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Abstract 

 Nitrosative stress is caused by reactive nitrogen species (RNS) and is toxic to most 

organisms. RNS are generated by the immune system to combat infectious microbes and are 

known to impede O2-dependent energy production. The goal of this study was to elucidate 

alternative adenosine triphosphate (ATP)-forming pathways that enable the model bacterium 

Pseudomonas fluorescens to survive a nitrosative challenge in a fumarate medium. Fumarate was 

metabolized by fumarase C (FUM C), a RNS-resistant enzyme and fumarate reductase (FRD). 

The enhanced activities of pyruvate phosphate dikinase (PPDK),  adenylated kinase (AK) and 

nucleoside diphosphate kinase (NDPK) provided an effective route to ATP production by 

substrate-level phosphorylation (SLP), a process that does not require O2. The metabolic 

networks utilized to neutralize nitrosative stress reveal potential target against RNS-tolerant 

bacteria and a route to the conversion of fumarate into succinate, a value-added product.  

 

 

Keywords 

Reactive nitrogen species (RNS), Pseudomonas fluorescens, fumarate, ATP, substrate-level 

phosphorylation. 
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Chapter 1: Introduction 

1.1: Metabolism: The foundation of life 

 The foundation of life on this planet is a set of chemical reactions that take place within 

all organisms. These reactions are known as metabolism. The primary goal of metabolism is to 

sustain life in any given organism. The metabolic processes are involved in a variety of functions 

including in generating new cells, in the defense against other organisms, in repairing damaged 

cells, in communicating intracellularly and extracellularly, in the transport of essential nutrients, 

in the elimination of toxic compounds, and in the production of energy (Figure 1). All these 

actions are closely regulated by a numerous pathways that often work in a large network to 

produce the desired outcome. 

 

Figure 1.1: The important roles metabolism plays in a living system 
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 All organisms, whether prokaryotic or eukaryotic utilize a source of carbon to maintain 

life (Wyatt et al 2014). Metabolism helps produce a variety of metabolites that contribute to the 

process of living. These metabolites are often used in the formation of carbohydrates, proteins, 

nucleic acids, lipids, and ATP, all of which are critical for the survival of any organism (Dalby et 

al 2011; Liu et al 2011; Nicholson et al 2012) (Figure 2). 

 

 

 

 

Figure 1.2: Various functions and actions of metabolism (Adapted from Dalby et al. 2011) 
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 However, the most important function of metabolism is the production of energy.  

Without energy, there would be no life on this planet.  Most biological energy comes in the form 

of adenosine triphosphate (ATP), a moiety where the energy is stored in the phosphodiester 

bonds. This biomolecule is the one that is used as the universal energy currency in both 

prokaryotic and eukaryotic cells. However, there are also other high energy phosphates that can 

be utilized as intermediates or as direct energy transporters instead of ATP. These include 

phosphoenolpyruvate (PEP), and 1,3-biphosphoglycerate (Baily et al 2011; Reddy and Wendisch 

2014; Vander Heiden et al 2010).  Both of these molecules have more stored energy content than 

ATP. They all contain phosphate moieties (Table I). This high energy phosphate bond is the key 

to biological energy, because when it is cleaved there is a release of energy into the system. The 

energy in ATP can also be transferred to other nucleotides like GTP, CTP, and UTP. There tends 

to be an equilibrium of these nucleoside triphosphates (Carraro et al 2014; Deramchia et al 2014; 

Selyunin et al 2011). Energy may also be stored in thioester bonds of acetyl and acyl coenzymes 

A. 
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Table I: List of high energy phosphates (Adapted from Carraro et al 2014) 

High Energy Phosphate Mechanism for Production 

Adenosine triphosphate (ATP) Common energy moiety in all living systems (oxidative 

phosphorylation) 

1,3-biphosphoglycerate Glycolysis (Glyceraldehyde phosphate dehydrogenase) 

Phosphoenolpuryvate (PEP) Glycolysis (Enolase) 

Glucose-6-phosphate Glycolysis (Hexokinase) 

Guanosine triphosphate (GTP) Successive phosphor-transfer from ATP 

Uridine triphosphate (UTP) Successive phosphor-transfer from ATP 

 

 

1.2: Biological Energy-Producing Machines 

 Biological systems have evolved three distinct processes to generate ATP. 

Photophosphorylation is one of these mechanisms. As the name suggests, it is the process by 

which sunlight (photo-) is used by the cell to synthesize ATP (-phosphorylation). This form of 

energy production is found most commonly in organisms that possess a light harvesting 

apparatus. The light harnessing process can vary depending on the type of organism involved, 

such as the use of chlorophyll as the light absorbing molecule, as seen in most land plants, or the 

use of bacteriorhodopsin, a molecule that is also found in an altered form in our own eyes, that 

can be utilized to absorb the light. This is found most commonly in marine plants and bacteria 

(Skulachev et al 2013). 
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 Following the absorption of light, the electrons stored in the H2O molecules are released 

and transported to nictotinamide dinucleotide phosphate (NADP
+
). The reduction of the latter 

generates NADPH, a critical reducing factor while the movement of the e
-
, a process facilitated 

by the electron carriers helps create a proton gradient and a membrane potential. These are 

subsequently trapped as chemical energy in the form of ATP. Bacteriorhodopsin is both a light 

harvesting complex and a proton pump. Upon absorption of light, it produces a proton gradient 

that drives the synthesis of ATP (Figure 3) (Lanyi et al 2012; Skulachev et al 2013).  

 Photophosphorylation is mediated by a variety of factors. These most commonly take the 

form of internal inhibitors that are activated when energy needs are met in the organism. The 

ratio of NADP
+
/NADPH is a critical modulatory process. This electron transfer mechanism is 

used as a common means of producing ATP through photophosphorylation. Once the amount of 

NADPH exceeds the level of NADP
+
, normal ATP production is often slow down or halted. 

NADP
+
 must be available as a reducing cofactor for the reaction and its decrease leads to a 

concomitant reduction of photophosphorylation. Additionally the buildup of NADPH triggers 

metabolic toxicity due to spontaneous reactions. As photophosphorylation is most commonly 

associated with plants, numerous studies have shown how artificial inhibitors can be introduced 

to inhibit normal energy production. One of the most common artificial inhibitors is 3-(3,4-

dichlorophenyl)-1,1-dimethylurea (DCMU). DCMU is a herbicide aimed at limiting the spread 

of invasive species of plants in the agricultural industry. DCMU acts on photosystem II by 

attaching itself to the plastoquinone binding site. This effectively blocks the flow of electrons 

from photosystem II to plastoquinone. Without this step, the flow of electrons is interrupted and 

the production of ATP is inhibited (Picard et al 2006). 
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Figure 1.3: Action of bacteriorhodopsin in the production of ATP. Sun energy is absorbed 

by bacteriorhodopsin that generates a proton gradient (H
+
). This in turn activates a 

transmembrane bound ATP synthase found in plants (Adapted from Picard et al 2006). 
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1.3: Oxidative Phosphorylation 

 Oxidative phosphorylation is the process utilized by aerobic organisms to generate 

energy.  This process involves the oxidation of various biomolecules in order to form ATP. It is 

the widely utilized form of energy production in most non-photosynthetic life forms, due to the 

fact that it tends to be the mechanism with the highest eventual yield in energy. In most 

prokaryotic and eukaryotic systems, oxidative phosphorylation occurs following the generation 

of reducing factors from carbon sources (Besterio et al 2002; Brigaud et al 2006). 

These reducing factors are generated in a metabolic module referred to as the 

tricarboxylic acid cycle (TCA cycle). Following the release of CO2, reduced nicotinamide 

dinucletodie (NADH) and reduced flavin adenine dinucleotide (FADH2) are shunted from this 

system to release hydrogen ions (H
+
) and e

-
 that are trapped within these moieties. The NAD

+
 

and the FAD
+
 are subsequently returned to the TCA cycle to continue shunting reducing power 

from the system. The electron transport chain acts as a conduit to transport e
-
 and to form a 

charge gradient along a membrane, usually the mitochondria (Ritov et al 2010) in eukaryotes and 

the cytoplasmic membrane in prokaryotes (Biegel et al 2011). The movement of H
+
 through 

complex V (ATP synthase) drives the synthesis of ATP. Through a mechanical action, this 

enzyme combines a phosphate molecule with a free ADP molecule to form ATP. The reduction 

of oxygen helps produce H2O, a by-product of oxidative phosphorylation. Although this 

metabolic arrangement generates the most energy, this process is associated with a few 

drawbacks (Akram, 2013; Fernie et al 2004; Satapati et al 2012). 
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Figure 1.4: General TCA cycles and significant products produced throughout process. 

Note the presence of fumarate and the formation of ATP (Adapted from Akram 2013). 

 

The overall process requires the input of oxygen in order to safely remove the H
+
 from 

the system. If not removed properly, the H
+
 could stay in the system, thus destabilizing the 

gradient in the membrane, causing damage to the membrane and other systems in the organism.  

It is for this reason that these steps are often called aerobic respiration.  Despite the fact that the 

TCA cycle does not need oxygen directly, it too shuts down in the absence of oxygen. This is 

due to the fact that without oxygen NADH and FADH2 cannot be shunted to the electron 

transport chain. The buildup of these two biomolecules can prove to be even more dangerous as 
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the movement of e
-
 may be halted leading to the leak of this reactive species. The e

-
 can react to 

generate toxic moieties. Indeed the production of reactive oxygen species (ROS) is a major 

disadvantage to this high ATP yielding machine (Figure 5) (Celedon and Cline 2013; Sevilla et 

al 2013). 

 

 

Figure 1.5: General outline of the electron transport chain (ETC) (Complexes I, II, III, and 

IV). Note the production of ATP through the gradient produced by the presence of H
+
 

(Adapted from Sevilla et al 2013). 

 

As with the case of photophosphorylation, oxidative phosphorylation is regulated by 

various internal and external factors. The primary internal factor that controls energy production 

through this mechanism is the presence of reduced cofactors. NADH and FADH2 are used to 

transport electron from the TCA cycle to the ETC where they are used to produce ATP. As in the 
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case of NADPH in photophosphorylation, NAD
+
/NADH and FAD

+
/FADH2 levels are essential 

to keep the energy producing machine operational. Buildup of the reduced cofactors cause 

toxicity within the metabolic system, as well as limiting the use of the unreduced form of these 

cofactors to propel the various dehydrogenases. Under these conditions, ATP production is often 

extremely limited, with the reduced cofactors diverted to the production of fatty acids and other 

biomolecules (Haq et al 2013; Mishra et al 2014). 

 The presence or lack of magnesium is also very important for any type of oxygen-

dependent energy producing machinery. Magnesium in most living systems is used as a 

stabilizing element, specifically for compounds containing phosphates. Magnesium ions (Mg
2+

) 

are used in biological systems to stabilize nucleotides in their triphosphate form. This means that 

in order for ATP to be maintained, produced, and released in the body, magnesium must be 

present. Most enzymes in oxidative phosphorylation contain magnesium, and Mg
2+

 plays a key 

role in the stabilization of ATP molecules. Hence, a deficiency of magnesium, can seriously 

inhibit the production of ATP during oxidative phosphorylation (Agarwal et al 2012; Yao.et al 

2011). 

 The presence of oxygen is also an important mediator of oxidative phosphorylation. 

Oxygen is pivotal to the production of energy via oxidative phosphorylation. It is the terminal 

molecule, and without its ability to trap e
-
, there would be no ATP formation. A lack of oxygen 

will completely shut down normal oxidative phosphorylation. Oxygen can be depleted for a 

number of reasons, the most common of which is physical activity. During strenuous exercise, 

oxygen is utilized rapidly in order to supply energy to the muscles in motion. Due to this lack of 

oxygen, ATP cannot be produced at its normal level as an organism has to rely on alternate 

pathways like substrate-level phosphorylation (Bailey-Serres et al 2012; Pike et al 2011). 



11 
 

 

1.4: Substrate Level Phosphorylation  

Substrate-level phosphorylation is also an important contributor to the ATP budget in all 

organisms. This strategy involves the direct transfer of a phosphate groups from a high energy 

metabolite to adenosine diphosphate (ADP) to form ATP.  One of the hallmarks of this form of 

metabolism is the fact that it does not rely on any co-factors in order to produce energy. In most 

prokaryotic and eukaryotic systems, this type of energy production is the beginning of a larger 

process of energy production known as cellular respiration (Thakker C et al 2011). The yield of 

ATP during substrate-level phosphorylation is relatively low as compared to oxidative or photo 

phosphorylation. However, in the absence of oxygen, this form of energy production becomes 

the primary source of ATP synthesis. The other drawback to this system is the harmful by-

products like ethanol in microbes and lactic acid in humans(Hunt et al 2010; Sharma et al 2012).  

Glycolysis is a key generator of ATP via substrate level phosphorylation. The formation 

of 1,3,biphosphoglycerate and phosphoenol pyruvate (PEP) enables the synthesis of ATP (Figure 

6). Pyruvate kinase (PK) mediates the formation of ATP from PEP and is highly modulated by 

the levels of ADP. This enzyme is also controlled by phosphorylation and de-phosphorylation 

(Luo et al 2011). The breakdown of glucose during glycolysis generates 2 net ATP while the 

same monosaccharides produce numerous fold more ATP during oxidative phosphorylation 

(Flamholz et al 2013; Jiang et al 2012).  
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Figure 1.6: Glycolysis and ATP production. Substrate-level phosphorylation, an oxygen 

independent process, is the way in which energy is produced in this process (Adapted from 

Jiang et al 2012). 
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1.5: Damage of oxidative metabolism 

 While organisms do attempt to control metabolic activity as much as possible, these 

processes are highly complex, which often lead to unintended side-effects. These occur primarily 

during oxygen dependent forms of energy production. When an organism undergoes oxidative 

phosphorylation, electrons are transported through the ETC in order to generate ATP, and H2O, 

with the help of O2. Due to the size and mobility of these electrons, there is a potential for 

electrons to escape, or “leak”, out of the ETC. These electrons can then react with the oxygen in 

the system in the system to produce superoxide radical ion (O2
.-
). This compound is first in a 

series of highly reactive compounds known as reactive oxygen species (ROS). Through a series 

of reactions with the superoxide radical ion, electrons, and the redox reaction of Fe
3+

 to Fe
2+

, 

more unstable oxygen-based molecules are produced in the system. These highly reactive species 

can cause serious toxic effects in an organism. Hence it is not surprising that all aerobic 

organisms have evolved intricate strategies to neutralize these toxic species as they are 

constantly bombarded by ROS. Catalase, superoxide dismutase, and glutathione peroxidase are 

some ROS-combatting enzymes that are prominent in numerous aerobes (Murphy et al 2011; 

Naik and Dixit 2011). 
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Figure 1.7: Production of harmful ROS in living systems. Note the production of the 

superoxide radical ion (Adapted from Murphy et al 2011). 

 

1.6: Reactive Nitrogen Species (RNS) 

 Reactive nitrogen species (RNS) are another group of transient moieties that are involved 

in numerous biological processes. Initially, the study of these molecules has been focused on 

their positive effects in living systems. RNS are often intentionally produced by an organism 

through reactions with the amino acid arginine and the enzyme nitric oxide synthase. This 

reaction yields citrulline and nitric oxide (NO). The primary reason that these potentially 

hazardous molecules are intentionally produce by an organism is to participate is signaling duties 

(Michaelson et al 2013; del Rio 2011). Due to the highly reactive nature of NO and its 

derivatives, they make effective initial signals in a biochemical signalling pathway. An example 

of this action is during mitochondrial functions, NO is often the first signal in the mitochondrial 

metabolic network. Intentionally produced RNS are often separated into three distinct groups; 
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neuronal RNS (nRNS), endothelial RNS (eRNS), and inducible RNS (iRNS). As each name 

suggests, each RNS molecule is used in a specific signalling network involving neuronal activity, 

endothelial signalling, and to induce an action involved in signalling, respectively (Mak et al 

2006; Ward et al 2013). While nRNS and eRNS are often continually produced, due to the 

necessity of neuronal and endothelia action for maintaining life, this is not the case with iRNS. 

This iRNS network has to be induced in order to produce NO. The reason for this is that iRNS is 

used only in the case of defense, and operates independently of Ca
2+

, an essential mechanism is 

the production nRNS and eRNS. NO is a highly volatile substance which can be effectively used 

in defense against bacterial threats. Numerous organisms use RNS for a variety of essential 

functions like seed germination, neuron activity, and cardiac stimulation (Graves 2012; 

Salvemini et al 2011). 
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Figure 1.8: Nitric oxide and its various biological functions (Adapted from Graves 2012) 

 

1.7: Uncontrolled Production of RNS 

 ROS can produce direct effects on macromolecules but they are also the primary means 

by which toxic RNS are generated. Most reactions involving macromolecules (lipids, proteins, 
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etc.) and ROS cause the production of free radicals in the affected macromolecules. For example, 

when an ROS species comes in contact with a lipid chain and rapid reaction occurs usually with 

the labile double bond. The result of which is endogenous oxygen, or other less harmful by-

product, and a lipid molecule containing a free radical. This free-radical can now react with other 

surrounding lipid chains, thus destroying the integrity of a molecular subunit, like a 

phosphorlipid bilayer (Bourret et al 2011; Wang et al 2013).  

 The principles by which these reactions occur can be extended to the production of RNS. 

When an ROS compound reacts with a free nitric oxide, often produced effect a biological 

function, it will undergo a spontaneous reaction, due to the highly reactive state of both 

compounds. This initial reaction results in the production of peroxynitrite (ONOO
-
). This is a 

critical molecule in RNS toxicity due to its highly reactive nature. While ROS molecules often 

react with the macromolecule in come in contact with, peroxynitrite reaction often occur at a 

much slower rate. While this means there is a higher chance of detoxification, it also means the 

molecule can be far more selective, meaning it can attack targets that could be a weaker and far 

more essential. This moiety also has the ability to pass through cellular membranes, something 

that some ROS species cannot do readily. Hence, both the external and internal environments of 

the cell are susceptible to attack. Peroxynitrite can undergo further reactions with other 

molecules to produce other high reactive species such as nitrogen dioxide (-NO2), dinitrogen 

trioxide (N2O3), as well as other RNS molecules (Hayashi et al 2012; Vitteta and Linnane 2014). 

1.8: Toxic effects of RNS 

 RNS molecules are involved in similar destructive reactions like ROS. These include 

oxidation of lipids, proteins and nucleic acids. In all these cases a free radical is produced on the 



18 
 

 

macromolecule, which causes them to propagate the abnormality to other surrounding molecules, 

or completely compromises the molecular system rendering them useless (Belechiev et al 2012; 

Corpas and Barroso 2013). Additionally peroxynitrite has a strong affinity to attack metal centers 

in enzymatic proteins. These centers are often essential for a particular enzymatic activity, which 

are often involved in redox reactions. Most of these enzymes contain iron, an important metal 

utilized during a variety of processes like oxidative phosphorylation. This renders essential 

function ineffective. RNS and ROS have been linked to disorders related to aging and to the 

cerebral system (Williams et al 2008).  

 

Figure 1.9: RNS creation and propagation causing toxic effects (Adapted from Belechiev et 

al 2012). 
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1.9: Traditional defenses to RNS 

 As RNS are generated in living systems, numerous organisms have evolved various 

strategies to counter these toxic compounds. Their conversion into nitrates and nitrites by nitrate 

and nitrite reductase respectively tend to make them less toxic In humans, myoglobin is known 

to be a detoxifier of NO (Hu et al 2012). Some bacteria have been shown to invoke 

flavohemoglobin to eliminate RNS. The ability of s-nitroso glutathione reductase (GSNOR) to 

promote denitrosylation is also widely utilized to detoxify biomolecules compromised by RNS. 

Additionally NADPH producing enzymes are quite effective at curtailing the formation. Hence, 

malic enzyme and isocitrate dehydrogenase-NADP
+
 dependent are upregulated during 

nitrosative stress (Alvarez et al 2013). 

 

Figure 1.10: Action of GSNOR in detoxifying RNS. Note this reaction can also be reversible 

to produce NO for signalling (Adapted from Hu et al 2012). 

 

 

 

NO
.

Glutathione 
S-Nitroglutathione  
Reductase 

S-Nitroglutathione 

GSNOR 



20 
 

 

1.10: Fumarate metabolism and Pseudomonas fluorescens 

 During oxidative phosphorylation, glucose, the six-carbon monosaccharide is broken 

down in a series of chemical reactions. Throughout this process, glucose is transformed into 

numerous smaller moieties. Of particular interest are the four-carbon products. These molecules 

help propel the TCA cycle, and are often involved in the direct production of ATP. One of these 

is fumarate. Fumarate is a four carbon dicarboxylic acid that contains a double bond. During the 

TCA cycle, fumarate is generated from succinate a reaction mediated by the enzyme succinate 

dehydrogenase (Raimundo et al 2011). It can also be produced with malate via the enzyme 

fumarase. This hydration reaction is important for the reconstruction of initial metabolites used 

in the TCA cycle that will be needed again to produce ATP. It is also produced during the 

degradation of nucleic acid. Numerous commercial applications have been found for fumarate. 

These include manufacture of polyester products, an intial molecule used in the synthesis of 

polyols (the key ingredient of artificial sweeteners), and in commercial dyes. Recent studies have 

also suggested application in some natural health treatments. However, fumarate can also be an 

important source of succinate and malate metabolites that are also of immense economic values 

in biopolymers such as polybutylene succinate and polyacetic acids, for foods and 

pharmaceutical industries (Luo et al 2010; McKinlay et al 2010). 

The ability of organisms to effectively produce ATP is critical for their survival. Any 

perturbation in this process may lead to their demise. Although RNS toxicity is known to inhibit 

oxidative phosphorylation, some organisms do proliferate under nitrosative stress (Lushchak 

2011; Voskull et al 2011). Hence, alternate ATP generating mechanisms must be operative for 

these organisms to multiply. While nutrient such as citrate and glucose have been shown to be 

rapidly metabolized in environments with nitrosative stress, the ability of microbes to metabolize 
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fumarate, a key ingredient in the TCA cycle has yet to be studied (Chabriere et al 1999; 

Garchowski et al 2012; Trapani et al 2001). Additionally, the enzyme fumarase involved in the 

degradation of fumarate is an Fe-dependent moiety that is known to seriously affected by RNS.  

Pseudomonas fluorescens, a soil microbe is an excellent model system to study these 

processes as it grows rapidly and is nutritionally versatile. Its metabolism has also been shown to 

be highly flexible; it can survive stressing agents, and adverse environments. Furthermore, P. 

fluorescens is the same genus as Pseudomonas aeruginosa as they share numerous common 

metabolic networks. The latter microbe has been linked to pneumonia, urinary tract infections, 

and necrosis of the skin. Recent studies have found that some strains of P. aeruginosa have 

become resistant to traditional antibiotic treatments (Omri et al 2002; Suntres et al 2002). Hence, 

it is quite likely that the adaptive mechanisms elucidated by P. fluorescens may have some 

similarities to infectious bacteria such as P. aeruginosa. The discovery of novel pathways to 

generate ATP and to metabolize fumarate under nitrosative stress may unveil targets against 

antibiotic resistant bacteria and provide value-added products (Chenier et al 2008).  

 

Figure 1.11: Fumarate and its reactions in the TCA cycle (Adapted from Raimundo et al 

2011). 
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1.11 Research Objectives  

 The goal of this study was to evaluate the energy-producing capabilities of bacteria under 

the influence of RNS stress. This was carried out by probing substrate-level phosphorylating 

enzymes, including those that are not utilized under normal conditions. These alternate energy 

pathways are often used by infectious bacteria to circumvent host immune systems and 

antibiotics. If the enzymes in these alternate ATP-generating modules are found to be absent in 

the host, they may be an ideal target to eliminate these bacteria with minimal side-effects on the 

host. Additionally the ability of the microbe to utilize fumarate as its carbon source was 

evaluated, particularly under RNS-challenged conditions. The four-carbon molecule is usually 

metabolized via the TCA cycle, a metabolic network that is known to be severely impeded under 

nitrosative stress. The conversion of fumarate into value-added products like succinate would be 

of important economic benefit. This saturated dicarboxylic acid has a wide range of commercial 

applications.  
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2.1: Abstract 

 Although nitrosative stress is known to severely impede the ability of living systems to 

generate adenosine triphosphate (ATP) via oxidative phosphorylation, there is limited 

information on how microorganisms fulfill their energy needs in order to survive reactive 

nitrogen species (RNS). In this study we demonstrate an elaborate strategy involving substrate-

level phosphorylation that enables the soil microbe Pseudomonas fluorescens to synthesize ATP 

in a defined medium with fumarate as the sole carbon source. The enhanced activities of such 

enzymes as phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK) 

coupled with the increased activities of phospho-transfer enzymes like adenylate kinase (AK) 

and nucleoside diphophate kinase (NDPK) provide an effective strategy to produce high energy 

nucleosides in an O2-independent manner. The alternate ATP producing machinery is fuelled by 

the precursors derived from fumarate with the aid of fumarase C (FumC) and fumarate reductase 

(FRD). This metabolic reconfiguration is key to the survival of P. fluorescens and reveals 

potential targets against RNS-resistant organisms. 

 

2.2: Introduction 

 Nitrosative stress occurs due to the uncontrolled formation of such reactive nitrogen 

species (RNS) as nitric oxide (NO), dinitrogen trioxide (N2O3), and peroxynitrite (ONOO
-
). 

These RNS are generated intracellularly when NO reacts with hydrogen peroxide and 

superoxide. They are known to be toxic as these moieties react with sulphydryl groups, redox 

metals, heme residues and tyrosine-containing macromolecules (Quijano et al 1997; Zielonka et 

al 2012). Hence, nitrosative stress is known to severely impair oxidative phosphorylation (OP), a 
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process that produces ATP in an O2-dependent manner. This ATP-generating system relies on 

the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). While the former 

provides the reducing factors NADH and FADH2, the latter aids in the shuttling of electrons to 

O2, the terminal electron acceptor (Lemire et al 2012). Numerous enzymes that participate in 

these metabolic networks require heme and Fe-S clusters for proper functioning and are rendered 

ineffective by RNS (Auger et al 2011; Poole, 2005). Hence it is not surprising that numerous 

microbes have developed mechanisms to deal with these toxic RNS. Their conversion into 

innocuous nitrate, and the upregulation of enzymes dedicated to the removal of nitrosylated 

moieties, a common occurrence during nitrosative stress, are two strategies invoked by some 

bacteria (Auger et al. 2011). Although the detoxification mechanisms aimed at RNS have been 

studied, there is a dearth of information on how RNS-tolerant microbes satisfy their ATP 

requirements.  

Substrate level phosphorylation (SLP) is the other ATP-producing machine that is 

commonly utilized by biological systems. High energy compounds that are obtained following 

various biochemical transformations help phosphorylate adenosine monophosphate (AMP) 

and/or adenosine triphosphate (ADP) into ATP (Kim et al. 2013). These compounds include 

phosphoenolpyruvate (PEP) and 1,3,biphosphoglycerate, that are products of glycolysis, as well 

as succinyl CoA which is produced during the TCA cycle (Han et al. 2013; Singh et al 2009). 

Pyruvate kinase is a key enzyme that converts PEP into ATP in the presence of ADP (Auger et al 

2012). Some bacteria are also known to possess the acetate kinase-phophotransacetylase system 

that is involved in the processing of acetyl CoA into ATP (Hunt et al 2010; Ingram-Smith et al 

2006).Although ATP formation mediated by SLP is widespread in nature, the metabolic 
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networks that are utilized to fulfill the need for this universal energy currency under 

environmental stress along with its regulation have yet to be fully elucidated.  

 As part of our efforts to decipher the metabolic adaptations that allow the soil microbe 

Pseudomonas fluorescens to survive in extreme environments (Auger et al 2011), we have 

evaluated how this nutritionally-versatile microbe fulfills its requirements for ATP, under a 

nitrosative challenge. This condition is known to render oxidative phosphorylation ineffective. In 

this study fumarate a TCA cycle intermediary and a dicarboxylic acid that is usually metabolized 

by RNS-sensitive Fe-S cluster rich enzymes was utilized as the sole source of carbon. The ability 

of P. fluorescens to elaborate an alternate-ATP generating network and the metabolism of 

fumarate are described. The significance of these findings in combatting RNS-resistant microbes 

is also discussed. 

 

2.3: Materials and Methods 

Bacterial Growth Conditions 

 P. fluorescens, strain ATCC 13525, was grown in a phosphate growth medium 

containing Na2HPO4 (6 g), KH2PO4 (3 g), NH4Cl (0.8 g), MgSO47H2O (0.2 g), and fumarate 

(2.25 g) per 1 liter of distilled and deionized water. One mL of trace elements was added per liter 

of medium as described in Bignucolo et al. (2013). Nitrosative stress was achieved with the 

addition of sodium nitroprusside (SNP) at a concentration of 10 mM (Auger et al 2011). Cultures 

pH was adjusted to 6.8 using dilute NaOH. Previous studies have shown that P. fluorescens has 

the ability to reach its optimal growth at this pH (Auger et al 2011). The mixtures were then 

transferred to 500 mL Erlenmeyer flasks. Each flask was filled with 200 mL of medium. 



28 
 

 

Cultures were inoculated by adding 1 mL of stationary phase bacteria to the growth media. These 

cultures were aerated on a gyrator water bath shaker (Model 76, New Brunswick Scientific). 

Once the stationary phase was reached, portions of samples were centrifuged at 10000 x g for 10 

min at 4
o
C. Aliquots (10 mL) of spent fluid were stored for further experiments. Washing of the 

bacterial pellet was then completed using 0.85% NaCl, and the pellet was re-suspended using a 

cell storage buffer (50 mM Tris-HCl, 5 mM MgCl2, and 1 mM phenylmethylsulphonyl fluoride, 

pH 7.3). Membranous and soluble cellular fractions were obtained by sonication and 

centrifugation of the disrupted cells (al-Aoukaty et al 1992). Bradford assays were performed on 

both fractions in triplicate to determine protein concentration. These fractions were kept at 4
o
C 

for 5 days or at -20
o
C for 4 weeks for further study. 

RNS-Detoxifying Enzymes and Functional Metabolomic Studies 

 To evaluate the impact of the nitrosative stress on the bacterium, cultures were grown in 

control and nitrosative stressed-conditions at various time intervals and cellular yield was 

assessed by Bradford assay (Bradford 1976). Fumarate consumption was monitored by high 

performance liquid chromatography (HPLC) at a wavelength of 236 nm (Charoo et al. 2014). 

The presence of nitrate reductase and nitrite reductase were also probed to determine the relative 

activity of these detoxifying enzymes in each system. In gel activity of the enzymes was 

monitored and densitometric readings were recorded to obtain relative activities (Auger et al 

2010). The Griess assay was performed on the spent fluids from both control and RNS-stressed 

cultures in order to determine relative content of nitrate and nitrite respectively (Miranda et al. 

2001).  
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To assess significant metabolite level differences in control and RNS-exposed cultures, 

HPLC was performed on the spent fluids and soluble fractions of. Two mg/mL of protein 

equivalent of the cell cell-free extract (CFE) were taken and heated gently to ensure precipitation 

of proteins and lipids (Mailloux et al. 2011). The supernatants were subsequently monitored at 

210 nm and 254 nm respectively. All metabolite levels were compared to known compounds, 

and by spiking with the appropriate standards (Auger et al. 2011).  

Analyses of TCA Cycle and ETC Enzymes 

 Blue native polyacrylamide gel electrophoresis (BN-PAGE) was performed to detect 

relative activity of enzymes in control and stressed cultures involved in the TCA cycle and in the 

electron transport chain (ETC). Proteins were prepared for BN-PAGE by dilution with native 

buffer (50 mM Bis-Tris, 500 mM ε-aminocaproic acid, pH 7.0, 4°C) until proteins were at a 

concentration of 4 mg/ml. One % (v/v) β-dodecyl-D-maltoside was added to the membranous 

fractions to help in the solubilization of the proteins.  Once the gel had finished separation, it was 

placed in a reaction buffer (25 mM Tris-HCl, 5 mM MgCl2, at pH 7.4) for 15 minutes to rinse 

off buffers. Once completed, specific protein fractions were separated and placed in their 

appropriate reaction mixtures where enzyme reactions were performed. All reactions were based 

on the presence of a pink formazan precipitate, formed during reduction reactions (Schragger and 

von Jagow 1991; Han et al 2012).  

 NAD
+
-dependent isocitrate dehydrogenase (ICDH-NAD

+
) activity was visualized using a 

reaction mixture containing 5 mM isocitrate, 0.5 mM NAD
+
, 0.2 mg/mL PMS and 0.4 mg/mL 

INT. For malate dehydrogenase (MDH) malate was used as the substrate for the reaction. 

Complex II was detected by the addition of 0.5 mM FAD
+
, and 0.4 mg/mL INT with 5 mM 
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succinate. Complex IV was probed using diaminobenzidine (10 mg/mL), cytochrome C (10 

mg/mL), sucrose (562.5 mg/mL). In the case of both ETC complexes probed, the reaction were 

made in reaction buffer with the addition of 5mM of KCN. Appropriate negative controls 

consisted of reaction mixtures that did not contain the substrate or cofactors for the reaction. For 

example, reaction mixtures devoid of isocitrate and/or NAD
+
 were utilized as negative controls 

for ICDH-NAD
+
 while the commercial enzyme was tested as a positive control. Once completed 

all of the above reactions were destained using 40% methanol, 10% glacial acetic acid. Activity 

bands were quantified using ImageJ for Windows. Proper protein loading was determined by 

Coomassie staining for total proteins. Equal amounts of proteins (60 µg) were loaded in the 

respective lanes. Following the appearance of the activity bands (at the same time), the bands 

were excised and incubated in the reaction mixture to monitor the products formed. Enzymes 

such as malate dehydrogenase (MDH) and pyruvate carboxylase (PC) that had similar activity in 

the control and stressed cultures were utilized as internal controls. Unless otherwise mentioned, 

all comparative experiments were performed at the late logarithmic phase of growth. Select 

activity bands were excised and incubated in the appropriate reaction mixtures. The substrates 

and products of these mixtures were detected by HPLC. 

Fumarate Metabolism and ATP Synthesizing Enzymes 

In an effort to evaluate how fumarate was metabolized the cell-free extract (2 mg/mL 

protein equivalent) was incubated with 2mM of fumarate in the presence or absence of KCN 

(5mM). The soluble cell free extract (2 mg/mL) was also incubated with 2 mM oxaloacetate, 1 

mM PPi, and 0.5 mM AMP in order to determine how ATP was being generated. These reactions 

were performed with and without KCN. The production of ATP and other metabolites was 

monitored by HPLC. Fumarase was identified by in-gel activity assay using a reaction mixture 
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containing 5 mM fumarate, 5 units/mL of malate dehydrogenase, 0.5 mM NAD
+
, 0.2 mg/mL 

PMS and 0.4 mg/mL INT. The two isoforms of fumarase A and C were detected with the aid of 

inhibitors as described in Chenier et al (2008). Fumarate reductase (FRD) was also probed using 

succinate and NAD
+
 (Watanabe et al 2011). The activity of, pyruvate carboxylase (PC), was 

ascertained by utilizing enzyme-coupled assays as described (Singh et al. 2005). PPDK was 

monitored using a reaction mixture consisting of 5 mM PEP, 0.5 mM AMP, 0.5 mM sodium 

pyrophosphate (PPi), 0.5 mM NADH, 10 units of LDH, 0.0167 mg/mL of DCIP and 0.4 mg/mL 

of INT. Adenylate kinase (AK) was detected by an enzyme-coupled assay involving hexokinase 

and glucose-6-phosphate dehydrogenase (G6PDH). The ability of the enzyme to convert ADP to 

ATP enabled the conversion of glucose into glucose-6-phosphate that was then detected by the 

precipitation of formazan in the gel. Nucleoside diphosphate kinase (NDPK) in gel assay, was 

performed as described in Singh et al (2006). These bands were excised and their activities were 

followed by HPLC. Spectrophotometric analyses were also performed to confirm the activities of 

some select enzymes. MDH and ICDH-NAD
+
 dependent were monitored by following the 

formation of NADH at 340 nm in the CFE in the presence of their respective substrates (Auger et 

al 2011). 

Data were expressed as a ± standard deviation. Statistical correlations and significance of 

data were all confirmed using the Student T test (p ≤ 0.05). All experiments were performed at 

least twice and in triplicate. 

 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028469#pone.0028469-Singh2
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2.4: Results and Discussion 

 When P. fluorescens was exposed to nitrosative stress in a defined phosphate medium 

with fumarate as the sole source of carbon, the biomass at the stationary phase of growth was 

similar to that of the control culture. Although growth rate was slower in the stressed cultures, 

fumarate was utilized at a faster rate (Fig. 1). The impact of nitrosative stress was evident in the 

stressed bacteria, as there was an increase of 18 and 13 fold in activity of nitrite and nitrate 

reductase respectively. The presence of elevated levels of nitrate and nitrite in the spent fluid 

indicated that RNS was also being detoxified (Table 1). The disparate metabolic profiles 

observed in the soluble CFE between control and stressed cultures at the same phase of growth 

indicated a shift in metabolic pathways. Peaks attributed to pyruvate, and phosphoenolpyruvate 

(PEP) and AMP were also more intense in the bacteria obtained from the RNS-exposed cultures. 

The control cultures had higher levels of ADP (Fig 1). 

As there was a stark difference in these nucleoside phosphate levels, it became apparent 

that the ATP-producing machinery had been affected. Analysis of select TCA cycle enzymes and 

the electron transport chain revealed that ICDH-NAD
+
 dependent, Complex II and Complex IV 

decreased in RNS-exposed bacteria. MDH did not appear to change in the control and stressed 

cultures (Fig. 2). Indeed the activity of ICDH-NAD
+
 was about 3 fold higher in the control 

compared to the stressed cultures as measured spectrophotometrically. MDH activity was found 

to be similar in these two conditions (Table 1). Hence, it was important to discern how ATP was 

generated since the TCA cycle and ETC enzymes were ineffective in the stressed cultures. When 

the CFE of the control and stressed P. fluorescens were incubated with fumarate in the presence 

of KCN, a potent inhibitor of oxidative phosphorylation (OP), ATP production was severely 

decreased in the control. However, ATP levels in the CFE obtained from the RNS-challenged 
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cells remained relatively similar with and without the presence of KCN. This indicated that P. 

fluorescens was utilizing an alternate metabolic network, independent of OP, to generate ATP in 

an effort to combat the toxic influence of the nitrosative stress (Fig. 2).  

 Fumarate is usually metabolized by fumarase, an enzyme known to be sensitive to 

oxidative and nitrosative stress (Lushchak et al 2014,). In this instance, P. fluorescens 

upregulated the activity of fumarase C, an isoenzyme known to be less prone to nitrosative 

stress. Two bands were evident in the electrophoregram obtained from BN-PAGE analysis (Fig. 

3). Fumarate reductase (FRD), another enzyme involved in fumarate metabolism was prominent 

in the stressed cells while the activity band attributable to this enzyme was barely discernable in 

the control cells (Fig. 3). Hence, Fum C and FRD were utilized to degrade fumarate in the 

stressed bacteria. The presence of elevated amounts of phosphoenol pyruvate (PEP) in the CFE 

of the stressed cultures, led us to analyze enzymes responsible for the production of this 

metabolite. PEPC, an enzyme known to mediate the transformation of oxaloacetate into PEP, 

was increased as was PPDK (Fig. 3). The former utilizes inorganic phosphate (Pi) while the latter 

invokes the participation of PEP, AMP and PPi to form pyruvate and ATP. This metabolic 

arrangement would provide an effective means of producing ATP in an O2-independent manner. 

Indeed similar ATP-generating networks have been uncovered in infectious organisms (Adam 

2001; Couston et al 2003; Hall and Ji, 2013: Ma et al 2013). However, it was important to 

evaluate the biochemical processes involved in the fixation of ATP and the formation of AMP, a 

feature critical for this energy-generating machinery to work efficiently via substrate-level 

phosphorylation.  

Adenylate kinase (AK), an enzyme that orchestrates the synthesis of ATP from ADP 

produces AMP, while nucleoside diphosphate kinase (NDPK) is able to transfer the high energy 
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phosphate from ATP to NDP or dNDP. Indeed both of these enzymes were found to have 

enhanced activities in the culture obtained from the stressed media compared to the control (Fig. 

4). When the activity band was excised and incubated with the respective substrate, the 

formation of ATP and AMP from ADP in the case of AK was evident. The excised activity band 

of NDPK readily gave peaks indicative of ATP and GDP when incubated with ADP and GTP 

(Fig. 4). To confirm the workings of this metabolic network oxaloacetate, a product of fumarate, 

AMP, and PPi were incubated with the soluble CFE from stressed and control bacteria obtained 

at the same phase of growth. Peaks attributed to PEP, GTP, and ATP, in the CFE isolated from 

the stressed P. fluorescens provided elegant evidence for the energy generating machine that was 

responsible for fuelling the survival of the stressed bacteria challenged by nitrosative stress. 

Although the detoxification mechanisms involved in nitrosative stress have been subject 

to numerous investigations, the molecular pathways involved in the maintenance of ATP 

homeostasis under these conditions has yet to be fully unravelled. This study shows that P. 

fluorescens elaborates an intricate network to fulfill its energy needs. The pivotal role of the 

TCA cycle in generating ATP by substrate-level phosphorylation is P. fluorescnes exposed to 

aluminum toxicity was recently demonstrated (Singh et al 2011). In this instance the 

upregulation of ICDH-NADP dependent and isocitrate lyase allows to combat the ineffectiveness 

of the Al-sensitive aconitase in order to generate glyoxylate and NADPH. The former then is 

transformed into oxalate and ATP, a process that is mediated by oxalate acetylating 

dehydrogenase, oxacyl CoA transferase and succinyl CoA synthatase. NADH and NADPH 

levels are also intricately modulated during stress (Mailloux et al, 2011; Li et al 2014). In this 

study, PPDK in tandem with the phosphotransfer systems involving AK and NDPK, provides an 

efficient route to ATP with the concomitant formation of AMP and NTP. Indeed, infectious 



35 
 

 

organisms that are subjected to the defense mechanisms of their host are known to invoke SLP, 

using PPDK to produce ATP. Strategies to inhibit these enzymes may provide therapeutic cues 

against these microbes. In conclusion, findings in this report further reveal the nutritional 

versatility and adaptability of P. fluorescens and demonstrate the intricate metabolic network it 

utilizes to fulfill its requirements for ATP when subjected to nitrosative stress. The metabolic 

module may be a practical target to arrest infectious organisms known to invoke this pathway to 

thwart host defenses.  
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2.6: Figures 

 

 

Figure 1: A Effects of nitrosative stress on Pseudomonas fluorescens, A Growth profiles of 

control and RNS-stressed cultures  

B Fumarate consumption in control and stressed cultures as measured with HPLC at 236 nm. n = 

3. (SD ±), C Select metabolites and nucleotides in the soluble cell free extract (sCFE). 

     : Control,     : Stressed cultures (n = 3; SD±) 
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Figure 2: Enzymatic activity of select TCA cycle and ETC enzymes: A ICDH-NAD
+
, B MDH, C 

Complex II, D Complex IV (Con: Control, Str: Stress): E Fumarate metabolism in P. fluorescens    

(n = 3).     : ATP without KCN,    : ATP with KCN,    : Fumarate consumption without KCN,    : 

Fumarate consumption with KCN. Con: Control, Str: Stress 
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Figure 3: Enzymes involved in fumarate metabolism; A Fumarase isoforms Fum A and Fum C, B 

Fumarate reductase (FRD), C Phosphoenolpyruvate carboxylase (PEPC), D Phosphoenol 

pyruvate dikinase (PPDK), E Pyruvate Carboxylase (PC). 
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Figure 4: A Adenylate Kinase activity, B NDPK activity, and densitometric readings for in gel 

activity (n = 3) (Con: Control, Str: Stress), C The NDPK activity bands were incubated with ADP 

and GTP, note the production of ATP and GDP (     : Control,     : Stress) n = 3. D Nucleoside 

triphosphate production by CFE in the presence of oxaloacetate, AMP, PPi. (Con: Control, Str: 

Stress) n = 3 (SD AU ±) (    : Control,     : Stress) 
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Figure 5: An alternate ATP-producing machinery in P. fluorescens exposed to nitrosative stress. 

Fumarate and AMP are key ingredients in this process. 
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Experiment Control Stress 

Nitrate Reductase activity (AU)
a
 

3597 ± 58 46501 ± 49 

Nitrite Reductase activity (AU)
a
 

2113 ± 62 37632 ± 97 

Griess assat (NO
2

-
) 2.10 µM ± 0.63 µM 102 µ ± 15 µM 

Griess assay (NO
3

-
) 2.78 µM ± 0.71 µM 113 µM ± 22 µM 

ICDH-NAD
+
 activity (nmol/min 

mg/protein NADH)
b
 

106.67 ± 10.4 33.55 ± 2.1 

MDH activity (nmol/min 

mg/protein NADH)
b
 

60.43 ± 5.5 56.13 ± 3.2 

 

Table 1: Activities of some enzymes, and nitrate and nitrite levels in control and stressed 

cultures. 
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Chapter 3: Conclusion and Future Perspectives 

 

 The findings in this project revealed that P. fluorescens was able to proliferate despite the 

negative impact of nitrosative stress on the growth rate. Although the RNS-challenged microbe 

multiplied slower than the control cultures, the cellular yield at stationary phase of growth was 

relatively similar. Enzymes such as nitrite reductase, nitrate reductase, and GSNOR were 

upregulated to detoxify the injurious effects of the RNS. There was a marked reduction in 

enzymes of the TCA cycle and ETC. These metabolic networks are critical for the generation of 

ATP in an O2-dependent manner. Despite the drastic reduction of oxidative phosphorylation, P. 

fluorescens did thrive in the presence of RNS. To achieve this, a unique metabolic module was 

elaborated in an effort to generate ATP via substrate level phosphorylation (SLP). The increase 

activities of PEPC and PPDK help produce the high-energy PEP that was tapped to produce 

ATP. In this instance as AMP was phosphorylated to ATP, there was a net gain in energy as 

opposed to the traditional glycolytic system. 

 As Fe-S clusters in the widely occurring fumarase (FUM) are severely affected by RNS 

(Abe et al 2007), P. fluorescens evoked the synthesis of fumarase C (FUM C), an Fe-

independent isomer that is known to be resistant to oxidative and nitrosative stress. The 

metabolism of fumarate was promoted by the increased activity of fumarate reductase (FRD), an 

enzyme that was barely discernable in the control cultures. Hence, the tandem of FUM C and 

FRD enabled the microbe to degrade fumarate, the sole carbon source in this defined medium. 

While the former mediates the formation of malate, the latter produces succinate. These two 

metabolites subsequently fuel the production of energy and enable the microbial system to 

proliferate. 
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 An intricate phosotransfer system provided an effective vehicle to produce high energy 

phosphates and AMP. The latter is an essential ingredient that propels the PPDK-ATP generating 

system. Thus, PEPC, PPDK, AK, and NDPK worked in a collaborative fashion. This meant that 

the ATP-machinery did not necessitate the presence of O2 This metabolic reconfiguration 

allowed P. fluorescens to neutralize the toxic influence of RNS, an attribute that numerous 

infectious organisms are known to invoke in an effort to invade various host-defense 

mechanisms (Fig. 3.1).  

The enhanced activity of PEPC provides a very effective route to generate PEP, the high 

energy phosphate that was eventually tapped into ATP. The presence of PPDK mediated the 

conversion of PEP and AMP into ATP, a process more potent than the reaction mediated by 

pyruvate kinase (PK). The latter utilizes ADP to synthesize ATP from PEP (Anastasiou et al 

2011). The upregulation in activities of AK helped supply adequate AMP with the concomitant 

formation of ATP, while the increased presence of NDPK ensured a pathway to transfer the high 

energy phosphate from ATP to other nucleoside diphosphate (NDP).  

Although the nitrite and nitrate reductase aided in the detoxification of RNS into less 

harmful nitrite and nitrate, the increased production of pyruvate in the cultures exposed to 

nitrosative stress may also be an important tool in combatting RNS. This keto acid is known to 

neutralize RNS and ROS with the subsequent formation of acetate. The significance of 

observation needs to be further explored, such as possible antioxidant studies. The metabolic 

strategy uncovered in this thesis would have the added benefit of both providing a route to 

effective ATP-synthesis and the generation of pyruvate, a potent anti-oxidant. It is for these 

reasons that these two target enzymes provide an excellent therapeutic cue against RNS-resistant 
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microbes. Additionally studies can also be performed on other strains of P. fluorescens to see if 

other adaptations might be present. 

 

Figure 3.1: Summary of key findings on fumarate metabolism in P. fluorescens subjected to 

RNS stress. Note the novel ATP-producing mechanism independent of O2. 

 Fumarate metabolism is also of great interest as it can provide easy access to value-added 

products such as malate and succinate. Succinate has a variety of commercial applications in the 

pharmaceutical, plastic, and food industries. The discovery of the increase activity of the enzyme 

FRD may be investigated in an effort to unearth an easy route to the production of succinate. 

This enzyme, or the whole RNS-stressed P. fluorescens may be immobilized on a solid surface 

in an effort to provide succinate (Fig 3.2). The addition of fumarate or other renewable 

metabolites can provide a profitable means of producing succinate devoid of any contaminants. 
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Figure 3.2: Outline of potential bioreactor for succinate production using fumarate. (Note 

the use of HPLC to separate metabolites and thus purify succinate for industrial 

applications). 

This work has helped unravel a unique ATP-generating machinery that utilizes PEPC and 

PPDK as its key components and an elaborate network of phosphotransfer enzymes to mediate 

the transfer of High energy phosphate. These can be possible targets in curtailing RNS-resistant 

bacteria. Furthermore, RNS-tolerant P. fluorescens and/or its components can be tailored to 

produce succinate, an important commercial commodity. 
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