

  

 if(ie.LT.0)then 

 xj=r+dx 

 it=1 

 else  

 xj=xi 

 it=2 

 endif 

  

 DO 20 i=1,1100 

 DO 30 j=1,5 

 Ef(i,j)=0.d0 

30 CONTINUE 

20 CONTINUE 

 

 DO 40 i=1,nx+1 

  

 x=xj+(i-1.d0)*dx 

 x2=xj+i*dx 

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 U2=t+s/it*(x-r)**(ie) 

 U22=t+s/it*(x2-r)**(ie) 
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 delta12=U2-U1 

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

 

 adelta12=dabs(delta12) 

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

  

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

  

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

  

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V12/delta22)*(V12/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

  

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

  

40 CONTINUE 

  

 RETURN 

 END 
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C Linear V12, U2=t+s*exp(-x) 

 

 SUBROUTINE GEN2(g,s,t,xi,nx,dx,a,b,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 id=0 

 int=0 

 last=0 

 

 xj=xi 

  

 DO 20 i=1,1100 

 DO 30 j=1,5 

 Ef(i,j)=0.d0 

30 CONTINUE 

20 CONTINUE 

 

 DO 40 i=1,nx+1 

  

 x=xj+(i-1d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 V12=a*x+b 

 V122=a*x2+b 

 U2= t+s*dexp(-x) 

 U22= t+s*dexp(-x2) 

   

 delta12=U2-U1 

  

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

  

 adelta12=dabs(delta12) 

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

 

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12  

 

 delta22=U22-U12 

 

 if(dabs(delta22).lt.1.d-10)GO TO 40 
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 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

 

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

C for sm k & lg a, if only a max is found, there must be a min 

C it just might be outside the scanning range 

 

 if((id.EQ.1).AND.(islope.EQ.1))then 

 id=2 

 endif 

  

 RETURN 

 end 

 

C Linear V12, U2=t+s*(x-r)^ie 

  

 SUBROUTINE GEN2b(g,s,t,r,ie,xi,nx,dx,a,b,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 id=0 

 int=0 

 last=0 

 

 if(ie.LT.0)then 

 xj=r+dx 

 it=1 
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 else 

 xj=xi 

 it=2 

 endif 

  

 DO 20 i=1,1100 

 DO 30 j=1,5 

 Ef(i,j)=0.d0 

30 CONTINUE 

20 CONTINUE 

 

 DO 40 i=1,nx+1 

  

 x=xj+(i-1d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 V12=a*x+b 

 V122=a*x2+b 

 U2=t+s/it*(x-r)**(ie) 

 U22=t+s/it*(x2-r)**(ie) 

 

 delta12=U2-U1 

  

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

  

 adelta12=dabs(delta12) 

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

 

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12  

 

 delta22=U22-U12 

 

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

 

 if(Efull-Efull2.GT.1.d-10)then 
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  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

C for sm k & lg a, a min can be outside the scanning range 

  

 if(((id.EQ.1).OR.(id.EQ.2)).AND.(islope.EQ.1))then 

  if(ie.EQ.2)then 

  id=3 

  else 

  id=2 

  endif 

 endif 

 

 RETURN 

 end 

 

C inverse lorentzian V12, U2=t+s*exp(-x) 

 

 SUBROUTINE GEN3(g,s,t,xi,nx,dx,a,b,c,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 id=0 

 int=0 

 last=0 

 

 xj=xi 

 

 DO 20 i=1,1100 

 DO 30 j=1,5 

 Ef(i,j)=0.d0 

30 CONTINUE 

20 CONTINUE 
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 DO 40 i=1,nx+1 

  

 x=xj+(i-1.d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 V12=a*(x+c)**2/(b+(x+c)**2) 

 V122=a*(x2+c)**2/(b+(x2+c)**2)  

 U2= t+s*dexp(-x) 

 U22= t+s*dexp(-x2) 

    

 delta12=U2-U1 

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

 

 adelta12=dabs(delta12) 

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

 

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

  

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

  

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 
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  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

 RETURN 

 end 

 

C inverse lorentzian V12, U2=t+s*(x-r)^ie 

 

 SUBROUTINE GEN3b(g,s,t,r,ie,xi,nx,dx,a,b,c,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 id=0 

 int=0 

 last=0 

 

 if(ie.LT.0)then 

 xj=r+dx 

 it=1 

 else 

 xj=xi 

 it=2 

 endif 

 

 DO 20 i=1,1100 

 DO 30 j=1,5 

 Ef(i,j)=0.d0 

30 CONTINUE 

20 CONTINUE 

  

 DO 40 i=1,nx+1 

  

 x=xj+(i-1.d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 V12=a*(x+c)**2/(b+(x+c)**2) 

 V122=a*(x2+c)**2/(b+(x2+c)**2) 

 U2=t+s/it*(x-r)**(ie) 

 U22=t+s/it*(x2-r)**(ie) 

    

 delta12=U2-U1 

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 
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 endif 

 

 adelta12=dabs(delta12) 

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

 

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

  

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

  

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

 RETURN 

 end 

 

C Lorentzian V12, U2=t+s*exp(-x) 

 

 SUBROUTINE GEN4(g,s,t,xi,nx,dx,a,b,c,Ef,id) 

 implicit real*8 (a-h,o-z) 
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 dimension Ef(1100,5) 

 

 islope=0 

 id=0 

 int=0 

 last=0 

 

 xj=xi 

 

 DO 20 i=1,1100 

 DO 30 j=1,5 

 Ef(i,j)=0.d0 

30 CONTINUE 

20 CONTINUE 

 

 DO 40 i=1,nx+1 

  

 x=xj+(i-1d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 V12=a/(1+b*(x+c)**2) 

 V122=a/(1+b*(x2+c)**2) 

 U2= t+s*dexp(-x) 

 U22= t+s*dexp(-x2) 

 

 delta12=U2-U1 

  

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

  

 adelta12=dabs(delta12) 

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

  

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

 

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2)  
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 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

  

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

 RETURN 

 end 

 

C Lorentzian V12, U2=t+s*(x-r)^ie 

 

 SUBROUTINE GEN4b(g,s,t,r,ie,xi,nx,dx,a,b,c,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 id=0 

 int=0 

 last=0 

  

 if(ie.LT.0)then 

 xj=r+dx 

 it=1 

 else 

 xj=xi 

 it=2 

 endif 

 

 DO 20 i=1,1100 

 DO 30 j=1,5 

 Ef(i,j)=0.d0 

30 CONTINUE 

20 CONTINUE 
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 DO 40 i=1,nx+1 

  

 x=xj+(i-1d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 V12=a/(1+b*(x+c)**2) 

 V122=a/(1+b*(x2+c)**2) 

 U2=t+s/it*(x-r)**(ie) 

 U22=t+s/it*(x2-r)**(ie) 

 

 delta12=U2-U1 

  

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

  

 adelta12=dabs(delta12) 

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

  

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

 

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2)  

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

  

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 
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  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

 RETURN 

 end 

 

C discontinuous V12(that is __--) U2=t+s*exp(-x) 

 

 SUBROUTINE GEN5(g,s,t,xi,nx,dx,c1,c2,xint,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 id=0 

 int=0 

 last=0 

 

 DO i=1,1100 

 DO j=1,5 

 Ef(i,j)=0.d0 

 ENDDO 

 ENDDO 

 

 xj=xi 

   

 DO 40 i=1,nx+1 

 x=xj+(i-1.d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 U2= t+s*dexp(-x) 

 U22= t+s*dexp(-x2) 

  

 if(x.LT.xint)then 

 V12=c1 

 else 

 V12=c2 

 endif 

  

 if(x2.LT.xint)then 

 V122=c1 

 else 

 V122=c2 

 endif 
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 delta12=U2-U1 

  

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

 

 adelta12=dabs(delta12)  

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

  

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

   

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

 

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

 RETURN 

 END 
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C Discontinuous V12, U2=t+s*(x-r)^ie 

 

 SUBROUTINE GEN5b(g,s,t,r,ie,xi,nx,dx,c1,c2,xint,Ef,id) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 

 

 islope=0 

 id=0 

 int=0 

 last=0 

 

 DO i=1,1100 

 DO j=1,5 

 Ef(i,j)=0.d0 

 ENDDO 

 ENDDO 

 

 if(ie.LT.0)then 

 xj=r+dx 

 it=1 

 else 

 xj=xi 

 it=2 

 endif 

  

 DO 40 i=1,nx+1 

 x=xj+(i-1.d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 U2=t+s/it*(x-r)**(ie) 

 U22=t+s/it*(x2-r)**(ie) 

 

 if(x.LT.xint)then 

 V12=c1 

 else 

 V12=c2 

 endif 

  

 if(x2.LT.xint)then 

 V122=c1 

 else 

 V122=c2 

 endif 

 

 delta12=U2-U1 

  

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 
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 adelta12=dabs(delta12)  

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

  

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

   

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

 

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

 RETURN 

 END 

 

C V12 discontinous in d/dx (non-smooth) U2=t+s*exp(-x) 

 

 SUBROUTINE GEN6(g,s,t,xi,nx,dx,c1,a,xint,c2,Ef,id,ins10) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 
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 islope=0 

 id=0 

 int=0 

 last=0 

 

 DO i=1,1100 

 DO j=1,5 

 Ef(i,j)=0.d0 

 ENDDO 

 ENDDO 

  

 if(ins10.EQ.1)then 

 b=c1-a*xint 

 else if(ins10.EQ.2)then 

 b=c2-a*xint 

 else 

 b=xint 

 endif 

 

 xj=xi 

  

 DO 40 i=1,nx+1 

 x=xj+(i-1.d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 U2= t+s*dexp(-x) 

 U22= t+s*dexp(-x2) 

  

 if(x.LT.(c1-b)/a)then 

 V12=c1 

 else if((x.GE.(c1-b)/a).AND.(x.LT.(c2-b)/a))then 

 V12=a*x+b 

 else 

 V12=c2 

 endif 

  

 if(x2.LT.(c1-b)/a)then 

 V122=c1 

 else if((x2.GE.(c1-b)/a).AND.(x2.LT.(c2-b)/a))then 

 V122=a*x2+b 

 else 

 V122=c2 

 endif 

  

 delta12=U2-U1 

  

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 
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 adelta12=dabs(delta12)  

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

  

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

   

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

 

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

 

 RETURN 

 END 

 

C V12 discontinuous in d/dx, U2=t+s*(x-r)^ie 

 

 SUBROUTINE GEN6b(g,s,t,r,ie,xi,nx,dx,c1,a,xint,c2,Ef,id,ins10) 

 implicit real*8 (a-h,o-z) 

 dimension Ef(1100,5) 
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 islope=0 

 id=0 

 int=0 

 last=0 

 

 DO i=1,1100 

 DO j=1,5 

 Ef(i,j)=0.d0 

 ENDDO 

 ENDDO 

  

 if(ins10.EQ.1)then 

 b=c1-a*xint 

 else if(ins10.EQ.2)then 

 b=c2-a*xint 

 else 

 b=xint 

 endif 

 

 if(ie.LT.0)then 

 xj=r+dx 

 it=1 

 else 

 xj=xi 

 it=2 

 endif 

  

 DO 40 i=1,nx+1 

 x=xj+(i-1.d0)*dx 

 x2=xj+i*dx 

  

 U1=0.5d0*g*x*x 

 U12=0.5d0*g*x2*x2 

 U2=t+s/it*(x-r)**(ie) 

 U22=t+s/it*(x2-r)**(ie) 

  

 if(x.LT.(c1-b)/a)then 

 V12=c1 

 else if((x.GE.(c1-b)/a).AND.(x.LT.(c2-b)/a))then 

 V12=a*x+b 

 else 

 V12=c2 

 endif 

  

 if(x2.LT.(c1-b)/a)then 

 V122=c1 

 else if((x2.GE.(c1-b)/a).AND.(x2.LT.(c2-b)/a))then 

 V122=a*x2+b 

 else 

 V122=c2 

 endif 
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 delta12=U2-U1 

  

 if(dabs(delta12).lt.1.d-10)then 

 int=int+1 

 GO TO 40 

 endif 

 

 adelta12=dabs(delta12)  

 Efull= 1.d0 + 4.d0*(V12/delta12)*(V12/delta12) 

 Efull=dsqrt(Efull) 

 Efull=(delta12 - adelta12*Efull)*0.5d0 

 Efull=U1+Efull 

  

 Ef(i-int,1)=x 

 Ef(i-int,2)=U1 

 Ef(i-int,3)=U2 

 Ef(i-int,4)=Efull 

 Ef(i-int,5)=V12 

   

 delta22=U22-U12 

  

 if(dabs(delta22).lt.1.d-10)GO TO 40 

 

 adelta22=dabs(delta22) 

 Efull2= 1.d0 + 4.d0*(V122/delta22)*(V122/delta22) 

 Efull2=dsqrt(Efull2) 

 Efull2=(delta22 - adelta22*Efull2)*0.5d0 

 Efull2=U12+Efull2 

 

 if(Efull-Efull2.GT.1.d-10)then 

  if((islope.EQ.2).AND.(last.NE.2))then 

  islope=1 

  last=2 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=1 

  endif 

 endif 

 

 if(Efull2-Efull.GT.1.d-10)then 

  if((islope.EQ.1).AND.(last.NE.1))then 

  islope=2 

  last=1 

  id=id+1 

  else if(islope.EQ.0)then 

  islope=2 

  endif 

 endif 

 

40 CONTINUE 

  

 if((id.EQ.0).AND.(islope.EQ.1).AND.(ie.EQ.2))then 

 id=1 
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 else if((id.EQ.2).AND.(ie.EQ.2))then 

 id=3 

 endif 

 

 RETURN 

 END 
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A2. Fortran programme to create Gaussian 98 input for grid optimization 

C2345678912345678912345678912345678912345678912345678912345678912 

C This programme produces as output: a Gaussian input file 

C to optimize grids of 7-11 orbital for HBN 

C commented out statement are there to help replace input.txt 

C should it get deleted. 

 

 implicit real*8 (a-h,o-z) 

 character*3 sym 

 character*10 chk 

 character*20 file1,file2,title,output,junk 

 character*90 met1,met2 

 character*60 set,basis 

 dimension sym(11),basis(80,3),nl(3),r(11,3) 

  

 DO i=1,11 

 DO j=1,3 

 r(i,j)=0.d0 

 ENDDO 

 ENDDO 

 

 nw2=0 

 nh2=0 

 nx3=0 

 ny3=0 

 nz3=0 

 nx2=0 

 ny2=0 

 nz2=0 

 nx=0 

 ny=0 

 nz=0 

  

 OPEN(20,file='input.txt',status='unknown') 

 

 READ(20,*)file1 

 READ(20,*)chk 

 READ(20,600)met1,met2 

 READ(20,*)title 

 READ(20,*)iq,im 

 READ(20,*)ins1 

 

C ins1= 1. 7orb line 2. 9orb cross  

C 3. 11orb “line-box” 4. trapezoid “line-box” 

C             Bq______Bq  

C3,4. Bq-H--B--|      |--Bq-N--Bq-Bq 

C             Bq______Bq 

  

 IF((ins1.EQ.2).OR.(ins1.EQ.4))THEN 

 iorb=8 

 ELSE 

 iorb=7 
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 ENDIF 

  

 IF(ins1.EQ.1)THEN 

 io=7 

 ELSE IF(ins1.EQ.2)THEN 

 io=9 

 ELSE 

 io=11 

 ENDIF 

 

C read basis sets for H, B, N. 

 

 DO i=1,3 

 READ(20,*)file2 

 OPEN(21,file=file2,status='unknown') 

 nl(i)=0 

 DO 

 READ(21,601,END=300)set 

 nl(i)=nl(i)+1 

 basis(nl(i),i)=set 

 ENDDO 

300 close(21) 

 ENDDO 

 

C orbital positions 

  

 sym(1)='H'   

 sym(2)='B' 

 sym(3)='N' 

 sym(4)='Bq1' 

 sym(5)='Bq2' 

 sym(6)='Bq3' 

 sym(7)='Bq4' 

 sym(8)='Bq5' 

 sym(9)='Bq6' 

 sym(10)='Bq7' 

 sym(11)='Bq8' 

 

 DO i=1,iorb 

 READ(20,*)(r(i,j),j=1,3) 

 ENDDO 

  

 IF(iorb.EQ.7)THEN 

 READ(20,*)junk 

 ENDIF 

  

c #steps,increments x,y,z for active linear Bq 

  

 READ(20,*)nx,dx 

 READ(20,*)ny,dy 

 READ(20,*)nz,dz 

  

c #steps, increments x,y,z for 1pair of off-linear Bq (2,4) 
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c /centre of “line-box”(3) 

 

 IF(ins1.NE.1)THEN 

 READ(20,*)nx2,dx2 

 READ(20,*)ny2,dy2 

 READ(20,*)nz2,dz2 

  

c “line-box” centre position, initial, steps, increments height & width 

c position,steps, increment of 2nd side of “line-box” 

  

  IF(ins1.EQ.3)THEN 

  READ(20,*)xci,yci,zci 

  READ(20,*)h2i,w2i 

  READ(20,*)nh2,dh2 

  READ(20,*)nw2,dw2 

  ENDIF 

   

  IF(ins1.EQ.4)THEN 

  READ(20,*)(r(10,j),j=1,3) 

  READ(20,*)nx3,dx3 

  READ(20,*)ny3,dy3 

  READ(20,*)nz3,dz3 

  ENDIF 

 ENDIF 

  

 CLOSE(20) 

  

 zi=r(4,3) 

 yi=r(4,2) 

 xi=r(4,1) 

  

 IF((ins1.EQ.2).OR.(ins1.EQ.4))THEN 

 zi2=r(8,3) 

 yi2=r(8,2) 

 xi2=r(8,1) 

  IF(ins1.EQ.4)THEN 

  zi3=r(10,3) 

  yi3=r(10,2) 

  xi3=r(10,1) 

  ENDIF 

 ENDIF 

  

 OPEN(22,file=file1,status='unknown') 

  

 ni=0 

 nd=(nw2+1)*(nh2+1)*(nx2+1)*(ny2+1)*(nz2+1) 

 nd=nd*(nx+1)*(ny+1)*(nz+1)*(nz3+1)*(ny3+1) 

 nd=nd*(nx3+1) 

 

 DO 400 i=1,nw2+1 

 DO 401 i1=1,nh2+1 

 DO 402 i2=1,nx3+1 

 DO 403 i3=1,ny3+1 
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 DO 404 i4=1,nz3+1 

 DO 405 i5=1,nx2+1 

 DO 406 i6=1,ny2+1 

 DO 407 i7=1,nz2+1 

 DO 408 i8=1,nx+1 

 DO 409 i9=1,ny+1 

 DO 410 j1=1,nz+1 

 

 ni=ni+1 

  

 r(4,3)=zi+(j1-1)*dz 

 r(4,2)=yi+(i9-1)*dy 

 r(4,1)=xi+(i8-1)*dx 

  

 h2=h2i+(i1-1)*dh2 

 w2=w2i+(i-1)*dw2 

  

 IF((ins1.EQ.2).OR.(ins1.EQ.4))THEN 

  r(8,3)=zi2+(i7-1)*dz2 

  r(8,2)=yi2+(i6-1)*dy2 

  r(8,1)=xi2+(i5-1)*dx2 

  r(9,3)=r(8,3) 

  r(9,2)=-r(8,2) 

  r(9,1)=r(8,1) 

  IF(ins1.EQ.4)THEN 

   r(10,3)=zi3+(i4-1)*dz3 

   r(10,2)=yi3+(i3-1)*dy3 

   r(10,1)=xi3+(i2-1)*dx3 

   r(11,3)=r(10,3) 

   r(11,2)=-r(10,2) 

   r(11,1)=r(10,1) 

   ENDIF 

 ELSE IF(ins1.EQ.3)THEN 

  zc=zci+(i7-1)*dz2 

  yc=yci+(i6-1)*dy2 

  xc=xci+(i5-1)*dx2 

  

  r(8,3)=zc-w2 

  r(9,3)=r(8,3) 

  r(10,3)=zc+w2 

  r(11,3)=r(10,3) 

  r(8,2)=yc+h2 

  r(9,2)=yc-h2 

  r(10,2)=r(8,2) 

  r(11,2)=r(9,2) 

 ENDIF 

  

 WRITE(22,602)'%chk=',chk,ni,'.chk' 

 WRITE(22,603)'#n ', met1 

 WRITE(22,603)'#n ', met2 

 WRITE(22,*)' ' 

 WRITE(22,*)title 

 WRITE(22,*)' ' 
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 WRITE(22,604)iq,im 

 WRITE(22,605)sym(1),' 0   ',(r(1,ir),ir=1,2),' zH' 

 WRITE(22,606)sym(2),' 0   ',(r(2,ir),ir=1,3) 

 WRITE(22,605)sym(3),' 0   ',(r(3,ir),ir=1,2),' zN' 

  

 DO ir=4,io 

 WRITE(22,606)sym(ir),' 0  ',(r(ir,is),is=1,3) 

 ENDDO 

 

 WRITE(22,*)'     Variables:' 

 WRITE(22,*)'zH ',r(1,3) 

 WRITE(22,*)'zN ',r(3,3) 

 WRITE(22,*)' ' 

 

 DO il=1,3 

 IF(il.EQ.1)THEN 

  IF(ins1.EQ.1)THEN 

  WRITE(22,*)' 1 4 5 7 0' 

  ELSE IF(ins1.EQ.2)THEN 

  WRITE(22,*)' 1 4 5 7 8 9 0' 

  ELSE 

  WRITE(22,*)' 1 4 5 7 8 9 10 11 0' 

  ENDIF 

 ELSE IF(il.EQ.3)THEN 

  WRITE(22,*)' 3 6 0' 

 ELSE 

  WRITE(22,*)' 2 0' 

 ENDIF 

 DO kl=1,nl(il) 

 write(22,*)' ',basis(kl,il) 

 ENDDO 

 WRITE(22,607)'****' 

 ENDDO 

  

 IF(ni.NE.nd)THEN 

 WRITE(22,*)' ' 

 WRITE(22,*)'--Link1--' 

 ENDIF 

 

410 CONTINUE 

409 CONTINUE 

408 CONTINUE 

407 CONTINUE 

406 CONTINUE 

405 CONTINUE 

404 CONTINUE 

403 CONTINUE 

402 CONTINUE 

401 CONTINUE 

400 CONTINUE 

 

600 FORMAT(A90) 

601 FORMAT(A60) 
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602 FORMAT(A5,A10,I2,A4) 

603 FORMAT(A3,A90) 

604 FORMAT(I2,1x,I2) 

605 FORMAT(A3,A5,2(F8.4),A5) 

606 FORMAT(A3,A5,3(F8.4)) 

607 FORMAT(1x,A4) 

 

 CLOSE(22) 

  

 END 

 

A2.1 ‘input.txt’ 

In the comments the ‘/’ symbol designates an alternative set of variables that can be written to 

the same line 

BNH631c1-1.gjf 

HBNb 

uhf/gen scf=(conver=10,MaxCycle=2048) guess=(save,notranslate) 

Opt=(z-matrix,MaxCycle=100,Calcall) nosymmetry pop=None 

HBN                             |title 

0 2                             |charge, multiplicity 

2                               |1.line 2.cross 3.”line-box” 4.2sided 

anchored “line-box” 

631G-H.out 

631G-B.out 

631G-N.out 

0.0000 0.0010 2.2099            |H x,y,z 

0.0010 0.0000 0.0000            |B x,y,z 

0.0010 0.0000 1.2309            |N 

0.0010 0.0000 -1.213            |'active' Bq 

0.0000 0.0010 1.5810            |H-like Bq 

0.0000 0.0010 1.2445            |N-like Bq 

0.0010 0.0000 -1.1597           |H-like Bq 

0.0000 1.0000 0.0000            |for ins=2, off-lin H-like Bq/”line-box” 

side1 

0 0.3                           |nx dx for Bq active 

0 0.01                          |ny dy 

0 0.01                          |nz dz 

0 0.01                          |nx dx for off-lin/”line-box” centre 

Bq/”line-box” side1 

5 0.1                           |ny dy 

10 0.1                          |nz dz 

0.0000 1.1000 0.0000            |”line-box” centre x,y,z/”line-box” side 2 

0 0.0                           |1/2 “line-box” height, width/nx dx 

0 0.1                           |nh,dh/ny dy 

0 0.1                           |nw,dw/nz dz 
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A3. Fortran programme to analyze Gaussian 98 grid optimization output 

C23456789012345678901234567890123456789012345678901234567890123456789012 

C This programme takes the grid optimization Gaussian output file and 

C produces as output the position of each orbital and the energy 

C of that configuration. 

 

 character*20 line,hf,Egrid 

 character*30 input,output 

 character*8 xH,yH 

 implicit real*8 (a-h,o-z) 

 dimension r(11,3) 

 

 DO i=1,11 

 DO j=1,3 

 r(i,j)=0.d0 

 ENDDO 

 ENDDO 

  

 write(6,*)'Give grid input file' 

 read(5,*)input 

 write(6,*)'Give output file' 

 read(5,*)output 

 write(6,*)'1. 7orb line 2. 9orb cross' 

 write(6,*)'3. 11orb “line-box” 4. 11orb anchored “line-box”' 

 read(5,*)ins1 

  

 if(ins1.EQ.1)then 

 io=7 

 else if(ins1.EQ.2)then 

 io=9 

 else 

 io=11 

 endif 

 

 open(20,file=input,status='unknown') 

 open(21,file=output,status='unknown') 

 

301 read(20,602,end=300)line,hf 

  

 if(line.EQ.' SCF Done:  E(UHF) =')then 

 Egrid=hf 

 endif 

  

 if(line.EQ.' Charge =  0 Multipl')then 

 read(20,*,end=300)line,a,r(1,1),r(1,2) 

 read(20,*,end=300)line,a,r(2,1),r(2,2),r(2,3) 

 read(20,*,end=300)line,a,r(3,1),r(3,2) 

  DO i=4,io 

  read(20,*,end=300)line,a,r(i,1),r(i,2),r(i,3) 

  ENDDO 

 endif 
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 if(hf.EQ.'   !   Optimized Par')then 

 DO i=1,4 

 read(20,*,end=300)line 

 ENDDO 

 

 read(20,600,end=300)r(1,3) 

 read(20,600,end=300)r(3,3) 

 

 if(ins1.EQ.2)then 

 write(21,606)((r(i,j),j=1,3),i=1,9),Egrid 

 else if(ins1.EQ.1)then 

 write(21,605)((r(i,j),j=1,3),i=1,7),Egrid 

 else if(ins1.EQ.3)then 

 xc=r(8,1) 

 yc=r(8,2)-(r(8,2)-r(9,2))/2 

 zc=r(8,3)-(r(8,3)-r(10,3))/2 

 h2=abs(r(8,2)-r(9,2))/2 

 w2=abs(r(8,3)-r(10,3))/2 

 write(21,607)((r(i,j),j=1,3),i=1,7),xc,yc,zc,h2,w2,Egrid 

 else 

 write(21,608)((r(i,j),j=1,3),i=1,11),Egrid 

 endif 

 

 endif 

 

 go to 301 

  

600 FORMAT(17x,F11.6) 

601 FORMAT(19x,A8) 

602 FORMAT(2A20)  

605 FORMAT(21(F12.8,2x),A20) 

606 FORMAT(27(F12.8,2x),A20) 

607 FORMAT(21(F12.8,2x),5(F12.8,2x),A20) 

608 FORMAT(33(F12.8,2x),A20) 

 

300 close(20) 

 close(21) 

 end 
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A4. Fortran programme to produce Gaussian 98 input to build the diabatic 

potential energy curves 

C2345678912345678912345678912345678912345678912345678912345678912 

C This programme’s output is a Gaussian input file 

C includes initializing the optimal grid 

C moving the H nucleus along a prescribed trajectory 

 

 implicit real*8 (a-h,o-z) 

 character*3 sym,junk 

 character*20 filename,chk,filename2,filename3,title 

 character*20 filename4 

 character*60 b1,b2,line,set,basis 

 character*90 met1,met2,met3,met4 

 dimension oc(11,3),qc(3,4),basis(80,3),sym(11),nl(3) 

 dimension zH(3),yH(3),zN(3),a(3),b(3),rHN(100),rBN(100) 

 dimension angle(100) 

 

 pi=2*ACOS(0.0) 

  

 DO i=1,11 

  DO j=1,3 

  oc(i,j)=0.0 

  ENDDO 

 ENDDO 

  

 open(20,file='coordsc.txt',status='unknown') 

  

 read(20,*)filename 

 open(21,file=filename,status='unknown') 

  

 read(20,*)chk 

 write(21,*)'%chk=',chk 

  

 read(20,601)met1,met2 

 write(21,602)'#n ',met1 

 write(21,602)'#n ',met2 

 write(21,*)' ' 

  

c method for FGO links  

 read(20,601)met3,met4 

 

 read(20,*)title 

 write(21,*)title 

 write(21,*)' ' 

 

 read(20,*)iq,im 

 write(21,603)iq,im 

 

 DO 304 i=1,3  

 read(20,*)filename2 

 open(22,file=filename2,status='unknown') 
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 nl(i)=0  

  DO 

  read(22,604,end=301)set 

  nl(i)=nl(i)+1 

  basis(nl(i),i)=set 

  ENDDO 

301 close(22) 

304 CONTINUE  

 

 read(20,*)iorb 

  

 DO i=1,iorb 

 read(20,*)sym(i),(oc(i,j),j=1,3) 

 write(21,*)sym(i),' 0   ',(oc(i,j),j=1,3) 

 ENDDO 

 

 DO i=1,11-iorb 

 read(20,*)junk 

 ENDDO 

 

 write(21,*)' ' 

  

 DO 300 i=1,3 

 if(i.EQ.1)then 

  if(iorb.EQ.7)then 

  write(21,*)' 1 4 5 7 0' 

  else if(iorb.EQ.9)then 

  write(21,*)' 1 4 5 7 8 9 0' 

  else 

  write(21,*)' 1 4 5 7 8 9 10 11 0' 

  endif 

 else if(i.EQ.2)then 

  write(21,*)' 2 0' 

 else 

  write(21,*)' 3 6 0' 

 endif 

  DO 303 j=1,nl(i) 

  write(21,*)' ',basis(j,i) 

303  CONTINUE   

 

 write(21,605)'****' 

300 CONTINUE  

  

 iq2=iq  

 

 DO i=1,3  

 read(20,*)(qc(i,j),j=1,4) 

 iq2=iq2-qc(i,4) 

 ENDDO 

 

c ins1: 1.ellipse  2.Newton polynomial 3.Fukui path 4.weighted ellipse 

c 5. H parabolic N linear 6.H Fukui N fixed 7.H Fukui N linear 
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 read(20,*)ins1 

 if((ins1.EQ.1).OR.(ins1.EQ.4))then 

  read(20,*)thetai,ntheta,dtheta,zc,yc,zr,yr 

  n=ntheta 

 else if((ins1.EQ.2).OR.(ins1.EQ.5))then 

  read(20,*)zH(1),zH(2),zH(3) 

  read(20,*)yH(1),yH(2),yH(3) 

   DO i=1,3 

   s=0.0 

   p=1.0 

   DO j=1,i-1 

   p0=p 

   p=p*(zH(i)-zH(j)) 

   s=s+a(j)*p0 

   ENDDO 

   a(i)=(yH(i)-s)/p 

   ENDDO  

  if(ins1.EQ.2)then 

  read(20,*)zN(1),zN(2),zN(3) 

  b(1)=zN(1) 

  b(2)=(zN(2)-b(1))/(zH(2)-zH(1)) 

  b(3)=zN(3)-b(1)-b(2)*(zH(3)-zH(1)) 

  b(3)=b(3)/((zH(3)-zH(2))*(zH(3)-zH(1))) 

  else 

  read(20,*)zN(1),zN(3) 

  b(1)=zN(1) 

  b(2)=(zN(3)-b(1))/(zH(3)-zH(1)) 

  b(3)=0.d0 

  endif 

  read(20,*)zi,nz,dz 

  n=nz 

 else if((ins1.EQ.3).OR.(ins1.EQ.6).OR.(ins1.EQ.7))then 

  read(20,*)thetai,ntheta 

  read(20,*)filename4 

  open(23,file=filename4,status='unknown') 

  n=ntheta 

 

  DO 

  read(23,*,end=306)rNH,rNB,theta 

  if(theta.EQ.thetai)GO TO 305 

  ENDDO 

 

305  rHN(1)=rNH 

  rBN(1)=rNB 

  angle(1)=theta 

 

  DO i=2,ntheta+1 

  read(23,*,end=306)rHN(i),rBN(i),angle(i) 

  ENDDO 

   

306  close(23) 

 else 

  write(6,*)'CHARGE TRAJECTORY ERROR!' 
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  GO TO 333 

 endif 

  

 if(n.GT.60)then 

 write(6,*)'TOO MANY LINKS!' 

 GO TO 333 

 endif 

 

302 close(20) 

  

 DO ii=1,n+1 

 write(21,*)' ' 

 write(21,*)'--Link1--' 

 write(21,*)'%chk=',chk 

 write(21,602)'#n ',met3 

 write(21,602)'#n ',met4 

 write(21,*)' ' 

 write(21,*)title 

 write(21,*)' ' 

 write(21,603)iq2,im 

  

 DO ij=1,iorb 

 write(21,*)'Bq  0   ',(oc(ij,j),j=1,3) 

 ENDDO 

 write(21,*)' '  

 

 DO ik=1,3 

 if(ik.EQ.1)then 

  if(iorb.EQ.7)then 

  write(21,*)' 1 4 5 7 0' 

  else if(iorb.EQ.9)then 

  write(21,*)' 1 4 5 7 8 9 0' 

  else 

  write(21,*)' 1 4 5 7 8 9 10 11 0' 

  endif 

 else if(ik.EQ.2)then 

  write(21,*)' 2 0' 

 else 

  write(21,*)' 3 6 0' 

 endif 

  DO il=1,nl(ik) 

  write(21,*)' ',basis(il,ik) 

  ENDDO 

 write(21,605)'****' 

 ENDDO 

 

 write(21,*)' ' 

 

 tb=oc(3,3) 

 tm=(oc(6,3)-tb)/(oc(7,3)-oc(1,3)) 

 

 if((ins1.EQ.1).OR.(ins1.EQ.4))then 

 theta=thetai*pi/180.0+(ii-1)*dtheta*pi/180.0 
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 qc(1,3)=zc+zr*cos(theta) 

 qc(1,2)=yc+yr*sin(theta) 

  if(ins1.EQ.4)then 

  qc(3,3)=tb+tm*(qc(1,3)-oc(1,3)) 

  endif 

 else if((ins1.EQ.2).OR.(ins1.EQ.5))then 

 z=zi+(ii-1)*dz 

 qc(1,3)=z 

 qc(1,2)=a(1)+a(2)*(z-zH(1))+a(3)*(z-zH(1))*(z-zH(2)) 

 qc(3,3)=b(1)+b(2)*(z-zH(1))+b(3)*(z-zH(1))*(z-zH(2)) 

 

 else if((ins1.EQ.3).OR.(ins1.EQ.6).OR.(ins1.EQ.7))then 

 qc(1,2)=rHN(ii)*sin(angle(ii)*pi/180) 

 qc(1,3)=rBN(ii)-rHN(ii)*cos(angle(ii)*pi/180) 

  if(ins1.EQ.3)then 

  qc(3,3)=rBN(ii) 

  else if(ins1.EQ.6)then 

  qc(3,3)=oc(3,3) 

  else 

  qc(3,3)=tb+tm*(qc(1,3)-oc(1,3)) 

  endif 

 endif 

 

 write(21,606)((qc(k,j),j=1,4),k=1,3) 

 

 ENDDO 

 

601 FORMAT(A90) 

602 FORMAT(A3,A90) 

603 FORMAT(I3,1x,I1) 

604 FORMAT(A60) 

605 FORMAT(1x,A4) 

606 FORMAT(4(F8.4,1x)) 

607 FORMAT(A90) 

608 FORMAT(A3,A90) 

609 FORMAT(1x,A13) 

610 FORMAT(1x,A7) 

 close(20) 

333 end 

A4.1 ‘coordsc.txt’ 

gedHBNkp1-1.gjf                           |Gaussian input filename 

HBN6.chk                                  |checkpoint filename 

uhf/gen scf=(conver=10,MaxCycle=2048) guess=(save,notranslate)                                                            

|met1 grid initialization 

nosymmetry pop=None                                                                                                       

|met2 grid initialization 

uhf/gen guess=(read,only,notranslate)                                                                                     

|met3 potential curves 

charge nosymmetry                                                                                                         

|met4 potential curves 

HBN                                       |title 
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0 2                                       |charge,multiplicity 

321difG-H.out                             |H basis set 

321difG-B.out                             |B basis set 

321difG-N.out                             |N basis set 

11                                        |# of orbitals 

H 0.0000 0.0010 -1.1637                   |H x,y,z 

B 0.0010 0.0000 0.0000                    |B x,y,z 

N 0.0010 0.0000 1.2601                    |N x,y,z 

Bq 0.0010 0.0000 -1.206                   |H-like Bq 

Bq 0.0000 0.0010 1.719                    |H-like Bq         

Bq 0.0000 0.0010 1.2452                   |N-like Bq 

Bq 0.0010 0.0000 2.2281                   |H-like Bq HBN-BNH alt H 

Bq 0.0000 1.6520 0.1440                   |cross/”line-box” Bq 

Bq 0.0000 -1.652 0.1440                   |cross/”line-box” Bq 

Bq 0.0000 1.1420 1.1770                   |”line-box” Bq 

Bq 0.0000 -1.142 1.1770                   |”line-box” Bq 

0.0000 0.0010 -1.1637 1.0                 |H nuclear x,y,z,q 

0.0010 0.0000 0.0000 5.0                  |B nuclear x,y,z,q 

0.0010 0.0000 1.2601 7.0                  |N nuclear x,y,z,q 

2                                         |trajectory 1.ellipse 2.parabola 

3.Fukui path 4.weighted ellipse 5.H parabola N linear 6.Fukui N fixed 

7.Fukui N linear 

2.2281 0.2816 -1.1637                     |1.initial angle # steps 

increment,zc yc zr yr 

0.0000 1.2201 0.0010                      |2.zH(R,TS,P)/ yH/ zN/ 

H:zi,nz,dz 

1.2601 1.2601 1.2601                      |3.theta(HNB),ntheta/ filename 

2.4000 60 -0.0100                         |4. (1.) 

1.2445 1.2309 1.2440                      |5.(2.)\zN(R,P)/(2.) 

2.4 60 -0.01                              |6.(3.) 

                                          |7.(3.) 
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A5. Fortran programme to analyze Gaussian 98 output for building diabatic 

potential energy curves. 

C23456789012345678901234567890123456789012345678901234567890123456789012 

C This programme reads the diabatic curve building Gaussian output file 

C and gives the position of each nucleus and the total energy 

 

 implicit real*8 (a-h,o-z) 

 character*20 input,output,line,ennc,eenc,ekec 

 character*5 line1 

 character*8 x,y,z,qc 

 dimension qc(9),eee(2,2,2) 

 

C the electronic energy is a constant determined by 

C the grid type and the basis set 

 

c BNH 3-21+G lin  

 eee(1,1,1)=46.90622055007 

c HBN 3-21+G lin 

 eee(2,1,1)=45.40324417467 

c BNH 6-31G lin 

 eee(1,2,1)=47.35133933707 

c HBN 6-31G lin 

 eee(2,2,1)=45.80926018145 

c BNH 3-21+G keb 

 eee(1,1,2)=46.88458782187 

c HBN 3-21G keb 

 eee(2,1,2)=45.40775270576 

 

 write(6,*)'Give input file' 

 read(5,*)input 

 write(6,*)'Give output file' 

 read(5,*)output 

  

 write(6,*)'ISOMER: 1. BNH 2. HBN' 

 read(5,*)ins1 

 write(6,*)'BASIS SET: 1. 3-21+G 2. 6-31G' 

 read(5,*)ins2 

 write(6,*)'GRID: 1.linear 2.”line-box”' 

 read(5,*)ins3 

 

 open(20,file=input,status='unknown') 

 open(21,file=output,status='unknown') 

 

301 n=0 

302 read(20,601,end=304)line1,x,y,z 

 if(line1.NE.' XYZ=')GO TO 302 

 n=n+1 

 qc(3*n-2)=x 

 qc(3*n-1)=y 

 qc(3*n)=z 

 if(n.NE.3)GO TO 302 
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303 read(20,602,end=304)line1,ennc,eenc,ekec 

 if(line1.NE.' N-N=')GO TO 303 

 

 open(22,file='converter.txt',status='unknown') 

 write(22,*)ennc,eenc,ekec 

 close(22) 

 

 open(23,file='converter.txt',status='unknown') 

 read(23,*)enn,een,eke 

 close(23) 

  

 etot=eee(ins1,ins2,ins3)+enn+een+eke 

  

 write(21,603)(qc(i),i=1,9),etot 

 GO TO 301 

 

304 close(20) 

 close(21) 

 

600 FORMAT(2A20) 

601 FORMAT(A5,3(2X,A8)) 

602 FORMAT(A5,A20,4X,A20,4X,A20) 

603 FORMAT(9(A8,2X),F19.12) 

 

 end 


