

COMPUTER-INTERPRETABLE GUIDELINES USING GLIF WITH WINDOWS
WORKFLOW FOUNDATION

by

Ryan

Minor

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science (MSc) in Computational Science

The School of Graduate Studies
Laurentian University

Sudbury, Ontario, Canada

(c) Ryan Minor, 2014

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE

Laurentian Université/Université Laurentienne
School of Graduate Studies/École des études supérieures

Title of Thesis
Titre de la thèse COMPUTER IMPLEMENTABLE GUIDELINES USING GLIF WITH
 WINDOWS WORKFLOW FOUNDATION

Name of Candidate
Nom du candidat Minor, Ryan

Degree
Diplôme Master of Science

Department/Program Date of Defence
Département/Programme Computational Sciences Date de la soutenance June 30, 2014

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Waldemar W. Koczkodaj
(Supervisor/Directeur de thèse)

Dr. Ryszard Janicki
(Committee member/Membre du comité)
 Approved for the School of Graduate Studies
Dr. Raymond G. Hendel Approuvé pour l’École des études supérieures
(Committee member/Membre du comité) Dr. David Lesbarrères
 M. David Lesbarrères
Dr. Andrzej Grzybowski Director, School of Graduate Studies
(External Examiner/Examinateur externe) Directeur, École des études supérieures

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Ryan Minor, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and
make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the
duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or
project report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis,
dissertation, or project report. I further agree that permission for copying of this thesis in any manner, in whole or in
part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their
absence, by the Head of the Department in which my thesis work was done. It is understood that any copying or
publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written
permission. It is also understood that this copy is being made available in this form by the authority of the copyright
owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted
by the copyright laws without written authority from the copyright owner.

iii

ABSTRACT

COMPUTER-INTERPRETABLE GUIDELINES USING GLIF WITH WINDOWS
WORKFLOW FOUNDATION

Ryan Minor

Masters in Computational Science

Laurentian University

2014

Modern medicine is increasingly using evidence based medicine (EBM). EBM has
become an integral part of medical training and ultimately on practice. Davis et al. [6]
describe the “clinical care gap” where actual day-to-day clinical practice differs from
EBC, leading to poor outcomes.

This thesis researches the GLIF specification and implements the foundation for a GLIF
based guideline system using Windows Workflow Foundation 4.0. There exists no
public domain computer implementable guideline system. The guideline system
developed allows a guideline implementer to create a guideline visually using certain
medical related tasks, and to test and debug them before implementation.

Chapter 5 of this thesis shows how to implement a guideline called Group A
Streptococcal Disease Surveillance Protocol for Ontario Hospitals which is of
fundamental importance for Ontario hospitals.

The workflow approach allows developers to create custom tasks should the need arise.
The Workflow Foundation provides a powerful set of base classes to implement clinical
guidelines.

Contents

1 Introduction 1
1.1 Introduction . 1

1.1.1 Motivation for this Thesis . 1

2 Computer-Interpretable Guidelines (CIGs) 3
2.1 What is Evidence-Based Medicine? . 3
2.2 From Text Guidelines to Computer-Interpretable Guidelines 3

2.2.1 Why are Guidelines Needed? . 3
2.2.2 The Development of Clinical Guidelines 4
2.2.3 From Text to Computer-Interpretable Guidelines 5
2.2.4 Anatomy of a CIG . 5
2.2.5 Electronic Medical Records . 6

2.3 Modeling Clinical Guidelines . 7
2.3.1 Introduction . 7
2.3.2 Arden syntax . 7
2.3.3 Task-Network Models . 10

2.4 Implementations of Computer Clinical Decision Support 11
2.4.1 The Unified Medical Language System (UMLS) 11
2.4.2 HL7 and the Reference Information Model (RIM) 13

2.5 Comparing Computer-Interpretable Guideline Models 14

3 Guideline Interchange Format (GLIF) 16
3.1 The Three Layers of Abstraction . 18
3.2 Major Classes . 18

3.2.1 Guideline Class . 18
3.2.2 Steps . 18
3.2.3 Action Steps . 21
3.2.4 Branch and Synchronization Steps 21

iv

CONTENTS v

3.2.5 Three Value Criteria . 22
3.3 Authoring using Protege . 22
3.4 Expression Languages . 22

4 Implementing GLIF in C# .NET 23
4.1 Introduction to .NET Framework . 25
4.2 Windows Workflow Foundation . 26
4.3 Workflow Modeling Styles . 27
4.4 Activities . 27

4.4.1 Creating a Custom Activity . 28
4.5 The Flowchart Style . 29

4.5.1 FlowStep . 29
4.5.2 FlowSwitch<> . 29
4.5.3 FlowDecision Activity . 29

4.6 Workflow Services . 30
4.7 XAML Format . 30
4.8 Implementation of GLIF3.4 in WF . 30

4.8.1 Implementing the Host . 31
4.8.2 Host-Workflow Communication 31

4.9 Evaluating Expressions . 34
4.10 Designing GLIF Activities . 34

4.10.1 The BaseActivity Class . 34
4.10.2 Implementing PatientStateStep 35
4.10.3 Implementing ActionStep . 35
4.10.4 DecisionStep . 38
4.10.5 Branch and Synchronization Steps 41
4.10.6 Parsing RDF . 42

5 Authoring a Guideline in Workflow Foundation 44
5.1 The Guideline . 44

5.1.1 Subguideline - Treatment of GAS 45
5.1.2 Creating the Subguideline . 46
5.1.3 Implementing the Main Guideline 49
5.1.4 Testing the Guideline . 53

6 Conclusion 55

CONTENTS vi

A BaseActivity Source Code 59

B PatientStateStep Source Code 62

C ActionStep Source Code 65

List of Figures

2.1 Guideline System Diagram . 6
2.2 Arden Syntax . 9
2.3 UMLS Metathesaurus . 12

3.1 Cough Guideline . 17

4.1 Integrated Development Environment (IDE) 24
4.2 Major Assemblies . 25
4.3 CodeActivity sample . 28
4.4 Workflow Services . 30
4.5 IHostMessaging . 31
4.6 IHostDataRequest . 32
4.7 Event Handlers . 32
4.8 Instance Variables of BaseActivity . 33
4.9 Rules Engine Calculator . 35
4.10 PatientStateStep . 36
4.11 ActionStep . 36
4.12 Task Diagram . 37
4.13 Find Flowchart Reference . 40
4.14 Deleting Temporary Variables . 40
4.15 Setting Temporary Variables . 41
4.16 Parsing Stages . 43

5.1 Decision Step - Is HWC Pregnant or Lactating? 46
5.2 Medical Action Task - Prescribe Cephalexin 47
5.3 Adding an OutArgument . 48
5.4 Treatment of GAS Subguideline . 48
5.5 Adding a Subguideline . 49
5.6 Matching Guideline Variables with Subguideline Variables 50

vii

LIST OF FIGURES viii

5.7 PatientStateStep for treated = true . 51
5.8 MessageTask - Suspend HCW for 24 Hours 51
5.9 Full Main Guideline . 52
5.10 Query if Patient is Pregnant or Lactating 53
5.11 MedicallyOrientedActionStep - Prescribe Cephalexin 54
5.12 Suspend Heath Care Worker for 24 Hours 54

Chapter 1

Introduction

1.1 Introduction

Empirical research suggests that health care is not as safe as it should be[14]. A study in
Canada has shown an alarming number of unintended injuries or complications resulting
in death, disability or prolonged hospital stays arising from health care management[4].

One reason is that decision making in modern medical practice is based on increasingly
complex medical knowledge and clinical evidence, making it difficult to provide the best
possible care in a busy healthcare setting [22]. Clinical practice guidelines using evidence-
based medicine have been developed to deal with widespread variations in clinical practice
and also soaring health care costs[24].

The usefulness of clinical guidelines on medical practice has been demonstrated in
several studies [3]. Clinical guidelines have been gaining increasing acceptance in medicine
to support diagnosis and treatment.

There is some impetus for computerized clinical guidelines. The report of the U.S.
Institute of Medicine - To Err is Human - recommended that health care organizations,
individually and in collaboration, commit to using information technology to manage
their knowledge bases and processes of care, and manage the case process through re-
minder, decision support, and guidance grounded in evidence-based knowledge[14].

1.1.1 Motivation for this Thesis

Limited work has been done by academics in the area of computerized clinical decision
support. In recent years, researchers have developed computer-interpretable guideline
frameworks to represent clinical guidelines. Unfortunately, execution engines based on

1

Chapter 1. Introduction 2

these frameworks are proprietary and cannot easily be extended by other researchers.

The major goal of this thesis is to provide an accessible execution engine for computer-
interpretable guidelines to the research community for further development. It is hoped
that this engine will serve as the foundation for a guideline system to:

• educate students of medicine by allowing them to follow a clinical guideline and
access useful information at the various stages in the guideline (e.g. why is the
guideline asking this question?);

• assist personnel at medical facilities to follow proper medical protocols prescribed
by administration or government; and

• provide assistance to physicians at the point of care when dealing with complex
cases.

In this thesis project, a computer-interpretable guideline engine based on the Guide-
line Interchange Format (GLIF) is developed. GLIF is a format for representing clinical
knowledge conceptually.

GLIF was selected because the framework was developed by leading researchers in the
field of medical informatics from institutions including Harvard, Stanford and Columbia
universities. It also incorporates successful features of other computer guideline models
[18] and does not presuppose that an institution stores data in any particular format. A
major challenge of implementing computer-interpretable guidelines (CIGs) is integration
with an actual electronic medical record(EMR). A CIG based on GLIF can be exported
to other hospitals and only the EMR interface would need to be built.

New programming languages and libraries are available to implement clinical decision
support. The execution engine developed is based on Microsoft C# .NET Windows
Workflow Foundation (WF). WF is part of the .NET framework and is bundled with
recent versions of the Windows operating system and can be downloaded free.

In section 2 of this thesis, existing work on computer-interpretable guideline systems
is discussed. In section 3, the GLIF specification is discussed in detail. Section 4 describes
the work done to create an execution engine based on GLIF specification using Windows
Workflow Foundation. In section 5, a guideline is implemented using the execution engine
developed in section 4. Finally, section 6 concludes this thesis.

Chapter 2

Computer-Interpretable Guidelines
(CIGs)

2.1 What is Evidence-Based Medicine?

Evidence-based medicine (EBM) is defined as "the conscientious, explicit, and judicious
use of current best evidence in making decisions about the care of individual patients"[21].

EBM has become an integral part of medical training and ultimately on practice.
Physicians-in-training are taught skepticism of anecdotal experience and to accept con-
sensus recommendations of medical experts, expecting that such recommendations would
be supplanted if contrary evidence is found through study[1].

The benefits of EBM have been cited many times, but little research has discussed
its limitations[1]. According to Tonelli[1], EBM devalues the individuality of patients
as well as the complex nature of sound clinical judgment, and research underpinning a
medical conclusion may not apply to each individual circumstance.

2.2 From Text Guidelines to Computer-Interpretable
Guidelines

2.2.1 Why are Guidelines Needed?

The Institute of Medicine defines clinical practice guidelines as “statements that include
recommendations intended to optimize patient care that are informed by a systematic re-
view of evidence and an assessment of the benefits and harms of alternative care options”

3

Chapter 2. Computer-Interpretable Guidelines (CIGs) 4

[20].

Davis et al. [6] describe the "clinical care gap" as actual day-to-day clinical practice
differing from evidence-based knowledge leading to poor outcomes. The authors cite
numerous examples including suboptimal management of rheumatoid arthritis in British
Columbia where actual patient care was not consistent with the clinical practice guide-
lines which recommended early and aggressive antiheumatic drugs in certain instances.
According to the authors, one strategy to enhance quality of care is to "improve the pro-
cess by which knowledge – more specifically, clinical research findings and evidence-based
practices – are incorporated into routine practice."

Woolf [26] surveyed the potential advantages and limitations of clinical guidelines.
Potential advantages include improved consistency of care and health care outcomes for
patients and improved patient knowledge of available procedures and risks. Potential
limitations relate primarily to adequacy of the scientific evidence supporting clinical
guidelines and biases of guideline developers, governments and insurers.

There is evidence that guidelines can assist practitioners when making medical diag-
noses. A well-known study by Essex[8] documented the value of problem-oriented flow
charts to make diagnoses at outpatient clinics in Tanzania. At the time of the study,
most medical care in developing countries was provided by paramedical staff who undergo
three years of training but who are not doctors. To solve a particular type of problem,
researchers developed a flow chart for these paramedical workers to follow. These flow
charts were used on 2,030 occasions to make diagnoses. On 94% of these occasions, doc-
tors agreed with the diagnosis. Of the wrong diagnoses, 58 diagnoses would have resulted
in the patient being given the same treatment or being referred, 36 in the patient being
given unnecessary treatment or being referred and 32 in the patient having substantially
different management. The author concluded that the problem-oriented methodology
had acceptable levels of accuracy, repeatability and rapidity, and may have resulted in
improved quality of medical care.

2.2.2 The Development of Clinical Guidelines

Tu et al. [25] propose six dimensions for modeling clinical guidelines:

• Provider behaviours that a guideline influences - does the guideline author wish to
set goals or constraints, choose an alternative course of action among competing
options, sequence a set of actions, or interpret data?

Chapter 2. Computer-Interpretable Guidelines (CIGs) 5

• Temporal dimensions of actions and data - is an action specified in the guideline a
“one-shot” decision, episodic interventions, or continuous monitoring?

• Abstractions - does the guideline require data abstraction such as a person’s choles-
terol level (low, normal or high)?

• Degree of uncertainty - how certain are the recommendations and data collection
requirements?

• Point of view - is the “vantage point” of the guideline that of a doctor or nurse?

• Normal case and exceptions - does the guideline describe exceptional cases?

In 1992, the Institute of Medicine published a report on authoring guidelines called
Guidelines for Clinical Practice: From Development to Use which suggests a collaborative
approach with experts from numerous domains when developing clinical guidelines [9].

2.2.3 From Text to Computer-Interpretable Guidelines

Computer-interpretable guidelines (CIGs) require machine readable representations of
the medical knowledge contained in the clinical guidelines.

Guidelines are written in text and need to be translated into a computer representa-
tion. Patel et al. [16] demonstrate that such translation is not a trivial task. Experts
interpret the guidelines based on specialized knowledge from education and experience,
creating a situation model. They also organize knowledge into a hierarchy with higher
level concepts on top and gradually moving to lower level concepts. Non-experts orga-
nize knowledge based on the organization imposed by the guideline text. They may also
miss “obvious” steps in the decision process that would be clear to experts. Computer
implementations require that all steps be explicit. The authors suggest that experts work
with computer scientists to create computer-interpretable guidelines.

Research has shown that the following features of clinical decision support systems are
critical for improving clinical practice: decision support as part of physician workflow, the
providing of useful recommendations rather than just assessments, and the availability
of the support at the time and location of decision making[13].

2.2.4 Anatomy of a CIG

A typical clinical guideline system is shown in Figure 2.1.

Chapter 2. Computer-Interpretable Guidelines (CIGs) 6

Figure 2.1: Guideline System Diagram

The user interacts with the system through clinical applications. The clinical appli-
cations call upon the guideline engine to execute the guideline which is specified in a
representation framework such as GLIF. The execution engine uses data from the health
care provider’s databases, but would generally use an interface because of differences in
terminology and labeling between the guideline developer and the health care provider.
The interface would translate the data from the health care provider’s databases into
usable data for the guideline system.

2.2.5 Electronic Medical Records

The National Alliance for Health Information Technology defined an electronic medical
record as follows[15]:

An electronic record of health-related information on an individual that can
be created, gathered, managed and consulted by authorized clinicians and
staff within one healthcare organization.

In practice, guidelines are not well deployed at the point of care, mainly due to a
mismatch between decision support modules and electronic medical records (EMR) [23].
A guideline system must be able to request external data such as patient data in an
electronic medical record (EMR). A specific drug, for example, might have numerous
identifiers across hospitals. A guideline using a particular hospital’s identifier would
likely require modification in order to be used at a different institution.

To improve portability of guidelines, researchers have developed controlled vocabu-
laries to refer to the same items of data, and representation models for communicating

Chapter 2. Computer-Interpretable Guidelines (CIGs) 7

information amongst different stakeholders such as hospitals and insurance companies.
An example of a controlled vocabulary is the Unified Medical Language System (UMLS)
and an example of a representation model is the Reference Information Model (RIM).

Both UMLS and RIM are described later in this chapter.

2.3 Modeling Clinical Guidelines

2.3.1 Introduction

Decision rules are often represented in one of two formats: procedures and production
rules [11]. A procedure is similar to a subroutine of a programming language and consists
of references to data and logical statements that manipulate the data, as well as control
structures that direct the flow of decision making [11]. A production rule is similar to
an if...then statement in a programming language. An execution engine decides which
rule to execute and proceeds to do so. An example of a production rule system is the
language CLIPS.

Procedures have the disadvantage of mixing control and clinical knowledge, requiring
that the developer be familiar with the programming language [11]. In addition, pro-
cedures may be difficult to maintain and require recompiling and redistribution when
changes are needed.

Production rules may be developed by clinical guideline developers without program-
ming knowledge. However, each production rule is independent, making it difficult for
the developer to predict the order of rule execution and the interaction with other rules
[11]. Some production systems, such as CLIPS, allow the programmer to specify a prior-
ity level for each production rule. The use of priority levels can make the rules difficult
to read and debug.

2.3.2 Arden syntax

To overcome the disadvantages of procedures and production rules, researchers created
a standard for representing knowledge in a shareable format. In 1991 the Arden syntax
was published by the American Society for Testing and Materials (ASTM). The Arden
syntax combines procedures and production rules and was later integrated into Health
Level 7 (HL7).

Arden syntax code is organized into self-contained files called Medical Logic Mod-
ules (MLMs). Each Medical Logic Module represents a single clinical decision and is

Chapter 2. Computer-Interpretable Guidelines (CIGs) 8

organized into three categories: maintenance, library and knowledge. Each category is
divided into subcategories called slots. The maintenance category contains information
about the author, the institution and MLM version. The library category contains back-
ground information about the purpose of the MLM. The knowledge category contains the
algorithm for decision making. The evoke slot defines when the MLM is to be executed.
When the evoke condition is met, the MLM may start immediately, after a specified
waiting period, or periodically. The logic slot contains the logic and procedures for de-
cision making based on input data and the action slot writes the result to screen, sends
an e-mail or calls on other MLMs.

Figure 2.2 shows sample code from HL7 1. The sample illustrates a knowledge category
of a medical logical module for calculating body mass index (BMI). The data slot refers
to three data items: size, weight and birth. The logic slot begins by calculating BMI and
age. The slot then sets a variable called classification based on the results of user specified
logic. Finally, the action slot outputs the body mass index (BMI) and classification.

1HL7rMaterial included in this thesis is for non-commercial use and is copyrighted by Health Level
SevenrInternational. All Rights Reserved. Use of HL7 copyrighted materials for commercial purposes
is limited to HL7 Members and is governed by HL7 International’s Intellectual Property Policy. HL7
and Health Level Seven are registered trademarks of Health Level Seven International Reg. U.S. Patent
Trademark Office.

Chapter 2. Computer-Interpretable Guidelines (CIGs) 9

Figure 2.2: Arden Syntax

Note that the Arden syntax is static. It takes data, applies logic and draws a conclu-
sion based on the data. The Arden syntax is part of the Health Level 7 standard.

A weakness of the Arden syntax is that it does not provide full support for concep-
tualizing a multi-step guideline that unfolds over time[18]. The Arden syntax could not
express a guideline that requires, for example, medication, observation and then testing.
Peleg, Tu et al. [18] identified a more versatile subset of approaches to computerized clin-
ical guidelines based on a series of component tasks that are executed over time known
as task-network models.

Chapter 2. Computer-Interpretable Guidelines (CIGs) 10

This important subset is discussed in the next subsection.

2.3.3 Task-Network Models

Task network models (TNM) typically are designed to represent complex, multistep clin-
ical guidelines and for describing temporal and other relationships between component
steps[18]. TMNs can model alternative pathways to control flow through a guideline and
provide tools to visually represent the guideline or steps and the organization of tasks
within them.

In this section, two task network models are discussed: Asbru and GLIF.

Asbru

Asbru was developed by the Vienna University of Technology and Stanford Medical Infor-
matics (known as the “Asgaard project”) and is an intention-based plan representation
language to represent clinical guidelines and protocols as time-oriented skeletal plans.
The skeletal plans provide an outline of a clinical guideline and leave the implementation
to the run-time engine.

Skeletal plans are plan schemata at various levels of detail that capture the essence of
a procedure, but leave room for execution-time flexibility in the achievement of particular
goals[10]. The application of guidelines involves an interpretation by the care provider
of the skeletal plans that have been designed by the guideline’s author.

The Asbru approach distinguishes between design time and execution time of a clinical
guideline. During design time, the guideline author prescribes (i) the intended interme-
diate and overall pattern of patient states, (ii) an intended plan and (iii) specific actions.
The intended intermediate and overall pattern of patient state could be, for example, to
maintain morning blood glucose to stay within a certain range. The intended plan could
be to prescribe a certain class of drugs twice a day, and the specific action could be to
administer a particular drug in the morning and in the evening.

During execution-time, the care-provider performs actions, which are recorded, ob-
served and abstracted over time into an abstracted plan.

Guideline Interchange Format

Intermed Collaboratory was created in 1994 as a collaboration among Stanford Univer-
sity, Brigham and Women’s Hospital and Columbia University with the principal goal

Chapter 2. Computer-Interpretable Guidelines (CIGs) 11

of developing tools and resources for disseminating clinical guidelines across medical dis-
ciplines and settings. A major contribution of Intermed was the development of the
Guideline Interchange Format (known as “GLIF”) which is a computer-based format to
distribute guidelines across different institutions and systems.

GLIF represents a clinical guideline as a network of steps resembling a flowchart.
Steps can implement branching logic or execute actions.

In 1998, Intermed published its first version of GLIF called GLIF 2.0.2 At the time
of writing, the latest release of GLIF is version 3.5.

The GLIF model is implemented in this thesis. A detailed description of GLIF is
reserved for Chapter 3.

2.4 Implementations of Computer Clinical Decision
Support

Implementing computer guidelines in a health care setting is an expensive process. In
addition to the difficulties associated with creating the guidelines themselves, there exist
difficulties with the institutions collecting, using and transmitting the data. Hospitals,
for example, may use numerous terms to communicate the same information. Greenes
[11] described a situation where decision logic was exported from one hospital to others.
The recipient hospitals wanted to identify patients on I.V. antibiotics that were capable
of oral intake, but represented “oral intake” in a textual format and in numerous different
ways: orally, take orally, by mouth, swallow, etc. A computer-interpretable guideline at
one health care institution may not work at another due to such differences. This is a
severe impediment to implementing computer guidelines. Also, in the past, there was no
consistent framework for communicating medical information. Fortunately, the Unified
Medical Language System (UMLS) was created to provide a consistent framework for
referring to medical information in a language neutral manner and the HL7 Reference
Information Model (RIM) was created to provide a consistent means of organizing and
communicating this information.

2.4.1 The Unified Medical Language System (UMLS)

UMLS was created to help build software programs that need to use the language of
biomedicine and health. For example, electronic medical records store data about patient

2Versions prior to GLIF 2.0 were not released to the public.

Chapter 2. Computer-Interpretable Guidelines (CIGs) 12

medications. Medication can be represented using many different specialized vocabular-
ies. Developers of software that use data from electronic medical records may need to
make significant changes to the software in order to target a different electronic medical
record system. UMLS was designed to link these disparate vocabularies into a common
representation. UMLS is maintained by the U.S. National Library of Medicine3.

Figure 2.3: UMLS Metathesaurus

The “Metathesaurus” is what links the numerous disparate medical vocabularies into
a common system. It is organized by concept, with the purpose of linking similar concepts
from the numerous vocabularies in use into a single concept that can be referenced by a
computer program. Each concept has a unique code called a Concept Unique Identifier
(CUI). Each CUI is linked to at least one unique atom identifier (AUI), single string
identifier (SUI) and lexical unique identifier (LUI). The AUI refers to the instance of the
concept in each source vocabulary. A single string identifier (SUI) is created whenever

3see http://www.nlm.nih.gov/research/umls/

Chapter 2. Computer-Interpretable Guidelines (CIGs) 13

the same string appears in multiple vocabularies. Finally, a lexical unique identifier joins
strings that are lexical variants of one another.

Figure 2.3 illustrates concept unique identifier C0004238 concerning Atrial Fibrilla-
tion4. Note that there are two source vocabularies referenced: MSH refers to Medical
Subject Headings which is maintained by the U.S. National Library of Medicine 5 and
PSY which refers to the Thesaurus of Psychological Index Terms and is maintained by
the American Psychological Association6. Both MSH and PSY use the same term “Atrial
Fibrillation” so a single string identifier is created. Finally, other parts of the MSH and
PSY refer to “Auricular Fibrillation” and its plural variant. These concepts are joined
in a lexical unique identifier because the singular and plural terms are not lexicologically
distinguishable. Finally, Atrial Fibrillation is joined with Auricular Fibrillation to form
a single concept.

Developers of computer systems for hospitals, for example, can use these concept
unique identifiers to communicate with insurance companies, or to update electronic
medical records. These concepts are critical to developers of computer-interpretable
guidelines to ensure that consistent understandable information is communicated.

2.4.2 HL7 and the Reference Information Model (RIM)

Health Level Seven (HL7) was founded in 1987 and is a non-profit organization that
creates standards for the exchange, integration, sharing and retrieval of electronic health
information to support clinical practice and health services.

The impetus for a widespread reference model for communicating medical data came
in 1986 at the MEDINFO Conference where an influential group of end users and system
vendors determined that communication of medical data between heterogeneous health-
care information systems is necessary to accelerate the diffusion of automated systems
technology in health care [12].

The RIM is a standard for modeling health information, consisting of generic classes
from which more specific health classes are derived. For example, the RIM contains a
generic class called Act from which two subclasses - Observation and Procedure - are
derived.

4UMLSrReference Manual [Internet]. Bethesda (MD): National Library of Medicine
(US); 2009 Sep-. 2, Metathesaurus. Reproduced with permission. Available from:
http://www.ncbi.nlm.nih.gov/books/NBK9684/

5http://www.nlm.nih.gov/mesh/meshhome.html
6http://www.apa.org/pubs/databases/training/thesaurus.aspx

Chapter 2. Computer-Interpretable Guidelines (CIGs) 14

The major RIM classes are:

• Act which represents the actions that are executed;

• Participation which expresses the context for an act in terms of who performed it,
for whom it was done and where it was done;

• Entity which represents the physical things and beings of interest in health care;

• Role which establishes the roles that entities play in the health care acts;

• ActRelationship which represents the binding of one act to another; and

• RoleLink which represents relationships between individual roles.

At the time of writing, the latest version of the RIM is 3.0.

2.5 Comparing Computer-Interpretable Guideline Mod-
els

Peleg et al. [18] compared six computer interpretable guideline models - Asbru, EON,
GLIF, Guide, Prodigy and PROforma - based on eight dimensions the authors believe
capture the structure of a computer interpretable guideline framework.

Each of the computer interpretable guideline frameworks studied does each of the
following to some degree:

• represents a guideline as a consisting of numerous tasks and relationships between
the tasks;

• specifies the guideline’s intention or goal;

• models an action task such as a medical action (e.g. prescribe a medication) in
some manner;

• allows for decision-making by providing constructs such as decision steps or switch
constructs;

• provides expression/criterion languages to specify decision criteria such as compar-
ison operators (is blood pressure above a certain threshold);

• abstracts medical terms - for example ”high blood pressure“;

Chapter 2. Computer-Interpretable Guidelines (CIGs) 15

• represents medical concepts; and

• represents patient information and maps to an electronic medical record.

Chapter 3

Guideline Interchange Format
(GLIF)

GLIF is a methodology for modeling and representing clinical guidelines in a structured
manner for clinical decision support applications.

GLIF is comprised of classes, attributes and the relationships among the classes
needed to model clinical guidelines. It presents a guideline as a flowchart of tempo-
rally sequenced nodes called guideline steps. There are five principal steps that are in
the specification: the decision step, the action step, the branch step, the synchronization
step and the patient state step.1

GLIF is designed to be used in a variety of contexts including guidelines involving dif-
ferent stages of medical problem (screening, diagnosis), setting (inpatient or outpatient)
and time frame (emergency, chronic)[19].

Figure 3.1 illustrates a guideline for the management of chronic cough in non-immunodeficient
adults.2 The guideline begins with a patient state step called Chronic Cough. The second
step is an action step to fetch relevant patient cough related data. The next step is a
decision step with two branches: one branch if an ace inhibitor (ACEI) is suspected as
the cause of the cough and another if ACEI is not suspected.

If ACEI is suspected as the cause of the cough, an action steps tells the clinician to
order that the patient stop using the ACEI for four weeks. A patient state step follows
to indicate that four weeks must have passed for the guideline to continue. Once four
weeks have passed, an action step is invoked : evaluate patient. The evaluate patient
task calls a subguideline to investigate other possible causes.

1This implementation focuses on the GLIF 3.4 specification.
2Figure 3.1 is a screen shot of a portion of the cough guideline provided by the Peleg[17] using Protege

software.

16

Chapter 3. Guideline Interchange Format (GLIF) 17

Figure 3.1: Cough Guideline

Once the patient is evaluated, another branch step asks whether the cough is gone. If
the cough is gone, the guideline ends. If the cough is not gone, the guideline follows the
same path as it would have followed if the clinician did not suspect ACEI as the cause
of the cough.

If ACEI is not suspected as the cause of the cough, another decision step (specifically
a choice step) asks whether to withhold x-ray. If the clinician wants an x-ray, an action
step tells him/her to order one. If not, an action step prescribes a treatment for the
cough.

The developers of GLIF also developed an execution engine called GLIF3 Guideline
Execution Engine (GLEE) but unfortunately the software is unavailable.3 GLEE allows

3The software belongs to Stanford University and is no longer in the public domain.

Chapter 3. Guideline Interchange Format (GLIF) 18

guideline authors to create a guideline in Resource Description Framework (RDF) format
and imported to be executed. Fortunately, there are many good free RDF authoring tools
for ontology development such as Protege4.

3.1 The Three Layers of Abstraction

GLIF represents clinical guidelines at three levels of abstraction labeled A to C, with level
A being the highest level of abstraction. At Level A, the guideline author is concerned
with conceptualizing a guideline as a flowchart, while ignoring details such as decision
criteria. At level B, the details omitted in Level A are specified. Finally, at Level C, the
guideline is implemented in a specific institutional setting. Patient data references must
be mapped to institutional electronic medical records.

3.2 Major Classes

3.2.1 Guideline Class

The Guideline class is used to model clinical guidelines and subguidelines. Each guideline
instance contains an Algorithm instance which describes the guideline’s flowchart of steps.
A step in a guideline may also call upon other guidelines (called subguidelines) to execute
certain aspects.

Guidelines are designed to be independent of one another. GLIF contemplates a
parameter passing mechanism between a guideline and subguideline.

3.2.2 Steps

An algorithm is comprised of one or more steps that implement some aspect of the
guideline.

The different steps are as follows:

1. The PatientStateStep class is an entry point into a guideline and allow for labeling
patient states.

2. The DecisionStep class represents a decision step in the guideline.
4http://protege.stanford.edu/

Chapter 3. Guideline Interchange Format (GLIF) 19

3. The ActionStep class represents an action to be performed and can be medically
oriented, such as a recommendation to a clinician, or be programming-oriented
actions such as data retrieval.

4. The BranchStep executes child activities simultaneously on separate threads.

5. The SynchronizationStep controls the flow through the guideline when one or more
children of the Branch Step finish.

Patient State Step

Patient state steps are used as entry points in a guideline. A patient may have already
had an encounter with a clinician and have been on medication for a certain amount of
time. The clinician will have followed some of the early steps in the guideline and will
need to resume at a later point.

When a patient arrives at the hospital, his current state is compared to the last
patient state that was recorded for him. The PatientStateStep contains a field called
patient_state_description that specifies (using an expression) the patient condition con-
templated by the patient state step.

The patient_state_description is expressed using an expression language such as
GELLO (discussed later). An example of a description is provided below.

((now - coughStartTime) > 3 weeks) and
(Age > 18 years) and
not (immunocompromisedEndTime >= now)

The above GELLO expression states that the PatientStateStep is applicable to a
patient who has had a cough for at least three weeks, is at least 18 years of age, and who
is not immunocompromised. This example is found in the chronic cough guideline from
Peleg [17].

Decision Step

Decision steps are used where a choice has to be made among alternatives. Such steps
resemble an if..then statement in a programming language.

The GLIF standard defines two types of decision steps:

• A case step where control flows to a branch in the decision tree based on criteria
specified in the decision option, or a default step; and

Chapter 3. Guideline Interchange Format (GLIF) 20

• A choice step where the guideline suggests preferences among alternative choices
but leaves the actual choice to an external agent (i.e. the clinician)

In a case step, the guideline developer states a condition which is represented as an
expression. The execution engine attempts to find a decision option that matches the
expression. If no match is found then the default option is selected.

In a choice step, the guideline does not provide deterministic selection criteria and
requires an external agent (i.e. a human or another program) to make the decision.
This type of step would be used, for example, where the decision cannot be represented
unambiguously or where the decision is critical. The decision options do not have to be
mutually exclusive.

Case Step

The Case Step contains a condition which determines the control flow to one of a
set of possible guideline steps. The condition is an expression that is evaluated. The
expression result is compared to each option’s options.condition_value. If the condition
matches, control flows to the guideline step that is specified by that decision option’s
destination. Should there be no match, control flows to a default destination.

Choice Step

In a Choice Step, there is no deterministic selection criteria. Generally a human user
must make the decision. The decision options need not be mutually exclusive. The GLIF
specification sometimes provides data to assist the end user when making a decision.

The specification contains a class called Choice representing the base class for the
type of choice.

The utility choice step represents a choice that uses utility theory when deciding
among the available options. The data structure would point to an algorithm to evaluate
the choices.

The rule in choice specifies rule-in, rule-out, strict-rule-in and strict-rule-out criteria
for each decision option. These criteria are used by the execution engine to evaluate the
alternatives. A rule-in is a factor favoring a particular choice. A rule-out is a factor
suggesting that a particular choice not be selected. A strict-rule-in ranks a choice the
best among the alternatives. A strict-rule-out excludes a choice. For example, if the
decision is to prescribe a certain medication, a strict-rule-out condition would be that
the person has an allergy to that medication.

Chapter 3. Guideline Interchange Format (GLIF) 21

An algorithm can be used to evaluate rule-in and rule-out conditions and provide a
suggestion to the user.

3.2.3 Action Steps

Action steps specify the clinical actions that are going to be performed in the patient-care
process. Action steps consist of one or more tasks that need to be performed known as
action specifications. An action specification can include a call to another guideline (a
subguideline_action).

The following are some of the more important actions.

AssignmentAction

The AssignmentAction is used to create or modify a primitive data item.

MedicallyOrientedActionStep

A MedicallyOrientedActionStep is used to create a medical action such as prescribing a
medication or recording an observation.

MessageAction

The MessageAction is used to send a message to the user.

GetDataAction

GetDataAction retrieves patient data from the EMR as HL7 RIM objects and transforms
them to query result data types.

Subguideline Action

The SubguidelineAction executes a subguideline. Input arguments can be provided to
the subguideline and output arguments can be retrieved.

3.2.4 Branch and Synchronization Steps

A BranchStep is used to model concurrent guideline steps. Control is directed to multiple
guideline steps for parallel execution.

A SynchronizationStep is used in conjunction with a branch step. The parallel steps
executed by the Branch Step eventually converge to a single step. The Synchronization

Chapter 3. Guideline Interchange Format (GLIF) 22

Step specifies whether all, some or one of the preceding steps must have been completed
before control can move to the next step. The continuation criteria is expressed as
a logical expression such as “Step_A or Step_B” to indicate that the next step is to
continue once either Step A or Step B are completed.

3.2.5 Three Value Criteria

GLIF uses three value logic when boolean expressions are evaluated. Three value criteria
can evaluate to true, false or unknown.

3.3 Authoring using Protege

The GLIF examples in the literature rely on modeling using Protege - an ontology de-
velopment framework developed at Stanford University.

3.4 Expression Languages

An expression language is used to build up statements that query data, logically manip-
ulate them, provide for reasoning over them and facilitate calculations[11].

GELLO was designed to represent logic in clinical guidelines and was developed ini-
tially to represent the procedural component of GLIF. Since then, it has been used outside
of GLIF and is now an HL7 standard.

GELLO is based on Object Constraint Language (OCL). OCL is a language for
describing constraints and querying UML Class Models. For example, a UML class
diagram might contain one class for Patient and one for Hospital. A constraint could
be, for example, that the maximum number of beds at the hospital is 100. GELLO is
a superset of OCL and was created to constrain and query medical ontologies including
the Reference Information Model (RIM) discussed earlier.

The GLIF implementation outlined in this thesis does not use GELLO. A generic
expression evaluator found in the public domain was used as a placeholder.

Chapter 4

Implementing GLIF in C# .NET

Figure 4.1 depicts an integrated development environment (IDE) for the development
and execution of clinical guidelines. The left hand side of the IDE shows the list of
available activities such as PatientStateStep. The bottom of the IDE shows important
debugging information listing the order of execution of guideline steps (activities) and
important information about the execution of each step (activity). The right hand side
is the guideline drawing canvas. Developers can drag and connect guideline steps and set
important parameters. On the bottom of the drawing canvas is a tab labeled “Variables.”
The workflow developer is able to set global variables that will be used throughout the
workflow. Developers can also add arguments to a workflow by clicking “Arguments.” An
InArgument is used to pass a value to a workflow variable from outside the workflow. An
OutArgument is a value produced by the workflow for retrieval from outside the workflow.
InArgument is analogous to a parameter in a C# function and an OutArgument is
analogous to a return value of a function.

The file menu contains numerous options. It allows the user to import an RDF
formatted guideline created using Protege into the system. The user can also save the
guideline into Workflow Foundation’s XAML based format. The file menu also allows
the user to run the guideline and view execution steps.

23

Chapter 4. Implementing GLIF in C# .NET 24

Figure 4.1: Integrated Development Environment (IDE)

Figure 4.2 shows the major assemblies created during the development process and
their dependencies. The assembly DesignerHost is the executable file that contains the
integrated development environment. This assembly also parses GLIFObjects into work-
flow activities. The GLIFObjects assembly contains classes that correspond to concepts
in the GLIF specification (Guideline, PatientStateStep etc) and is used to parse RDF
files produced by Protege. The ActivityLibrary assembly contains the classes used in
this GLIF implementation such as PatientStateStep. The ActivityLibrary.Design assem-
bly contains the GUI designers for the activities in the ActivityLibrary assembly. The
IHostCommunication assembly contains the interface that is used by the DesignerHost
and the workflow runtime to communicate back and forth. The arrow linking each as-
sembly shows that an assembly is dependent on another. For example, the DesignerHost
assembly depends on the IHostCommunication assembly.

Chapter 4. Implementing GLIF in C# .NET 25

Figure 4.2: Major Assemblies

4.1 Introduction to .NET Framework

The .NET Framework is a software framework designed by Microsoft for application
development. Microsoft created an object oriented programming language called C#
(pronounced C Sharp) specifically for programming .NET. The developers of C# wanted
the language to be simple, modern, general-purpose and object-oriented[7]. Programs
targeting the .NET framework are typically written using Visual Studio in either C# or
Visual Basic.

One benefit of .NET is that it frees developers from low level hardware details. C#
.NET programs are compiled into an intermediate format called the Common Interme-
diate Language (CIL) to be run by a Common Language Runtime (CLR). The CLR is
similar to the Java Virtual Machine. A major benefit of the CLR is that programmers
no longer have to compile source code for each execution environment.

The .NET Framework contains a rich library of extensible classes for application
programming including classes for graphics, cryptography, web development, network
communication and database access. The Framework is constantly improving with new
functionality coming out each new version.

Chapter 4. Implementing GLIF in C# .NET 26

4.2 Windows Workflow Foundation

A typical real world problem can be broken down into individual tasks that are to be
carried out in some order. The set of all the tasks to solve a problem is the workflow. To
write an application in a traditional language (e.g. C++), one must determine what the
application is to do and how to do it. An application written in a traditional programming
language is also a bundle of tasks that are completed in some order. The “how to” refers
to all the code consisting of variables, functions, classes, events, etc that make up a
modern application program. There is no clear distinction between the “what” and the
“how.” In order to modify a task, a developer often has to traverse numerous unrelated
lines of code to modify the relevant code and hope that there will be no unintended
consequences.

Windows Workflow Foundation (WF) offers a declarative approach to programming
that separates the programming task from the business logic[5]. Windows Workflow
Foundation is declarative, visual and “infinitely flexible” [5]. A programming task is
broken down into numerous components called activities that accomplish a unit of work.
The workflow itself specifies the “what” to do without attention to the “how”. A workflow
might start by requesting some data from an external source and then sending an email.
The workflow designer need only focus on the high level concepts consisting of data access
and email. The actual “how to” is left to the implementation of the activities. Activities
can be developed and tested individually and reused in a different context. Suppose
the workflow designer wanted to insert a new task between the data access activity and
the email activity. The designer need only insert the relevant activity and set relevant
parameters without any focus on the minute implementation details of each activity.

Windows Workflow Foundation was first released with version 3 of the .NET Frame-
work. The framework underwent a major revision with version 4 of the .NET Framework.
The .NET Framework is available free of charge, greatly expanding the number of po-
tential users of WF to execute clinical guidelines.

In the parlance of WF, a workflow is a set of tasks called activities that are executed
in some defined order. The declarative approach allows for separation of the design of
the task from the implementation details.

Workflows are executed by the workflow runtime. The workflow is run by a host such
as an application program. The WF Framework allows a host to communicate with the
workflow (and vice versa) using workflow services. The .NET Framework also comes
bundled with Windows Communication Foundation (WCF) that allows developers to

Chapter 4. Implementing GLIF in C# .NET 27

build connected, service-oriented applications. The facilities of WCF are available to
WF, making WF a good choice when developing distributed systems.

4.3 Workflow Modeling Styles

WF 4.0 offers two workflow modeling styles: sequential and flowchart. A sequential work-
flow executes activities in a sequential order. The flowchart style represents a workflow as
a series of steps that are not necessarily sequential. The flowchart style offers branching
logic whereby the next step selected depends on a designer specified condition.

4.4 Activities

Activities are the building blocks of Windows Workflow Foundation. An activity carries
out some aspect of the workflow task. For example, an activity might output text to a
device, send an email, or branch to another activity depending on the result of a rule.
WF is bundled with a forward chaining rules engine and can be used for applications
requiring execution of rules.

WF 4.0 comes with numerous built in activities from which a developer can use, or
customize. These activities are contained in the System.Activities.Statements namespace.
In this section, some of the basic workflow activities are discussed as well as how to create
a custom activity in order to illustrate the flexibility of WF 4.0.

If Activity

The If Activity adds branching logic to workflow, similar to the if...then...else syntax
found in many programming languages.

WriteLine Activity

The WriteLine Activity writes a string to either the console, or to a specified text writer.

Assign Activity

The Assign Activity is used to change the value of a variable. For example, a variable in
the workflow could change as a result of information supplied by a clinician on a form.

Chapter 4. Implementing GLIF in C# .NET 28

SendAndReceiveActivity

The SendAndReceiveActivity is used to send a message to a specified location and receive
a response back. A practical use of this activity is to send a message to a host application
and await a response.

4.4.1 Creating a Custom Activity

The first step to create a custom activity is to determine the specific tasks that the ac-
tivity needs to perform. An activity can be a composite activity consisting of multiple
activities, or a single activity. Composite activities inherit from the SequentialWork-
flowActivity class. Single activities generally inherit from CodeActivity. NativeActivity,
AsyncCodeActivity, or Activity.

The CodeActivity class is used as base class for an activity that cannot be modeled
using existing activities alone. Developers can override the Execute method to provide
custom code.

Suppose a developer wanted to create an activity to simply output “Test” to the
Visual Studio console. The developer can create a new public class by inheriting from
CodeActivity. The implementation logic is provided by overriding the Execute method.

Sample code is provided below:

Figure 4.3: CodeActivity sample

The TestActivity class can be added to a workflow to be run by the workflow runtime.

Chapter 4. Implementing GLIF in C# .NET 29

4.5 The Flowchart Style

The Flowchart is a special type of activity. To create a flowchart, one drags a Flowchart
activity onto the drawing surface.

All nodes on the Flowchart inherit from FlowNode which is an abstract base class.
Only three types of objects can be added to a Flowchart: FlowStep, FlowSwitch<> and
FlowDecision.

4.5.1 FlowStep

Custom activities inherit (directly or indirectly) from the System.Activities.Activity class.
The Activity class encapsulates all the behaviour associated with an activity. It is im-
portant to note that an activity cannot be added directly to a Flowchart. Rather, the
activity is converted to a FlowStep and the FlowStep is added to the Flowchart. Example
code is provided below.

PatientStateStep ps = new PatientStateStep();
FlowStep fs = new FlowStep();
fs.Action = ps;

The above code is automatically created when an activity is added to a Flowchart in
the workflow designer.

4.5.2 FlowSwitch<>

FlowSwitch<> allows the user to specify two or more possible branches to take based
upon the result of a condition. For example, a workflow handling a bank transaction
might choose the next node to execute based on whether the transaction is a deposit,
withdrawal or other transaction. The workflow would contain a branch for each of these
possibilities and follow the branch based on the type of action the customer is taking.

4.5.3 FlowDecision Activity

FlowDecision is similar to FlowSwitch<> in that it provides branching based on the
results of a condition. There are two major differences: a FlowDecision condition eval-
uates to true or false only and can only branch to one of two possible branches. The
FlowSwitch<> can branch to more than two branches and based on a non-boolean value
such as an integer or string.

Chapter 4. Implementing GLIF in C# .NET 30

4.6 Workflow Services

Figure 4.4: Workflow Services

Software is becoming more distributed. Workflow services allow a workflow to use
the facilities of Windows Communication Foundation (WCF) for communicating across
a network. This is a useful capability in today’s world of distributed computing.

An activity can call external services and receive communications.

4.7 XAML Format

Workflow Foundation workflows can be created (and saved) in a format called eXtensible
Application Markup Language (XAML).

Guidelines developed using the designer developed in this thesis are saved in XAML
format. A possible future extension would be an option to save them in RDF format.

4.8 Implementation of GLIF3.4 in WF

In the remainder of this chapter, the implementation of GLIF3.4 in WF 4.0 is discussed
in detail. This section discusses implementation of the hosting environment and commu-
nication with the host. The following sections discuss expressions, custom activities, and
parsing a guideline developed in RDF (using Protege).

Chapter 4. Implementing GLIF in C# .NET 31

4.8.1 Implementing the Host

The base code for the workflow host was obtained from Bruce Bukovic’s book Pro WF:
Windows Workflow in .NET 4. The main window is found in the MainWindow class and
is opened when the user runs the application.1

The appearance of each activity on the drawing surface is provided by the activity
designer associated with the activity. Each activity has an ActivityDesigner attribute
associated with it. The purpose of the ActivityDesigner is to specify how the activity is
to look visually on the screen. Note that FlowDecision and FlowSwitch<> do not derive
from Activity and are not activities.

4.8.2 Host-Workflow Communication

Two helper interfaces were created for communication between the host application and
the workflow: IHostMessaging and IHostDataRequest.

IHostMessaging is used to send messages to the host application such as debugging
information. The interface also allows the workflow to send a request to terminate to
the host. This occurs, for example, when a PatientStateStep evaluates to false meaning
that the guideline cannot continue. Finally, the FetchDisplayName fetches the Display-
Name property of a specified FlowDecision. This method is a workaround for challenges
associated with implementing GLIF’s Decision Step (discussed later).

The IHostMessaging interface is shown in Figure 4.5.

Figure 4.5: IHostMessaging
1Bukovic granted license to use the code for commercial or non-commercial purposes but restricts

publishing the code

Chapter 4. Implementing GLIF in C# .NET 32

IHostDataRequest is used to request data and user input from the host. Data re-
quests consist primarily of Concept Unique Identifiers (CUI) for items of data. The class
DataItem encapsulates data requested from the EMR. The RequestUserInput method is
used to request input from the user.

Code for the IHostDataRequest interface is shown in Figure 4.6.

Figure 4.6: IHostDataRequest

MainWindow contains two instance variables to refer to classes that implement IHostMes-
saging and IHostDataRequest : hostCom and hostDataSvc respectively. These variables
are set when the user clicks Run on the File Menu (via the menuRun_Click event han-
dler). The menuRun_Click event handler is a method that initializes the workflow and
then executes it. The method subscribes for messages from the workflow. The “+=”
operation specifies the method to call when the event is triggered. For example, the
event NotifyHost calls method hostCom_Notification when raised by the workflow.

Code used by the host application to subscribe to events is shown in Figure 4.7.

Figure 4.7: Event Handlers

The variables hostCom and hostDataSvc are added to the WorkflowApplication in-
stance (called app) as follows:

app = new WorkflowApplication(activity);

Chapter 4. Implementing GLIF in C# .NET 33

app.Extensions.Add(hostCom);
app.Extensions.Add(hostDataSvc);
app.Run();

Once the extensions are added and the workflow is run, the workflow activities ob-
tain a reference to the hostCom and hostDataSvc objects. Each activity inherits from
BaseActivity which contains the following four instance variables:

Figure 4.8: Instance Variables of BaseActivity

The host variable contains the reference to the host communicator and is used for
sending messages to the host. The requestdata variable is used to request data from the
host such as the values of parameters. The dataContext variable is used to get or set
the workflow variables. For example, variables will need to be set in response to data
received from the host. Finally, the proxy variable is used to obtain a reference to the
Flowchart instance of the workflow. The Flowchart instance is needed to locate the next
activity in the chart. As will be discussed later, this variable is needed to work around
a problem associated with decision steps.

The BaseActivity class sets host and requestdata using the following code:

host = context.GetExtension<IHostCommunication.IHostMessaging>();
requestdata = context.GetExtension<IHostCommunication.IHostDataRequest>();

The variable context is passed to the Execute method when the activity is run by
the workflow runtime. The method GetExtension fetches the instance of IHostMessaging
and IHostDataRequest that were created by the host when the workflow was run.

To communicate back to the host, the activity simply needs to call the relevant method
in the interface. For example, the SendMessageToConsole method sends a message to
the host to print in the debug area.

host.SendMessageToConsole(message);

Inside the implementation of IHostMessaging (called HostMessaging), the SendMes-
sageToConsole method raises the NotifyHost event which triggers a call to hostCom_Notification
(discussed earlier).

Chapter 4. Implementing GLIF in C# .NET 34

public void SendMessageToConsole(string message) {
if (NotifyHost != null)

NotifyHost(this, new HostNotifyEventArgs(message));
}

To implement host-to-workflow communication, a similar technique is used. The host
calls a method of the HostMessaging instance (hostCom) which then raises an event that
is handled by the workflow and the workflow continues.2

4.9 Evaluating Expressions

Many steps and tasks in GLIF require the ability to evaluate an expression. Expressions
are typically written in GELLO syntax. Implementation of GELLO is beyond the scope
of this thesis.

The execution engine in this thesis uses an evaluation engine from the public domain
that is easily extendible for future implementation of GELLO.3

A screen shot of the rules engine tester provided in the public domain is provided in
Figure 4.9.

Some guidelines require the ability to calculate a person’s age, or to determine if
a certain amount of time has passed. The evaluation engine used does not have this
ability. Two functions were added to the evaluation engine to implement this function-
ality: age[d,m,y] (or age[variable] where variable is a date) and datedif[date[d,m,y] ,
date[d,m,y]].

4.10 Designing GLIF Activities

4.10.1 The BaseActivity Class

All of the custom activities developed in this thesis inherit from the BaseActivity class.
BaseActivity provides needed “plumbing” common to all custom activities.

Chapter 4. Implementing GLIF in C# .NET 35

Figure 4.9: Rules Engine Calculator

4.10.2 Implementing PatientStateStep

The PatientStateStep class diagram is shown in Figure 4.10. The class contains one
important property: Criteria which is an instance of class ThreeValueCriteria. As
shown in the diagram, the ThreeValueCriteria class contains three properties: Speci-
fication, List<LetExpression> and List<GetDataTask>. The Specification property is
a string containing the specification that will determine if the patient state step applies.
In actual practice, this would be an expression using a syntax such as GELLO. The
List<LetExpression> contains a representation of all macros (each known as a “Let Ex-
pression”) used. The List<GetDataTask> property is a list of all the data access tasks
associated with this activity.

4.10.3 Implementing ActionStep

An Action Step represents the actions to be taken by the execution engine. An action
could involve fetching data from an EMR, or requesting input from an end user.

2The host and workflow are executed on the same thread.
3The author of the Evaluation Engine is Donald Snowdy. The code and documentation is available

on CodeProject at http://www.codeproject.com/search.aspx?q=evaluation+enginesbo=kwx=0y=0 and
is licensed under the The Creative Commons Attribution-ShareAlike 2.5 License.

Chapter 4. Implementing GLIF in C# .NET 36

Figure 4.10: PatientStateStep

Figure 4.11: ActionStep

The class diagram for an ActionStep is shown in Figure 4.11.

The ActionStep class contains a list of Task objects. The Task class is the base class
for the GetDataTask, theMedicalActionTask, theMessageTask, the SubguidelineTask and
the AssignmentTask. Other tasks can be added easily by inheriting from Task.

The Task class diagram is shown in Figure 4.12.

Chapter 4. Implementing GLIF in C# .NET 37

Figure 4.12: Task Diagram

GetDataTask

The GetDataTask retrieves data from an external source such as an Electronic Medical
Record.

Assignment Task

The assignment task is used to assign a value to a variable. For example, the string
“true” could be assigned to a variable called “treated” to indicate that a patient was
treated.

MedicalActionTask

The MedicalActionTask performs any task that requires reference to medical information.
For example, a MedicalActionTask could order a particular medication indicated by a
UMLS concept unique identifier (CUI).

Chapter 4. Implementing GLIF in C# .NET 38

SubguidelineTask

The SubguidelineTask invokes another workflow. Parameters are passed to the workflow
invoked via the InArgument<> property. Parameters are returned to the calling workflow
via the OutArgument<> property.

4.10.4 DecisionStep

The decision step brought out many challenges in this project. The only type of decision
presently supported is the boolean decision (true/false).

Implementation Challenges

The WF 4.0 framework includes a class called FlowDecision that implements a boolean
decision. FlowDecision determines which FlowNode to follow based on the result of a
property called Condition. To implement a Decision Step, additional functionality is
needed from the FlowDecision class. For example, a ChoiceStep requires user input. The
FlowDecision class (or a class derived therefrom) would ideally fetch the required user
input.

Unfortunately the authors of the WF 4 FlowDecision decided to seal the class meaning
that it cannot be extended. It is very challenging to develop a custom FlowNode to
replicate the behaviour. Existing designers for activities do not allow multiple out paths.
A substitute for FlowDecision could not be found in the public domain nor could a
solution be crowd sourced for a fee. A workaround solution had to be sought.

The solution selected involved adding code to the base class of the custom activities
- namely BaseActivity - to inspect the next activity to see if it is a FlowDecision and
execute custom code before the FlowDecision is executed. The solution is not ideal and
could cause errors in real world implementation. Another FlowDecision type of activity
will need to be developed.

A further challenge is storing relevant data about each DecisionStep. Since properties
cannot be added directly to a FlowDecision, a workaround was sought. The solution was
to save an XML file under a unique file name in a specified directory. Before each
FlowDecision is executed, the XML file would be located and parsed to obtain relevant
information.

Chapter 4. Implementing GLIF in C# .NET 39

XML File for FlowDecision

Details about each FlowDecision are provided in an XML format. At execution time,
the preceding activity “sniffs” the next node and executes a method called HandleFlowDe-
cision() if the next step is a FlowDecision. For this method to work, each FlowDecision
needs to have a unique identifier to serve as the file name. Unfortunately, the FlowDeci-
sion class does not provide a unique identifier. The class provides a hash function, but
the hash code could differ with each execution. The FlowDecision does however have a
property called DisplayName which represents the text that is printed on the designer
canvas on top of the FlowDecision node. The DisplayName property was used as the
basis for a unique identifier.4 It is assumed that no two FlowDecision instances will be
have the same DisplayName property.

FlowDecision.Condition Property

The FlowDecision.Condition property refers to the condition that is executed by the
runtime to determine which path of execution to take. The Condition property uses
Visual Studio expressions. This implementation uses an expression evaluation engine
obtained from the public domain (discussed earlier). The FlowDecision.Condition prop-
erty was not used to evaluate expressions. Rather, the expression engine from the public
domain was used.

In order for the workflow to run, the FlowDecision.Condition property must be set.
Prior to running, a temporary variable called “result” was created. Each FlowDeci-
sion.Condition gets a unique “result” variable. For example, if there are ten FlowDeci-
sions, each will have a Condition property beginning with “result” and an integer from
0 to 9.

The BaseActivity class sets the “result” parameter based upon the result of executing
the decision. For example, if the decision is a “choice” type, the user is queried. If the
user selects “yes” or “true”, the “result” property is set to true, so that the FlowDecision
will follow the “true” branch.

Before the workflow is run, the host application needs to do some pre-processing. The
host application first needs to find the ModelItem instance representing the Flowchart
object.5

Figure 4.13 shows how to find the ModelItem referring to the Flowchart reference.
4All white spaces and special characters were removed first.
5At the time of preprocessing, the workflow is not running. Changes to the workflow need to be made

by iterating through ModelItem instances.

Chapter 4. Implementing GLIF in C# .NET 40

Figure 4.13: Find Flowchart Reference

The next step is to delete all temporary variables that may have been created during
a previous execution of the workflow. Recall that for each FlowDecision, the property
FlowDecision.Condition is set to a boolean called result with a unique number identifying
the temporary variable. For example, if there are two FlowDecision steps, the code will
create result0 and result1.

The code to delete all temporary variables is shown in Figure 4.14.

Figure 4.14: Deleting Temporary Variables

The final preprocessing step is to set all temporary variables.

Chapter 4. Implementing GLIF in C# .NET 41

Figure 4.15: Setting Temporary Variables

The code shown in Figure 4.15 iterates through all nodes of the Flowchart and adds
a special variable for each FlowDecision.

A further challenge is handling a situation where the DecisionActivity is the first
step on the workflow, or if there are two DecisionActivity steps next to each other. The
solution was to create a BlankStep that derives from BaseActivity and implements the
same behaviour as the PatientStateStep and ActionStep described earlier. If a workflow
starts out with a decision, the blank activity must be added before the decision node. If
a workflow involves two consecutive decision steps, a blank activity must be interposed.

4.10.5 Branch and Synchronization Steps

The Branch and Synchronization steps of the GLIF framework were not implemented.

Chapter 4. Implementing GLIF in C# .NET 42

Branch Step

C# .NET provides a class called ParallelActivity. The class does not execute the child
activities each on a separate thread of execution unless the activities are written to
support asynchronous execution

Synchronization

The Branch Step is implemented as a CompositeActivity. The next activity is not exe-
cuted until the ParallelActivity completes.

Conclusion

Implementing Branch and Synchronization Steps can be implemented in a future release
of the execution engine.

4.10.6 Parsing RDF

One important task for interoperability with existing GLIF3 guidelines is to properly
parse an RDF file. GLIF is typically authored using Protege and exported to Resource
Description Framework (RDF) format. RDF is a specification for conceptual description
of information and is used typically on the World Wide Web.

An excerpt of the RDF produced for a PatientStateStep in GLIF (from the cough
guideline) is shown below.

<kb:Patient_State_Step rdf:about="&kb;CoughStudy_00005"
kb:display_name="Chronic Cough"
kb:name="chronic cough in immunocompetent adults"
kb:new_encounter="false"
rdfs:label="Chronic Cough">
<kb:next_step rdf:resource="&kb;CoughStudy_00010"/>
<kb:patient_state_description rdf:resource="&kb;CoughStudy_00046"/>
</kb:Patient_State_Step>

RDF at its core is a set of triples consisting of subject, object and predicate. In the
triple above, the subject is shown in the about attribute - namely CoughStudy_00005.
The triple contains several predicates: display_name, name, new_encounter, label,
next_step and patient_state_description.

Chapter 4. Implementing GLIF in C# .NET 43

An RDF parser from the Internet was used to break RDF documents down into the
component triples6.

The Figure below shows the stages of parsing an RDF guideline.

Figure 4.16: Parsing Stages

The first stage is to break down the RDF document. The import algorithm begins
by iterating through each triple in the RDF document and creating a representation
of the document in code. The second stage iterates through the representation created
during the first stage and creates intermediate objects. The purpose of the intermediate
object is to link all related triples together. For example, a PatientStateStep contains
a list of data items that will be required. The third stage involves creating an object
oriented representation of the guideline using the classes in the GLIFObjects namespace
(and assembly). Finally, the objects created are sent to the host to be converted to a
Flowchart with the relevant steps.

One challenge is creating an algorithm that will arrange the Flowchart in a neat
logical manner. The Flowchart created from parsing an RDF document is jumbled and
requires effort to rearrange so that the Flowchart is visually appealing.

6See http://www.dotnetrdf.org/api/ VDS.RDF.Parsing.html for the RDF parser. I would like to
thank the authors for developing this useful tool.

Chapter 5

Authoring a Guideline in Workflow
Foundation

5.1 The Guideline

In this chapter, a guideline called Group A Streptococcal Disease Surveillance Protocol
for Ontario Hospitals (the “protocol”) is implemented.

Group A Streptococcus (GAS) is a bacterium commonly found in the throat and on
the skin. GAS is spread by direct contact with mucus from the nose or throat of infected
persons, or through contact with the skin.

Most people who acquire GAS do not have serious complications; however, for some
patients, GAS is a severe life threatening disease. Invasive GAS occurs when the bacteria
gets into certain parts of the body such as blood, muscle or lung tissue. Two invasive
forms of GAS are necrotizing fasciitis and streptococcal toxic shock syndrome. Necrotizing
fasciitis destroys muscles, fat and skin tissue. Streptococcal toxic shock syndrome causes
blood pressure to drop and organs to fail.

The Group A Streptococcal Disease Surveillance Protocol for Ontario Hospitals (the
“protocol”) was developed to provide direction to hospitals to prevent transmission of
GAS among health-care workers and patients. The authors provide a decision tree in
Appendix A of the protocol to outline recommended management for health care workers
(HCW) epidemiologically linked to patient cases and colonized with Group A Strepto-
coccus (GAS).

The protocol involves two major stages: treatment of the health-care worker with
medication, and subsequent monitoring with possible treatment of household contacts.

44

Chapter 5. Authoring a Guideline in Workflow Foundation 45

The computer implemented guideline uses a main guideline with a subguideline. The
subguideline was created to deal specifically with the medical therapy of GAS. The
protocol provides for several potential medication regimens (chemoprophylaxis) based
on a number of variables such as the site of the infection, whether the carrier is pregnant
or lactating and whether the carrier is allergic to penicillin. The subguideline could also
be changed without impacting the main guideline should treatment options change.

The steps to build the subguideline are described first.

5.1.1 Subguideline - Treatment of GAS

A subguideline was used to encapsulate the logic for prescribing a medical treatment reg-
imen. The subguideline can be modified without the need to modify the main guideline.
For example, if medical research suggests a new factor to consider when prescribing a
medication, the subguideline alone can be changed.

The first step to implementing the protocol is to make explicit the medical regimens.
Currently, the regimen for a patient who is not allergic to penicillin and who is neither
pregnant nor lactating is Penicillin V plus rifampin. The dosage is 500 milligrams of
Penicillin V four times daily for ten days, plus 300 milligrams of Rifampin twice daily
for the last four days.

For patients who are pregnant or lactating, the protocol recommends Cephalexin 250
milligram tablets taken four times daily for ten days. The penicillin V plus rifampin reg-
imen is not recommended in this case because rifampin has been found to be teratogenic
in laboratory animals and may also interfere with oral contraceptives[2].

For patients who are rectal carriers of GAS, the protocol recommends Clindamycin
300 milligram tables taken orally three times daily for ten days. Clindamycin is acceptable
for persons who are allergic to penicillin[2]. An alternative is 500 mg of Azithromycin
taken once daily for five days.

To be useful, a guideline must be specific when suggesting a medication. UMLS
concept unique identifiers (CUI) were used for this purpose. CUI codes were located for
each of the five medications referred to in the guideline. A guideline must also be precise
when describing when a patient needs to begin and end a medication. An expression
language would be used for this purpose.

The medications, concept unique identifiers, daily doses, start time and end times are
shown in the table below:

Chapter 5. Authoring a Guideline in Workflow Foundation 46

Concept CUI # Daily Start End
Cephalexin 250 mg oral tablet C0975442 4 now now + 10
Penicillin V 500 mg oral tablet C0689921 4 now now + 10
Rifampin 300 mg oral tablet C1704481 2 now + 6 now + 10
Clindamycin 300 mg oral tablet C0706942 3 now now + 10
Azithromycin 500 mg oral tablet C1126333 1 now now + 5

5.1.2 Creating the Subguideline

The first step is to create a new document by clicking File, hovering over New and
selecting Guideline. A blank FlowChart opens in the drawing canvas.

The first step in the guideline is to ask the user if the health care worker is pregnant
or lactating in which case the guideline would suggest Cephalexin which is preferred for
pregnant or lactating health care workers. Due to the limitations for decision branches
explained earlier, it is necessary to insert a BlankStep. Drag a BlankStep underneath the
start node, right click the BlankStep and select “Set as Start Node”. A line will connect
the start node to the blank node.

Next add a DecisionStep. Connect the BlankStep to the DecisionStep that was just
added. Right click the DecisionStep and complete the form as shown in Figure below.

Figure 5.1: Decision Step - Is HWC Pregnant or Lactating?

The next step is to handle the two possibilities: true or false. Drag an ActionStep
underneath the DecisionStep but slightly to the left. Connect the ActionStep to the left
side of the DecisionStep (indicating “true”). Right click the ActionStep.

Chapter 5. Authoring a Guideline in Workflow Foundation 47

The ActionStep form will open up. Click the “Add Medical Action” button. The
Medical Oriented Task form will appear. Complete the form as shown in Figure 5.2.

Figure 5.2: Medical Action Task - Prescribe Cephalexin

The Data Model Class ID refers to “Medication” because the data described by this
medical action refers to medication. The Data Model Source ID refers to HL7 3.0 RIM
indicating that the Medication model is found in the Reference Information Model (RIM).
The Concept ID and Concept Source ID refer to the medication and the source (or
dictionary) describing the ID. In this case, C0975442 of UMLS describes Cephalexin.

The dosage quality refers to the amount of medication to be taken and how often.
The route refers to how the medication is taken. For example, “po” means orally. The
“mood” is stating that the medication is being ordered. A “mood” code could also tell
the practitioner to instruct a patient to stop a particular medication. The Start and
End critical times provide information as to when a medication should be started and
finished. In this case, the medication should be started now and completed in ten days.

The subguideline is designed to output a true or false value to the calling guideline.
To accomplish this, add an OutArgument to the workflow. Click the “Arguments” tab
below the canvas and add a string argument called “treated” as shown in Figure 5.3.

The final chart for the subguideline is shown in Figure 5.4.
Note that the “treated” variable is set at the end of the workflow. The variable could

have been set after each medication recommendation, but the user of the guideline may

Chapter 5. Authoring a Guideline in Workflow Foundation 48

not accept the recommendation, or may prescribe a different medication. As a result,
the user is asked later if the health care worker was treated.

Figure 5.3: Adding an OutArgument

Figure 5.4: Treatment of GAS Subguideline

Chapter 5. Authoring a Guideline in Workflow Foundation 49

Once the subguideline is created, it is necessary to save it in XAML format to be
executed later. Click File on the file menu and select Save, then file a suitable path and
name the file “subguideline.xaml”.

5.1.3 Implementing the Main Guideline

To implement the main guideline, create a new guideline by clicking File on the file menu,
hovering over New and clicking Guideline.

A new canvas will open up with a FlowChart and start node.

Add an ActionStep, left click the ActionStep and type “Treat HCW”. Right click this
node and select “Start as Start Node” on the context menu. A connector will join the
start node to the ActionStep just created.

The main guideline will use a return variable from the subguideline. Click “Variables”
and add a boolean variable called “treated.”

Right click the ActionStep and select Properties. A form will open up to edit the
ActionStep. On the form, click the “Add Subguideline” button. A form will display
prompting for a file name, InArguments and OutArguments. Click the “Get Path”
button and select the subguideline created earlier. One OutArgument will be displayed
as shown in the Figure below:

Figure 5.5: Adding a Subguideline

The subguideline outputs a string called “treated” with a value of “true” if the patient
was treated or a value of “false” if the patient was not treated. Local variable “treated”

Chapter 5. Authoring a Guideline in Workflow Foundation 50

needs to be set to the output from the subguideline. Right click “treated” in the OutAr-
gument pane and select “Assign” when the context menu appears. A form will appear
as shown below:

Figure 5.6: Matching Guideline Variables with Subguideline Variables

Select “treated” from the ComboBox for “Guideline Variable” and click “OK.”
Click “OK” to exit the subguideline form and then “OK” again to exit the ActionStep

form.
The next step is to create a PatientStateStep to indicate that further steps depend

on the health care worker having been treated.
Drag a PatientStateStep on to the canvas and connect it to the previous ActionStep.

Right click the PatientStateStep and select Properties. The patient state is indicated by
an expression. To indicate that the patient must have been treated, type in “treated =
true”, as shown in Figure 5.7.

The next step is to order that the health care worker not work for the next 24 hours.
This will be indicated to the user by an ActionStep and MessageTask.

Chapter 5. Authoring a Guideline in Workflow Foundation 51

Figure 5.7: PatientStateStep for treated = true

Drag an ActionStep underneath the previous PatientStateStep and connect it to the
PatientStateStep. Right click the new ActionStep and select Properties. Click the “Add
Message” button and complete the form as shown in the figure below:

Figure 5.8: MessageTask - Suspend HCW for 24 Hours

Chapter 5. Authoring a Guideline in Workflow Foundation 52

Implementation of the rest of the guideline is not described here. The full guideline
is illustrated in Figure 5.9.

Figure 5.9: Full Main Guideline

Chapter 5. Authoring a Guideline in Workflow Foundation 53

5.1.4 Testing the Guideline

Click File and select Run to test the guideline.
A dialogue box will open asking the user whether the patient is pregnant or lactating,

as shown in Figure 5.10.
If the user selects “Yes”, the guideline opens up a form to tell the user to prescribe

Cephalexin, as shown in Figure 5.11.
If the user selects “No”, the subguideline asks the user if the health care worker is

allergic to Penicillin.

Figure 5.10: Query if Patient is Pregnant or Lactating

Eventually the subguideline will recommend a medication and then ask the user if
the patient has been treated. If the patient has been treated, an OutArgument called
“treated” is set to “true”; otherwise, it is set to “false.”

The PatientStateStep looks at the “treated” value returned from the subguideline to
determine if the guideline can continue. If the patient was treated, a message appears to
instruct the user to order that the health care worker stop working for 24 hours.

Chapter 5. Authoring a Guideline in Workflow Foundation 54

Figure 5.11: MedicallyOrientedActionStep - Prescribe Cephalexin

Figure 5.12: Suspend Heath Care Worker for 24 Hours

The guideline continues as instructed by the flow chart in Appendix A of the protocol.

Chapter 6

Conclusion

The research in this paper has demonstrated that Workflow Foundation can be used
to implement GLIF. The major computer science obstacle is integration with electronic
medical records (EMR). Frameworks such as HL7’s RIM and standard vocabularies such
as UMLS hold out great promise as far as assisting to implement computer-interpretable
guidelines.

GLIF is a task-network model approach to clinical guidelines. It offers a visual ap-
proach to designing guidelines. Guidelines are temporally sequenced and unfold over
time and are relatively easy to conceptualize. It is hoped that soon there will exist a
standard (e.g. HL7) for representing guidelines.

Windows Workflow Foundation (WF 4.0) provides a declarative approach to program
design where users can select from a variety of activities to build a workflow. WF 4.0
provides a suitable environment for building a guideline execution engine and executing
clinical guidelines. This thesis has provided a foundation for actual implementation of
GLIF that can be integrated into an existing health care setting. The techniques in this
thesis can be extrapolated to other task-network models.

55

Bibliography

[1] Philosophical limits of evidence-based medicine. Academic Medicine, 1998.

[2] Prevention of invasive group a streptococcal disease among household contacts of
case patients and among postpartum and postsurgical patients: recommendations
from the centers for disease control and prevention. Clin Infect Dis, 35(8):950–9,
2002.

[3] Garg AX, Adhikari NJ, McDonald H, and et al. Effects of computerized clini-
cal decision support systems on practitioner performance and patient outcomes:
A systematic review. JAMA: The Journal of the American Medical Association,
293(10):1223–1238, 2005.

[4] G. Ross Baker, William A. Ghali, Philip Hebert, Sumit R. Majumdar, Luz Palacios-
derflingher, Robert J. Reid, Sam Sheps, and Robyn Tamblyn. The canadian adverse
events study: the incidence of adverse events among hospital patients in canada.
Canadian Medical Association Journal, 170:1678–1686, 2004.

[5] Bruce Bukovics. Pro WF: Windows Workflow in .NET 4. Apresspod Series. Apress,
2010.

[6] Canadian Medical Association. Handbook on Clinical Practice Guidelines, July 2007.

[7] ECMA International. Standard ECMA-334 - C# Language Specification. 4 edition,
June 2006.

[8] B J Essex. Approach to rapid problem solving in clinical medicine. BMJ, 3(5974):34–
36, 7 1975.

[9] Marilyn J. Field and Institute of Medicine Kathleen N. Lohr, Editors; Committee
on Clinical Practice Guidelines. Guidelines for Clinical Practice:From Development
to Use. The National Academies Press, 1992.

56

Bibliography 57

[10] Peter E. Friedland and Yumi Iwasaki. The concept and implementation of skeletal
plans. Journal of Automated Reasoning, 1:161–208, 1985.

[11] Robert A. Greens. Clinical Decision Support: The Road Ahead. Academic Press,
2007.

[12] Benson T. R. Spector A. Harrington, J. Ieee p1157 medical data interchange (medix)
committee overview and status report. In Proceedings of the Annual Symposium on
Computer Application in Medical Care, pages 230–234, 1990.

[13] Kensaku Kawamoto, Caitlin A. Houlihan, E. Andrew Balas, and David F. Lobach.
Improving clinical practice using clinical decision support systems: a systematic
review of trials to identify features critical to success. BMJ, 330(7494):765+, April
2005.

[14] Janet M. Corrigan Linda T. Kohn and Institute of Medicine Molla S. Donaldson,
Editors; Committee on Quality of Health Care in America. To Err Is Human:
Building a Safer Health System. The National Academies Press, 2000.

[15] NAHIT. Defining key health information technology terms. Report to the office
of the national coordinator for health information technology, National Alliance for
Health Information Technology, April 2008.

[16] Vimla L. Patel, Vanessa G. Allen, Jose F. Arocha, and Edward H. Shortliffe. Rep-
resenting clinical guidelines in glif: Individual and collaborative expertise, 1998.

[17] Mor Peleg. Cough guideline model in glif. http://mis.hevra.haifa.ac.il/ morpe-
leg/Intermed/guidelines/ExampleCough.pdf. Accessed: 2014-04-02.

[18] Mor Peleg, Samson Tu, Jonathan Bury, Paolo Ciccarese, John Fox, Robert A
Greenes, Silvia Miksch, Silvana Quaglini, Andreas Seyfang, Edward H Shortliffe,
Mario Stefanelli, and et al. Comparing computer-interpretable guideline models: A
case-study approach. JAMIA, 10:2003, 2003.

[19] Mor et al. Peleg. Guideline interchange format 3.4 technical specification. Technical
report, InterMed Collaboratory, 2001.

[20] Dianne Miller Wolman Sheldon Greenfield Robin Graham, Michelle Mancher and
Editors; Committee on Standards for Developing Trustworthy Clinical Practice
Guidelines; Institute of Medicine Earl Steinberg. Clinical Practice Guidelines We
Can Trust. The National Academies Press, 2011.

Bibliography 58

[21] David L Sackett, William M C Rosenberg, J A Muir Gray, R Brian Haynes, and
W Scott Richardson. Evidence based medicine: what it is and what it isn’t. BMJ,
312(7023):71–72, 1 1996.

[22] Matthias Samwald, Karsten Fehre, Jeroen S. de Bruin, and Klaus-Peter Adlassnig.
The arden syntax standard for clinical decision support: Experiences and directions.
Journal of Biomedical Informatics, 45(4):711–718, 2012.

[23] Gunther Schadow, Daniel Russler, Charles Mead, and Clement McDonald. Inte-
grating Medical Information and Knowledge in the HL7 RIM. pages 764–768, Indi-
anapolis, IN, 2000.

[24] R.N. Shiffman. Representation of clinical practice guidelines in conventional and
augmented decision tables. J Am Med Inform Assoc, 4(5):382–93.

[25] Samson W. Tu and Mark A. Musen. A flexible approach to guideline modeling.
pages 420–424, Washington DC, 1999.

[26] Steven H Woolf, Richard Grol, Allen Hutchinson, Martin Eccles, and Jeremy
Grimshaw. Potential benefits, limitations, and harms of clinical guidelines. BMJ,
318(7182):527–530, 2 1999.

1C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\BaseActivity.cs

using System.Activities;
using System.Activities.Statements;
using System;
using System.Activities.Hosting;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Activities.Presentation.Model;
using System.Xml;
using IHostCommunication;
using System.Xml.Linq;
using System.ComponentModel;
using Microsoft.VisualBasic.Activities;

namespace ActivityLibrary
{
 public class BaseActivity : NativeActivity
 {
 public class WorkflowInstanceInfo : IWorkflowInstanceExtension
 {
 public IEnumerable<object> GetAdditionalExtensions() {
 yield break;
 }

 public void SetInstance(WorkflowInstanceProxy instance) {
 this.proxy = instance;
 }

 WorkflowInstanceProxy proxy;

 public WorkflowInstanceProxy GetProxy() { return proxy; }
 }

 protected IHostCommunication.IHostMessaging host;
 protected IHostCommunication.IHostDataRequest requestdata;
 protected WorkflowDataContext dataContext;
 protected WorkflowInstanceProxy proxy;

 public virtual GLIFObjects.BaseStep CreateStepWithoutLinkages()
 {
 throw new Exception("CreateStep must be overridden");
 }

 protected override void Execute(NativeActivityContext context)
 {

 }

 protected void HandleFlowDecision() {
 FlowDecision fd = IsNextStepFlowDecision();
 if(fd != null) {
 VisualBasicValue<bool> vbv = fd.Condition as VisualBasicValue<bool>;
 string id = host.FetchDisplayName(vbv.ExpressionText);
 UserInput userInput = new UserInput();
 List<RuleInCondition> ruleInConditions = new List<RuleInCondition>();

 // fetch file
 XmlDocument doc = new XmlDocument();
 doc.Load(Environment.GetEnvironmentVariable("decisionpath") + id + ".xml");

 // get type
 XmlNodeList type = doc.GetElementsByTagName("Type");
 if (type.Count == 0)
 throw new ArgumentException("Attempt to parse decision file with no type property");
 // choice step
 if (type[0].InnerText == "choice") {
 XmlNodeList text = doc.GetElementsByTagName("Text");
 userInput.Text = text[0].InnerText;

59Appendix A - BaseActivity

2C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\BaseActivity.cs

 XmlNodeList rulesIn = doc.GetElementsByTagName("rulein");
 // set ruleinconditions
 foreach (XmlNode rule in rulesIn)
 {
 RuleInCondition newRule = new RuleInCondition();

 // get child elements of rule
 foreach (XmlNode child in rule.ChildNodes) {

 if (child.Name == "specification")
 newRule.ThreeValueCriteria.Specification = child.InnerText;
 else if (child.Name == "truefalse") {
 bool result = false;
 if (child.InnerText == "True")
 result = true;
 newRule.TrueFalse = result;
 }

 }
 ruleInConditions.Add(newRule);
 }

 // do rule conditions (if any)
 host.SendMessageToConsole("Evaluating rule conditions");
 host.SendMessageToConsole("‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐");
 host.SendMessageToConsole("# RuleIn conditions " + ruleInConditions.Count);
 // add rule conditions

 foreach (RuleInCondition rule in ruleInConditions) {
 string evalRule = EvaluatorWrapper.GetExpressionString(rule.ThreeValueCriteria.

Specification, dataContext);
 EvaluationEngine.Parser.Token token = new EvaluationEngine.Parser.Token(evalRule);
 host.SendMessageToConsole("Evaluating " + evalRule);

 // add variables to evaluator
 // note that evaluation engine does not consider DateTime to
 // be variable
 foreach (PropertyDescriptor pd in dataContext.GetProperties()) {
 if (pd.GetValue(dataContext) == null)
 token.Variables[pd.Name].VariableValue = string.Empty;
 else
 {
 if (pd.GetValue(dataContext).GetType() != typeof(DateTime)) {
 token.Variables.Add(pd.Name);
 token.Variables[pd.Name].VariableValue = pd.GetValue(dataContext).ToString()

;
 }
 }
 }

 EvaluationEngine.Evaluate.Evaluator eval = new EvaluationEngine.Evaluate.Evaluator
(token);

 // run the evaluation
 string ErrorMsg = "";
 string result = "";
 // fetch result
 try
 {
 if (!eval.Evaluate(out result, out ErrorMsg))
 host.SendMessageToConsole("Rule " + evalRule +
 "evaluates to " + result);
 }

 catch (Exception e)
 {
 MessageBox.Show(e.InnerException.ToString());
 }

60Appendix A - BaseActivity

3C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\BaseActivity.cs

 finally
 {
 IHostCommunication.RuleInCondition rulein = new IHostCommunication.RuleInCondition()

;
 rulein.TrueFalse = rule.TrueFalse;
 rulein.Specification = rule.ThreeValueCriteria.Specification;
 rulein.Result = result;
 userInput.RuleInConditions.Add(rulein);
 }
 }
 }

 requestdata.SendUserInputBack += new EventHandler<BooleanResponseEventArgs>(BooleanResponse);
 requestdata.RequestUserInput(userInput);
 requestdata.SendUserInputBack ‐= BooleanResponse;
 }
 }

 private void BooleanResponse(object sender, BooleanResponseEventArgs args) {
 // find result variable
 FlowDecision fd = IsNextStepFlowDecision();
 string expressiontext = string.Empty;

 if (fd.Condition is VisualBasicValue<bool>) {
 VisualBasicValue<bool> vbv = fd.Condition as VisualBasicValue<bool>;
 expressiontext = vbv.ExpressionText;
 }

 foreach (PropertyDescriptor pd in dataContext.GetProperties()) {
 if (pd.Name == expressiontext)
 pd.SetValue(dataContext, args.Result);
 }
 }

 private FlowDecision IsNextStepFlowDecision() {
 FlowDecision result = null;
 Activity root = proxy.WorkflowDefinition;
 Flowchart fc = null;

 foreach (Activity act in WorkflowInspectionServices.GetActivities(root)) {
 if (act is Flowchart) {
 fc = act as Flowchart;
 break;
 }
 }

 foreach (FlowNode node in fc.Nodes) {
 if (node is FlowStep)
 {
 FlowStep fs = node as FlowStep;

 if (fs.Action == this) {
 if (fs.Next != null && fs.Next is FlowDecision) {
 FlowDecision fd = fs.Next as FlowDecision;
 result = fd;
 }
 }
 }
 }

 return result;
 }

 }
}

61Appendix A - BaseActivity

1C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\PatientStateStep.cs

using System.Activities;
using System.Windows;
using System.ComponentModel;
using System.ComponentModel.Design.Serialization;
using ActivityLibrary.Design;
using IHostCommunication;
using System.Windows.Documents;
using System.Collections.Generic;
using System;
using System.Activities.Statements;
using System.Activities.Presentation.Services;
using System.Activities.Presentation.Model;
using System.Reflection;
using System.Activities.Hosting;

namespace ActivityLibrary
{
 [Designer(typeof(PatientStateStepDesigner))]
 public class PatientStateStep:BaseActivity
 {
 private ThreeValueCriteria criteria = null;
 public ThreeValueCriteria Criteria {
 get {if (criteria == null)
 criteria = new ThreeValueCriteria();
 return criteria;
 } set
 {
 criteria = value; }
 }

 protected override void CacheMetadata(NativeActivityMetadata metadata) {
 metadata.AddDefaultExtensionProvider<WorkflowInstanceInfo>(() => new WorkflowInstanceInfo());
 base.CacheMetadata(metadata);
 }

 protected override void Execute(NativeActivityContext context)
 {
 // get data context for binding variables
 dataContext = context.DataContext;
 proxy = context.GetExtension<WorkflowInstanceInfo>().GetProxy();

 // get host communication service for communication with host app
 // (debugging output etc)
 host = context.GetExtension<IHostCommunication.IHostMessaging>();
 requestdata = context.GetExtension<IHostCommunication.IHostDataRequest>();

 // connect method to handle response from host
 requestdata.SendDataBack += new EventHandler<ResponseDataEventArgs>(ResponseHandler);

 // update console that we are entering patient state step
 OutputMessageToConsole("Entered patient state step " + this.DisplayName);
 // output specification to console
 OutputMessageToConsole("Specification is " + Criteria.Specification);
 // evaluate let expressions (macros)
 OutputMessageToConsole("Number of let expressions " + Criteria.LetExpressions.Count.ToString());

 string expression = criteria.Specification;

 // do let expression substitutions
 foreach (LetExpression le in Criteria.LetExpressions) {
 OutputMessageToConsole("Replacing " + le.Identifier + " with " +
 le.Expression);
 expression = expression.Replace(le.Identifier, le.Expression);
 }

 OutputMessageToConsole("Resulting expression " + expression);

 // fetch required data

62Appendix B - PatientStateStep

2C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\PatientStateStep.cs

 OutputMessageToConsole("Fetching data");
 // create list of data
 List<IHostCommunication.DataItem> ItemsToFetch = new List<IHostCommunication.DataItem>();

 foreach (GetDataTask task in Criteria.GetDataTasks) {
 OutputMessageToConsole("Fetching " + task.Variable.VariableName);
 IHostCommunication.DataItem item = new IHostCommunication.DataItem();
 item.Name = task.Name;
 item.VariableName = task.Variable.VariableName;
 item.CurrentValue = FetchCurrentValue(item.VariableName);
 ItemsToFetch.Add(item);
 }

 requestdata.RequestData(this.DisplayName, ItemsToFetch);

 // evaluate result
 // tokenize specification
 // preprocessing non strings
 string rule = EvaluatorWrapper.GetExpressionString(Criteria.Specification, dataContext);
 EvaluationEngine.Parser.Token token = new EvaluationEngine.Parser.Token(rule);
 OutputMessageToConsole("Evaluating " + rule);

 // add variables to evaluator
 // note that evaluation engine does not consider DateTime to
 // be variable
 foreach (PropertyDescriptor pd in dataContext.GetProperties()) {
 if (pd.GetValue(dataContext) == null)
 {
 token.Variables.Add(pd.Name);
 token.Variables[pd.Name].VariableValue = string.Empty;
 }
 else
 {
 if (pd.GetValue(dataContext).GetType() != typeof(DateTime))
 {
 token.Variables.Add(pd.Name);
 token.Variables[pd.Name].VariableValue = pd.GetValue(dataContext).ToString();
 }
 }
 }

 EvaluationEngine.Evaluate.Evaluator eval =
 new EvaluationEngine.Evaluate.Evaluator(token);

 // run the evaluation
 string ErrorMsg = "";
 string result = "";
 // fetch result
 if (!eval.Evaluate(out result, out ErrorMsg))
 MessageBox.Show(ErrorMsg);

 if (result.Trim().ToLower() != "true") {
 MessageBoxResult oride = MessageBox.Show("Patient state not met. Do you wish to override?",

"Patient State Step Not Met", MessageBoxButton.YesNo, MessageBoxImage.Question);
 if (oride == MessageBoxResult.No) {
 host.Terminate("Patient statecondition not met.");
 }
 }

 // if next step is flow decision, this activity handles the
 // processing (ugly workaround)
 HandleFlowDecision();
 }

 private string FetchCurrentValue(string variableName) {
 foreach (PropertyDescriptor pi in dataContext.GetProperties()) {
 if (pi.Name == variableName) {
 if (pi.GetValue(dataContext) != null)

63Appendix B - PatientStateStep

3C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\PatientStateStep.cs

 return pi.GetValue(dataContext).ToString();
 else
 return string.Empty;
 }
 }

 throw new Exception("Variable not found.");
 }

 private void ResponseHandler(object sender, ResponseDataEventArgs args) {
 // iterate through all values to be added
 foreach (KeyValuePair<string, string> itemsToChange in args.ValuesChanged) {
 // find variable
 foreach (PropertyDescriptor pd in dataContext.GetProperties())
 {
 // found
 if(pd.Name == itemsToChange.Key) {
 if (pd.PropertyType == typeof(DateTime))
 {
 DateTime newDT = DateTime.Parse(itemsToChange.Value);
 pd.SetValue(dataContext, newDT);
 OutputMessageToConsole("Changed " + itemsToChange.Key + " to "
 + newDT.ToLongDateString());
 }
 else
 {
 pd.SetValue(dataContext, itemsToChange.Value);
 OutputMessageToConsole("Changed " + itemsToChange.Key + " to "
 + itemsToChange.Value);
 }
 }
 }
 }
 }

 private void OutputMessageToConsole(string message) {
 if (host != null)
 host.SendMessageToConsole(message);
 }

 private void OnComplete(NativeActivityContext context, ActivityInstance completedInstance) {
 // desubscribe for events
 requestdata.SendDataBack ‐= new EventHandler<ResponseDataEventArgs>(ResponseHandler);
 }

 public PatientStateStep Clone() {
 PatientStateStep pss = new PatientStateStep();
 pss.Criteria = this.Criteria.Clone();
 return pss;
 }

 public override GLIFObjects.BaseStep CreateStepWithoutLinkages() {
 GLIFObjects.PatientStateStep pss = new GLIFObjects.PatientStateStep();
 pss.DisplayName = DisplayName;
 pss.Criteria.Specification = this.Criteria.Specification;

 foreach (ActivityLibrary.GetDataTask task in this.Criteria.GetDataTasks) {
 GLIFObjects.GetDataAction gda = new GLIFObjects.GetDataAction();
 gda.VariableName = task.Variable.VariableName;
 pss.Criteria.GetDataActions.Add(gda);
 }
 return pss;
 }
 }
}

64Appendix B - PatientStateStep

1C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\ActionStep.cs

using System.Collections.Generic;
using System.ComponentModel;
using ActivityLibrary.Design;
using System.Windows.Forms;
using System.Activities;
using IHostCommunication;
using System;
using System.Activities.XamlIntegration;
using Microsoft.VisualBasic.Activities;
using System.Reflection;

namespace ActivityLibrary
{
 [Designer(typeof(ActionStepDesigner))]
 public class ActionStep:BaseActivity
 {
 private List<Task> tasks;
 public List<Task> Tasks {
 get {
 return tasks;
 }
 set
 {
 if (value == null)
 throw new ArgumentNullException("Tasks cannot be null");
 tasks = value;
 }
 }

 public ActionStep() {
 tasks = new List<Task>();
 }

 protected override void CacheMetadata(NativeActivityMetadata metadata) {
 metadata.AddDefaultExtensionProvider<WorkflowInstanceInfo>(() => new WorkflowInstanceInfo());
 base.CacheMetadata(metadata);
 }

 protected override void Execute(System.Activities.NativeActivityContext context) {
 // get data context for binding variables
 dataContext = context.DataContext;
 proxy = context.GetExtension<WorkflowInstanceInfo>().GetProxy();
 // get host communication service for communication with host app
 // (debugging output etc)
 host = context.GetExtension<IHostCommunication.IHostMessaging>();
 requestdata = context.GetExtension<IHostCommunication.IHostDataRequest>();
 // connect method to handle response from host
 requestdata.SendDataBack += new EventHandler<ResponseDataEventArgs>(ResponseHandler);
 // update console that we are entering action step
 OutputMessageToConsole("Entered action step " + this.DisplayName);
 // output number ot asks for debugging
 OutputMessageToConsole("Number of tasks is " + Tasks.Count.ToString());

 // iterate through data tasks and medical oriented tasks
 List<IHostCommunication.DataItem> ItemsToFetch = new List<IHostCommunication.DataItem>();
 List<MedicalActionSpecification> MedicalOrientedTasks = new List<MedicalActionSpecification>();
 List<AssignmentTask> Assignments = new List<AssignmentTask>();
 List<SubguidelineTask> Subguidelines = new List<SubguidelineTask>();

 foreach (Task task in this.Tasks) {
 if(task is GetDataTask) {
 OutputMessageToConsole("Fetching " + ((GetDataTask)task).Variable.VariableName);
 IHostCommunication.DataItem item = new IHostCommunication.DataItem();
 item.Name = ((GetDataTask)task).Name;
 item.VariableName = ((GetDataTask)task).Variable.VariableName;
 item.DataSource = ((GetDataTask)task).Variable.DataModelSourceID;
 item.CurrentValue = FetchCurrentValue(item.VariableName);
 ItemsToFetch.Add(item);

65Appendix C - ActionStep

2C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\ActionStep.cs

 }
 else if(task is MedicalActionTask) {
 // populate list of medical tasks
 MedicalActionSpecification specification = new MedicalActionSpecification();
 specification.DisplayText = ((MedicalActionTask)task).Name;
 specification.Concept.ID = ((MedicalActionTask)task).LiteralDataItem.Concept.ID;
 specification.Concept.Source = ((MedicalActionTask)task).LiteralDataItem.Concept.Source;

 if (((MedicalActionTask)task).LiteralDataItem.Value is Medication) {
 Medication med = (Medication)((MedicalActionTask)task).LiteralDataItem.Value;
 specification.Mood = med.Mood;
 specification.Route = med.Route;
 specification.DosageQuantity = med.DosageQuantity;
 specification.CriticalStart = med.CriticalTime.Start.DisplayName;
 specification.CriticalEnd = med.CriticalTime.End.DisplayName;
 }

 MedicalOrientedTasks.Add(specification);
 }
 else if (task is AssignmentTask) {
 Assignments.Add((AssignmentTask)task);
 }
 else if (task is SubguidelineTask) {
 Subguidelines.Add((SubguidelineTask)task);
 }
 else if (task is MessageTask) {
 host.SendMessageToUser(((MessageTask)task).Message);
 }
 }

 // fetch data if there is any to be fetched
 if(ItemsToFetch.Count > 0)
 requestdata.RequestData(this.DisplayName, ItemsToFetch);
 // do assignments (if any)
 foreach (AssignmentTask assignment in Assignments)
 {
 // create evaluate engine
 EvaluationEngine.Parser.Token token = new EvaluationEngine.Parser.Token(assignment.Expression);

 // set variables
 foreach (PropertyDescriptor pd in dataContext.GetProperties()) {
 token.Variables.Add(pd.Name);
 if (pd.GetValue(dataContext) == null)
 token.Variables[pd.Name].VariableValue = string.Empty;
 else
 token.Variables[pd.Name].VariableValue = pd.GetValue(dataContext).ToString();
 }

 EvaluationEngine.Evaluate.Evaluator eval =
 new EvaluationEngine.Evaluate.Evaluator(token);

 // run the evaluation
 string ErrorMsg = "";
 string result = "";
 // fetch result
 eval.Evaluate(out result, out ErrorMsg);

 // find variable for assignment
 foreach (PropertyDescriptor pd in dataContext.GetProperties()) {
 if (pd.Name == assignment.VariableToAssign) {
 // is it date time?
 if (pd.PropertyType == typeof(DateTime))
 {
 // fetch date time
 DateTime dtResult = DateTime.Parse(result);
 pd.SetValue(dataContext, dtResult);
 }
 else

66Appendix C - ActionStep

3C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\ActionStep.cs

 pd.SetValue(dataContext, result);
 break;
 }
 }

 // output debugging info to console
 host.SendMessageToConsole("Assignment task");
 host.SendMessageToConsole(assignment.Expression);
 host.SendMessageToConsole("Evaluates to " + result);
 }

 // do medical oriented action steps if any
 foreach (MedicalActionSpecification medicalTask in MedicalOrientedTasks) {
 host.SendMedicalInformationTask(medicalTask);
 }

 // do subguidelines
 foreach (SubguidelineTask subguideline in Subguidelines) {
 Activity activity = ActivityXamlServices.Load(subguideline.FileName);
 Dictionary<string, object> inparameters = new Dictionary<string,object>();

 foreach (SubguidelineArgument arg in subguideline.InArguments) {
 inparameters.Add(arg.GuidelineVariable, arg.SubguidelineVariable);
 }

 host.SendMessageToConsole("Invoking subguideline");
 // copy existing display names
 Dictionary<string, string> existingDisplayNames = host.GetDisplayNames();
 // clear display names out of host communicator for subguideline
 // (to be returned later)
 host.ClearDisplayNames();

 // handle FlowDecision Steps
 Activity sub = ActivityXamlServices.Load(subguideline.FileName);
 foreach (Activity act in WorkflowInspectionServices.GetActivities(sub))
 {
 if (act is System.Activities.Statements.Flowchart)
 {
 List<Variable> itemsToDelete = new List<Variable>();

 System.Activities.Statements.Flowchart fc = act as System.Activities.Statements.
Flowchart;

 foreach (Variable var in fc.Variables) {
 if (var.Name.StartsWith("result")) {
 itemsToDelete.Add(var);
 }
 }

 // delete temp variables
 foreach (Variable var in itemsToDelete)
 fc.Variables.Remove(var);

 // add temp variables
 int valueref = 0;

 // iterate and find FlowDecision steps
 foreach (System.Activities.Statements.FlowNode fn in ((System.Activities.Statements.

Flowchart) act).Nodes) {
 if (fn is System.Activities.Statements.FlowDecision)
 {
 System.Activities.Statements.FlowDecision fd =
 fn as System.Activities.Statements.FlowDecision;
 // add boolean variable
 Variable<bool> newVar = new Variable<bool>();
 newVar.Name = "result"+valueref;
 valueref++;
 ((System.Activities.Statements.Flowchart)act).Variables.Add(newVar);
 VisualBasicValue<bool> vbv = new VisualBasicValue<bool>();

67Appendix C - ActionStep

4C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\ActionStep.cs

 vbv.ExpressionText = newVar.Name;
 fd.Condition = vbv;
 // get DisplayName for FlowDecision
 string displayName = string.Empty;
 Type fdType = fd.GetType();
 foreach (PropertyInfo pi in fdType.GetProperties())
 {
 if(pi.Name == "DisplayName") {
 displayName = (string)pi.GetValue(fd, null);
 break;
 }
 }

 displayName = displayName.Trim();
 displayName = displayName.Replace(" ", string.Empty);
 host.SetDisplayName(newVar.Name, displayName);
 }
 }
 }
 }

 // invoke sub workflow
 WorkflowInvoker inv = new WorkflowInvoker(activity);
 inv.Extensions.Add(host);
 inv.Extensions.Add(requestdata);
 IDictionary<string, object> outarguments = inv.Invoke(inparameters);

 // set result (outarguments)
 foreach (KeyValuePair<string, object> kvp in outarguments)
 {
 foreach (Activity act in WorkflowInspectionServices.GetActivities(sub))
 {
 if (act is System.Activities.Statements.Flowchart)
 {
 System.Activities.Statements.Flowchart fc = act as
 System.Activities.Statements.Flowchart;

 // find variable
 foreach (SubguidelineArgument s in subguideline.OutArguments)
 {
 // match variable to assign
 if (s.SubguidelineVariable == kvp.Key)
 {
 foreach (PropertyDescriptor pd in dataContext.GetProperties())
 {
 if (pd.Name == s.GuidelineVariable)
 {
 host.SendMessageToConsole("Setting variable " + s.GuidelineVariable

+ " to "
 + kvp.Value);
 pd.SetValue(dataContext, kvp.Value);

 }
 }

 /*
 // found
 foreach (Variable v in fc.Variables)
 {
 // found guideline variable
 if (v.Name == s.GuidelineVariable) {
 v.Set(context, kvp.Value);
 host.SendMessageToConsole("Set variable " +
 s.GuidelineVariable + " to " +
 kvp.Value);
 }

68Appendix C - ActionStep

5C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\ActionStep.cs

 }
 */
 }
 }
 foreach (Variable v in fc.Variables)
 {

 }

 }

 break;

 }

 }

 // reset display names
 host.ClearDisplayNames();

 foreach (KeyValuePair<string, string> kvp in existingDisplayNames)
 host.SetDisplayName(kvp.Key, kvp.Value);
 }

 HandleFlowDecision();
 }

 private void OutputMessageToConsole(string message) {
 if (host != null)
 host.SendMessageToConsole(message);
 }

 private string FetchCurrentValue(string variableName) {
 foreach (PropertyDescriptor pi in dataContext.GetProperties()) {
 if (pi.Name == variableName)
 {
 if (pi.GetValue(dataContext) != null)
 return pi.GetValue(dataContext).ToString();
 else
 return string.Empty;
 }
 }
 throw new Exception("Variable not found.");
 }

 private void ResponseHandler(object sender, ResponseDataEventArgs args) {
 // iterate through all values to be added
 foreach (KeyValuePair<string, string> itemsToChange in args.ValuesChanged)
 {
 // find variable
 foreach (PropertyDescriptor pd in dataContext.GetProperties())
 {
 // found
 if (pd.Name == itemsToChange.Key)
 {
 if (pd.PropertyType == typeof(DateTime)) {
 DateTime result = DateTime.Parse(itemsToChange.Value);
 pd.SetValue(dataContext, result);
 OutputMessageToConsole("Changed " + itemsToChange.Key + " to "
 + result.ToLongDateString());
 }
 else
 {
 pd.SetValue(dataContext, itemsToChange.Value);
 OutputMessageToConsole("Changed " + itemsToChange.Key + " to "

69Appendix C - ActionStep

6C:\Users\Ryan\Desktop\WF 4.0 examples\chapter 16\ActivityLibrary\ActionStep.cs

 + itemsToChange.Value);
 }
 }
 }
 }
 }
 }
}

70Appendix C - ActionStep

