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Abstract 

 

Data have been obtained from King Khaled General Hospital in Saudi Arabia. In this project, I 

am trying to discover patterns in these data by using implemented algorithms in an experimental 

tool, called Rough Set Graphic User Interface (RSGUI). Several algorithms are available in 

RSGUI, each of which is based in Rough Set theory. My objective is to find short meaningful 

predictive rules. First, we need to find a minimum set of attributes that fully characterize the data. 

Some of the rules generated from this minimum set will be obvious, and therefore uninteresting. 

Others will be surprising, and therefore interesting. Usual measures of strength of a rule, such as 

length of the rule, certainty and coverage were considered. In addition, a measure of 

interestingness of the rules has been developed based on questionnaires administered to human 

subjects. There were bugs in the RSGUI java codes and one algorithm in particular, Inductive 

Learning Algorithm (ILA) missed some cases that were subsequently resolved in ILA2 but not 

updated in RSGUI. I solved the ILA issue on RSGUI. So now ILA on RSGUI is running well and 

gives good results for all cases encountered in the hospital administration and student records 

data. 

 

Keywords: Rough Set, Data Mining, Health Analytics, Uncertainty, Decision Making   
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Chapter 1 

1 Introduction 

In fact, the human being does not have enough ability to deal with a large amount of numbers or 

data and get a perfect result of it. However, he or she has ingenuity in making a good decision. 

Actually, unlike humans, electronic devices can calculate complicated operations in seconds. 

However, electronic devices cannot do what the human being does, without being instructed on 

how to arithmetically transform data to knowledge. With daily growing of the size of medical 

information in the database, the need becomes greater to use an effective technique to deal with 

and process those data for decision making, because the ability to use and find these data is a 

difficult challenge. Indeed, medical data are playing a very important role these days, especially 

with regard to extraction of clinical knowledge. 

 

While decision making systems have been employed in many sectors in business [1] [2], it has 

only been in the last few years that they are being used in healthcare management, to a 

significant extent. 

 

A variety of rough set based tools have been previously developed by a Computer Science 

student at Laurentian University, Canada and applied to a variety of data sets. The tools also 

show promise for discovering patterns in medical ward data.  

1.1 RSGUI 

Rough Set Graphic User Interface (RSGUI) [3] is a software system providing different 

algorithms appropriate for decision making [4]. The different algorithms that RSGUI features are 

RS1 that were originally developed by Wong and Ziarko and its origins are described in [5] and 

improved upon in the following years (LEM, LEM2 [6]), an Inductive Learning Algorithm (ILA) 

[7], and Rough Set Reverse Prediction Algorithm (RSRPA) [8]. The system has been developed 

by Laurentian University Computer Science students, beginning in 2005, and continues to evolve 

as students make enhancements. RSGUI serves as the framework for this thesis.  
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1.2 Healthcare Business Analytics 

A great deal of analytic approaches has been applied to help doctors care for their patients. Less 

so is work in the area of applying analytic approaches to the healthcare system itself, the 

motivation for which is discussed in this subsection. 

1.2.1 Health information management 

Information technology has brought challenges to health information management due to the 

huge amount of medical data to be efficiently stored, retrieved, and distributed. Security threats 

are increasing these days. Therefore, it is necessary to address these issues, in order to better 

protect patients and medical data. 

1.2.2 Developing performance metrics for quality of healthcare delivery 

Healthcare business analytics are seeking to reduce medical errors and to improve clinical 

quality of care and patient safety. 

1.2.3 Patient-centred health: Can analytics help? 

Healthcare analytics are trying to provide more patient-centered service as well as evidence-

based practice and data analytics could help with that. 

1.2.4 Managed Health Services 

Healthcare business analytics could manage the health services by controlling health care costs 

and managing quality of care. Actually, healthcare business analytics could play an important 

and significant role in managing health services and improving them. 

1.2.5 Training healthcare managers 

Healthcare managers’ training needs managerial strategy. A study in [9] found that there is a 

disconnect between what healthcare managers should know and what they actually know about 

the tasks of strategic management. More resources need to be devoted to strategic management 

training and the development of managers, at all levels of healthcare organizations. Therefore, 

training for healthcare managers needs to get more knowledge about tasks of healthcare strategic 

management. 
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1.3 Problems addressed by the Ministry of Health 

Some of Ministry of Health responsibilities are to support the health service delivery system, 

preventative health, public health planning, assistance to the health officer to help solve the area 

hospital issues, performance management of administrators, staff, nurses and doctors, and health 

information systems and e-health. 

1.4 Motivation for thesis work  

It is an open research area on how to apply knowledge based and analytic techniques to 

healthcare information, for the purpose of managing the health care system. Research findings 

show that there is a wide scope for improving outdated reporting methods, data analysis aimed 

specifically at the healthcare environment and delivery of results to health care professionals in a 

user-friendly format.  Regarding mining in such data sets, a recent article [10], describes in 

general terms the methods to detect fraud in health insurance claims. The results indicate that 

claim anomalies can be detected to help insurance companies recover hidden cost, which are not 

detectable using transaction processing systems. This is the only relevant article that meets the 

search criteria “Health Business Analytics” in Scholars Portal Journals in the Laurentian digital    

library. The scarcity of literature about Health Information Technology (HIT) illustrates the 

importance of introduction of business analytics in general and knowledge discovery, in 

particular, into the healthcare industry. 

1.5 Purpose of study  

The aim of this master’s thesis is to build a Web based medical ward data acquisition, 

management, and analysis prototype to show that knowledge discovered from data can aid the 

Ministry of Health in making informed decisions regarding hospital ward management.  A 

secondary data set, student records from the registrar’s office, is considered to help reveal 

patterns useful for faculty and students.  

1.6 Organization of the thesis  

The remainder of the thesis is structured as follows. Chapter 2 presents the related work on using 

rough sets for improving healthcare and also reviews the framework in which our medical ward 

http://journals.scholarsportal.info.librweb.laurentian.ca/
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decision making system will be developed. Chapter 3 gives an overview of the method of 

implementation which consists of hospital forms descriptions, processing of the forms in the 

hospital, rough sets tools in RSGUI, and the methodology of the thesis work to be done. Chapter 

4 gives details of an experiment conducted to choose optimal decision rules among many that 

were generated as possibilities. In Chapter 5, the student records data set was analyzed by the 

same methods and another experiment was conducted to evaluate the rules generated. In Chapter 

6, a questionnaire was developed for users to compare the decision rules according to a variety of 

quality measures. The results are also discussed in the same chapter. In Chapter 7, the 

conclusions and future research work are presented. In the Appendices, we provided the two 

ethics approvals, King Khaled General Hospital agreement to use the medical data and 

Laurentian University Registrar’s agreement to use the students’ data. As well the appendices 

provide the code that was used for developing a web interface, the questionnaire that was used 

for the experiments with human subjects, ILA code modifications to bring it into line with ILA2 

and many more details regarding the forms that were used to develop the health informatics 

datasets. 
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Chapter 2 

2 Literature Review on Rough Sets theory 

Rough sets theory was developed in the early 1980’s by Zdzislaw Pawlak [5]. It is a good 

technique to manage imperfect or uncertain data, and acquire knowledge from it. Rough sets 

make precise the processes to deal with roughly or approximately described concepts that are 

difficult to describe by existing information systems. While there are a variety of existing 

methods for learning from imprecise data, the rough sets method has an advantage for decision 

making in large volumes of data since it focuses on reducing the number of attributes required to 

characterize a concept without losing essential information required for decision making. 

2.1 Rough Sets Theory 

Rough sets theory is a mathematical tool for the processing of fuzzy and uncertain knowledge. It 

can analyze the incomplete data without any prior knowledge and reveal the internal laws. A 

doctoral thesis [11] used rough set-based reasoning (term-based) and pattern mining approach as 

a unified framework for information filtering. Rough set decision theory was used in user 

profiles and in theoretical modeling of the threshold settings (in the first topic-filtering stage). 

There are three regions in rough set-based information filtering model, which are the upper 

approximation, the boundary and the lower approximation. Positive documents are presented in 

the lower approximation region and are treated as objects. Then r-patterns are used to determine 

the documents relevance. The “support” based on the r-patterns of documents correspond to their 

decision value in the rough set theory. When the decision values for all the objects are obtained, 

rough set elements are sorted as per their decision values. All the unlikely relevant documents 

are filtered out in this stage. Further, pattern mining was used to find the information mismatches 

and to improve the method of precision. Computational cost in this methodology is less as 

compared to other information filtering systems. The use of pattern discoveries in this framework 

yields accurate results and overall performance of the system is significantly increased. 
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The rough sets theory is concerned with uncertainty and imprecise data. It can be used to extract 

meaningful rules from datasets. It attempts to approximate a given concept based on a minimum 

amount of decision rules. The rough sets theory include very important concepts such as lower 

approximation and upper approximation [12]. Lower approximation consists of all the elements 

that surely belong to the concept described in the dataset. On the other hand, upper 

approximation consists of all elements that possibly belong to the concept. Therefore, the 

difference between both approximations (upper - lower) is called the boundary region. This 

region contains cases on the boundary that cannot be precisely classified. Let [ ]  denote, the 

rows of a table that cannot be distinguished one from the other by means of their properties  . 

Thus, the lower approximation to concept   is defined as follows: 

   {   | [ ]     

The lower approximation is also called the positive region and it is the union of all equivalence 

classes [ ] , where the value associated with properties   vary across equivalent classes. The 

upper approximation is defined as follows:  

   {   | [ ]          

The upper approximation is also called the negative region. The boundary region is defined as 

follows: 

         ( )         

 We can say the set is rough if its boundary set is nonempty. Otherwise the set is exact [12]. 

 

Figure 2.1 The lower, upper approximations, and the boundary region in rough set 

The following example will be used to clarify the main procedures of the rough set theory. For 

example: consider the information table constructed below. The SSN, last_name, first_name, 
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birth_date, gender, and address are treated as the condition attributes. The decision attribute 

“duplicated example?” has possible values ''y'' (yes) and ''n'' (no).  

Table 2.1: Example of data set and its attributes 

 Condition Decision 

Example SSN LastName FirstName BirthDate Gender Address Duplicate 

example? 

e1 d s s s s d y 

e2 d d s d d d n 

e3 s s d s d s n 

e4 s s d s d s y 

e5 s s d s d s n 

e6 s s d s s d y 

e7 s s d d s d y 

e8 s s d d s d n 

 

If we define the concept that we are approximating          {e1, e4, e6, e7}, the duplicate 

examples, then   and   are: 

   = {e1, e2, e6} 

  = {e1, e3, e4, e5, e6, e7, e8}  

The lower approximation to the concept   is {   | [ ]    , where   is the collection of all 

attributes (properties) in the table for the upper approximation {[ ]         . 

 

Indiscernibility Classes 

The indiscernibility classes for the information table with respect to condition attributes SSN, 

last_name, first_name, birth_date, gender, and address are: 

{e1} 

{e2} 

{e3, e4, e5} 

{e6} 

{e7, e8} 

Hence, a question such as: “What are the indiscernibility classes for the information table with 

respect to that same collection of attributes, with the attribute address deleted from the 

collection?” those indiscernibility classes would be: 

{e1} 
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{e2} 

{e3, e4, e5} 

{e6} 

{e7, e8} 

It is demonstrated here that the indiscernibility classes without the address attribute, are same as 

the indiscernibility classes with the address attribute, which makes it soft to assume that the 

attribute address is redundant. This is the key idea of rough set theory. Thus, we have the 

possibility to reduce the number of attributes under consideration to a minimal but not 

necessarily unique set that expresses the same information as the original set. “Expresses the 

same information” means that for the purpose of defining a concept given by the decision 

attribute, the minimal set of condition attributes is sufficient. The concept cannot be 

approximated any better by considering the redundant attributes, plus those in the reduced set. 

The attributes in the minimal set are called “reducts”. 

 

Certain rules 

The list of certain rules that can be generated from example e1, e2, and e6 (the examples in the 

lower approximation) are as follows: 

   (         )    

   (         )    

   (         )    

There are four uncertain (or possible) rules that can be generated from the table 2.1 as follows: 

   (         )    

{       (         )    

   (         )    

   (         )    

The uncertain rules are defined from examples in the boundary region (    ). Note that there 

is no reference to the redundant attribute address in any of the rules. For ease of presentation, all 

five attributes have been implicitly shown in the antecedent of the rules. However, not all of the 

attributes shown in the antecedents are needed. There is a difference between number of 

attributes in the reduct set and number of attributes on the left hand side of a predictive rule.  

Introduction of more concepts is required in order to understand that difference. 
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2.1.1 Discriminant index 

In order to measure the degree of certainty, in determining whether or not elements in the 

universe are members of X, the notion of a discriminant index of X has to be introduced. 

It is defined as follows: 

 ( )     |     |   | | 

If   (X) = 1, which means      , then the concept X is precise. If   (X) = 0, which means 

    and   =  , then the concept X is completely uncertain [13]. 
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2.1.2 RS1 algorithm 

The RS1 algorithm originally introduced by Wong and Ziarko was used in [14] and is presented 

in Figure 2.2 taken from [3]. 

 

The input for the RS1 algorithm is the information table (decision table) and the output is the 

collection of decision rules for each concept X defined by the decision attributes. 

Let U be the universe of objects. 

Let C be the set of condition attributes. 

Figure 2.2: RS1 flowchart 
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Let X = {           }: set of objects based on their decision attribute values. 

Let J be set initially 1. J denotes the attribute combination count.  

Set U as U', and C as C'.    is the concept under consideration. P is the pivot set initially to 0.  

The   being referred to in the flowchart is discriminant index for the subset of condition 

attributes j. 

Compute the discriminate index  ( )     |     |   | |.  

The attribute C with the highest value of α will be the best attribute. If   > max, then max =  , 

and update P the best C = {C}, then set P to be P U best C. Do a comparison with the 

discriminant indices to get the highest α number instead of calculating α for each remaining 

condition attribute in C. 

2.1.3 ILA Algorithm 

Consider the information table constructed as below. The SSN, last_name, first_name, 

birth_date, gender, address are treated as the condition attributes. The decision attribute 

“duplicated?” has possible values ''y'' (yes) and ''n'' (no).   

Table 2.2: Example of data set and its attributes for ILA algorithm 

 Condition  Decision 

Example SSN Last 

Name 

First 

Name 

Birth 

Date 

Gender Address Duplicate? 

e1 d s s s s d y 

e2 d d s d d d n 

e3 s s d s d s n 

e4 s s d s d s y 

e5 s s d s d s n 

e6 s s d s s d y 

e7 s s d d s d y 

e8 s s d d s d n 

 

1) 2 sub-tables, Table 2.3 and Table 2.4, would be generated from the given above table after the 

first step of the ILA algorithm as follows: 
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Table 2.3: Sub-table 1 from Table 2.2 

 Condition  Decision 

Example SSN Last 

Name 

First 

Name 

Birth 

Date 

Gender Address Duplicate? 

e2 d d s d d d n 

e3 s s d s d s n 

e5 s s d s d s n 

e8 s s d d s d n 
  

Table 2.4: Sub-table 2 from Table 2.2 

 Condition  Decision 

Example SSN Last 

Name 

First 

Name 

Birth 

Date 

Gender Address Duplicate? 

e1 d s s s s d y 

e4 s s d s d s y 

e6 s s d s s d y 

e7 s s d d s d y 

 

2) If we process the Table 2.2 for concept (duplicate := n) first, then the first production rule 

extracted by the ILA algorithm is:  

(Last Name := d) ------> (Duplicate := n) 

3) Again, if we process the Table 2.3 for concept (duplicate := n) first, then the remaining rules 

extracted by the ILA algorithm are: 

Process (Table 2.3) 

J=1 

{Last Name}= d  (1)  

The only attribute value that does not appear in the Table 2.4 is the Max_combination = 1 which 

is {Last Name}= d 

and mark example e2 

Generate rule#1 from (1) is  (Last Name := d) ------> (Duplicate := n) 

J=2 …J=6 

Max_Combination = Ø 

The unmarked rows have attribute values that appear in the Table 2.4 under the same attribute 

combinations 

Process (Table 2.4) 

J=1 ---> Max_Combination = Ø 
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J=2  

(SSN=d, Last Name=s) (1) 

(SSN=d, Birth Date=s) (1) 

(SSN=d, Gender =s) (1) 

and so on. 

pick the first one 

mark example e1 

Generate rule #2 

(Last Name := s) AND (SSN := d) -------> (Duplicated := y) 

J=2 … J=5  

(SSN=s, Last Name=s, First Name=d, Birth Date=s, Gender=s ) (1) 

(SSN=s, Last Name=s, First Name=d, Birth Date=s, Address=d ) (1) 

and so on. 

pick the first one, and then mark example e6 

Generate rule #3 

(SSN := s) AND (Last Name := s) AND (First Name := d) AND (Birth Date :=s) AND (Gender 

:= s) -------> (Duplicated := y) 

Same applies for the Table 2.4 

The unmarked rows have attribute values that appear in the Table 2.3 under the same attribute 

combinations so I marked (skipped) all the rows that apply to this case and end   the algorithm 

So the rules extracted by the ILA algorithm are: 

(Last Name := d) ------> (Duplicate := n) 

(Last Name := s) AND (SSN := d) -------> (Duplicated := y) 

(SSN := s) AND (Last Name := s) AND (First Name := d) AND (Birth Date :=s) AND (Gender 

:= s) -------> (Duplicated := y) 
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2.1.4 RSRPA Algorithm 

The idea behind the RSRPA is that the decision attributes are given and that the algorithm 

predicts the condition attributes for those decision attributes. Ordinarily, rough sets theory such 

as RS1 and ILA are executed as: 

Condition attribute1 [given], Condition attribute2 [given],…, Condition attribute N [given]  Decision attribute 

[predict] 

But RSRPA prediction is as:  

Decision attribute [given] Condition attribute1 [predict], Condition attribute2 [predict],…, Condition attribute N 

[predict] 

Notice that the same condition attributes appear as antecedents in both above cases. However, in 

the first rule, condition attributes are given whereas in the second rule, condition attributes are to 

be predicted. This difference is not a case of interchanging the roles of attributes as condition or 

decision. Consider a hockey game [8]. We know the outcome we want: we want our team to win. 

RSRPA will tell us the characteristics our team should have in order to win. 

2.2 RSGUI 

Rough Set Graphic User Interface (RSGUI) [3] is illustrated here. RSGUI runs from command-

line (Terminal in OS X) and reads dataset from a text file (.txt) because RSGUI cannot read 

dataset from other database files such as MySQL. So the dataset should be written in text file and 

split its values by “~”. See Figure 2.3.  

Figure 2.3: Female Medical Ward data in text file 
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RSGUI has six tabs; shown at the top of Figure 2.4, Table, Change, RS1, RSRPA, ILA, and 

History. The tab labeled Table, outputs the table under consideration. The task of the Change tab 

can be to “edit values” or “remove some columns or rows”. RS1, RSRPA, and ILA tabs do their 

tasks, which have been explained previously. The last tab, which is the History tab, can be used 

to show all operations that the user has done during his/her session. 

  

Figure 2.4: Decision table in RSGUI software 

Figure 2.5: RS1 rules in RSGUI 
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2.3 Certainty and coverage 

Many authors [15][16][17] like to say belief B instead of certainty, and plausibility P instead of 

coverage. Regarding the above table, belief B and plausibility P of each of the uncertain rules 

are: 

B = 
 

 
           

P  = 
 

 
             

If B and P are almost equal, then our belief is high that the uncertain answer is fairly precise. The 

certainty of a rule can tell how strong that rule is [18]. The coverage [18] is total number covered 

by the rule out of all the rows in the dataset. It is computed as follows: 

         
                             

                               
 

The certainty is computed as follows: 

          
                                            

                             
 

Figure 2.6: RS1 rules and algorithm trace 
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The strong and deterministic rule is that the certainty equals to 1, while the nondeterministic rule 

is that the certainty ranges between 0.0 < certainty < 1.0 [3]. 

RSGUI (Practice) 

The predictive rules generated by RS1 using data in Table 2.1 are shown as follows: 

1. (lastName := d) ---> (Duplicate := n)[certainty = 1.0][coverage = 1/8] 

2. (lastName := s) AND (SSN := s) AND (FirstName := d) AND (BirthDate := s) AND (Gender := d) ---> 

(Duplicate := n)[certainty = 0.6666666666666666][coverage = 3/8] 

3. (lastName := s) AND (SSN := s) AND (FirstName := d) AND (BirthDate := d) AND (Gender := s) ---> 

(Duplicate := n)[certainty = 0.5][coverage = 2/8] 

4. (lastName := s) AND (SSN := d) ---> (Duplicate := y)[certainty = 1.0][coverage = 1/8] > 

5. (lastName := s) AND (SSN := s) AND (FirstName := d) AND (BirthDate := s) AND (Gender := s) ---> (Duplicate 

:= y)[certainty = 1.0][coverage = 1/8] > 

6. (lastName := s) AND (SSN := s) AND (FirstName := d) AND (BirthDate := s) AND (Gender := d) ---> 

(Duplicate := y)[certainty = 0.3333333333333333][coverage = 3/8] > 

7. (lastName := s) AND (SSN := s) AND (FirstName := d) AND (BirthDate := d) AND (Gender := s) ---> 

(Duplicate := y)[certainty = 0.5][coverage = 2/8] 

The certain rules are: 

1. (lastName := d) ---> (Duplicate := n)[certainty = 1.0][coverage = 1/8] 

2. (lastName := s) AND (SSN := d) ---> (Duplicate := y)[certainty = 1.0][coverage = 1/8] 

3. (lastName := s) AND (SSN := s) AND (FirstName := d) AND (BirthDate := s) AND (Gender := s) ---> 

(Duplicate := y)[certainty = 1.0][coverage = 1/8] 

Example of rule of certainty 1 from the above decision rules is as follows: 

   = (lastName := d) ---> (Duplicate := n)[certainty = 1.0][coverage = 1/8] 

              
                                            

                             
 

  = 
 

 
       

Therefore, certainty of    is 1, which is what we obtained from RS1 in RSGUI. Another example 

rule of certainty in the range between 0.0 < certainty < 1.0, follows: 

  = (lastName := s) AND (SSN := s) AND (FirstName := d) AND (BirthDate := s) AND (Gender := d) ---> 

(Duplicate := n)[certainty = 0.6666666666666666][coverage = 3/8] 
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  = 
 

 
                          

The number of the rows covered by the rule in the concept, was counted from the data rows set 

not from the rules of the result. 

Notice that the rules have been shortened meaning that not all of the attributes from the reduct 

set appear in the rule’s left hand side. Certain rule number 1, for example, has only one 

antecedent condition. The certainty of each of the above rules is 100% and each rule covers 1 of 

8 examples. 

 

Table 2.1 is said to be the training set. It contains 8 examples from which rules are induced. 

Knowledge given by the induction rules has been discovered from the information table. The 

concepts being characterized are duplicated example? (Y/N). Duplicate examples are exactly like 

other example in the table, except that they have been removed and only the knowledge that they 

have had duplicates remains. This is not a process of the rough set theory but rather a nuance of 

this particular example. 

2.4 Previous Applications of Rough Set Theory 

The research in [19] discusses the development of a composite method of Wavelet packet 

transform (WPT) and rough sets theory (RST) for fault diagnosis of gearbox. Gearbox is a 

complicated rotary mechanical apparatus in which the fault vibration signal is non-linear and 

non-stationery. WPT is developed on the basis of wavelet transform and decomposes into low- 

and high frequencies simultaneously when dealing with the vibration signal. Because of this 

characteristic, it is possible to process non-stationary signals using WPT. However, for real time 

realization and online fault diagnosis, the characteristic (feature) vector should include as little 

elements as possible. Hence, RST is used for attribute discretization and reduction of features. 

Decision rules for fault diagnosis can be drawn on the basis of this WPT and RST composite 

algorithm. 
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The method was successfully applied for the diagnoses of a gearbox. The improved Naïve Scaler 

Algorithm in the RST reduces the complexity of discretization that further leads to attributes 

reduction. Overall, this method can delete the redundant features and improves the efficiency of 

the process. It recognizes the faults quickly and effectively; hence, it is appropriate for online 

diagnosis. Research on more efficient reduction algorithms may be required in future. 

 

This research [20] presents a novel approach based on the rough sets theory for the mechanical 

fault diagnosis of a five-plunger pump. If C represents the condition attributes of a variety of 

faults in the pump and D is the decision attributes in the information system, the information 

table can be set to determine whether there is dependence between C and D. If the dependence 

exists, the decision set can be defined by the category of condition attributes set. In the present 

study, the condition attributes for the pump fault diagnosis were constructed by studying the 

vibrational signals of the pump. However, the frequency spectra of the vibration signals 

contained complicated information in the form of continuous variables. Discretization of these 

variables was done based on the maximum covariance between the classes. After the execution 

of the 11 steps of the algorithm, diagnostic rules were devised by calculating and reducing the 

data in the information table. Various technical states of the pump were efficiently diagnosed by 

the extracted rules. 

 

In a similar publication [21], rough set-based fuzzy rule acquisition approach and a fault 

diagnosis scheme of an industrial process are discussed. In this approach, the relevant reductions 

from a given data table were extracted using Boolean reasoning. Reduction approximations were 

then extracted by means of parameter tuning. Optimum reducts were found from the large 

database of attributes while using inconsistency count and gain of mutual information (to reduce 

the abundant attributes). A heuristic reduct algorithm was proposed and successfully applied to 

fault diagnosis of ethylene cracking furnace. The proposed fuzzy discretization method is robust 

to process noise and is capable of early monitoring of the abnormal states. The limitation of such 

models is that they require extensive understanding of the process and it is very difficult to build 

a precise mathematical model of complex systems. 
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A composite framework of rough set with formal concept analysis has been designed for 

intelligent medical diagnosis of heart diseases [22]. The first step in this intelligent data mining 

model is ‘problem definition.’ Rough set theory was used in the ‘pre-process’ for data processing 

and data classification after removal of noise to mine suitable rules. A rule generation algorithm 

was used to generate all possible reducts by eliminating all dispensable attributes. A total of 91 

rules were generated initially which were subsequently minimized to 72 candidate decision rules 

with the help of domain intelligence. Only 65 rules were finalized after the validation process. 

Formal concept analysis was used in the ‘post-process’ for better understanding of the rules 

(derived from RST). Though rough set has several advantages over other methods, it generates a 

number of rules creating difficulties in decision making [22]. 

 

The study by Grzegorz Ilczuk and Alicja Wakulicz-Deja [23] analyzed data that contain 

information about heart disease from an Electrocardiology clinic in Poland. Narrative medical 

reports were used in this case study to build a decision system. The method used was (Learning 

from Examples Model, version 2) LEM2 algorithm [6] to generate decision rules that are brief, 

and easy to understand. These authors used LEM1 and LEM2 algorithms and found that LEM2 

gives better results than LEM1.  Both LEM1 and LEM2 are based on LERS (Learning from 

Examples based on Rough Sets) [6]. 

 

A Medical expert’s knowledge was used to build attributes table from narrative medical reports. 

The authors used the term shortening ratio to mean a number that ranges between 0 and 1, where 

1 means no shortening and 0 means maximum shortening [23]. Maximum shortening means 

fewest numbers of reducts. Reduct is a powerful tool in rough set to reduce number of attributes 

and get the minimal set of necessary features, which preserve the main idea of the data 

description [24][25]. They find greatest accuracy was achieved with shortening ratio between 0.7 

and 0.8. They also examined the coverage ratio, which is a cover parameter that can determine 

the expected degree of coverage of the dataset [26], and found that 0.95 gave the best rules. 
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RSGUI does not implement LEM2, but it does measure coverage. It does not measure shortening 

ratio (which has proved to be useful when analyzing rough set data), but it does provide a library 

of tools from which the user may choose. The difference between the data that were used by 

Ilczuk and Wakulicz-Deja and the data that were used in this thesis is that my data were taken 

from tables that have only one value of each attribute for every patient, while the data used in the 

previous study, was taken from narrative reports. 

 

The study in [27] supports the idea of making decisions using fewest indicators needed in order 

to make the final diagnosis. The research resulted in diagnosing Mitochondrial 

Encephalomyopathies (MEM) disease in children and was mainly based on clinical symptoms 

[27], but the diagnosis of clinical symptoms is not the final diagnosis of the disease. For that, 

another test from blood and cerebrospinal fluid was used to measure the levels of appropriate 

parameters. The aim of the study was to shorten the time to get the final diagnosis.  The authors 

used LEM1 algorithm in the study to generate new rules to diagnose MEM disease and make 

fewer classification errors. 

 

The rough set theory was used with medical reasoning to represent diagnostic models. Shusaku 

Tsumoto have introduced rough set framework in [28] to model medical diagnostic rules. The 

characteristics of medical reasoning and the representation of diagnostic models were discussed 

in this paper by the use of rough sets theory. Focusing Mechanism is an important concept in 

medical diagnosis used to select the final diagnosis from among many candidates. The primary 

ideas are rough set model and variable precision, which relate to upper approximation, and 

ordinal positive reasoning, which ultimately relate to focusing procedure. The study in the paper 

suggests that the rough set model is closely related to the medical diagnosis. Rough sets are 

useful in medical domains because the medical reasoning tends to reflect the concept 

approximation of the rough sets. Diagnostics rules were represented by the classification rules, 

which have covered high numbers of cases in the data and have a high accuracy too. The author 

concludes that because rough set theory can generate medical diagnostic rules, medical areas are 
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excellent for the use of rough set theory. This conclusion can be broadened to diagnostic 

applications in general [20][19][21][22].  

 

The paper [25]  provides a summary of the use of rough sets focusing on the following 

applications: (1) medical imaging, (2) discovering patterns in medical data, and (3) making a 

computer support decision making in the medical area. In the medical imaging area, the 

important tasks are image segmentation based on rough sets theory that some cases are labelled 

as the positive region which is clearly inside the set. However, some cases are not labelled inside 

the set which is called negative region in rough sets theory. The main thing required to discover 

patterns in medical data is data reduction. Like in [25], they discovered that the medical 

diagnosis can be seen as a decision-making process and computerized as a rough set process that 

can be accurate, objective and fast. Nowadays, a diagnostic decision support system is an 

important part in medical technology. 

 

The study in [29], was used to analyse the data of Breast Cancer patients by using the rough set 

theory. They studied the data set of 228 breast cancer patients and described it with 16 attributes. 

They divided the data set into two kinds types of patients; patients who had not experienced 

cancer recurrence and those who have. The rough sets theory was applied to the first type of 

patients’ data to get the important attributes. From these procedures, some helpful inductions 

were formulated to make decisions for breast cancer patient treatment. 

 

For example, the rough set theory was used to evaluate the ability attributes, in order to estimate 

the patients’ classification. The attributes were selected according to their significance and the 

measures of classification’s quality. The rough set theory allowed us examining interrelations in 

the subsets of attributes. In breast cancer data there were many decision rules but there were a 

limited number of examples for some of the rules. A disadvantage was a weak recognition of 

patients from class 2, which is typical for unbalanced medical datasets. For this reason, research 

is ongoing in order to discover better classification strategies. 
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The study [30] discussed data mining in the area of childhood diabetes mellitus, where more than 

one hundred patients were analyzed. From the disease data set, relevant attributes and decision 

rules were identified. The study considered three methods for identifying relevant attributes in 

this domain. The first was based on reducts, the second on attribute significance and the third on 

attribute ranking, motivated by the wrapper approach, where the classification accuracy was 

used. 

 

The rough set approach was used to discover the relevant features from the medical data set. The 

features discovered were found to be affecting the causes of microalbuinuria in children with 

diabetes mellitus. The rules discovered were consistent with clinical knowledge about type 1 

diabetes. The proposed methods worked well and the author claims that they can be applied in 

different data sets [30]. This study is important because real life medical problems were used in 

this study and the data in my thesis is also drawn from a real life medical situation. 

 

The paper presented in [31],describes the specific approach of medical reasoning, as applied by 

the medical expert’s decision process. Rule induction was about extracting useful rules from data 

based on statistical significance. The author describes the two basic categories of the rule 

induction method, which support lower and upper approximation in rough sets. The two rules are 

deterministic and probabilistic rules, where deterministic rules are supported by positive 

examples and probabilistic are supported by large positive and small negative examples. It was 

postulated that medical reasoning includes two basic rules, which are positive and negative rules. 

 

This journal article by Wakulicz-Deja and Przybyla-kasperek [32] contains an example of how to 

apply rough set theory in deciding the necessity of future tests and finally deciding upon a 

diagnosis to be prescribed by a physician, on progressive encephalopathy in a child patient. It is 

prerequisite to have a number of invasive tests to reach a final decision. Minimizing invasive 

testing is necessary to carry out the processes that result in appropriate preliminary 

classifications. The study was based on 3 stages. The first stage classified children into two 

groups: 



24 
 

 

- Children suspected of the progressive encephalopathy. 

- Children having other diseases with the progressive encephalopathy. 

In the second a stage sample of blood and Cerebrospinal Fluid (CSF) were taken from children 

suspected of having progressive encephalopathy, who did not suffer from the progressive 

encephalopathy disease. They then determined the locate level in the samples. In the last stage, 

the rules to classify eligible patients for invasive testing will be created based on these results. In 

the third stage, selected patients from second stage will be examined for enzyme level. 

Thereafter, the result of third stage will be confirmation for previous stage of preliminary 

diagnosis. They carried out their experiment on 114 patients (60 boys and 54 girls,) aged 

between 3 months and 15 years. They found increased levels of acids in 91 patients, which 

indicate a highly encouraging result. 

 

They have used rough sets theory as a tool to diagnose progressive encephalopathy. Machine 

learning in rough set was used in this study to transfer knowledge from an expert to a knowledge 

base [33]. They have also used LERS to discover useful rules from data. Results of this paper 

tend to reduce unnecessary testing. To sum up, [32] presented a process of preliminary 

classification of child patients with the help of rough set theory. 

 

Overall, medical diagnosis process is considered to be comprised of three processes, which are 

use of focusing mechanism, integration of additional symptoms, and defining complications 

from other diseases caused by unexplained symptoms. In the paper [34], Shusaku Tsumoto has 

attempted to develop a corresponding viewpoint of medical differential diagnosis based on rough 

sets. The medical differential diagnosis is a process of differentiating conditions, diagnosed from 

similar symptoms. A classical approach to medical diagnosis signifies that each disease carries a 

certain set of symptoms, which facilitates a specific degree of coverage and confidence to 

diagnose that disease. It was shown that utilization of differential diagnosis concept, 

classification on the basis of accuracy and coverage, focusing mechanism and probabilistic rules, 

are required to achieve an appropriate medical diagnosis. 

 

There is a specific discussion in the paper [34] about one of the main characteristics of medical 
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reasoning, named focusing mechanism. It is when exclusive reasoning is used to identify the 

disease when the patient has no noticeable symptoms. On the other hand, inclusive reasoning is 

used when a patient reflects symptoms relating to specific disease. Exclusive and inclusive 

reasoning are modeled from upper and lower approximation as two kinds of rules. Such 

reasoning enables rough set model to make automated extraction or mining of rules. Thus, rule 

induction based on rough set model is a powerful tool for automated extraction or mining of 

rules following a focusing mechanism from dataset. 

 

Research paper [35] investigates the application of rough set theory (RST) in wave height 

prediction. Decision rules of the rough set theory for the prediction of wave heights were derived 

by applying RST to Lake Superior in North America. The rough set decision making table was 

constructed based on the wave height data and the wave height (decision making attribute) could 

be correlated with wind speed (conditional attribute). The dependency between the attributes 

helped in the reduction of the set of attributes. Finally, the performance of the proposed RST 

model in wave height prediction was evaluated using statistical measures (Bias, scatter index, 

mean relative errors, root mean square error and correlation coefficient). In the current study, 

RST out-performed other methods of soft computing such as Bayesian networks, artificial neural 

networks, support vector machines, etc. 

 

Interval-valued fuzzy information systems [36] do not make use of RST-based fuzzy rule 

extraction. However, in order to widen the application of RST, interval-valued fuzzy rough sets 

(IVFR) have been developed by scientists. In conventional RST, rules are obtained by attribute 

reduction whereas in this model rules are extracted based on the two algorithms of positive and 

negative approximations. This model uses a positive granulation order that defines positive 

approximation space. Based on this approximation, a rule extraction algorithm has been 

proposed (called as mine rules based on positive approximation MRBPA). Similarly, converse 

dynamic granulation order led to converse approximation space and subsequently, algorithm for 

rule extraction could be devised (called as mine rules based on converse approximation 

MRBCA). The comparison of the computing time and classification accuracy of MRBPA, 

MRBCA and fuzzy rule induction algorithm (Algorithm based on attribute reduction) revealed 

that running time of MRBPA was very less as compared to RIA, and it was slightly less than 
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RIA in case of MRBCA. Classification accuracies of both MRBPA and MRBCA outperformed 

RIA. 

 

The conventional rough set algorithms cannot generate classification rules incrementally when 

new objects are added to large databases of information systems. The research [37] devised an 

algorithm capable of incremental rule extraction without re-computing the rule sets from the 

beginning. The algorithm is based on reduct generation and alternative rule extraction algorithms 

developed by the researchers in [37]. In this method [38], the original rule sets containing whole 

raw data were deduced from attribute reduction table. If the newly added objects are dominated 

by the original reducts, the rule sets are updated by partial modification of original reducts. This 

methodology decreases the computation time and memory space significantly. At the same time, 

it is capable of excluding the repetitive rules and hence, avoids the redundant rules. 

 

ILA has been used on patients of radiology department in Hacettepe University Hospitals [39]. It 

has been used to discover the time that the patients spend taking a radiology exam and the 

demographics information. All in all, ILA has generated rules that tell that some of patients in 

their age groups or birth places spend more time in a specific radiology exam than the others. So 

ILA can give good results that can help hospital administrators to save time and better run the 

hospital system. 

 

The study in [40] presented a new algorithm for the knowledge acquisition in ILA. The new 

algorithm, which is REX-1 aims to remove or get rid of the disadvantages of the algorithms that 

are in use in Inductive learning. So comparing REX-1 algorithm with some algorithms such as; 

ID3, C4.5, and Rules Family, the REX-1 gives general rules with respect of the priority of 

attributes of the set with fewer numbers of rules and higher knowledge values. 

 

ILA2 has faster features than the basic ILA which reduces the processing time without losing 

much from the quality of the result. So the ILA2 is an improved version of basic ILA [41] [42]. 

All in all, ILA2 is better than ILA with respect of the main idea that both algorithms do. 

However, ILA2 is better in term of the time of processing, the size of the rules, and the accuracy 

of finding hidden patterns. 
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2.5 Methodologies of designing experiments  

In this section, we review previous experimental studies involving medical data because they 

have guided the design of our experiments with human subjects who were asked to evaluate 

predictive rules induced from medical ward data.  Advantages and disadvantages of different 

methods of experimental study are also discussed. 

 

The presented study [43] involved both qualitative (phenomenological design) as well as 

quantitative (questionnaires) designs. The sample consisted of three admission wards comparable 

in nature, scope and dimension. The questionnaire had a 16-item rating and was based on the 

results of qualitative data. Quantitative data were analyzed by the software SPSS 15.0 and non-

parametric correlations (Spearman’s rho) between the items were also calculated.  

 

The advantages of using questionnaires are that a large amount of information can be collected 

from a large number of people in a short period of time. This method is cost effective and 

obtained results can be easily quantified (by manual methods or by using software systems).  

The major hurdle in the studies involving questionnaires is the ‘disinterested’ participants. In the 

present study only 62% of the questionnaires were returned. The sample size of the population to 

be analyzed needs to be large enough to arrive upon a general conclusion. The truthfulness of the 

respondents is also questioned in some studies. For example, in the present study nurses showed 

initial enthusiasm but later on they were reluctant to carry on with the interventions. 

 

Research paper [44] presented an ethnographic study of nurses. In this type of study, the 

researcher, temporarily, becomes a part of the research setting. This ‘involvement’ makes it easy 

to understand the reality of research subjects. A reflexive ethnographer attempts to ‘tell the story’ 

of the subjects to the community. The basic advantage of this method is the ‘snap-shot’ nature of 

the conducted studies. These studies have a small sample size; however, they behold the 

‘essence’ of a particular situation.  

 

The major disadvantage of this method is the researcher’s own interpretation of the issue. This 

interpretation may be influenced by time & place and thereby confounds the results.  
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The modules used in the study included participant observation, semi-structured interviews with 

the participants, and keeping reflective fieldwork journal. The three modules and their 

advantages & disadvantages are listed in Table 2.2. 

Table 2.5: Modules of ethnographic study and their advantages & disadvantages 

Module Advantages Disadvantages 

Participant 

observation 

This method is cost-effective and does 

not require infrastructural support. 

The observer may not be acceptable by the participant. 

If acceptable, the observer may not be allowed to take 

part in the activities. Reciprocal influences may be 

exerted by the observer and the participant. 

Semi-

structured 

interviews 

These are open-ended and are sensitive 

to the answers of the participant as well 

as the intuition of the observer or 

researcher. 

This method is cost-effective and less 

time-consuming. 

The answers of the participants may be influenced by 

the researcher. 

Reflective 

fieldwork 

journal 

Uses the researcher’s own thoughts and 

reflection. It helps the researcher to 

differentiate ‘significant’ information 

from the ‘insignificant’. 

Constant validity check of the journal is required 

 

In article [45], the authors used the ‘observational method’ of study to assess the deficits in 

communication and information transfer at the hospital discharge. This method involves the 

identification of data sources to collect the data. These sources are the databases like MEDLINE 

and Cochrane Database of Systematic Reviews. Data are retrieved from the search engines using 

appropriate key words. More than one key word is necessary to retrieve maximum information 

on the subject. Once the data are extracted, they are analyzed for discrepancies and duplication. 

The final step in the observational studies includes data synthesis. Data synthesis involves 

categorization, summary and statistical analyses of the obtained data. 

 

Articles from the peer-reviewed scientific journals are generally included in the observational 

studies. Therefore, the conclusions drawn from the data are accurate and true. The data retrieved 
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from the scientific sources are amenable to statistical analysis. The observational studies are 

time-consuming and the data extraction requires skilled researchers. If the topic of the research is 

wide, the quantitative synthesis (meta analysis) may not be appropriate to conduct. Articles of a 

particular language can be retrieved from the search engines (generally English); hence, the 

articles from the other local (national languages) are not included in the study. 

 

The article [46] aims at development and validation of a clinical prediction rule to identify 

patients at high risk of developing delirium during their hospital stay. The methodology involved 

a prospective study having two distinct cohorts. One cohort was treated as derivation cohort and 

the other was validation cohort. In such studies, the predictive variables are noted and analyzed 

in one group of subjects (belonging to derivation cohort). Subsequently, the devised rule is 

validated using another group of subjects (from the validation cohort). 

 

There are several advantages to the credit of this method. The collected data are amenable to 

statistical analyses (continuous variables of the derivation and validation cohorts can be 

compared by student’s t-test, and ordinal and dichotomous variables can be compared using chi 

square test). The sample size is variable and may be set depending on the research study. 

Calculations can be made using SPSS and MedCalc software. The major disadvantage of this 

method is the inherent differences in the samples of two cohorts. 

 

Study [47] involves the analysis of hospital-discharge data for the assessment of epidemiology of 

vertebral osteomyelitis. The authors used a hospital-discharge database in France. This database 

is a collection of standardized discharge summaries of hospital stays of the patients. The 

collected discharge summaries are then categorized into single medical or surgical diagnosis 

related group (DRG).  This categorization is based in the 10th edition of the International 

Classification of Diseases (ICD-10) and makes it possible to link multiple hospital stays 

corresponding to one particular patient. 

 

In the same study [47], the cases of vertebral osteomyelitis were identified on the basis of ICD-

10 codes. These cases were further segmented into definite cases, probable cases and possible 

cases.  
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The advantages of this study design and methodology are as follows: 

1) The patient databases are created by using unique identification numbers. Hence, the 

identity of the patient remains concealed. 

2) DRG system makes it possible to club the patients with similar diagnosis into one 

category. Therefore, information retrieval is easy. 

3) Since multiple hospital stays of a single patient are linked to the patient identification 

number, it is possible to analyze and review the case over a considerable period. It is also 

possible to estimate the incidences at the national levels. 

4) The retrieved data are amenable to statistical analysis (SAS was used in this study [47]). 

The primary disadvantage associated with this method of data collection is that the information 

stored in these databases is only for in-patients. So, out-patients cannot be included in the study. 

This method may not be appropriate to use in case of rare diseases because their diagnosis and 

coding are complex. 

 

Because of the lack of available neurosurgical surgeon in the developing countries, most patients 

with head injuries are under the care of general surgeons. For this reason, it is especially 

important to prevent these injuries and while it is simple to understand the care needed for the 

patients, it is unfortunately not as simple to deliver this care in reality. This study [48] examines 

the variety of head injuries within a busy regional hospital in order to measure the quality of the 

care received by the patients. This study is divided in three sections, which are a prospective 

audit of all patients with a traumatic brain injury, over a two month period, at the Accident and 

Emergency (AE) department at Edendale Hospital, Pietermaritzburg. The two other audits are 

comprised of 25 referral letters from inpatients reviewed at random and 28 AE clerking notes to 

evaluate the quality of care administered. Their quality of care was evaluated by comparing the 

referral letters and the notes with agreed standardised markers.  

 

Between October and November of 2007, 150 patients with head injuries (117 males and 33 

females) were examined in the AE department, with a head injury warning chart. Of these 150 

patients, 76 were discharged from the hospital, while 49 were admitted to the general wards, 11 

were sent to the surgical intensive care unit, 10 were referred to the neurosurgical center in 

Durban, and 4 were pronounced dead in the AE department. Three of the 10 patients who needed 
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advanced neurosurgical care, required urgent burr-holes before referral. One of these patients 

died, but the remaining 9 patients were successfully transferred to the neurosurgery unit. The 

referral letters and AE clerking notes revealed major deficits. 

 

Although traumatic brain injuries are a common reason for hospital visits, many do not require 

the attention of a neurosurgical surgeon and can bear the delay caused by transfer, though there 

are cases where there is a need for an urgent intervention. Furthermore, there is a lack of 

importance associated to secondary brain injuries, most likely due to insufficient comprehension, 

so it is imperative to impose measures to improve its awareness. Introducing formalised standard 

referral and management sheets could greatly enhance the quality of care of patients. 

 

The study [49] intends to explore how deaths of patients are handled by ward staff, which 

include nurses and healthcare support workers. A group composed of 13 participants from two 

acute medical wards was interviewed regarding the death of their patients. In order to evaluate 

and analyse the data, the researchers used the Heideggerian phenomenological approach. 

Responses, influences and support were determined as the main themes but were further divided 

into subgroups recognized by the social psychology literature. The responses of the participants 

were often not noticed nor understood by their managers. 

 

In this chapter, we have reviewed Rough Sets Theory including the concepts of Indiscernibility 

class, Lower and Upper approximations and Discriminant index. Rule induction algorithms RS1, 

ILA and RSRPA were described and the software system RSGUI into which these algorithms 

have been embedded was presented. Previous Applications of Rough Set Theory and previous 

methodologies of designing experiments around medical data were examined. 

 

We have seen that RST has been used for fault diagnosis of gearbox [19], mechanical fault 

diagnosis of a five-plunger pump [20], fault diagnosis of ethylene cracking furnace [21], medical 

diagnosis of heart diseases [22], and diagnosing Mitochondrial Encephalomyopathies (MEM) 

disease [27]. Indeed, a rough set framework [28] to model medical diagnostic rules in general 

was developed because medical reasoning tends to reflect the concept approximation of rough 
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sets. Whereas rough sets have previously been used in the medical area for diagnosing medical 

conditions, we wish to use them now for diagnosing conditions on medical wards.  
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Chapter 3 

3 Objectives and Methodology 

Upon examination of data about the activity (admittance, discharge, death) on medical wards a 

number of questions come to mind. For example, what conditions on the ward tend to increase 

patient deaths?  A variety of rough set based tools have been developed at Laurentian University 

that show promise for discovering patterns in the medical ward data. This project is an 

experiment that seeks to find out how to use these tools, in order to bring to the surface hidden 

relationships in the medical ward data. 

3.1 Nature of the data 

Data have been obtained from King Khaled General Hospital in Saudi Arabia. Mohammad H. 

Thany, the manager of Computer and Statistics department at the hospital, agreed to let us use 

the data of the summer of 2013. The statistical data provided for this research project are 

unidentifiable. Also the Research Ethics Board at Laurentian University has approved to use the 

data in this thesis. In the Daily Floor Census we have two types of forms. The first one (Figure 

3.1), is the form that is compiled by the ward nurses; it has patient admission and discharge 

information, such as name, file numbers, diagnosis and the discharge time. 

Figure 3.1: Daily Floor Census 
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Figure 3.1 is a single ward form that has six tables; ADMISSIONS, DISCHARGES, TRANS-IN, 

TRANS-OUT, DIED, STILLBIRTH, and a SUMMARY for all tables on the form. Nurses in a 

ward fill the Figure 3.1 form every day, from 12:00 AM until 12:00 AM next day. The form has 

the date and day written on the top right corner. Dates are written in Arabic calendar style. The 

ward name is stamped on the top left corner. The Daily Floor Census Form (Figure 3.1) is sent 

from every ward to the Statistics and Computer Department after midnight, to allow a data entry 

person to compile them into Daily Floor Census form (Figure 3.2) the same day to be reviewed 

by the Statistics and Computer Department manager and then to be sent to the hospital director 

and signed. 

 

 

Because of the different meaning in terms, the person who created the form meant, by 

Flour, accurate or precise, in the top of the form. The second form of Daily Flour Census 

(Figure 3.2) is the summary for all wards in the hospital and has only numbers of admitted and 

discharged patients. It does not have names or times of discharges. It has only the numbers of 

Figure 3.2: Daily Flour Census 
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how many patients in every ward were admitted and discharged for one day. The M.M.W is the 

Male Medical Ward and The F.M.W is the Female Medical Ward. The remaining expansions can 

be found in the appendix E. 

 

 

Usually, the Computer and Statistics department at the hospital has the same form as Figure 3.2, 

filled manually with Arabic numbers, demonstrated in Figure 3.3. Often, the data entry person 

first compiles numbers manually from Figure 3.1 to ensure and give accurate numbers since they 

are not fluent in English. Thus, they fill the form using Arabic numbers and then type those 

Arabic numbers in English on form of Figure 3.2 Dates are written in Arabic as noted on the 

right top corner. 

3.2 Process of the forms in the hospital  

The Computer and Statistics Department sends Daily Floor Census forms (Figure 3.1) to all of 

the wards in the hospital. Every ward must fill out the form using patient information by 

Figure 3.3: Daily Flour Census 
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midnight, as illustrated at the top right corner of the form (day of week and full date). After 

midnight, all forms have to be sent back to the Computer and Statistics Department and compiled 

into the Daily Floor Census form (Figure 3.2) by one of the data entry persons. Once it has been 

compiled, it should be reviewed and signed by the department manager, then sent to the hospital 

director for reviewing and signed once more. A diagram showing the flow of the forms through 

the hospital appears in Figure 3.4. 

 

3.3 Rough Sets Advantages 

Rough set theory has attracted the attention of researchers all over the world and has been 

applied for a variety of purposes & situations and to solve a diversity of problems. It serves as a 

mathematical tool for dealing with vagueness, uncertainty & imperfect knowledge and is 

applicable in many branches of artificial intelligence. A few real-life applications of RST include 

medical data analysis, finance, banking, voice recognition, image processing, machine learning, 

oceanography, etc. Several problems in data analysis can be tackled using RST viz. 

Figure 3.4: Flow diagram of the procedure of the forms in the hospital 
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Characterization of set of objects in terms of attributes, finding total or partial dependencies 

between attributes, reducing redundant data/attributes and finding significant ones. This theory 

offers simple algorithms and enables straightforward interpretation of results. Rough set theory 

helps in finding hidden patterns in data by proving efficient algorithms. It identifies the 

relationships that are not found using other statistical methods as described in Section 2 

pertaining to medical ward data specifically and can be utilized in the processing of both 

qualitative and quantitative data [50]. 

 

Since its inception, rough set theory has been compared and contrasted with other mathematical 

tools dealing with vagueness and uncertainty. However, the major advantage (and the difference) 

of RST over other tools is that it does not need any preliminary information about the data. 

Preliminary or additional information is needed in statistics (in the form of the probability 

distribution) and in Dempster-Shafer theory (in the form of the basic probability assignment). 

The major difference between the RST and Dempster-Shafer theory is that the later uses belief 

function as the main tool but the former uses a family of all sets with upper and lower 

approximations. Similarly, fuzzy set theory also needs preliminary information in the form of 

grade of membership or value of the possibility [51][52]. 

 

It has been reported that every decision algorithm based on RST reveals well-known 

probabilistic properties such as probability theorem and the Bayes’ theorem. These algorithms 

satisfy total probability theorem & Bayes’ theorem. Hence, the RST algorithms can draw 

conclusions from large data sets without referring to prior & posterior probabilities. Most of the 

algorithms based on RST are suited for parallel processing and at the same time, the programs 

implementing the methods of RST can easily run on parallel computers i.e. concurrent 

processing is feasible [53]. 

3.4 Available Rough set based tools 

The Rough Set Graphic User Interface (RSGUI) [3] and its algorithms for decision making [4] 

have been mentioned in Subsection 1.1 and have been described in more details in Subsection 

2.1. The decision table that is used in this section contains two types of attributes, which are the 

condition attributes and the decision attributes. For example, the condition attributes in this case 

are Remain_Patients, New_Admisions, Death, and Discharged_Patients, whereas the decision 
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attribute is Occupancy. From the medical ward data we are looking for what can make the ward 

busy. Therefore, the ward Occupancy is the best decision attribute in the dataset for that purpose. 

 

Rough set data may have thousands of objects, so representing those objects in a table is the best 

way to have organized and understandable data. Each column represents an attribute, and each 

row represents attribute values for the columns. RSGUI is based on a user being able to 

designate any attribute or set of attributes as the decision attribute. Once the RSGUI has selected 

the dataset and begins execution, it will ask some questions. The first question is, “How many 

decision attributes are there?” If the user entered the number one for the number of decision 

attributes, it is going to ask another question according to the number entered to confirm the 

user’s choice, and will show the last right side attribute in the dataset as a decision attribute. For 

example, in the dataset showing in Figure 2.3 the “Duplicate” is the last right side column 

attribute in the data. Thus, the second question if the entry number of the first question was 1, is 

going to be “Is the decision attribute(s) the following: occupancy?” If it is, the user should type 

“yes” or “y” to display the RSGUI window Figure 2.3. If it is not, the user could type “no” or 

“n” to allow the user to enter the column number of the decision attribute after the message 

“Please enter the number of the decision attributes (starting at 0)”. 

 

Once the information table has been displayed, the user can either change the contents of the 

information table, or merge columns that are desired to be treated as single columns or select 

from the available algorithms to generate decision rules. In the next section, the method by 

which the medical ward data will be analyzed using RSGUI is described. 

3.5 Methodology 

The medical ward data may have useful implicit rules that are not immediately obvious by 

viewing the table directly. To get those rules, careful selection of important or interesting 

decision attributes is needed. In this case, the first decision attribute that will be checked is 

occupancy to see what could make the ward busy, in order to limit the busyness if it is causing 

problems. For example, emergency doctors sometimes unnecessarily admit patients, when a 

medicine may be enough to treat their condition. The second decision might be death either to 

see if the occupancy caused some deaths or to know at least that the deaths cannot be controlled 

by the staff in the ward.  
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After testing the data by RSGUI, we are going to evaluate the rules that RSGUI generated. 

Criteria by which to evaluate the rules generated will be describe in more details in Chapter 4. 

The most important matter is to find the useful and interesting rules from the data and order them 

from the most interesting to least interesting. Many questions may come to mind for the hospital 

director and the manager of Computer and Statistical department. For example, what can make 

the ward busy? Is ward occupancy a factor contributing to staff negligence? Does staff 

negligence cause deaths in a ward? 

 

The hospital sends an inpatient statistical report to the Ministry of Health Care daily. The reasons 

that the Ministry has asked for reports are, to analyze inpatient statistics, to verify if there is 

enough space, to see what can cause the busyness, and to see which of those previous reasons 

could have caused deaths in the ward? The Ministry could expand the ward with more rooms, 

beds, or employ more staff and doctors to at least limit busyness on a ward to remedy the 

situation. Another reason that may cause deaths or busyness is that the staff or doctors may not 

be qualified enough to help patients. So training may be a remedial action that will lead to higher 

quality patient care. 

 

Rough set is data mining algorithm for decision making based on incomplete, inconsistent, 

imprecise and vague data. Most Healthcare data have these properties. Soft computing 

techniques of which rough sets are one along with fuzzy sets and others aim to be as precise as 

possible about imprecision. New knowledge in the form of predictive rules is automatically 

discovered and a measure of the plausibility of inferences is given. Rough set and soft computing 

in general are data analytics approaches because implicit, previously unknown and hidden 

information is brought to the surface. Knowledge discovered from the ward data will be useful 

for the Ministry of Health Care for policy making, and for all levels of hospital management, for 

improving patient safety and satisfaction and for improving hospital productivity in general.  
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Chapter 4 

4 Problem Solution and Implementation 

Our aim is to employ knowledge discovered in health information to help improve the quality of 

healthcare delivery and the effectiveness of healthcare managers. An innovative solution has 

been developed based on an analytic and knowledge management approach to decision making. 

 

Forms that were compiled by ward nurses during the summer of 2013 have been obtained from 

King Khaled General Hospital in Saudi Arabia concerning events such as ADMISSIONS, 

DISCHARGES, TRANSFERS-IN, TRANSFERS-OUT, DEATHS, STILLBIRTHS for each of 

many wards such as F.M.W (Female Medical Ward). These events and their associated 

information were transformed to electronic tables. The field values were algorithmically 

discretized to yield soft values, for example, LOW, NORMAL, HIGH for attribute New-

Admissions. From the numeric values that appeared in the available forms used to populate the 

database tables. The available tools permit attributes of discretized information tables to be 

changed dynamically to play the role of either condition attribute (predictor) or decision attribute 

(predicted). If we are looking for what can lead to a ward being busy, the Ward- Occupancy is 

the best decision attribute in the dataset to be used.  

 

For accuracy of information tables and hence the accuracy of the rules induced from them, a web 

interface was implemented as the most natural solution. Its function are to ease the task of 

translating Arabic numbers to English, help populate and discretize information tables, provide 

access to analytic tools for decision making and permit roles of attributes to be distinguished as 

condition or decision for rule tuning. 

4.1 Web Interface for obtaining data 

Referring to Figure 3.4 that shows the flow of the forms through the hospital, it is clear that a 

better method of converting data from manual to electronic form is required. Additionally, for 

accuracy of the information tables and hence accuracy of the rules induced from them, an 
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interface to ease the task of translating the Arabic numbers to English would be helpful. A web 

interface for populating information tables appeared to be the most natural solution. An Entity 

Relationship diagram was developed to help design the web interface [54]. See Figure 4.1. 

 

Figure 4.1: ER Diagram for a hospital website 

Figure 4.1 is generated from Figure 3.1 to end up with the ward entity. The purpose for this 

diagram is to create a good database for all wards, as well as good web interfaces for the hospital 

staff and professionals to access the database. A primitive but exceedingly useful web interface 

was designed for acquiring data from manual forms. Web page designs with their implemented 

and proposed prototypes, and more detailed information flows of the hospital can be found in 
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Appendix F. In the remainder of this section, a data management strategy for predicting 

outcomes in medical ward data is advanced. 

4.2 Discretization 

“Discretization is the process of turning continuous values into discrete intervals” [55]. The data 

used in this thesis need to be discretized because the data comprise numerical and continuous 

values. There is an abundance of discretization algorithms[56] [55] [57] and any one of these 

could have been used. Discretization for obtaining discrete values from numerical data is a well 

understood problem. To accomplish the task, I looked at natural clustering of the data by visual 

inspection and also used the equal frequency binning discretization method [58]. Table 4.1 is a 

partial sample of one month ward data before discretization.  

Table 4.1: Sample of five days of Female Medical Ward (FMW) data 

Day Remain Patient New Admission Death Discharge Occupancy 
1 18 1 0 7 12 
2 12 2 0 1 13 
3 13 6 0 3 16 
4 16 6 0 4 18 
5 18 5 0 6 17 

 

I will explain the discretization method that I am using based upon the first column (Remain 

Patient column) and the same discretization process is applied to all the other columns and the 

remainder of Table 4.1 and Table 4.2 will be shown in Appendix D in more details. There are 5 

columns in total on the above table that need to be discretized. 

Grab all distinct numbers in the first column. Here we have the minimum number as 9 and the 

maximum as 24. Suppose we want to divide the first column into 3 bins, each bin has 4 elements. 

9, 11, 13, 14,| 15, 16, 17, 18, | 19, 20, 21, 24 

The boundary values of the bins are as follows: 

(14+15)/2 = 14.5          ,             (18+19)/2 = 18.5   

Therefore, after that the value ranges will be as follows: 

Bin 1: [0, 14.5]  LOW 

Bin 2: [14.5, 18.5]  NORMAL 

Bin 3: [18.5, +∞]  LARGE 
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Table 4.2 shows the sample of one month ward data from Table 4.1 discretized so that the 

column entries are now all soft values. 

Table 4.2: Discretized table for Female Medical Ward data for one month 

Day Remain Patient New Admission Death Discharge Occupancy 
1 NORMAL LOW NONE LARGE NOT_ BUSY 

2 LOW LOW NONE LOW NOT_ BUSY 

3 LOW LARGE NONE LOW NORMAL 

4 NORMAL LARGE NONE NORMAL NORMAL 

5 NORMAL NORMAL NONE NORMAL NORMAL 

4.3 Experiments to determine interesting rules 

Table 4.3 is a summary of all experiments that have been done in RSGUI using the Female 

Medical Ward data. RS1 and ILA algorithms have been applied upon the data for one month and 

also for three months. The Table 4.3 shows the attributes that have been used in the experiments, 

the amounts of rows and columns considered, and the total of rules obtained from every 

experiment. 

  Table 4.3: Summary of the FMW data in RSGUI 

Algorithm Conditions Attributes 
Decision 

Attributes 
Rows Considered 

Columns 

Considered 

Number of 

rules 

RS1 
remain, admitted, death, 

discharges 
occupancy 29 5 13 

ILA 
remain, admitted, death, 

discharges 
occupancy 29 5 14 

RS1 
remain, admitted, death, 

discharges 
occupancy 77 5 30 

ILA 
remain, admitted, death, 

discharges 
occupancy 77 5 24 

RS1 
remain, admitted, death, 

discharges 
occupancy 89 5 39 

RS1 
remain, admitted, 

discharges, occupancy 
death 89 5 37 

 

Order of the result after the evaluation from the most interesting, which is the higher number, to 

least interesting, which is the smallest number, according to the sum of the rule weight on Table 

6.1 in chapter 6 would be as follows: 

1. (admitted := LOW) AND (remain := LOW) -------> (occupancy := NOT_BUSY)[certainty = 1.0][coverage = 5/89]  

2. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.9333333333333333][coverage = 15/89] 

3. (remain := LARGE) AND (discharged := LOW) -------> (occupancy := BUSY)[certainty = 1.0][coverage = 3/89] 

4. (remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := NONE) ---> (occupancy := 

BUSY)[certainty = 1.0][coverage = 2/89] 
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5. (remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := 1) -------> (occupancy := 

BUSY)[certainty = 1.0][coverage = 1/89] 

6. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LOW) -------> (occupancy := 

NORMAL)[certainty = 0.8333333333333334][coverage = 6/89]  

7. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := NORMAL) -------> (occupancy := 

NORMAL)[certainty = 0.5][coverage = 6/89] 

8. (remain := LARGE) AND (discharged := NORMAL) AND (admitted := LARGE) -------> (occupancy := BUSY)[certainty = 

1.0][coverage = 3/89] 

9. (admitted := LOW) AND (remain := NORMAL) AND (discharged := LARGE) -------> (occupancy := NOT_BUSY)[certainty 

= 1.0][coverage = 2/89] 

10. (admitted := LOW) AND (remain := NORMAL) AND (discharged := NORMAL) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

11. (admitted := NORMAL) AND (remain := NORMAL) AND (discharged := LARGE) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

12. (remain := NORMAL) AND (discharged := LOW) AND (admitted := NORMAL) AND (death := NONE) -------> 

(occupancy := BUSY)[certainty = 0.2727272727272727][coverage = 11/89]  

13. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LARGE) -------> 

(occupancy := NORMAL)[certainty = 1.0][coverage = 5/89] 

14. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.7272727272727273][coverage = 11/89] 

15. (discharged := LARGE) AND (death := NONE) AND (remain := LARGE) -------> (occupancy := NORMAL)[certainty = 

1.0][coverage = 1/89] 

16. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := LARGE) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 3/89] 

17. (admitted := NORMAL) AND (remain := LOW) AND (discharged := LOW) AND (death := NONE) -------> (occupancy := 

NOT_BUSY)[certainty = 0.5][coverage = 6/89]  

 

Now ILA in RSGUI runs with more than two decision values and gives a good result by 

comparison with RS1 as shown following:  

1. IF (remain = LARGE) AND (admitted = LARGE) THEN (occupancy = BUSY) 

2. IF (remain = LOW) AND (admitted = LARGE) THEN (occupancy = NORMAL) 

3. IF (remain = LOW) AND (admitted = LOW) THEN (occupancy = NOT_BUSY) 

4. IF (remain = NORMAL) AND (death = 2) THEN (occupancy = NORMAL) 

5. IF (remain = LARGE) AND (discharged = LOW) THEN (occupancy = BUSY) 

6. IF (remain = LOW) AND (discharged = LARGE) THEN (occupancy = NOT_BUSY) 

7. IF (admitted = LARGE) AND (death = 1) THEN (occupancy = BUSY) 

8. IF (admitted = LOW) AND (death = 2) THEN (occupancy = NORMAL) 

9. IF (admitted = NORMAL) AND (death = 2) THEN (occupancy = NOT_BUSY) 

10. IF (remain = LARGE) AND (admitted = NORMAL) AND (death = 1) THEN (occupancy = BUSY) 
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11. IF (remain =NORMAL) AND (admitted = NORMAL) AND (death = 1) THEN (occupancy = NORMAL) 

12. IF (remain = LARGE) AND (admitted = LOW) AND (death = 1) THEN (occupancy = NORMAL) 

13. IF (remain = NORMAL) AND (admitted = LOW) AND death = 1) THEN (occupancy = NOT_BUSY) 

14.IF (remain = NORMAL) AND (admitted = LARGE) AND (discharged = NORMAL) THEN (occupancy = 

NORMAL) 

15.IF (remain = LARGE) AND (admitted = LOW) AND (discharged = NORMAL) THEN (occupancy = 

NORMAL) 

16. IF (remain = LOW) AND (admitted = NORMAL) AND (discharged = NORMAL) THEN (occupancy = 

NOT_BUSY) 

17. IF (remain = LARGE) AND (death = NONE) AND (discharged = LARGE) THEN (occupancy = NORMAL) 

18. IF (remain = NORMAL) AND (admitted = LARGE) AND (death = NONE) AND (discharged = LOW) THEN 

(occupancy = BUSY) 

 

How many of the ILA rules (18 of them) made it onto the most interesting list (17 rules)? 

 

We know that ILA generates shorter rules than RS1 to characterize the same concept and 

generates fewer rules overall. We will consider an ILA rule to have made it onto the most 

interesting list if the ILA rule or a shortened version of it is on the most interesting list. Consider 

the ward busy concept (occupancy = BUSY). Five rules to characterize this concept appeared in 

the most interesting list as determined by a heuristic applied to the 39 rules generated by RS1 

(Rules 3, 4, 5, 8 and 12). Five rules with occupancy = BUSY were also generated by ILA (rules 

1, 5, 7, 10 and 18).  

 

Rule 3 from most interesting list  

(remain := LARGE) AND (discharged := LOW) -------> (occupancy := BUSY) 

is exactly the same as ILA rule 5 which is 

IF (remain = LARGE) AND (discharged = LOW) THEN (occupancy = BUSY). 

Rule 4 from most interesting list 

(remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := 

NONE) ---> (occupancy := BUSY) 

is exactly the same as ILA rule 18 which is 

IF (remain = NORMAL) AND (admitted = LARGE) AND (death = NONE) AND (discharged = 

LOW) THEN (occupancy = BUSY). 
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Rule 5 from most interesting list  

(remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := 

1) -------> (occupancy := BUSY) 

contains  ILA rule 7 which is 

IF (admitted = LARGE) AND (death = 1) THEN (occupancy = BUSY) 

Rule 8 from most interesting list 

(remain := LARGE) AND (discharged := NORMAL) AND (admitted := LARGE) -------> 

(occupancy := BUSY) 

contains ILA rule 1 which is 

IF (remain = LARGE) AND (admitted = LARGE) THEN (occupancy = BUSY). 

It seems that RS1 has generated two rules both seen as interesting by the human evaluators while 

ILA generates only one rule instead. 

Rule 12 from most interesting list  

(remain := NORMAL) AND (discharged := LOW) AND (admitted := NORMAL) AND (death 

:= NONE) -------> (occupancy := BUSY) 

is more similar to ILA rule 18 which is 

IF (remain = NORMAL) AND (admitted = LARGE) AND (death = NONE) AND (discharged = 

LOW) THEN (occupancy = BUSY) 

than to ILA rule 10 which is  

IF (remain = LARGE) AND (admitted = NORMAL) AND (death = 1) THEN (occupancy = 

BUSY) 

 

What have we lost from most interesting rules 5 and 8 and does it show up in ILA 10?  

3 & 4 same as 5 & 18, respectively. 

5 contains 7 

8 contains 1 

ILA rule 10 does not show up on most interesting list 

 

The ILA/RS1 comparison considered 17 ILA rules and 18 RSI rules. The 18 rules were decided 

upon by talking to the hospital administrator and also by certainty and coverage measures 

calculated by RS1. Users were asked to evaluate those 18 rules, not the original 39.ILA does not 
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order the rules from most interesting to least interesting but my heuristics does. However, to 

some extent ILA is employing an interestingness measure on the first cut when it decided which 

rules were most interesting and which were not interesting. 

 

It was the certainty and coverage that seems to have contributed to deciding which rules should 

be presented to subjects for evaluation of interestingness as well as some semantics introduced 

by the hospital administrator. The analysis shows closeness between the 17 ILA rules and the 18 

RS1 rules. It seems that in some sense ILA is implicitly including an interestingness measure as 

well as some notion of certainty and coverage.  It says that using two different approaches comes 

up with similar results. My quality measure for rules is therefore verified as least regarding the 

first cut. Conversely, we learn something important about ILA that we did not know before. The 

ILA algorithm is more intelligent than we thought. The interesting measure (heuristic) first cut 

uses human intelligence to decide on a set of the most interesting rules. ILA does not use 

certainty or coverage to measure quality of rules. Yet ILA generates rules that are reduced as if 

certainty and coverage were used like RS1 explicitly used certainty and coverage to reduce the 

number of RS1 rules under consideration before applying the interestingness measure. 

4.3.1 ILA experiments 

The ILA algorithm in RSGUI does not execute with the full dataset, as it freezes for the three 

months of the FMW data. To understand where the problem might be, 12 specific rows were 

removed of the 89 rows in the dataset, which solved the issue. These 12 specific rows were 

identified by taking the following these steps: 

One row was entered and ILA was executed. If this was successful then the first and second rows 

were entered into the database and so on until ILA froze at a specific row, which will be named 

    row for this example. The     row was removed and the previous successful rows and rows 

         … were loaded until ILA froze again. In the end, 77 rows were successfully entered 

and 12 rows were excluded. 

 

The next question that was investigated was, why does ILA not function with those rows, and 

why does it give rules for 77 rows for the remainder of the dataset. The algorithm itself was 

examined with a small dataset for which it is possible to follow the algorithm step by step. This 
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dataset has been used in Chapter 2 to illustrate RS1 algorithm, and here it will be used to 

illustrate ILA algorithm. Table 4.4 is duplicated here for convenience. 

 

It was observed that ILA in RSGUI does not freeze in my full data on binary decision attributes. 

It freezes if the data have 3 decision values. For example, my data have 3 decision values, which 

are (BUSY, NORMAL, and NOT_BUSY), so with these values it freezes. But when I changed 

the decision values to be only 2 decision values (BUSY and Normal) it generates rules for all 89 

rows of the data set. We can conclude that the case described in Subsection 2.1.3 does not arise 

with the full data set and that the algorithm as previously implemented by Laurentian University 

students can handle only binary decision values. 

 

ILA generates rules with the full data set only if we have binary decision values. However, it 

generates rules with 3 decision values if specific rows were removed. So why did ILA work on 

the 77 rows with multi-valued decision attribute. The rules that RS1 generated were compared 

with the rules that ILA generated and the rows that were removed were those that would have 

generated uncertain rules as measured by uncertainty metric that was printed out by RS1 for each 

rule. But we do not want to use the data set without the 12 rows since we are dealing with 

uncertain data. 

4.3.2 ILA java code 

After many experiments had been done on ILA with poor results with the full data set, fixing its 

code was needed. So by testing the ILA through the Eclipse application, some bugs and errors 

have been found on ILA code. Fixing the bugs was not the only ILA issue on RSGUI. In addition 

a for loop was missing some cases that makes the system freeze when executing ILA. 

The previous programmer identified the j at the beginning of the class but he did not use it in the 

for loop or if statements. He identifies the j (row counter) as follows: 

int j = 1; 

The for loop that follows is a snippet of ILA code. 

 for (int m = 0; m < dtArray.length; m 

  for (int r = 0; r < dtArray[m].rows; r++) 

  if (!boolDTArray[m][r]) 

  done = false; 

  if (done) 

  break; 
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The if statement that stops the for loop above was missing and is needed if the row counter is 

greater or equal to j = 1 as below: 

 
if(dtArray[0].rows >= j) 

 j++; 

else 
break; 

trace += "\n"; 

 

The code that was before adding above (if statement) did not tell the for loop to stop once the 

row counter has reached the j limit, and it is below: 

  

j++; 

trace += "\n"; 

 

For years, students have been unable to process all uncertain data using ILA and all because of 

an infinite loop. 

4.4 Interestingness measures 

A user uses the RSGUI to discover patterns in data. To get the best result from these data, it 

needs to extract interesting rules. For the rule to be interesting, it needs to be useful and 

eventually understandable. Interestingness measures should be found by two parts: objective and 

subjective. 

 

Interestingness measures are for selecting and ranking patterns, according to how interesting they 

are from the user’s perspective. A good survey of interestingness measures can be found in [59]. 

In that work, criteria to determine interest of patterns are the following: 

Conciseness: a rule can be concise if it has few attributes relative to the others. 

Generality/ Coverage: a rule can be general or coverage if it covers a large subset of the data. 

Reliability: a rule can be reliable if it is strong as measured by some metric. 

Peculiarity: a rule is peculiar if it is unusual and unknown beforehand to the user. 

Diversity: a rule is diverse if its attributes differ from each other. 

Novelty: a rule is novel if the user is unaware of it beforehand and cannot produce it from known 

rules. 

Surprisingness: a rule is surprising if it is unexpected and contradicts user knowledge. 
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Utility: a rule has utility if it is useful and helps a person to reach a goal. 

Applicability: a rule is applicable if it can be applied in the future in same domain. 

 

 

 

 

 

 

 

In [60] alternate approaches to normalization of measures are provided to make different 

measures comparable by various methods. A rule generated may be good on some and bad on 

others, so developing a formula for taking into consideration all the evaluation criteria is needed 

to get a good result. The formula that I developed uses ranking from -4 to +4 for each criterion 

and adding up the positive and negative scores yields one weight for the rule. The rankings for 

each individual criterion are as follows: 

+4 Reliability 

+3 Utility 

+2 Conciseness 

+1 Generality/ Coverage 

0 Novelty 

-1 Applicability 

-2 Diversity 

-3 Surprisingness 

-4 Peculiarity 

 

The results of 22 rules found when death was selected as a decision attribute using RS1 with 77 

rows and ordered from most interesting to least interesting with their evaluation table can be 

found in decision rules 1 with Table C1 in Appendix C. 

 

 
Interestingness Measures 

RSGUI 

Ranking 
(RS1) 

Data 
Rules 

generated 

Interesting 
rules 

Filtering 
(RSRPA) 

Figure 4.2: Interestingness measures in play for rule generation 
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According to the results of Decision Rules 1 in Appendix C, we can say that low discharges and 

busy wards may cause deaths. Applying ILA on the data with 77 rows and occupancy as a 

decision attribute, the results gave all rules a certainty of 1, which means all of the rules 

generated from ILA were certain rules and the 12 rows that were removed are uncertain.  

 

The results of the 22 rules found using RS1 when selecting occupancy as a decision attribute 

with 77 rows and ordered from most interesting to least interesting with their evaluation table 

can be found in Decision Rules 2 with Table C2 in Appendix C. 

 

Also according to the results Decision Rules 2 in Appendix C, a ward could be busy if there is a 

large amount of remaining patients with low discharge rates. These findings contribute toward an 

understanding of why ILA was not working properly and have helped me to improve RSGUI for 

teaching rough set concepts and for developing applications based on rough sets. Table C1 is an 

evaluation by the criteria for the death as a decision attribute, and Table C2 is an evaluation by 

the criteria for the occupancy as a decision attribute can be found in Appendix C. 

 

Firstly, ILA algorithm was applied on the data containing the decision attribute occupancy and 

12 of the 89 rows were removed from the data, in order to prevent ILA from freezing which was 

described in Subsection 4.3. I later decided to use another decision attribute, which is death. ILA 

with 77 rows and death as a decision attribute was applied on the data, but it froze. It also froze 

even if returning back the 12 rows to be 89 rows that were removed from the data when the 

occupancy was used as a decision attribute. So after many experiments I have done, I decided to 

fix ILA algorithm as the issue was described in Subsection 4.3.1, and ILA fixed as has been 

described in Subsection 4.3.2. For now we work instead with RS1. So ILA fixed results can be 

compared with those of RS1. 

 

Table 4.4, Table 4.5, and Table 4.6 demonstrate the results of three different decision values, 

BUSY, NORMAL, and NOT_BUSY for occupancy attribute respectively. Table 4.4, Table 4.5, 

and Table 4.6 are all certain rules using RS1 with the occupancy as a decision attribute. The rules 

are separated into 3 tables; busy ward, normal ward, and not busy ward respectively. Table 4.10 

contains only uncertain rules for all of the three decision values of the occupancy decision 
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attribute. 

Table 4.4: Occupancy as a decision attribute for busy value table for all certain rules 

(remain := LARGE) AND (discharged := LOW) -------> (occupancy := BUSY)[certainty = 1.0][coverage = 3/89] 

(remain := LARGE) AND (discharged := NORMAL) AND (admitted := LARGE) -------> (occupancy := BUSY)[certainty = 

1.0][coverage = 3/89] 

(remain := LARGE) AND (discharged := LARGE) AND (admitted := NORMAL) AND (death := 1) -------> (occupancy := 

BUSY)[certainty = 1.0][coverage = 1/89] 

(remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := NONE) -------> (occupancy 

:= BUSY)[certainty = 1.0][coverage = 2/89] 

(remain := LARGE) AND (discharged := NORMAL) AND (admitted := NORMAL) AND (death := 1) -------> (occupancy 

:= BUSY)[certainty = 1.0][coverage = 1/89] 

(remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := 1) -------> (occupancy := 

BUSY)[certainty = 1.0][coverage = 1/89] 

 

Table 4.5: Occupancy as a decision attribute for normal value table for all certain rules 

(discharged := NONE) -------> (occupancy := NORMAL)[certainty = 1.0][coverage = 2/89] 

(discharged := NORMAL) AND (death := 2) -------> (occupancy := NORMAL)[certainty = 1.0][coverage = 1/89] 

(discharged := LOW) AND (death := 2) -------> (occupancy := NORMAL)[certainty = 1.0][coverage = 1/89] > 

(discharged := LARGE) AND (death := NONE) AND (remain := LARGE) -------> (occupancy := NORMAL)[certainty = 

1.0][coverage = 1/89] 

(discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LARGE) -------> 

(occupancy := NORMAL)[certainty = 1.0][coverage = 5/89] 

(discharged := NORMAL) AND (death := NONE) AND (remain := LARGE) AND (admitted := LOW) -------> (occupancy 

:= NORMAL)[certainty = 1.0][coverage = 2/89] 

(discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := LARGE) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 3/89] 

(discharged := NORMAL) AND (death := NONE) AND (remain := LOW) AND (admitted := LARGE) -------> (occupancy 

:= NORMAL)[certainty = 1.0][coverage = 1/89] 

(discharged := LOW) AND (death := 1) AND (remain := NORMAL) AND (admitted := NORMAL) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 1/89] 

(discharged := NORMAL) AND (death := 1) AND (remain := LARGE) AND (admitted := LOW) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 1/89] 

(discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NONE) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 1/89] 

 

Table 4.6: Occupancy as a decision attribute for not busy value table for all certain rules 

(admitted := LOW) AND (remain := LOW) -------> (occupancy := NOT_BUSY)[certainty = 1.0][coverage = 5/89]  

(admitted := LOW) AND (remain := NORMAL) AND (discharged := LARGE) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 2/89]  

(admitted := NORMAL) AND (remain := LOW) AND (discharged := LARGE) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 1/89] 

(admitted := NORMAL) AND (remain := LOW) AND (discharged := NORMAL) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 1/89] 

(admitted := NORMAL) AND (remain := LARGE) AND (discharged := LARGE) AND (death := 2) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 1/89] 

(admitted := LOW) AND (remain := NORMAL) AND (discharged := NORMAL) AND (death := 1) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 1/89] 

 

Table 4.7: Occupancy as a decision attribute for all decision values with certainty < 1 

(remain := LARGE) AND (discharged := NORMAL) AND (admitted := NORMAL) AND (death := NONE) -------> 
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(occupancy := BUSY)[certainty = 0.5][coverage = 2/89] 

(remain := NORMAL) AND (discharged := LOW) AND (admitted := NORMAL) AND (death := NONE) -------> 

(occupancy := BUSY)[certainty = 0.2727272727272727][coverage = 11/89]  

(discharged := NORMAL) AND (death := NONE) AND (remain := LARGE) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.5][coverage = 2/89] 

(discharged := LARGE) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.3333333333333333][coverage = 3/89] 

(discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.9333333333333333][coverage = 15/89] 

(discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.7272727272727273][coverage = 11/89] 

(discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LOW) -------> 

(occupancy := NORMAL)[certainty = 0.3333333333333333][coverage = 3/89]  

(discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := NORMAL) -------> (occupancy := 

NORMAL)[certainty = 0.5][coverage = 6/89]  

(discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LOW) -------> (occupancy := 

NORMAL)[certainty = 0.8333333333333334][coverage = 6/89]  

(discharged := LOW) AND (death := 1) AND (remain := LOW) AND (admitted := NORMAL) -------> (occupancy := 

NORMAL)[certainty = 0.5][coverage = 2/89] 

(admitted := NORMAL) AND (remain := NORMAL) AND (discharged := LARGE) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

(admitted := NORMAL) AND (remain := NORMAL) AND (discharged := NORMAL) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.06666666666666667][coverage = 15/89] 

(admitted := LOW) AND (remain := NORMAL) AND (discharged := NORMAL) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

(admitted := NORMAL) AND (remain := LOW) AND (discharged := LOW) AND (death := NONE) -------> (occupancy := 

NOT_BUSY)[certainty = 0.5][coverage = 6/89] 

(admitted := LOW) AND (remain := NORMAL) AND (discharged := LOW) AND (death := NONE) -------> (occupancy := 

NOT_BUSY)[certainty = 0.16666666666666666][coverage = 6/89] 

(admitted := NORMAL) AND (remain := LOW) AND (discharged := LOW) AND (death := 1) -------> (occupancy := 

NOT_BUSY)[certainty = 0.5][coverage = 2/89] 

Interesting rules extracted from Table 4.4, Table 4.5, Table 4.6 and Table 4.10 using RS1 and 

occupancy as a decision attribute, were ordered from most interesting to least interesting, using 

evaluation criteria described in Subsection 4.4. The result will be shown in Subsection 6.1. 

Table 4.11, Table 4.12, and Table 4.13 have all certain rules using RS1 with death as a decision 

attribute. The rules are separated into 3 tables, 2 deaths in the ward, 1 death in the ward, and no 

deaths in the ward respectively. Table 4.14 contains all uncertain rules for all the three decision 

values of death decision attribute. 

Table 4.8: Death as a decision attribute for 2 deaths decision value for all certain rules 

(remain := LARGE) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) ---> (death := 2)[certainty = 

1.0][coverage = 1/89] 

(remain := NORMAL) AND (admitted := LARGE) AND (occupancy := NORMAL) AND (discharged := LOW) ---> (death 

:= 2)[certainty = 1.0][coverage = 1/89] 

 

Table 4.9: Death as a decision attribute for 1 death decision value for all certain rules 

(discharged := LARGE) AND (admitted := NORMAL) AND (occupancy := BUSY) --->(death := 1)[certainty = 

1.0][coverage = 1/89] 
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Table 4.10: Death decision attribute for no deaths decision value for all certain rules 

(discharged := NONE) ---> (death := NONE)[certainty = 1.0][coverage = 2/89] 

(discharged := LOW) AND (admitted := LOW) ---> (death := NONE)[certainty = 1.0][coverage = 12/89] 

(discharged := LOW) AND (admitted := NONE) ---> (death := NONE)[certainty = 1.0][coverage = 1/89] 

(discharged := NORMAL) AND (admitted := LARGE) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 5/89] 

(discharged := LARGE) AND (admitted := NORMAL) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 3/89] 

(discharged := NORMAL) AND (admitted := NORMAL) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 15/89] 

(discharged := LOW) AND (admitted := LARGE) AND (remain := LOW) ---> (death := NONE)[certainty = 1.0][coverage 

= 3/89] 

(discharged := NORMAL) AND (admitted := LARGE) AND (remain := LOW) ---> (death := NONE)[certainty = 

1.0][coverage = 1/89] 

(discharged := LARGE) AND (admitted := NORMAL) AND (remain := LOW) ---> (death := NONE)[certainty = 

1.0][coverage = 1/89] 

(discharged := LOW) AND (admitted := NORMAL) AND (remain := LARGE) ---> (death := NONE)[certainty = 

1.0][coverage = 2/89] 

(discharged := NORMAL) AND (admitted := NORMAL) AND (remain := LOW) ---> (death := NONE)[certainty = 

1.0][coverage = 1/89] 

(discharged := NORMAL) AND (admitted := LOW) AND (remain := NORMAL) AND (occupancy := NORMAL) ---> 

(death := NONE)[certainty = 1.0][coverage = 1/89] 

(discharged := LARGE) AND (admitted := NORMAL) AND (remain := LARGE) AND (occupancy := NORMAL) ---> 

(death := NONE)[certainty = 1.0][coverage = 1/89] 

(discharged := LOW) AND (admitted := NORMAL) AND (remain := NORMAL) AND (occupancy := BUSY) ---> (death 

:= NONE)[certainty = 1.0][coverage = 3/89] 

(discharged := NORMAL) AND (admitted := NORMAL) AND (remain := LARGE) AND (occupancy := NORMAL) ---> 

(death := NONE)[certainty = 1.0][coverage = 1/89] 

 

Table 4.11: Death as a decision attribute for all death decision values with certainty < 1 

(remain := LARGE) AND (admitted := LOW) AND (occupancy := NORMAL) AND (discharged := NORMAL) ---> (death 

:= 2)[certainty = 0.25][coverage = 4/89] 

(discharged := NORMAL) AND (admitted := LARGE) AND (occupancy := BUSY) AND (remain := LARGE) ---> (death 

:= 1)[certainty = 0.3333333333333333][coverage = 3/89] 

(discharged := LOW) AND (admitted := LARGE) AND (occupancy := BUSY) AND (remain := NORMAL) ---> (death := 

1)[certainty = 0.3333333333333333][coverage = 3/89] 

(discharged := NORMAL) AND (admitted := NORMAL) AND (occupancy := BUSY) AND (remain := LARGE) ---> 

(death := 1)[certainty = 0.5][coverage = 2/89] 

(discharged := LOW) AND (admitted := NORMAL) AND (occupancy := NORMAL) AND (remain := NORMAL) ---> 

(death := 1)[certainty = 0.1111111111111111][coverage = 9/89] 

(discharged := NORMAL) AND (admitted := LOW) AND (occupancy := NOT_BUSY) AND (remain := NORMAL) ---> 

(death := 1)[certainty = 0.3333333333333333][coverage = 3/89] 

(discharged := LOW) AND (admitted := NORMAL) AND (occupancy := NORMAL) AND (remain := LOW) ---> (death := 

1)[certainty = 0.25][coverage = 4/89] 

(discharged := LARGE) AND (admitted := LOW) AND (occupancy := NOT_BUSY) AND (remain := NORMAL) ---> 

(death := 1)[certainty = 0.5][coverage = 2/89] 

(discharged := LOW) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) AND (remain := LOW) ---> (death 

:= 1)[certainty = 0.25][coverage = 4/89] 

(discharged := NORMAL) AND (admitted := LARGE) AND (remain := LARGE) AND (occupancy := BUSY) ---> (death 

:= NONE)[certainty = 0.6666666666666666][coverage = 3/89] 

(discharged := NORMAL) AND (admitted := LOW) AND (remain := LARGE) AND (occupancy := NORMAL) ---> (death 

:= NONE)[certainty = 0.5][coverage = 4/89] 

(discharged := LOW) AND (admitted := LARGE) AND (remain := NORMAL) AND (occupancy := BUSY) ---> (death := 

NONE)[certainty = 0.6666666666666666][coverage = 3/89] 

 (discharged := NORMAL) AND (admitted := NORMAL) AND (remain := LARGE) AND (occupancy := BUSY) ---> 

(death := NONE)[certainty = 0.5][coverage = 2/89] 

(discharged := LOW) AND (admitted := NORMAL) AND (remain := NORMAL) AND (occupancy := NORMAL) ---> 

(death := NONE)[certainty = 0.8888888888888888][coverage = 9/89] 
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(discharged := NORMAL) AND (admitted := LOW) AND (remain := NORMAL) AND (occupancy := NOT_BUSY) ---> 

(death := NONE)[certainty = 0.6666666666666666][coverage = 3/89] 

(discharged := LOW) AND (admitted := NORMAL) AND (remain := LOW) AND (occupancy := NORMAL) ---> (death := 

NONE)[certainty = 0.75][coverage = 4/89] 

(discharged := LARGE) AND (admitted := LOW) AND (remain := NORMAL) AND (occupancy := NOT_BUSY) ---> 

(death := NONE)[certainty = 0.5][coverage = 2/89] 

(discharged := LOW) AND (admitted := NORMAL) AND (remain := LOW) AND (occupancy := NOT_BUSY) ---> (death 

:= NONE)[certainty = 0.75][coverage = 4/89] 

Interesting rules extracted from Table 4.11, Table 4.12, Table 4.13 and Table 4.14 using RS1and, 

this time, death as a decision attribute, are ordered from most interesting to least interesting using 

evaluation criteria described in Section 4.4 and, again, will be shown in Subsection 6.2. 

All of the experiments have been done upon FMW data table, since the hospital has 10 wards. 

The process that gives the results of FMW can also be applied to the rest of the wards. 

To explain the Figure 4.3, if the entered condition attribute values are as follows: 

If remain = LARGE, AND admitted = LARGE, AND death = NONE, AND discharged = LOW 

Then the applicable decision rule is: 

(remain = LARGE) AND (discharged = LOW) -------> (occupancy = BUSY)[certainty = 1.0][coverage = 3/89] 

Figure 4.3: RS1 prediction rules 
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Based on RS1 rules and entered condition attribute values, we get the predicted decision attribute 

value of occupancy is BUSY. 

Also, if the entered condition attribute values for death as a decision attribute were as follows: 

If remain = LARGE, AND admitted = NORMAL, AND occupancy = BUSY, AND discharged = 

NORMAL 

Then the applicable decision rules are: 

 

1. (discharged = NORMAL) AND (admitted = NORMAL) AND (remain = LARGE) AND (occupancy = BUSY) -------> 

(death = NONE)[certainty = 0.5][coverage = 2/89] 

 

2. (discharged = NORMAL) AND (admitted = NORMAL) AND (occupancy = BUSY) AND (remain = LARGE) -------> 

(death = 1)[certainty = 0.5][coverage = 2/89] 

 

Above rules are a decision attribute value prediction based on RS1 algorithm and user entered 

condition attribute values. 

4.5 RSRPA algorithm 

RSRPA algorithm has been described in Subsection 2.1.4 and the result and rules of the 

algorithm will be illustrated in this subsection. 

 

The RSRPA algorithm as described in Subsection 2.1.4 is given the decision attribute values and 

the algorithm is used to predict the condition attribute values. It is illustrated in Figure 4.4 that 

the decision attribute value, which is BUSY in concept #0 was given and the algorithm predicted 

the best condition attribute values for that decision attribute value, and so on for the remaining 

concepts. The obtained RSRPA rules that are seen in Figure 4.4 are illustrated in Table 4.15. 
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The RSRPA algorithm was applied on the data with occupancy as a decision attribute by which it 

obtained the rules shown in Table 4.15, and also was applied on the same data with death as a 

decision attribute by which it obtained the rules shown in Table 4.16. 

Table 4.12: RSRPA for occupancy decision attribute 

Concepts 

Busy ward Normal ward Not busy ward 

remain := LARGE 

discharged := LOW 

death := 1 

admitted := LARGE 

discharged := NONE 

admitted := NONE 

remain := NORMAL 

death := 2 

admitted := LOW 

remain := LOW 

discharged := LARGE 

death := 2 

 
 

Table 4.13: RSRPA for death decision attribute 

Concepts 

2 death in the ward 1 death in the ward No death in the ward 

remain = LARGE 

admitted = NORMAL 

remain = LARGE 

admitted = NORMAL 

remain = NORMAL 

admitted = NONE 

Figure 4.4: RSRPA result 
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discharged = LARGE 

occupancy = NOT_BUSY 

discharged = LARGE 

occupancy = BUSY 

discharged = NONE 

occupancy = NORMAL 

 

The results of Table 4.16 are consistent with our expectations. Since death is a significant event 

in a ward, it is critical to understand conditions on the ward that could lead to a death. 

 

ILA freezing issues that were described earlier in Subsection 4.3.1 have been solved. The java 

code of ILA had some bugs, which made the RSGUI freeze when executing ILA. Also the 

problem of the 12 rows that was mentioned in Subsection 4.3.1 and the two decision value 

restriction now are solved. The algorithm in java was written from another paper that was 

missing some cases but, more than that, bugs in the implementation caused the freezes and as 

well resulted in processing no more than two decision values. Now ILA in RSGUI runs with 

more than two decision values and gives a good result by comparison with RS1 as shown 

following: 

1. IF (remain = LARGE) AND (admitted = LARGE) THEN (occupancy = BUSY) 

2. IF (remain = LOW) AND (admitted = LARGE) THEN (occupancy = NORMAL) 

3. IF (remain = LOW) AND (admitted = LOW) THEN (occupancy = NOT_BUSY) 

4. IF (remain = NORMAL) AND (death = 2) THEN (occupancy = NORMAL) 

5. IF (remain = LARGE) AND (discharged = LOW) THEN (occupancy = BUSY) 

6. IF (remain = LOW) AND (discharged = LARGE) THEN (occupancy = NOT_BUSY) 

7. IF (admitted = LARGE) AND (death = 1) THEN (occupancy = BUSY) 

8. IF (admitted = LOW) AND (death = 2) THEN (occupancy = NORMAL) 

9. IF (admitted = NORMAL) AND (death = 2) THEN (occupancy = NOT_BUSY) 

10. IF (remain = LARGE) AND (admitted = NORMAL) AND (death = 1) THEN (occupancy = BUSY) 

11. IF (remain =NORMAL) AND (admitted = NORMAL) AND (death = 1) THEN (occupancy = NORMAL) 

12. IF (remain = LARGE) AND (admitted = LOW) AND (death = 1) THEN (occupancy = NORMAL) 

13. IF (remain = NORMAL) AND (admitted = LOW) AND death = 1) THEN (occupancy = NOT_BUSY) 

14.IF (remain = NORMAL) AND (admitted = LARGE) AND (discharged = NORMAL) THEN (occupancy = 

NORMAL) 

15.IF (remain = LARGE) AND (admitted = LOW) AND (discharged = NORMAL) THEN (occupancy = 

NORMAL) 

16. IF (remain = LOW) AND (admitted = NORMAL) AND (discharged = NORMAL) THEN (occupancy = 

NOT_BUSY) 

17. IF (remain = LARGE) AND (death = NONE) AND (discharged = LARGE) THEN (occupancy = NORMAL) 

18. IF (remain = NORMAL) AND (admitted = LARGE) AND (death = NONE) AND (discharged = LOW) THEN 

(occupancy = BUSY) 

 

Above rules are all the rules that ILA has generated. They are useful and partly the same as RS1 

rules. However, ILA rules are shorten than RS1 rules, which means ILA rules are more 

recommended rules according to: 

1- ILA generates only interesting and shorten rules 
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2- By only seeing the discharge value, we can predict the ward occupancy. For example all 

low discharge value going to make a busy ward. However, Large discharge value most 

likely going to make a not busy ward. 

3- ILA has generated only 18 rules but RS1 has generated 39 rules. 

Therefore, reporting ILA rules to the Health Ministry instead RS1 rules is better and going to 

save data analyzer few times to check which term or attribute could make a busy ward. Also, 

what ILA has done is display the interesting rules and ignore some rules that are not interesting, 

but RS1 has displayed all rules whether interesting or not interesting. 

 

In this chapter, a summary has been prepared of all of the experiments that were accomplished 

based on the different algorithms applied upon the medical ward data acquired over the three 

month period. The summary shows, for each experiment, the attributes and their designation as 

condition or decision, how many rows were considered, how many columns were considered, 

and how many rules we got. Interestingness heuristics were developed for selecting and ranking 

patterns according to how interesting they are from the user’s perspective. Quantitative 

plausibility measures were applied to evaluate the quality of predictions. The interesting and 

plausible rules have been selected and presented in this chapter.  
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Chapter 5 

5 Second data experiment 

A student in university is interested to get a high average and complete their degrees with high 

GPA. In this chapter a web based RSGUI called NewRSGUI will be illustrated and prediction in 

student data will be done using NewRSGUI. The prediction to be made is “what courses should I 

take together to get a high GPA?“ 

5.1 Student transcripts   

Course data for Math and Computer Science students have been obtained from the registrars’ 

office at Laurentian University. Identification of students has been removed. The Research 

Ethics Board at Laurentian University has approved to use the data in this thesis, (see Appendix 

A). The data follow each student over a four-year period and show all courses the student has 

taken not only the core courses they took (Math/Computer Science) but also their electives. We 

will discover general rules from these data to predict a collection of courses that incoming future 

students could take, in order to fulfill the program requirements. The predicted rules would 

alleviate, at least in part, the Math and Computer Sciences faculty workload for advising students 

on which courses to take. 

5.2 NewRSGUI 

On student transcript data I used NewRSGUI, which is a new version of the Rough Set Graphical 

User Interface and can achieve the same function as RSGUI. The differences between the two 

are method of startup and the input file format. RSGUI deals with word-based text databases (see 

Figure 2.3). It runs from the command line, in which the user has to type several commands in 

the command line, before the GUI is launched. Text files only can be recognized to read as an 

input. In order to solve these problems, it is required to convert the RSGUI to a different version, 

which could improve the problem of user unfriendly input method. NewRSGUI has become an 

executable file and can be launched by double clicking its icon. Also new in NewRSGUI, the 

input files no longer .txt files, and can be connected with a real database to directly extract its 
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data. RS1, RSRPA (Rough Set Reverse Prediction Algorithm) and ILA (Inductive Learning 

Algorithm) are still provided by NewRSGUI and therefore, the user does not need to relearn how 

to use the NewRSGUI. NewRSGUI is a more convenient tool for users to make a prediction, 

connect to their datasets, and it is easy to run. For these reasons, I am using NewRSGUI in my 

secondary data. NewRSGUI runs as follows: 

 

1. Click the NewRSGUI icon to display the interface in Figure 5.2 and to type the information. 

2. If the information typed in 1 is correct, it display another window, which allows the user to 

select the table of the dataset in MySql and the number of decision attributes the user is looking 

for.  

3. Afterwards, the Decision Table collects all the data from the specified table in the database 

schema and passes the data as a parameter to the RSGUI and the main frame is launched. 

 

 

 

 

 

Figure 5.2: NewRSGUI user interface 

The NewRSGUI can now be called from web medical interfaces, as seen in Figure F.1 in 

Appendix F. This can help hospital administrators generate rules from the same MySQL 

databases that are used for collecting patients’ data through the web interface (Appendix F). 

5.3 NewRSGUI snippets java code  

This subsection shows snippets of java codes of NewRSGUI that I am using in this chapter to 

analyze the student records. 

 

LaunchRSGUI Select Table Decision Table RSGUI 

Figure 5.1: Flowchart of NewRSGUI design 
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The following snippets of code are to create the labels and the text fields to identify the address 

or the Server of the database that is going to be used or analyzed using the methods that exist in 

the RSGUI. 

 

JLabel labelURL = new JLabel("Database URL:"); 

… 

JLabel labelPort = new JLabel("Database Port:");  

… 

JLabel label1 = new JLabel("Database Schema:");  

… 

JLabel label2 = new JLabel("Username:");  

… 

JLabel label3 = new JLabel("Password:");  

… 

 

Figure 5.2 shows how the final screen looks after being generated by the above codes. This is 

much better than the command line launching of RSGUI. Once the interface is displayed, there is 

a function that acquires data from the database identified in the interface, and the function code 

is as follows: 

 
public static Connection getMySqlConnection(String durl, 

    String port, String sch, String un, String pwd) throws Exception { 

    String driver = "org.gjt.mm.mysql.Driver"; 

    String url = "jdbc:mysql://" + durl + ":" + port + "/" + sch; 

    String username = un; 

    String password = pwd; 

    conn = DriverManager.getConnection(url, username, password); 

    return conn 

} 

 

The SelectTable class is implemented as shown below, which is a Java frame class. In this class, 

the input is the connection. It lets the user select one table as an input for the main function. 

Also, there is a text field by which user is asked to input the decision attribute numbers, of 

columns that will be treated as decision attributes in the selected table which is seen in Figure 

5.3.  

 
public SelectTable(final Connection Conn) 

try { 

    DatabaseMetaData dmd = Conn.getMetaData(); 

    ResultSet rs = dmd.getTables(null, null, "%", null); 

    while (rs.next()) { 

        comboBoxTable.addItem(rs.getString(3)); 

    } 
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Figure 5.3:Select table and number of decision attributes interface 

This subsection and Appendix G are NewRSGUI programming snippets of code that have been 

used to create the text fields and interface to identify the server of the database in MySQL. 

NewRSGUI is executing same algorithms that RSGUI is featuring but with improved  startup 

and the input file format instead of the command lines that was used on RSGUI. 

5.4 Student data analytics 

These days, one of the biggest challenges is predicting the paths of students in higher education 

[61]. A sample of a student’s records transcripts for the first year is in Figure 5.4. 

5.4.1 Nature of the student records 

The data were obtained from Laurentian University’s registrar office from math and computer 

science students. We asked the registrar office for a minimum of 60 student’s records and the 

quotation text from the email has sent to them is seen below: 

 

“We need a minimum of 60 students’ records following them for a four year period showing all courses the student 

has taken not only the core courses they took (Math/Computer Science) but also their electives. We will discover 

general rules from these data to predict a collection of courses that incoming students should take to fulfill the 

program requirements. This would alleviate faculty workload for advising students on which courses to enroll.” 

 

We received 30 records from the registrar’s office after sending the first email, but the data we 

received showed that only 7 of those students had completed the degree. Afterwards, we sent a 

second email, asking for the remaining records. See the quotation below, from my email to them: 

  

“We are waiting more data like what you gave us previously. The previous data was short because it contained 
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students who withdrew and also students who had not completed their degree. We want to follow students through a 

4 year period.” 

 

We got the second data draft with only 10 students from 36 records that completed their degree, 

which make the total of 17 students’ records to study. 

  

 
Figure 5.4: Sample of a first year student transcript 

The student’s transcript data has been inserted into MySql database by MySql queries. It was a 

long process because of the volume of records. The student transcripts data are stored in MySql 

as illustrate in Figure 5.5. 

 

 
Figure 5.5: MySQL query for student records 

Records inserted into MySQL contain 537 rows and 8 columns for the 17 computer science 

students. Condition attributes are: Student number, course, course number, year, course grade, 

course status, student degree option, and Term GPA. Data on the NewRSGUI are seen as in 

Figure 5.6. 



65 
 

 

 
Figure 5.6: Student data on NewRSGUI 

 

5.5 Prediction results 

As mentioned in Subsection 2.2, a user can merge, change, or remove columns through the 

RSGUI interface without going to the database. However, merging, changing, or removing 

columns from the RSGUI does not affect the columns and their values in the actual database, but 

only changes the user’s view of the database. A future student can follow a good (an exemplary) 

graduated student by his/her records. For example, if the user is looking for a student who 

received the highest mark (A) in course Discrete Mathematics II (MATH 2056), the Term GPA 

and the year of the degree they are enrolled in, the user can predict those conditions 

demonstrated below: 

1. Select 3 decisions attributes, which are student number, year, and Term GPA. 

2. Remove course status, and degree option columns. 

3. Execute RS1 algorithm. 

4. Click prediction button to predict conditions. 

5. Select, which course name you are looking to predict (in this example MATH). 

6. Select the number of the course (in this example 2056). 

7. Select the grade course between the five grades (A, B, C, D, and F). (This example A). 

In the end, the user will see the results, according to the records that we obtained as illustrate in 

Figure 5.7. 
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Figure 5.7: RS1 prediction of MATH 2056 

It is obvious that there are only two students who have obtained (A) in (MATH 2056) course. 

However, student (c12) has received (A) in the Term GPA, while student (c11) has received (B) 

in the Term GPA. Therefore, following student (c12) courses is the best choice for the future 

student, or at least an example for the second year courses, because they have received (A) in the 

second year, as seen in Figure 5.7. 

 

Same previous steps for another example of looking for a student, who has taken (A) in Data 

Structures course (COSC 2006) to follow. See results in Figure 5.8.  

 

 

Figure 5.8: RS1 prediction of COSC 2006 

From Figure 5.8, it is obvious that there are 3 students who have obtained (A) in (COSC2006), 

but only student (c12) again has obtained (A) in the Term GPA. 

In this example, the future student should review (c12) student’s transcript on the data, in order 

to know which courses student (c12) was enrolled in their second year. 

 

Finally, we will also use the course COSC 3407 to further illustrate the predictions based on the 

current RS1 rules, using the same conditions and decision attributes of the previous example, as 

demonstrated in Figure 5.9. 
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Figure 5.9: RS1 prediction for COSC 3407 

 

By the conditions illustrated in Figure 5.9, we can see that no students have obtained (A) in the 

course (COSC 3407). Therefore, we can search for the grade (B), (C), or so on, which is 

illustrated in Figure 5.10. 

 

Figure 5.10: RS1 second prediction for COSC 3407 

Student (c17) had obtained (B) in the course, with a term GPA of (A) in the third year, as seen in 

Figure 5.10. 

 

Depending on the student’s goal, many prediction rules for different condition and decision 

attributes can be executed through NewRSGUI program in the same manner. This chapter has 

described why and how NewRSGUI has been implemented. A student could use NewRSGUI to 

predict what courses he/she can take and in what year to get a high grade point average GPA. An 

application such as NewRSGUI can give advice to students as to in what course it is easy to get a 

high mark and what courses taken together in a term lead to getting a high GPA based on 

graduated students records in the Math and Computer Science program.  
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Chapter 6 

6 Evaluation 

In this chapter, two experiments have been done, one upon the King Khaled General Hospital 

administrator and another on Laurentian University students. The Laurentian students in this 

evaluation were not the same ones as referred to in Chapter 5. In Chapter 5 students’ records 

were examined not the actual students. I have done experiments on the hospital’s administrator 

and Laurentian University students to see to which degree the students’ opinions differed from 

the hospital’s evaluation. Figure 6.1 shows the degree of departure from both evaluations. 

 

 

 

 

 

 

 

 

6.1 Occupancy decision attribute evaluation rules 

RSGUI has generated 39 rules from the FMW data with REMAINING, ADMITTED, 

DISCHARGED, and DEATH as condition attributes and occupancy as a decision attribute. 

Some rules were removed because they were not interesting as evaluated by the hospital and 

because coverage was low as computed by RS1 algorithm. In the end, we obtained 17 rules to 

evaluate. The first five rules predict busy ward, middle seven rules predict normal ward, and last 

five rules predict non-busy ward. The 17 rules are as follow: 

Occupancy Decision Rules: 

1. (remain := LARGE) AND (discharged := LOW) -------> (occupancy := BUSY)[certainty = 1.0][coverage = 3/89] 

 

2. (remain := LARGE) AND (discharged := NORMAL) AND (admitted := LARGE) -------> (occupancy := BUSY)[certainty = 

1.0][coverage = 3/89] 

 

3. (remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := NONE) ---> (occupancy := 

BUSY)[certainty = 1.0][coverage = 2/89] 

Hospital’s 
evaluation 

Certain rules 

Subject’s 
evaluation 

Certain rules 

Hospital’s 
evaluation 

Uncertain rules 

Subject’s 
evaluation 

Uncertain rules 

Figure 6.1: Degree of departure from the hospital evaluation 
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4. (remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := 1) -------> (occupancy := 

BUSY)[certainty = 1.0][coverage = 1/89] 

 

5. (remain := NORMAL) AND (discharged := LOW) AND (admitted := NORMAL) AND (death := NONE) -------> (occupancy 

:= BUSY)[certainty = 0.2727272727272727][coverage = 11/89]  

 

6. (discharged := LARGE) AND (death := NONE) AND (remain := LARGE) -------> (occupancy := NORMAL)[certainty = 

1.0][coverage = 1/89] 

 

7. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LARGE) -------> 

(occupancy := NORMAL)[certainty = 1.0][coverage = 5/89] 

 

8. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := LARGE) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 3/89] 

 

9. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.9333333333333333][coverage = 15/89] 

 

10. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.7272727272727273][coverage = 11/89] 

 

11. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := NORMAL) -------> (occupancy := 

NORMAL)[certainty = 0.5][coverage = 6/89]  

 

12. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LOW) -------> (occupancy := 

NORMAL)[certainty = 0.8333333333333334][coverage = 6/89]  

 

13. (admitted := LOW) AND (remain := LOW) -------> (occupancy := NOT_BUSY)[certainty = 1.0][coverage = 5/89]  

 

14. (admitted := LOW) AND (remain := NORMAL) AND (discharged := LARGE) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 2/89]  

 

15. (admitted := NORMAL) AND (remain := NORMAL) AND (discharged := LARGE) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

 

16. (admitted := LOW) AND (remain := NORMAL) AND (discharged := NORMAL) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

 

17. (admitted := NORMAL) AND (remain := LOW) AND (discharged := LOW) AND (death := NONE) -------> (occupancy := 

NOT_BUSY)[certainty = 0.5][coverage = 6/89] 

 

In order to get the best evaluation of the outcomes, we asked one of King Khaled General 

Hospital administrators to evaluate the rules from most interesting to least interesting, according 

to the interestingness criteria.  

 

Evaluation Tools: 

The 17 rules were sent to the hospital administrator and the subjects, and they were also 

presented with an empty evaluation table as shown in Table B1 in Appendix B. A completed 

form is shown next in Table 6.1. The table gives a description of the evaluation criteria used by 

both hospital administrator and subjects. At the top of the rules, there is a description, in Arabic 
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and in English, of the ward domain and the fields named in the rules, in order to allow a better 

evaluation English description 

“Below rules are generated from a Female Medical Ward data using the RSGUI program. The ward contains the 

remaining patients’ statistical data of the previous day and daily statistical data for the newly admitted, discharged, 

and death patients. After looking at the conditions attributes (remain, new admitted, discharged, and death), could 

you agree with the decision of busyness of the ward by evaluating the rule to check its criteria on Table B1 please? 

You are allowed to check more than one criterion on every rule. At least one criterion must be checked for every 

rule though”. 

Hospital administrator evaluation results for above output, which is not order from most 

interesting to least interesting yet, for occupancy decision attribute shown on Table 6.1. 

Table 6.1: Hospital administrator evaluations for occupancy decision attribute 
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Sum of the rule 

weight 

1                7 

2             3 

3              4 

4              4 

5             1 

6             -2 

7             -2 

8            -3 

9              7 

10            -2 

11             3 

12             3 

13               9 

14              2 

15             2 

16            2 

17              -6 

 

Each criterion was associated with a weight as described in chapter 4 to reflect the importance of 

that particular criterion. Please recall that the weights range from -4 to +4. When the subject 

checked the box under a criterion the weight associated with it was accumulated in a running 

sum. The final sum gives the overall evaluation of the rule. For example, for the first row, the 
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reliability, utility, conciseness, generality, applicability, and diversity have been checked. The 

final sum of the first row is computed as follows: 4 + 3 + 2 + 1 – 1 – 2 respectively. The final 

sum for these numbers is 7. This process was applied to all 17 rules to come up with the results 

on the last right column on Table 6.1. 

 

The evaluation also has been done upon 24 Laurentian University students, 4 of them are 

studying in the medical school at Laurentian University Figure 6.2 is an example of the degree of 

departure of subject 1 evaluation from the hospital evaluation.  

 

 

Figure 6.2: The difference between evaluations for positive and negative sides 

 

 

Figure 6.3: The difference between subject evaluation and hospital evaluation 

-10

-8

-6

-4

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
if

fe
r
en

ce
 

Number of rules 

Subject 1 

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D
if

fe
re

n
ce

 

Number of rules 

Subject 1 



72 
 

 

The points marked in red (5, 9, 10, 11, 12, 15, 16, and 17) are uncertain rules. Once the 

difference approaches to 0, it means the subject’s evaluation is similar or identical to the hospital 

administrator’s evaluation, no matter if the point on negative side or the positive side as illustrate 

in Figure 6.2. Therefore, Figure 6.3 is the best curve to avoid negative values.  

 

The difference is computed as follows: 

| |  | |            (          ) 

| |  | |  | |         (          ) 

where   is the sum of hospital administrator evaluation for one rule,   is the sum of subject 

evaluation for same that rule, and   is the difference between both evaluations. Once it is no 

longer important if the difference positive or negative, we take the absolute value of the    

 | |. Only a few subject evaluations were ignored, because their differences were close to 10 and 

far away from 0. 

 

Order of the result after the evaluation from the most interesting, which is the higher number, to 

least interesting, which is the smallest number, according to the sum of the rule weight on Table 

6.1 would be as follows: 

1. (admitted := LOW) AND (remain := LOW) -------> (occupancy := NOT_BUSY)[certainty = 1.0][coverage = 5/89]  

 

2. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.9333333333333333][coverage = 15/89] 

 

3. (remain := LARGE) AND (discharged := LOW) -------> (occupancy := BUSY)[certainty = 1.0][coverage = 3/89] 

 

4. (remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := NONE) ---> (occupancy := 

BUSY)[certainty = 1.0][coverage = 2/89] 

 

5. (remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := 1) -------> (occupancy := 

BUSY)[certainty = 1.0][coverage = 1/89] 

 

6. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LOW) -------> (occupancy := 

NORMAL)[certainty = 0.8333333333333334][coverage = 6/89]  

 

7. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := NORMAL) -------> (occupancy := 

NORMAL)[certainty = 0.5][coverage = 6/89] 

 

8. (remain := LARGE) AND (discharged := NORMAL) AND (admitted := LARGE) -------> (occupancy := BUSY)[certainty = 

1.0][coverage = 3/89] 

 

9. (admitted := LOW) AND (remain := NORMAL) AND (discharged := LARGE) -------> (occupancy := NOT_BUSY)[certainty 

= 1.0][coverage = 2/89] 

 

10. (admitted := LOW) AND (remain := NORMAL) AND (discharged := NORMAL) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 
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11. (admitted := NORMAL) AND (remain := NORMAL) AND (discharged := LARGE) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

 

12. (remain := NORMAL) AND (discharged := LOW) AND (admitted := NORMAL) AND (death := NONE) -------> 

(occupancy := BUSY)[certainty = 0.2727272727272727][coverage = 11/89]  

 

13. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LARGE) -------> 

(occupancy := NORMAL)[certainty = 1.0][coverage = 5/89] 

 

14. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.7272727272727273][coverage = 11/89] 

 

15. (discharged := LARGE) AND (death := NONE) AND (remain := LARGE) -------> (occupancy := NORMAL)[certainty = 

1.0][coverage = 1/89] 

 

16. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := LARGE) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 3/89] 

 

17. (admitted := NORMAL) AND (remain := LOW) AND (discharged := LOW) AND (death := NONE) -------> (occupancy := 

NOT_BUSY)[certainty = 0.5][coverage = 6/89]  

 

In regards to the results of most interesting to least interesting, we can see that a low number of 

discharges may lead to a busy ward. Therefore, keeping patients in the ward for a long time 

unnecessarily can cause problems. This is a critical finding with information obtained from King 

Khaled General Hospital that some private hospitals do not discharge their patients when their 

condition improves or they no longer need medical care. They even encourage patients to extend 

their stay, as it is a financial benefit for the hospitals. 

 

The 17 rules above are useful and right, because they were given to the hospital and the Ministry 

to advise on what can cause the busy ward. Therefore, they can take care of the issues that the 

rules considered.  

 

Rule Evaluation 

We assume that the hospital administrator’s evaluation of the certain rules is correct. We subtract 

the subject’s evaluation of certain rules from hospital administrator’s evaluation of certain rules 

(1, 2, 3, 4, 6, 7, 8, 13, and 14). So the difference between hospital evaluation and subject’s 

evaluation of certain rules is the error. There are 9 certain rules and adding the difference values 

on Figure 6.3, which are (0+0+2+4+2+0+1+0+0 = 9). For subject 1 the average difference across 

certain rules is 9/9=1. For uncertain rules we do not want to give a weight of 1 to the differences. 

Instead, the weight should be the believability of the rule < 1. For example, if the rule is only 

50% believable and the error in student evaluation of the rule is 1 then believability of the 
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difference should be only 0.5. If the rule is uncertain then the error in the rule will be uncertain. 

The average error of uncertain rules is: 

 

 ( )   
                                                    

  
 

    is the difference of the     rule student evaluation from hospital administrator      rule 

evaluation and   is the believability of the     rule. The    is the total numbers of uncertain rules. 

 

The above formula can be used as follows: 

                     

                

                      

               

                  

                       

                       

                 

 ( )   
                                                    

  
 

 ( )   
                                    

 
 

       

So since the  ( )        < 1 we conclude that there is no error in the Subject1’s evaluation of 

the rule. Error introduced by using students is 1 for certain rules. As long as error for uncertain 

rules < 1, bias introduced by using students rather than hospital administrators is insignificant. 

6.2 Death decision attribute rules evaluation  

This subsection illustrates the same process as the Subsection 6.1 but with a different decision 

attribute. The rules that RS1 generated were 37 and some were removed because they were not 

interesting according by the hospital and the coverage was low as computed by the RS1 

algorithm. In the end, we obtained 15 rules to evaluate. The first three rules predict 2 deaths in 
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the ward, the middle five rules predict 1 death in the ward, and last seven rules predict no deaths 

in the ward. The 15 death decision rules are as follows: 

 
1. (remain := LARGE) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) ---> (death := 2)[certainty = 

1.0][coverage = 1/89] 

 

2. (remain := NORMAL) AND (admitted := LARGE) AND (occupancy := NORMAL) AND (discharged := LOW) ---> (death := 

2)[certainty = 1.0][coverage = 1/89] 

 

3. (remain := LARGE) AND (admitted := LOW) AND (occupancy := NORMAL) AND (discharged := NORMAL) ---> (death := 

2)[certainty = 0.25][coverage = 4/89] 

 

4. (discharged := LARGE) AND (admitted := NORMAL) AND (occupancy := BUSY) --->(death := 1)[certainty = 1.0][coverage 

= 1/89] 

 

5. (discharged := NORMAL) AND (admitted := LARGE) AND (occupancy := BUSY) AND (remain := LARGE) ---> (death := 

1)[certainty = 0.3333333333333333][coverage = 3/89] 

 

6. (discharged := NORMAL) AND (admitted := LOW) AND (occupancy := NORMAL) AND (remain := LARGE) ---> (death := 

1)[certainty = 0.25][coverage = 4/89] 

 

7. (discharged := LOW) AND (admitted := LARGE) AND (occupancy := BUSY) AND (remain := NORMAL) ---> (death := 

1)[certainty = 0.3333333333333333][coverage = 3/89] 

 

8. (discharged := LOW) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) AND (remain := LOW) ---> (death := 

1)[certainty = 0.25][coverage = 4/89] 

 

9. (discharged := LOW) AND (admitted := LOW) ---> (death := NONE)[certainty = 1.0][coverage = 12/89] 

 

10. (discharged := NORMAL) AND (admitted := LARGE) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 5/89] 

 

11. (discharged := NORMAL) AND (admitted := NORMAL) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 15/89] 

 

12. (discharged := NORMAL) AND (admitted := LARGE) AND (remain := LARGE) AND (occupancy := BUSY) ---> (death := 

NONE)[certainty = 0.6666666666666666][coverage = 3/89] 

 

13. (discharged := LOW) AND (admitted := NORMAL) AND (remain := NORMAL) AND (occupancy := NORMAL) ---> 

(death := NONE)[certainty = 0.8888888888888888][coverage = 9/89] 

 

14. (discharged := LOW) AND (admitted := NORMAL) AND (remain := LOW) AND (occupancy := NORMAL) ---> (death := 

NONE)[certainty = 0.75][coverage = 4/89] 

 

15. (discharged := LOW) AND (admitted := NORMAL) AND (remain := LOW) AND (occupancy := NOT_BUSY) ---> (death 

:= NONE)[certainty = 0.75][coverage = 4/89] 

 

Hospital administrator evaluation result for above output, which is not ordered from most 

interesting to least interesting yet, for death decision attribute is shown on Table 6.2. 
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Table 6.2: Hospital administrator evaluations for death decision attribute 
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Sum of the rule 

weight 

1              -7 

2            -3 

3             2 

4             4 

5             6 

6            2 

7              4 

8            1 

9              6 

10             6 

11               9 

12            -4 

13            4 

14            4 

15             8 

 

 

Figure 6.4 provides an example of the degree of departure of subject 1 evaluation from the 

hospital evaluation.  
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Figure 6.4: The difference of death decision attribute between evaluations for positive and negative sides 

The points marked in red (3, 5, 6, 7, 8, 12, 13, 14, and 15) are uncertain rules. The death 

prediction rules were ordered from most interesting to least interesting, according to the weight 

criteria from the hospital administration evaluation in Table 6.2 is illustrated below: 

 Decision rules 7: 

1. (discharged := NORMAL) AND (admitted := NORMAL) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 15/89] 

 

2. (discharged := LOW) AND (admitted := NORMAL) AND (remain := LOW) AND (occupancy := NOT_BUSY) ---> (death := 

NONE)[certainty = 0.75][coverage = 4/89] 

 

3. (discharged := LOW) AND (admitted := LOW) ---> (death := NONE)[certainty = 1.0][coverage = 12/89] 

 

4. (discharged := NORMAL) AND (admitted := LARGE) AND (occupancy := BUSY) AND (remain := LARGE) ---> (death := 

1)[certainty = 0.3333333333333333][coverage = 3/89] 

 

5. (discharged := NORMAL) AND (admitted := LARGE) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 5/89] 

 

6. (discharged := LARGE) AND (admitted := NORMAL) AND (occupancy := BUSY) --->(death := 1)[certainty = 1.0][coverage 

= 1/89] 

 

7. (discharged := LOW) AND (admitted := LARGE) AND (occupancy := BUSY) AND (remain := NORMAL) ---> (death := 

1)[certainty = 0.3333333333333333][coverage = 3/89] 

 

8. (discharged := LOW) AND (admitted := NORMAL) AND (remain := NORMAL) AND (occupancy := NORMAL) ---> (death 

:= NONE)[certainty = 0.8888888888888888][coverage = 9/89] 

 

9. (discharged := LOW) AND (admitted := NORMAL) AND (remain := LOW) AND (occupancy := NORMAL) ---> (death := 

NONE)[certainty = 0.75][coverage = 4/89] 

 

10. (remain := LARGE) AND (admitted := LOW) AND (occupancy := NORMAL) AND (discharged := NORMAL) ---> (death 

:= 2)[certainty = 0.25][coverage = 4/89] 

 

11. (discharged := NORMAL) AND (admitted := LOW) AND (occupancy := NORMAL) AND (remain := LARGE) ---> (death 

:= 1)[certainty = 0.25][coverage = 4/89] 

 

12. (discharged := LOW) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) AND (remain := LOW) ---> (death 

:= 1)[certainty = 0.25][coverage = 4/89] 
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13. (remain := NORMAL) AND (admitted := LARGE) AND (occupancy := NORMAL) AND (discharged := LOW) ---> (death 

:= 2)[certainty = 1.0][coverage = 1/89] 

 

14. (discharged := NORMAL) AND (admitted := LARGE) AND (remain := LARGE) AND (occupancy := BUSY) ---> (death := 

NONE)[certainty = 0.6666666666666666][coverage = 3/89] 

 

15. (remain := LARGE) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) ---> (death := 2)[certainty = 

1.0][coverage = 1/89] 

 

To summarize this chapter, the best pattern describing the situation of the busyness from the 

output of occupancy decision attribute is as follow: 

#5 if remain admitted patients = normal, discharge = low, new admitted = large, and death = 1, 

then the ward will be busy. 

On the other hand, the best pattern describing the situation of the death in the ward from the 

output of death decision attribute is as follows: 

#4 if remain admitted patients = large, discharge = normal, new admitted = large, and occupancy 

= busy, then there is 1 death. 

 

In this chapter, knowledge discovered in health information has been suggested to help improve 

the quality of healthcare delivery and the effectiveness of healthcare managers. An innovative 

solution has been developed based on an analytic and knowledge management approach to 

decision making. After analyzing the rules predicting both occupancy and death decision 

attributes and ordering them in descending order of interestingness, we have made the case that 

the top most interesting rules shown in the output are useful for the hospital to report to the 

Health Ministry. Therefore, the Health Ministry could solve the problem of busy ward or death 

on a ward by expending or hiring more staff to cover some of the inability the ward has.  
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Chapter 7 

7 Conclusion 

Upon examination of the data about the activity (admissions, discharges, remaining patients, and 

deaths) in medical wards, a number of questions come to mind. For example, what conditions of 

the ward tend to increase patient deaths? This project was an experiment to find out how to use 

data mining tools based on rough set theory to uncover hidden relationships in medical wards 

data. The objective was to approximate a given concept such as “Hospital ward busy” or “Death 

in a ward”, in terms of information about the ward. The power of rough set theory lies in its 

ability to suppress information that is not essential leaving the minimum set of attributes needed 

to predict interesting outcomes. The method can be applied in reverse as a mean of 

understanding essential factors that lead to a desired outcome.  

 

Usually “real” data are not available for dissemination of analysis, and, therefore, the rough set 

theory has mainly been verified with simulated data. Methodical experimentation with RSGUI 

on the medical ward data obtained from King Khaled General Hospital has resulted in the 

selection of a set of interesting rules as measured by parameters to describe the rules. 

Interestingness measures were tested on a medical domain to help validate their usefulness.  

 

By looking at the outputs of RS1 when occupancy was selected to be a decision attribute, we can 

see that LOW value of the discharges may cause BUSY ward, while LARGE value of discharge 

gives NOT BUSY ward. For that, doctors should not extend patients stay if the patients are 

getting better and their stays are unnecessary. By comparing the outputs of RS1 when death was 

selected as a decision attribute, we can see that if the value of new admitted is LARGE and the 

value of discharge is LOW, the ward most likely will have a death. The ward is going to be busy 

and staff will preoccupy with some patients and the others will not have that care. Though this 

rule is obvious, it is interesting due to the critical nature of the outcome. Therefore, hiring more 

staff and adding more beds could solve the ward busyness and result in improving patient safety 

and satisfaction. 
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Many applications use commercially available rough sets based tools that cannot be modified, 

RSGUI allows a programmer to modify its code, because it has been developed by Laurentian 

University students over the years and it is open for further development. A new version of 

RSGUI has been embedded in a web interface for accessing and analyzing medical ward data. 

 

A comparison of RS1 and ILA on medical ward data has been made by counting number of rules 

generated and inspecting length of the rules. It has been concluded that ILA is superior for 

making recommendations to the Ministry of Health. 

 

An instrument (questionnaire) was developed to collect information from subjects to help 

quantify the notion of interestingness of predictive rules. A limitation regarding the availability 

of suitable subjects for the study was mitigated by introducing a measure of error of available 

subject responses from suitable subject responses. The interestingness measure was applied to 

adjust available responses to a better correspond with suitable subject responses.  

 

NewRSGUI features exactly the same functions as RSGUI. So the rules that RSGUI would have 

generated, would be the same as results that NewRSGUI is going to have, because as mentioned 

in Subsection 5.2 the only differences between both applications are the start up of the 

applications and the databases. RSGUI has been used in the medical office data not with the 

second data, because when it was decided to use NewRSGUI in the thesis, the results of the first 

data have been made and concluded. Therefore, using either of the two applications for the first 

or the second data are going to make same results. 

7.1 Major contributions and future work 

The main contributions of the thesis to ongoing research are as follows: 

 Improvement of an existing experimental tool based on theories in the rough set method  

 The development of a new rule evaluation technique based on the idea of interestingness 

of rules.  

 Illustration of the fact that Inductive Learning Algorithm is superior to the RS1 algorithm 

in terms of number of rules generated.  
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 Investigation of errors introduced by using subjects that may not be a representative 

sample of the eventual users of the rules, and illustration by example of how such errors 

can be quantified. 

 Determination that there is a degree of invariance in the ordering of rules across 

evaluators, especially for uncertain rules, by observation that the difference between 

hospital administrator and available subjects evaluation remained low enough so as to 

leave the ordering of rules undisturbed.  

 Acquisition of real data that is typically unavailable due to its sensitive nature and 

methodical investigation of patterns implicit in that data. 

 

Further research is expected, particularly with regard to the measurement of errors introduced by 

using non-representative subjects for evaluating interestingness of rules. It was observed that an 

almost identical set of rules was generated by ILA as was decided by the hospital administrator 

independent of any knowledge discovery tools. It appears that ILA is employing the same 

knowledge as human subjects used when making a first cut to eliminate uninteresting rules.  A 

challenging problem for further research is to use the formalization provided by the ILA 

algorithm to better understand what intelligence is being employed to order rules.  
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Appendix B: Experiment tools 

 

Occupancy Decision Rules 1: 

1. (remain := LARGE) AND (discharged := LOW) -------> (occupancy := BUSY)[certainty = 1.0][coverage = 3/89] 

 

2. (remain := LARGE) AND (discharged := NORMAL) AND (admitted := LARGE) -------> (occupancy := BUSY)[certainty = 

1.0][coverage = 3/89] 

 

3. (remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := NONE) ---> (occupancy := 

BUSY)[certainty = 1.0][coverage = 2/89] 

 

4. (remain := NORMAL) AND (discharged := LOW) AND (admitted := LARGE) AND (death := 1) -------> (occupancy := 

BUSY)[certainty = 1.0][coverage = 1/89] 

 

5. (remain := NORMAL) AND (discharged := LOW) AND (admitted := NORMAL) AND (death := NONE) -------> (occupancy 

:= BUSY)[certainty = 0.2727272727272727][coverage = 11/89]  

 

6. (discharged := LARGE) AND (death := NONE) AND (remain := LARGE) -------> (occupancy := NORMAL)[certainty = 

1.0][coverage = 1/89] 

 

7. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LARGE) -------> 

(occupancy := NORMAL)[certainty = 1.0][coverage = 5/89] 

 

8. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := LARGE) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 3/89] 

 

9. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.9333333333333333][coverage = 15/89] 

 

10. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 0.7272727272727273][coverage = 11/89] 

 

11. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := NORMAL) -------> (occupancy := 

NORMAL)[certainty = 0.5][coverage = 6/89]  

 

12. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LOW) -------> (occupancy := 

NORMAL)[certainty = 0.8333333333333334][coverage = 6/89]  

 

13. (admitted := LOW) AND (remain := LOW) -------> (occupancy := NOT_BUSY)[certainty = 1.0][coverage = 5/89]  

 

14. (admitted := LOW) AND (remain := NORMAL) AND (discharged := LARGE) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 2/89]  

 

15. (admitted := NORMAL) AND (remain := NORMAL) AND (discharged := LARGE) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

 

16. (admitted := LOW) AND (remain := NORMAL) AND (discharged := NORMAL) AND (death := NONE) -------> 

(occupancy := NOT_BUSY)[certainty = 0.6666666666666666][coverage = 3/89] 

 

17. (admitted := NORMAL) AND (remain := LOW) AND (discharged := LOW) AND (death := NONE) -------> (occupancy := 

NOT_BUSY)[certainty = 0.5][coverage = 6/89] 
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Death Decision Rules 2: 

1. (remain := LARGE) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) ---> (death := 2)[certainty = 

1.0][coverage = 1/89] 

 

2. (remain := NORMAL) AND (admitted := LARGE) AND (occupancy := NORMAL) AND (discharged := LOW) ---> (death := 

2)[certainty = 1.0][coverage = 1/89] 

 

3. (remain := LARGE) AND (admitted := LOW) AND (occupancy := NORMAL) AND (discharged := NORMAL) ---> (death := 

2)[certainty = 0.25][coverage = 4/89] 

 

4. (discharged := LARGE) AND (admitted := NORMAL) AND (occupancy := BUSY) --->(death := 1)[certainty = 1.0][coverage 

= 1/89] 

 

5. (discharged := NORMAL) AND (admitted := LARGE) AND (occupancy := BUSY) AND (remain := LARGE) ---> (death := 

1)[certainty = 0.3333333333333333][coverage = 3/89] 

 

6. (discharged := NORMAL) AND (admitted := LOW) AND (occupancy := NORMAL) AND (remain := LARGE) ---> (death := 

1)[certainty = 0.25][coverage = 4/89] 

 

7. (discharged := LOW) AND (admitted := LARGE) AND (occupancy := BUSY) AND (remain := NORMAL) ---> (death := 

1)[certainty = 0.3333333333333333][coverage = 3/89] 

 

8. (discharged := LOW) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) AND (remain := LOW) ---> (death := 

1)[certainty = 0.25][coverage = 4/89] 

 

9. (discharged := LOW) AND (admitted := LOW) ---> (death := NONE)[certainty = 1.0][coverage = 12/89] 

 

10. (discharged := NORMAL) AND (admitted := LARGE) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 5/89] 

 

11. (discharged := NORMAL) AND (admitted := NORMAL) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 15/89] 

 

12. (discharged := NORMAL) AND (admitted := LARGE) AND (remain := LARGE) AND (occupancy := BUSY) ---> (death := 

NONE)[certainty = 0.6666666666666666][coverage = 3/89] 

 

13. (discharged := LOW) AND (admitted := NORMAL) AND (remain := NORMAL) AND (occupancy := NORMAL) ---> 

(death := NONE)[certainty = 0.8888888888888888][coverage = 9/89] 

 

14. (discharged := LOW) AND (admitted := NORMAL) AND (remain := LOW) AND (occupancy := NORMAL) ---> (death := 

NONE)[certainty = 0.75][coverage = 4/89] 

 

15. (discharged := LOW) AND (admitted := NORMAL) AND (remain := LOW) AND (occupancy := NOT_BUSY) ---> (death 

:= NONE)[certainty = 0.75][coverage = 4/89] 
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Table B.1: An empty evaluation table 
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Appendix C: Decision Rules and their evaluation table 

 
Decision Rules 1: 

1. (admitted := NORMAL) AND (discharged := NORMAL) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 14/77] 

 

2. (admitted := LOW) AND (discharged := LOW) ---> (death := NONE)[certainty = 1.0][coverage = 11/77] 

 

3. (admitted := NORMAL) AND (discharged := LOW) AND (occupancy := NORMAL) AND (remain := NORMAL) ---> (death 

:= 1)[certainty = 0.1111111111111111][coverage = 9/77]  

 

4. admitted := LARGE) AND (discharged := NORMAL) AND (occupancy := BUSY) AND (remain := LARGE) ---> (death := 

1)[certainty = 0.5][coverage = 4/77] 

 

5. (admitted := NONE) ---> (death := NONE)[certainty = 1.0][coverage = 1/77] 

 

6. (remain := NORMAL) AND (admitted := LARGE) AND (occupancy := NORMAL) AND (discharged := LOW) ---> (death := 

2)[certainty = 1.0][coverage = 1/77] 

 

7. (admitted := NORMAL) AND (discharged := LOW) AND (remain := LOW) AND (occupancy := NORMAL) ---> (death := 

NONE)[certainty = 1.0][coverage = 4/77] 

 

8. (remain := LARGE) AND (admitted := NORMAL) AND (occupancy := NOT_BUSY) ---> (death := 2)[certainty = 

1.0][coverage = 1/77]  

 

9. (admitted := LARGE) AND (discharged := LOW) AND (occupancy := BUSY) AND (remain := NORMAL) ---> (death := 

1)[certainty = 0.3333333333333333][coverage = 3/77] 

 

10. (admitted := LARGE) AND (discharged := LOW) AND (remain := NORMAL) AND (occupancy := BUSY) ---> (death := 

NONE)[certainty = 0.6666666666666666][coverage = 3/77] 

 

11. (admitted := LOW) AND (discharged := LARGE) AND (remain := NORMAL) AND (occupancy := NOT_BUSY) ---> 

(death := NONE)[certainty = 0.5][coverage = 2/77] 

 

12. (admitted := NORMAL) AND (discharged := LOW) AND (remain := NORMAL) AND (occupancy := NORMAL) ---> 

(death := NONE)[certainty = 0.8888888888888888][coverage = 9/77] 

 

13. (remain := LARGE) AND (admitted := LOW) AND (occupancy := NORMAL) AND (discharged := NORMAL) ---> (death 

:= 2)[certainty = 0.25][coverage = 4/77] 

 

14. (admitted := LOW) AND (discharged := NORMAL) AND (remain := NORMAL) AND (occupancy := NOT_BUSY) ---> 

(death := NONE)[certainty = 0.6666666666666666][coverage = 3/77] 

 

15. (admitted := LOW) AND (discharged := NORMAL) AND (remain := LARGE) AND (occupancy := NORMAL) ---> (death 

:= NONE)[certainty = 0.5][coverage = 4/77] 

 

16. (admitted := LOW) AND (discharged := NORMAL) AND (occupancy := NORMAL) AND (remain := LARGE) ---> (death 

:= 1)[certainty = 0.25][coverage = 4/77] 

 

17. (admitted := LARGE) AND (discharged := NORMAL) AND (remain := LARGE) AND (occupancy := BUSY) ---> (death := 

NONE)[certainty = 0.5][coverage = 4/77] 

 

18. (admitted := LARGE) AND (discharged := LOW) AND (remain := LOW) ---> (death := NONE)[certainty = 1.0][coverage = 

3/77] 

 

19. (admitted := LOW) AND (discharged := NORMAL) AND (occupancy := NOT_BUSY) AND (remain := NORMAL) ---> 

(death := 1)[certainty = 0.3333333333333333][coverage = 3/77] 
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20. (admitted := NORMAL) AND (discharged := NORMAL) AND (occupancy := BUSY) AND (remain := LARGE) ---> (death 

:= 1)[certainty = 0.5][coverage = 2/77] > 

 

21. (admitted := LARGE) AND (discharged := NORMAL) AND (remain := NORMAL) ---> (death := NONE)[certainty = 

1.0][coverage = 5/77] 

 

22. (admitted := LOW) AND (discharged := LARGE) AND (occupancy := NOT_BUSY) AND (remain := NORMAL) ---> 

(death := 1)[certainty = 0.5][coverage = 2/77] 

 

Table C.1: Evaluation by the criteria of the coverage, and the ranking of each pattern 
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Coverage 

 
 

Interesting 
Rank 

1               14 9 

2                11 9 

3              9 7 

4              4 7 

5               1 5 

6               1 4 

7              4 3 

8               1 3 

9            3 1 

10               3 1 

11             2 0 

12            9 -1 

13              4 -2 

14            3 -2 

15             4 -5 

16             4 -6 

17              4 -6 

18            3 -6 

19             2 -7 

20            3 -7 

21              5 -8 

22             2 -9 
 

Results found using RS1 when selecting occupancy as a decision attribute with 77 rows and 

ordered from most interesting to least interesting are as follows: 

Decision Rules 2: 

1. (admitted := LOW) AND (remain := LOW) -------> (occupancy := NOT_BUSY)[certainty = 1.0][coverage = 5/77] 

 

2. (remain := LARGE) AND (admitted := LARGE) --> (occupancy := BUSY)[certainty = 1.0][coverage = 4/77] 
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3. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 1.0][coverage = 14/77] 

 

4. (admitted := LOW) AND (remain := NORMAL) AND (discharged := NORMAL) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 3/77] 

 

5. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LOW) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 5/77] 

 

6. (discharged = LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := NORMAL) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 3/77] 

 

7. (admitted := LOW) AND (remain := NORMAL) AND (discharged := LARGE) -------> (occupancy := NOT_BUSY)[certainty 

= 1.0][coverage = 2/77] 

 

8. (remain := LARGE) AND (admitted := NORMAL) AND (discharged := LOW) --> (occupancy := BUSY)[certainty = 

1.0][coverage = 2/77] 

 

9. (discharged := LARGE) AND (death := NONE) AND (remain := LARGE) --> (occupancy := NORMAL)[certainty = 

1.0][coverage = 1/77] 

 

10. (discharged := LOW) AND (death := NONE) AND (remain := NORMAL) AND (admitted := NORMAL) -------> 

(occupancy := NORMAL)[certainty = 1.0][coverage = 8/77] 

 

11. (discharged := NORMAL) AND (death := NONE) AND (remain := NORMAL) AND (admitted := LARGE) -------> 

(occupancy := NORMAL)[certainty = 1.0][coverage = 5/77] 

 

12. (remain := LARGE) AND (admitted := NORMAL) AND (discharged := NORMAL) --> (occupancy := BUSY)[certainty = 

1.0][coverage = 2/77] 

 

13. (admitted := NORMAL) AND (remain := LARGE) AND (discharged := LARGE) AND (death := 2) -------> (occupancy := 

NOT_BUSY)[certainty = 1.0][coverage = 1/77] 
 

14. (discharged := NONE) -------> (occupancy := NORMAL)[certainty = 1.0][coverage = 2/77] 

 

15. (discharged := LOW) AND (death := NONE) AND (remain := LOW) AND (admitted := LARGE) -------> (occupancy := 

NORMAL)[certainty = 1.0][coverage = 3/77] 

 

Table C.2: Evaluation by the criteria of the coverage, and the ranking for each rule above 
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1               5 9 

2               4 9 

3              14 7 

4             3 6 
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6            3 2 

7             2 1 

8             2 1 

9             1 -1 

10            8 -3 
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11            5 -3 

12             2 -3 

13            1 -4 

14              2 -5 

15             3 -9 

 
 

  



98 
 

 

Appendix D: One month data discretized 
 

Table D.1: Female Medical Ward (FMW) data for one month 

Day Rem. New Adm. Death Dis OCC 
1 18 1 0 7 12 
2 12 2 0 1 13 
3 13 6 0 3 16 
4 16 6 0 4 18 
5 18 5 0 6 17 
6 17 2 0 5 14 
7 14 3 0 8 9 
8 9 4 0 2 11 
9 11 1 0 2 10 

10 10 5 0 3 12 
11 12 4 1 2 13 
12 13 2 0 3 12 
13 12 2 0 1 13 
14 13 5 0 7 11 
15 11 4 0 2 13 
16 13 3 0 0 16 
17 16 3 0 4 15 
18 15 4 0 4 15 
19 15 10 0 2 23 
20 23 3 1 5 20 
21 20 4 0 3 21 
22 21 4 0 8 17 
23 17 4 0 2 19 
24 19 3 0 1 21 
25 21 2 1 5 18 
26 18 5 0 5 18 
27 18 4 0 4 18 
28 18 5 0 1 22 
29 22 3 2 10 13 
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Table D.2: Discretized table for Female Medical Ward data for one month 

Day Rem. New Adm. Death Dis OCC 
1 NORMAL LOW NONE LARGE NOT_ BUSY 

2 LOW LOW NONE LOW NOT_ BUSY 
3 LOW LARGE NONE LOW NORMAL 

4 NORMAL LARGE NONE NORMAL NORMAL 

5 NORMAL NORMAL NONE NORMAL NORMAL 
6 NORMAL LOW NONE NORMAL NORMAL 

7 NORMAL NORMAL NONE LARGE NOT_ BUSY 
8 LOW NORMAL NONE LOW NOT_ BUSY 

9 LOW LOW NONE LOW NOT_ BUSY 

10 LOW NORMAL NONE LOW NOT_ BUSY 
11 LOW NORMAL 1 LOW NOT_ BUSY 

12 LOW LOW NONE LOW NOT_ BUSY 

13 LOW LOW NONE LOW NOT_ BUSY 
14 LOW NORMAL NONE LARGE NOT_ BUSY 

15 LOW NORMAL NONE LOW NOT_ BUSY 

16 LOW NORMAL NONE NONE NORMAL 
17 NORMAL NORMAL NONE NORMAL NORMAL 

18 NORMAL NORMAL NONE NORMAL NORMAL 

19 NORMAL LARGE NONE LOW BUSY 

20 LARGE NORMAL 1 NORMAL BUSY 

21 LARGE NORMAL NONE LOW BUSY 
22 LARGE NORMAL NONE LARGE NORMAL 

23 NORMAL NORMAL NONE LOW BUSY 

24 LARGE NORMAL NONE LOW BUSY 

25 LARGE LOW 1 NORMAL NORMAL 

26 NORMAL NORMAL NONE NORMAL NORMAL 

27 NORMAL NORMAL NONE NORMAL NORMAL 

28 NORMAL NORMAL NONE LOW BUSY 

29 LARGE NORMAL 2 LARGE NOT_ BUSY 

 

 

  



100 
 

 

Appendix E: Hospital Forms Descriptions 

 

 

In this form, the hospital meant accurate or precise instead of Flour. The daily Flour Census form 

(Figure E.1) gives a daily admissions and discharges statistics from King Khaled General 

Hospital in Saudi Arabia. The hospital has 10 wards, as shown in Figure E.1. Table E.1 expands 

the ward acronyms. Every ward is described by several columns with values filled by numbers. 

The form of Figure E.1 captures data for one day, as shown by the date in the upper left corner. 

1433 is Arabic for 2012. This form (Figure E.1) is generated daily. Every ward row has acronym, 

an abbreviation for their name shortcut letters of the ward name; see below: 

 

Figure E.1: Daily Flour Census form 
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Table E.1: Ward acronym expansions 

Ward Description 

M.M.W Male Medical Ward 

F.M.W Female Medical Ward 

M.S.W Male Surgery Ward 

F.S.W Female Surgery Ward 

O.B.S. Obstetrical 

NEURS Nursery 

PED.W Pediatric Ward 

P.ICU Pediatric Intensive Care Unit 

IC.U Intensive Care Unit 

C.CU Coronary Care Unit 

 

The description of every column in Figure E.1 follows: 

REM. P. stands for Remaining Patients from the previous day, which has Saudi and Non-Saudi 

patients. 

NEW ADM. stands for newly admitted patients in the ward that determined in the row, so they 

are counted separately, rather than with the remaining patients. 

TRA.IN stands for the number of patients transferred from other wards to this ward 

TRA.OUT stands for patients were discharged from this ward to other ward in the hospital. 

TRA.TO OH stands for the patients who transferred from this hospital to other hospitals. 

DEATH: patients died in this ward. 
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DIS.: the number of patients discharged from this ward, including those who transferred and are 

died, including Saudi and non-Saudi. 

TOT.REM.P. stands for the total remaining patients at the end of the day. 

NO.O.BEDS: the number of beds in every ward, which does not change  

L.O.S: the length of stay by day of all patients in the ward 

BED OCC. RATE: the most important column. It is the rate of bed occupancy in every ward on a 

particular day. 

 

 

Figure E.2 is more detailed than Figure E.1. It contains the hospital number, age, gender, name, 

admitted time, and diagnosis, for all patients in a specific ward. However, Figure E.1 has only 

Figure E.2: Daily Ward Census Form 
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the number and statistics of patients in the ward, in contrast with the textual data given in Figure 

E.2. Notice that the form is stamped by ward name at the top of it. 

 

Table E.2: ADMISSIONS box, on left top of the form of Figure E.2 

 

Received by Transfer From Other Ward and Died boxes are same as ADMISSIONS box 

Table E.3: DISCHARGES box, on right top of the form of Figure E.2 

Field Full Name Description 

Hosp. No. Hospital Number The hospital number or file number is a 

patient’s unique number used for 

hospital purposes only 

Age Age Physicians may need patient age for 

Field Full Name Description 

Hosp. No. Hospital Number The hospital number or file number is a 

patient’s unique number, used for the 

hospital purposes only 

Age Age Physicians may need patient age for 

medical purpose 

Sex Sex or gender The patient gender is needed in Saudi 

hospitals 

Admitted Admitted name Full name of the newly admitted patient 

Time Time Time that the patient is admitted  

Diagnosis Diagnosis Determined by physician only 
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medical purpose 

Sex Sex or gender The patient’s gender is needed in Saudi 

hospitals 

Discharged Discharged name Full name of Discharged patient  

Time Time The time that the patient is discharged 

out of the ward or the hospital  

Length of Stay Length of Stay The number of days the patient was 

admitted in the ward 

Diagnosis Diagnosis Determined by physician only 

 

The Discharged By Transfer to Other Ward box is identical to the DISCHARGES box 
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 Figure E.3: Clinics Form is for one day of statistics and the day was Saturday 
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The hospital has 41 clinics in operation every business day, which do not operate on weekends. 

The form of Figure E.3 shows statistics for one day only. It has the number of patients that 

visited a clinic per day. It specifies the visiting patient as male, female, or child. 

Table E.4: Field of clinics hospital form of Figure E.3 

Field Full Name Description 

CLINIC Clinic name The name or the shortcut of the clinic 

M Male Male patient  

FEM. Female Female patient 

PED Pediatric Child patient 

ADMISSIONS    

S 

Saudi admitted Doctor in the clinic admitted a Saudi 

patient 

ADMISSIONS   

NS 

Non-Saudi admitted Doctor in the clinic admitted a Non-

Saudi patient 

S Saudi visitor Saudi patient visited 

NS Non-Saudi visitor Non-Saudi patient visited 

New New patient New patient visited the clinic for the first 

time 

OLD Old patient Follow up patient visited the clinic 

TOTAL Total number Total number visited the clinic by the 

end of the day 

 

The explanation for the first row in the form, is that the Cardiology clinic received 12 male 

visitors, 10 female visitors, and 0 child visitors. The clinic admitted no patient in that day. 

Patients comprise 20 Saudi nationalities and 2 Non-Saudi nationalities. There is 1 new patient 
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and 21 old patient visitors (follow up patients), so the total numbers who visited the clinic are 22 

patients.  
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Appendix F: Webpage Form Descriptions 

 

 

Figure F.1: Webpage Used by Ward Receptionist 

The webpage of Figure F.1 is the front page for a ward. If New Patient link is clicked another 

page appears that can be seen in Figure F.2. The purpose of this link is to help gather data about 

a new patient. If Update Patient Info link is clicked another page appears that can be seen in 

Figure F.4. The purpose of this link is to update the patient information whom is already in the 

ward. 
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Figure F.2: Web interface for gathering New Patient Information 

Once New patient link in first page is clicked, we are going to see the New patient page 

illustrated in Figure F.2 which has several fields as described in Table F.1. 

Table F.1: New patient page Description 

Ward Description 

Saudi ID A patient ID in Saudi Arabia and it should be 

10 numbers 

File No. Patient file number given by the hospital 

First Name  Patient first name 

Last name Patient last name 

D.O.B Patient date of birth and the year is enough 
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It tells if the fields filled and the Saudi ID field should be unique, if is not, it will show an error. 

 

 

 

 

 

 

Figure F.4 is repeated here for convenience and for its usefulness to see how the Rough Set 

Graphical user Interface can be integrated with the processes of knowledge acquisition and 

creation of information flow through the hospital. 

  

 
Interestingness Measures 

RSGUI 

Ranking 
(RS1) 

Data 
Rules 

generated 

Interesting 
rules 

Filtering 
(RSRPA) 

Figure F.3: Results of adding a new patient to the database 

Figure F.4:  Interestingness measures in play for rule generation 
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Figure F.5: Web page for search of patient information in the database 

 

This webpage is used to search and find patient information by his/her Saudi ID. Pressing Find 

button sends the user to existing information to let the user update and review patient 

information. 

 

Figure F.6: Webpage for review and update of patient information 
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Figure F. 7: New admitted patient diagnosis 

Figure F.8: Admitted patient’s status and diagnosis 
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Patient’s diagnosis could be seen by the webpage in Figure F.6 and it will open the new webpage 

which is Figure F.7 to check what time patient was admitted, status, diagnosis of the patient, and 

doctor note if there any. 

 

 

Figure F.9: Knowledge acquisition by means of webpage/MySQL prototype 

 

In the end, a report of the ward could be printed with number of patients, admit time, discharge 

time, status, and the length of patient stay by the search in Figure F.10.  

  Figure F.10: Daily ward report 
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Appendix G: NewRSGUI java code 

G.1 NewRSGUI snippets java code 

This appendix shows snippets of java codes of NewRSGUI that I am using in this chapter to 

analyze the student records. 

 

The following code is to create the text field to identify the address or the Server of the database 

that is going to be used or analyzed using the methods that exist in the RSGUI. 

 

JLabel labelURL = new JLabel("Database URL:"); 

JTextField textFieldURL = new JTextField(15); 

textFieldURL.setMaximumSize(textFieldURL.getPreferredSize()); 

Box hboxURL = Box.createHorizontalBox(); 

hboxURL.add(labelURL); 

hboxURL.add(Box.createHorizontalStrut(35)); 

hboxURL.add(textFieldURL); 
 

The following code is to create the text filed of the Server’s port of MySQL. To connect to the 

database in MySQL, it is needed to define the port to access the database. The code is most likely 

similar to the URL database code. 

 

JLabel labelPort = new JLabel("Database Port:");  

JTextField textFieldPort = new JTextField(15);  

textFieldPort.setText("3306");  

textFieldPort.setMaximumSize(textFieldPort.getPreferredSize());  

Box hboxPort = Box.createHorizontalBox();  

hboxPort.add(labelPort);  

hboxPort.add(Box.createHorizontalStrut(35));  

hboxPort.add(textFieldPort);  

 

The following code is to create the text filed for the Database Schema. Database Schema is the 

database name on the Server and it must be provided to run the program. 

 

JLabel label1 = new JLabel("Database Schema:");  

final JTextField textField1 = new JTextField(15);  

textField1.setMaximumSize(textField1.getPreferredSize());  

Box hbox1 = Box.createHorizontalBox();  

hbox1.add(label1);  

hbox1.add(Box.createHorizontalStrut(15));  

hbox1.add(textField1); 

 

 

The following codes are to create the text fields of the Username and its Password for the 
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database. 

 

JLabel label2 = new JLabel("Username:");  

JTextField textField2 = new JTextField(15);  

textField2.setMaximumSize(textField2.getPreferredSize());  

Box hbox2 = Box.createHorizontalBox();  

hbox2.add(label2);  

hbox2.add(Box.createHorizontalStrut(60));  

hbox2.add(textField2);  

 

JLabel label3 = new JLabel("Password:");  

JPasswordField textField3 = new JPasswordField(15);  

textField3.setMaximumSize(textField3.getPreferredSize());  

Box hbox3 = Box.createHorizontalBox();  

hbox3.add(label3);  

hbox3.add(Box.createHorizontalStrut(60));  

hbox3.add(textField3);  

Figure G1 shows how the final screen looks after being generated by the above codes. This is 

much better than the command line bunches of RSGUI. 

 

Once the interface is displayed, there is a function that acquires data from the database identified 

in the interface, and here is the function code as follows: 

 
public static Connection getMySqlConnection(String durl, 

    String port, String sch, String un, String pwd) throws Exception { 

    String driver = "org.gjt.mm.mysql.Driver"; 

    String url = "jdbc:mysql://" + durl + ":" + port + "/" + sch; 

    String username = un; 

    String password = pwd; 

    conn = DriverManager.getConnection(url, username, password); 

    return conn 

} 

 

The SelectTable class is implemented as shown below, which is a Java frame class. In this class, 

the input is the connection. It lets the user to select one table as an input for the main function; 

also, there is a text field, which asks user to input the decision attributes number, that how many 

columns will be treated as decision attributes in the selected table. See Figure G2.  
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Figure G1:Select table and number of decision attributes interface 

 
public SelectTable(final Connection Conn) 

try { 

    DatabaseMetaData dmd = Conn.getMetaData(); 

    ResultSet rs = dmd.getTables(null, null, "%", null); 

    while (rs.next()) { 

        comboBoxTable.addItem(rs.getString(3)); 

    } 

    comboBoxTable.setMaximumSize(comboBoxTable.getPreferredSize()); 

    hboxTables.add(comboBoxTable); 

    decisions.setMaximumSize(decisions.getPreferredSize()); 

    decisions.setText("1"); 

    hboxAttributes.add(Box.createHorizontalStrut(10)); 

    hboxAttributes.add(decisions); 

} catch (SQLException e) { 

    String message = "Tables retrieval failure, try again..."; 

    JOptionPane.showMessageDialog(new JFrame(), message, "Error", 

        JOptionPane.ERROR_MESSAGE); 

} 

 

try { 

    DatabaseMetaData dmd = Conn.getMetaData(); 

    ResultSet rsColumns = null; 

    rsColumns = dmd.getColumns(null, null, comboBoxTable.getSelectedItem().toString(), null); 

    int columnNum = 0; 

    String[] columnHeader = new String[1000]; 

    while (rsColumns.next()) { 

        columnHeader[columnNum++] = rsColumns.getString("COLUMN_NAME"); 

    } 

    int decisionNum = Integer.parseInt(decisions.getText().toString()); 

    String columns = ""; 

    while (decisionNum > 0) { 

        columns = columnHeader[--columnNum] + " " + columns; 

        decisionNum--; 

    } 

    if (JOptionPane.showConfirmDialog(new JFrame(), 

        "The decision attributes is(are) " + columns, "Confirm", 

        JOptionPane.YES_NO_OPTION) == JOptionPane.YES_OPTION) { 

        DecisionTable dt = new DecisionTable(Conn, comboBoxTable.getSelectedItem().toString(), 

decisions.getText().toString()); 

        try { 
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            new RSGUI(dt); 

            close(); 

        } catch (IOException e) { 

            String message = "Initial RSGUI failure, try again..."; 

            JOptionPane.showMessageDialog(new JFrame(), message, "Error", 

                JOptionPane.ERROR_MESSAGE); 

        } 

    } 

} catch (SQLException e) { 

    String message = "Tables columns names retrieval failure, try again..."; 

    JOptionPane.showMessageDialog(new JFrame(), message, "Error", 

        JOptionPane.ERROR_MESSAGE); 

}  

 

 

The DecisionTable class is designed. Snippets of the class are shown below. All in all, the DecisionTable class tries 

to define the number of rows and columns, generates the real data array, sorts the array, and creates the attributes 

and so on.  

 

public DecisionTable(Connection pConn, String tablename, String decisionNum) { 

    Conn = pConn; 

    tableName = tablename; 

    DecisionAttributes = Integer.parseInt(decisionNum); 

    newsetRowsAndColumns(); 

    newsetDataArray(); 

    newcreateAttributes(); 

    setDecisionAttributes(getDecisionAttributes()); 

} 

 

The new method to set the number of rows and columns  

private void newsetDataArray() { 

    data = new String[rows][columns]; 

    try { 

        Statement stat = Conn.createStatement(); 

        ResultSet rs1 = stat.executeQuery("Select * from " + tableName); 

        for (int i = 0; i < rows; i++) { 

            rs1.next(); 

            for (int j = 0; j < columns; j++) { 

                data[i][j] = rs1.getString(j + 1); 

            } 

        } 

    } catch (SQLException e) { 

        String message = "Data generating failure, try again..."; 

        JOptionPane.showMessageDialog(new JFrame(), message, "Error", 

            JOptionPane.ERROR_MESSAGE); 

    } 

}  

 

The NewRSGUI method of creating attributes is shown as follow: 

 
private void newcreateAttributes() { 

    attributes = new Attribute[columns]; 

    //String rowOne = null;  

    DatabaseMetaData dmd; 

    try { 
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        dmd = Conn.getMetaData(); 

        ResultSet rsColumns = null; 

        rsColumns = dmd.getColumns(null, null, tableName, null); 

        String columnName = null; 

        int a = 0; 

        while (rsColumns.next()) { 

            columnName = rsColumns.getString("COLUMN_NAME"); 

            attributes[a++] = new Attribute(columnName); 

        } 

        for (int c = 0; c < columns; c++) { 

            for (int r = 0; r < rows; r++) { 

                if (!valueInArray(attributes[c].values, data[r][c])) { 

                    attributes[c].addAttributeValue(data[r][c]); 

                } 

            } 

        } 

        for (int c = 0; c < columns; c++) { 

            attributes[c].values = sortValues(c); 

        } 

    } catch (SQLException e) { 

        String message = "Attributes generating failure, try again..."; 

        JOptionPane.showMessageDialog(new JFrame(), message, "Error", 

            JOptionPane.ERROR_MESSAGE); 

    } 

} 

The new method to get attributes 

private int[] getDecisionAttributes() { 

    int number = DecisionAttributes; 

    int[] dec = new int[number]; 

    for (int i = 0; i < number; i++) { 

        dec[i] = columns - number + i; 

    } 

    return dec; 

}  
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Appendix H: Web interfaces design 

 
Web interface design in this appendix is the final result, which is agreed upon the Manager of 

Computer Science and Statistical Department and the director of the hospital in king Khaled 

General Hospital. Web interface designed by hand written that illustrate it below. 

 

Login Page 

User Name:  

Password: 

  

 

  

 

 

Enter Cancel 
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Female Medical Ward 

 

 

 

 

 

 

 

Admissions Discharges 

Transfer from ward Transfer to ward 

Died Stillbirth 

New patient 

Exit Index 
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New Patient 

 

 

 

 

 

 

 

 

        Sex:       Male      Female   

 Saudi ID 

 First Name  Second Name 

 File No. 

 Family Name 

 D.O.B. 

 Citizen  Phone No. 

 
Address 

Save Clear Back 
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FMW Admissions  

 

 

 

 

 

 

 

 

  

                                             

  

 Saudi ID 

 First Name  Second Name 

 File No. 

 Family Name 

 D.O.B. 

 Citizen  Phone No. 

 
Address 

Save Cancel Back 

 

 Admitted Time 

 Diagnose 

 
Note 

Sex 
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 FMW Discharges 

  

 Saudi ID 

 First Name  Second Name 

 File No. 

 Family Name 

 D.O.B. 

 Citizen  Phone No. 

Discharged Time 

Save Cancel Back 

 

 Length of stay 

 Diagnose 

 
Note 

 

Sex 
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                               FMW Transfer from another ward  

  

 Saudi ID 

 First Name  Second Name 

 Transfer From 

 Family Name 

 D.O.B. 

 Citizen  Phone No. 

Transferred Time 

Save Cancel Back 

 

 Diagnose 

 
Note 

 

 File No. 

Sex 
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Transfer to another ward 

 

  

 Saudi ID 

 First Name  Second Name 

 File No. 

 Family Name 

 D.O.B. 

 Citizen  Phone No. 

Transferred To 

Save Cancel Back 

 

 

 Diagnose 

 
Note 

 

Transferred Time  

Length of stay 

Sex 
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FMW Death 

  

 Saudi ID 

 First Name  Second Name 

 File No. 

 Family Name 

 D.O.B. 

 Citizen 

Death Time 

Save Cancel Back 

 

 Diagnose 

 
Note 

 

Sex 
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             Stillbirth 

 

 Saudi ID 

 First Name  Second Name 

 File No. 

 Family Name 

 D.O.B. 

 Citizen 

Time 

Save Cancel Back 

 

 Diagnose 

 
Note 

 

 

New 

Sex 


