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Abstract

The Transportation model (TP) is one of the oldest practical problems in mathematical programing.

This model and its relevant extensions play important roles in Operations Research for finding the

optimal solutions for several planning problems in Business and Industry. Several methods have

been developed to solve these models, the most known is Vogels Approximation Method (VAM).

A modified version of VAM is proposed to obtain near optimal solutions or the optimum in some

defined cases. Modified Vogel Method (MVM) consists iteratively in constructing a reduced cost

matrix before applying VAM. Beside to MVM, another approach has been developed, namely the

Zero Case Penalty, which represents different penalty computational aspects. Through the research,

the results of methods-comparison studies and comparative analysis are presented. Furthermore,

special classes, the Unbalanced TP and the Transshipment models, were studied and solved with

different approaches. Additionally, we provide an application of MVM to Traveling Salesman

Problem.

Keywords:

Linear Transportation problem, Unbalanced Transportation problem, Transshipment problem, Vo-

gel Approximation Method, Reduced cost matrix, Heuristics, Transportation algorithm, Modified

Vogel Method, Zero Case Penalty algorithm, Initial solution method, Traveling salesman problem.
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General Introduction

In Operations Research, there are variety of applications which have been arisen in different fields

related to optimization problems. The key point is to find optimal values of the decision variables in

order to solve these problems without exceeding the restrictions. The Transportation model (TP) is

one of the oldest applications in mathematical programing. This model and its relevant extensions

play an important role in Operation Research for finding the optimal solution.

The Unbalanced Transportation problems, the Assignment problems, and the Transshipment prob-

lems are special instances of the Transportation models.These problems have been a target for many

researchers in the field of Operations Research and Decision Making. The importance of the Trans-

portation models relies on the fact that these problems accommodate many applications, not only

in the distribution network systems but also, in job scheduling, production inventory, logistics and

investment analysis. In fact, several methods have been developed and a wide range of application

has been studied related to these models. Some of these methods are considered as heuristic meth-

ods by providing a near to optimal solution, however, the main goal is to develop a combinatorial

optimization algorithm.

In this thesis, several problems, such as the Transportation Problems and its special cases, the Un-

balanced Transportation problems and Transshipment problems as well as the application to the

Travel Salesman Problem, will be treated in different aspects. For each problem, the primary goal

lies on determining the optimal strategy for distributing commodity from a group of sources to a

group of destinations wile satisfying the restrictions. Through this research, the models will be

studied in the following order:

Firstly, the Transportation problem which we present in the first chapter is a special class of linear

1



programming problems, and a classic Operations Research problem. Indeed, the objective function

for these problems is to schedule for transporting goods from a group of sources to a group of

destinations in a way that minimize the total shipping cost while satisfying the constraints. This

model comes with two special cases based on if the equality between the total supply and the total

demand holds or not.

Not to mention, the Transportation model and its variants can be formulated as linear programming

problems and solved by the simplex algorithm. It may result in numerous simplex iterations with

computational- time consuming. However, since these models have special characteristics, they can

be solved by various specialized algorithms. Furthermore, the relation between the primal and dual

problems will be highlighted the fact that the dual variables explicit the changes on the solution in

the Transportation algorithm as it iterates closer to the optimum.

In the second chapter, a new approach to solve Transportation models will be proposed. It is a

modification of the Vogel Approximation method, namely Modified Vogel Method (MVM), that

results in better and more efficient initial solution and, in some cases, yields to the optimality. Some

defined cases and certain rules will be provided to maintain an equivalent reduced problem and to

reduce the iterations number in the Transportation Algorithm if needed.

Furthermore, another algorithm will be introduced in the third chapter which has the same basic

concept as in MVM but with different technique to compute the penalties, and it is called Zero Case

Penalty Algorithm (ZCP). From its name, the zeros either they are dependent or independent in the

reduced matrix will be considered differently by assigning to each zero a penalty to be missed.

Therefore, the zeros penalty cases are considered instead of row-column penalty.
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The Unbalanced Transportation problems, will be discussed in the third chapter and solved by the

new algorithms after basically balancing the problem. This algorithm process allows us to elimi-

nate the dummy aspect.

In the Fifth chapter, the Transshipment model which is a special type of Transportation model and

has different shipment routs will be included in this research. The name of this model comes from

the concept of existing transit points between the supply centers and the receiving centers. In addi-

tion, the commodity can be transported between the sources and between the destinations.

Finally, in the last chapter the Travelling Salesman Problem TSP will be studied and represented

in a different way as an application of the Modified Vogel method. TSP is a NP-hard problem and

one of the most intensively studied problem in optimization studies and has several applications

in business and industry. The concept in this problem is to treat it mathematically and construct a

possible shortest tour that visits each city exactly once.

Further, each chapter is divided into two parts. At the first part, the problem will be discussed from

the viewpoint of existing methods. Then in the second part, it will be examined in the new alternate

methods.

Through the chapters we will discuss MVM and ZCP for different types of Linear programming

problems with comparison to other existing methods. Discussions will be made on the functionality

of all the algorithms and the amelioration in terms of the number of improved cases. In addition,

comparative studies of the new approaches and the other existing methods will be established for

random instances of the problems in terms of algorithm performance and computing time.
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Chapter 1

The Linear Transportation Model

1.1 Introduction

Transportation model is a special kind of optimization problems which plays an important role in

the field of allocation of resources, destination planning and supply chain management. Generally,

supply and demand planning has been gaining more attention in the past few years.

Transportation Problem is an instance of the minimum cost network flow models and is considered

to be a fundamental model in Linear Programming. In this model, the problem consists in shipping

commodity from a number of sources as supply centers to a number of destinations as receiving

centers. The objective in this model is to minimize the total shipping costs from the sources to the

destinations. Clearly, the unit quantities of commodity that need to be shipped from a source to a

destination have to be determined without exceeding the supply and demand constraints as a main

goal in solving Transportation Model. In fact, solving Transportation Problems in less time and

computations have been the target for many researchers.

4



Indeed, this type of problem can be formulated as standard linear programming problems and

solved by the simplex algorithm but it may result in a large simplex tableau and numerous iterations.

Because of its special structure, however, there are alternative methods for obtaining the optimal

solution.

In this chapter, the Transportation model will be discussed and the solutions methods will be stud-

ied.

1.2 Mathematical Formulation of Transportation Problems

The Transportation model can be defined as a network model G = (N,A) where the set N is con-

stituted by all the nodes while A is the set of the existing links between these nodes. It is assumed

that we have n different sources in the set S = {1, 2, · · ·n} and each with an available supply

ai, and m different destinations in the set D = {1, 2, · · ·m} and each with a required demand

bj . Then N can be defined to be S ∪ D and where S ∩ D = φ and A can be defined by the set

{(i, j), i ∈ S , j ∈ D}.

Mathematically, the Transportation Problem can be formulated as following:

TP



min TC =
n∑

i=1

m∑
j=1

Cij Xij

m∑
j=1

Xij ≤ ai ; i = 1, · · ·n

n∑
i=1

Xij ≥ bj ; j = 1, · · ·m

Xij ≥ 0 ; i = 1, · · ·n ; j = 1, · · ·m

(1.2.1)
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Obviously, it is a linear programming with (n ×m) variables and (n + m) constraints where xij

represents the amount of commodity shipped from source i to destination j , and Cij is the shipping

cost of one unit form source i to destination j. The first set of the constraints expresses the fact that

the total amount shipped from the source i should not exceed its capacity ai, and the second set

illustrates the fact that the demand at each destination point j should be met. It should be clear that

the constraints in the above formulation are distinct and any node in the network must belong to

only one of the sets to the source or destination sets. Indeed, the objective function is to minimize

the total shipping cost while satisfying the supplies restriction and meeting the demands require-

ment. Not to mention, the decision variables xij take only a positive integer value for all i and j.

In addition, another constraint needs to be considered in the above model in order to determine if the

Transportation problem is a balanced problem or not. Thus, in this constraint we need to compute

the total supply and total demand, then if the equality between
∑n

i=1 ai and
∑m

j=1 bj is

satisfied as:

n∑
i=1

ai =
m∑
j=1

bj

the problem is said to be a Balanced Transportation problem BTP. Otherwise it is called Unbal-

anced Transportation problem UTP. Thus, the Balanced Transportation Problem can be written as

following:

TP



min TC =
n∑

i=1

m∑
j=1

Cij Xij

m∑
j=1

Xij = ai ; i = 1, · · ·n

n∑
i=1

Xij = bj ; j = 1, · · ·m

Xij ≥ 0 ; i = 1, · · ·n ; j = 1, · · ·m

(1.2.2)
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In the above model, the problem can be solved when all the equalities hold for all constraints. No-

tice that if both supply and demand values are integer then the Transportation problem has at least

an integer solution.

Furthermore, the Transportation model can be formulated in matrix form as the following Linear

problem:

TP



min TC = CT X

A X = b

X ≥ 0 ;

(1.2.3)

where C is a vector of all the shipping costs between sources and destinations, and X is a vector of

positive decision variables. Additionally, vector b consists of all the supply and demand while the

matrix A is given in the following form:

A =



em 0 · · · 0

0 em · · · 0
...

... . . . ...

0 0 · · · em

Im Im · · · Im


(1.2.4)

where the vector em = (1, 1, · · · , 1) in m-dimensional and where Im is the m×m identity matrix.

Through this chapter the balanced transportation problem is considered. In chapter 4, we will

discuss the unbalanced Transportation Problem and how can be solved.
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1.3 Network Representation

In order to simplify the Transportation problem, it can be shown as network model as in the fol-

lowing figure:

s1

s2

d1

d2

sn dm

c11

c12

c1m

c22

c21

c2m

cn1

cn2

cnm

Figure 1.3.1: The Transportation Network

From figure (1.3.1), considering that there are n source nodes such as factories, and m destination

nodes such as warehouses. Each unit of the product transports from the source i the destination j

comes with shipping cost cij . However, this cost differs for each origin and destination combina-

tions. Determining the quantity of units that needs to be transported is the goal for solving this type

of problem.

Furthermore, each source i has ai which is the total supply or available capacity of products where

each destination j has bj which is the total demand of the products at that point.
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The Transportation tableau is another way to represent the Transportation problem in an easy-to-

read format using matrix or tableau in order to visualize the problem.

Again, with the assumption that we have n sources andm destinations, in the transportation tableau,

each row represents a source and each column represents a destination. Moreover, the supplies are

listed at the right of each source and the demands are listed at the bottom of each destination.

Further, the cell which is located at the intersection of the ith row and jth column cell(i, j) con-

tains the cost of shipping one unit of product from source i to destination j in a subcell at the

upper-right corner of cell(i, j) as well as the number of units xij to be shipped. Then the problem

in a (n+)×(m+1) tableau form with including the supplies and demands is specified as following:

c11 c12 · · · c1j · · · c1m a1

c21 c22 · · · c2j · · · c2m a2

...
... . . . ... . . . ...

...

ci1 ci2 · · · cij · · · cim ai

...
... . . . ... . . . ...

...

cn1 cn2 · · · cnj · · · cnm an

b1 b2 · · · bj · · · bm
∑n

i=1 ai =
∑m

j=1 bj

Table 1.3.1: The Transportation tableau

Again, in the sense of the equality between the total supply a and total demand b, the system is

balanced.
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1.4 Example of Illustration

SunRay Transport Company:

We consider the following problem was introduced in [15]:

SunRay Transport Company ships truckloads of grain from three silos to four mills. The supply and

the demand (in truckload) together with the unit transportation costs per truckload on the different

routes are summarized in the following table. The model objective is to minimize the shipping cost

schedule between silos and the mills.

The capacity at each silo are 15, 25, and 10 respectively. The demand for each mill are 5, 15, 15 ,

and 15 respectively.

mill 1 mill 2 mill 3 mill 4

silo 1 10 2 20 11

silo 2 12 7 9 20

silo 3 4 14 16 18

Formulating the problem as a linear programming model, we obtain:

TP



min TC =
3∑

i=1

4∑
j=1

Cij Xij

4∑
j=1

Xij = ai ; i = 1, · · · 3

3∑
i=1

Xij = bj ; j = 1, · · · 4

Xij ≥ 0 ; i = 1, · · · 3 ; j = 1, · · · 4

(1.4.1)

10



In the Transportation tableau, we have:

mill 1 mill 2 mill 3 mill 4 sp

silo 1 10 2 20 11 15

silo 2 12 7 9 20 25

silo 3 4 14 16 18 10

dm 5 15 15 15

In this problem, the supply constraints are:



x11 + x12 + x13 + x14 = 15

x21 + x22 + x23 + x24 = 25

x31 + x32 + x33 + x34 = 10

(1.4.2)

The demand constraints are:

B



x11 + x21 + x31 = 5

x12 + x22 + x32 = 15

x13 + x23 + x33 = 15

x14 + x24 + x34 = 15

(1.4.3)
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1.5 Duality

As stated earlier, the Transportation problem can be solved by the simplex method. During its

process, shadow prices or dual variables must be constructed. It is important to realize that evalu-

ating these dual values for the initial solution will provide the incremental or subtractive changes

for the total cost. So, the Primal-Dual relationship has to be highlighted in the structure of LTP.

The process of calculating the dual variables will be illustrated within the Transportation algorithm.

The dual Transportation model can be written as:

DTP



max W =
n∑

i=1

ai ui +
m∑
j=1

bj vj

ui + vj ≤ Cij ; i = 1, · · ·n , j = 1, · · ·m

ui , vj unrestricted ; for all i and j

(1.5.1)

where ui and vj represent the dual variables.

1.5.1 Theorem

If the primal problem has the optimal solution X∗ij , then the dual problem has the optimal solution

u∗i and v∗j such that

W ∗ =
n∑

i=1

ai ui
∗ +

m∑
j=1

bj vj
∗ =

n∑
i=1

m∑
j=1

Cij X
∗
ij = TC∗
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1.6 Degeneracy

It is said that the solution is a non- degenerate feasible solution when the number of variables as-

signed equals n + m − 1, Where n is the number of sources and m is the number of destinations,

otherwise we have a degenerate solution.

To put things in another word, the system has one redundant constraint since there are n + m

constraints. Meaning the redundant constraint can be written ias a linear combination of other con-

straints.

Generally, Transportation problems presented and solved by Dual Simplex Method, Two Phase

Method, Bounded simplex Method and Big M Method [6] and these methods usually used to solve

linear programming problems. The goal is to get a good initial solution for the transportation

problem and then improve iteratively this solution to optimality. In fact, there are a wide variety of

algorithms for finding the initial feasible solutions.

1.7 Transportation Algorithm

The basic steps for solving balanced Transportation Model iare determining the initial feasible ba-

sic solution and then improving, if needed, this solution for the optimality. At the first stage, several

heuristic methods exist to obtain the starting feasible solutions and these solutions could be close

or far from the optimum.

Indeed, a solution is said to be a feasible basic solution when all the assignment xij are positive
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and obtains only basic variables. That bring us to an important fact that the feasibility occurred as

long as the demand constraints are satisfied or to put it differently when the supplies meet exactly

the demands at each point. In the business world, it means each warehouse must receive all its nec-

essary demand and each factory must not exceed its supply. In other words, there is no remaining

supply or exceeding demand.

The solution at the first step is called an initial feasible solution because the priority at this stage

is to satisfy the demands without exceeding the supplies in the distribution network model. This

solution can be obtained by heuristic methods such as North West method (NWM), The Least

Cost Method (LCM), Vogel’s Approximation Method (VAM), the Total Opportunity-Cost method

(TOM) as well as, of course, other modification versions of VAM.

1. First Stage: Finding The initial Feasible Basic Solution

In this section, we shall discuss the first three methods which are classic algorithms for gen-

erating basic initial solutions (IFBS) as first step to toward the optimality.

(a) The North - West Method (NWM)

The north-west rule is an easy and quick method to find the feasible solution. In this

method, the allocations are made based on the concept of starting at the cell of Upper-

Left (North-West) corner in the transportation tableau. Increase the assignment as much

as possible until it equals to its row’s supply or its column’s demand. Then, update the

supply and demand value by subtracting the amount of assignment. After that, cross

out the line that has been satisfied whether a row or column. If both row and column

satisfied then select either arbitrary. Repeat the procedure to the remaining matrix by

selecting the next cell either moving right if a column was crossed or moving down
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otherwise. Eventually, we reach the stop step when there is no more cells remained to

be assigned.

Unfortunately, this method does not take the cost information into account and the name

of this method is based on the fact that the variable located at the north-west corner in

the remaining tableau is always be selected.

The IFBS obtained for the example mentioned in section 1.4 by NWM follows:

mill 1 mill 2 mill 3 mill 4

silo 1 10 2 20 11

5 10

silo 2 12 7 9 20

5 15 5

silo 3 4 14 16 18

10

Table 1.7.1: The initial solution of NWM

NWM assigned 6 variables ( n + m − 1 ). It is a non-degenerated solution with the total

shipping cost $ 520

(b) The Least - Cost Method (LCM)

The goal here in this approach is to minimize the total shipping cost. Then the allo-

cations processes in this method focus on choosing the variable with minimum-cost

among all the values in the cost matrix.

Basically, the lowest-cost cell should be selected and breaking the tie arbitrarily. Then

assign the minimum amount between its row supply and its column demand. Reduce

the row supply and column demand by that assigned amount so at least one becomes

zero. Cross out the row or column that satisfied and if both capacity and demand have

zero then select either arbitrary. Repeat the same process on the remaining tableau.
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LCM gives the following starting basic feasible solution for the same example mentioned in

section 1.4:

mill 1 mill 2 mill 3 mill 4

silo 1 10 2 20 11

15

silo 2 12 7 9 20

0 15 10

silo 3 4 14 16 18

5 5

Table 1.7.2: The initial solution of LCM

The total shipping cost here equals $ 475 to which is better than the one obtained with NWM.

It is unlikely that both above methods guarantee a good initial feasible solution with (n +

m − 1 ) assigned variables.

(c) Vogel’s Approximation Method (VAM)

VAM is a heuristic method which provides a better starting solution than the two pre-

vious methods. This method is based on the concept of penalty costs for each row and

column. A penalty cost obtained by computing the difference between the two mini-

mum costs of each row and column. Then we allocate as much as possible to the least

cost cell of the row or column with the largest penalty. The details of VAM are illus-

trated below:

I. Computing the penalty cost for each row and column by taking the difference be-
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tween the second lowest cost and the lowest cost in the same row or column.

II. Identify the maximum penalty cost in the tableau either a row or column. All ties

are broken arbitrarily.

III. Locate the minimum cost of the maximum penalty line then allocates the mini-

mum units between the row supply or the column demand.Update the supplies and

demands.

IV. Repeat I, II, III steps until all the requirements have been met.

V. Compute the total transportation cost for all the allocation cells.

After applying the VAM to the same example mentioned in section 1.4, we got the following

table with total shipping cost equal to $ 475 which happen to be the same cost obtained from

LCM :

mill 1 mill 2 mill 3 mill 4

silo 1 10 2 20 11

15 0

silo 2 12 7 9 20

15 10

silo 3 4 14 16 18

5 5

Table 1.7.3: The initial solution of VAM

2. Testing the Solution for Optimality

After computing the initial solution by one of the methods mentioned above, the solution
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may or may not be optimal. Examining the optimality of solution can be done by computing

the dual variables and then iterating toward the optimality if the solution is not optimal. The

U-V method and the stepping-stone method are the most common methods used for testing

the solution and enable us to derive it to optimality.

Indeed, a solution is said to be optimal if it is feasible and satisfies the condition of minimiz-

ing the total shipping cost of the transportation problem.

(a) The Stepping Stone Method

In this method, the idea is to generate a solution associates with non-basic variables.

Meaning, we will start creating a square or rectangle path that starts and ends at the

same non-basic variable and the remaining are the basic variables. These paths are al-

ways created in clockwise. The method is named stepping stone because the path is

created at a non-basic variable and steps at every basic variable (stone) at the corner of

that path. Then the steps at each iteration can be summarized as following:

I. Testing each non-basic variable in the transportation solution tableau by creating a

closed path starts and ends at the same non-basic variable.

II. At the start point, we need to add then begin subtracting and adding θ at the other

corners of the path. The θ amount can be determined by the lowest value among

the decreasing variable at the path.

III. Calculate the total cost based on the new basic variables.

IV. Repeat the above steps for each non-basic variable at the original transportation
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solution tableau with computing the total cost associates with the change.

V. The improvement would be done by select the most negative cost if it exists. Other-

wise, the current solution is optimal. The negative value implies that the optimality

does not hold.

VI. These steps are only for one iteration then we need to start another iteration by do-

ing all the above steps in order to examine if the solution that we got at the current

iteration is optimal or not. Stop if it is optimal.

It should be clear, in this method, a lot of effort will be spent with large-size matrices.

(b) The U - V Method

This method is based on the idea of computing the modifiers ui and vj for each row

i and column j. The dual variable ui represents the sum of row i, and vj represents

the sum of column j for the basic variables. Clearly, the value of u and v implicit the

size of reduction for every cost. Meaning that the Cij will be reduced twice by the ui

and vj . Then it can be written as cij − ui − vj which is the opportunity cost for all

the non-basic variables. The interpretation of this procedure can be shown in the table

below.
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u1 c11 − u1 − v1 c12 − u1 − v2 · · · c1j − u1 − vj · · · c1m − u1 − vm

u2 c21 − u2 − v1 c22 − u2 − v2 · · · c2j − u2 − vj · · · c2m − u2 − vm

...
...

... . . . ... . . . ...

un cn1 − un − v1 cn2 − un − v2 · · · cnj − un − vj · · · cnm − un − vm

v1 v2 · · · vj · · · vm

The steps for the U − V method can be illustrated below:

I. Determine the shadow costs ui and vj in the basic feasible solution for each allo-

cations, where i = 1 · · ·n and j = 1, · · ·m . They can be obtained by using the

formula ui + vj = cij for the basic assignments.

Notice that we will have n + m unknown variables and n + m − 1 linear

equations. Therefore, to solve the system we can assign an arbitrary value for any

modifier in order to begin with the solution. Therefore, we can start with u1 = 0,

since we have one redundant constraint.

II. calculate the cost coefficient dij for the non-basic allocations by using the formula

dij = cij − (ui + vj )

where these allocations equal to ( n × m) − ( n + m − 1).

Once all dij calculated, we can determine if the solution is optimal or not based on

the dij sign. Each dij represents the reduced cost that could be done on the current

total cost if the non-basic variable at position i , j enters the basis.
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A. If all dij > 0 , then the optimality has been reached and the solution is unique.

B. If all dij > 0 and some dij = 0 (one at least), then the solution is optimal

but not unique.

C. If at least one dij < 0 , then the solution is not optimal and need to be im-

proved. Go to II.

III. Select the most negative value for dij if there is more than one. Then perform a

closed cycle starting and ending at dij and go through any allocations in a clockwise

direction. Adding and subtracting θ alternately from each corner in the cycle. The

amount of θ can be determined as the lowest value among the values of allocation

at the corner of the cycle.

IV. Now test the new solution for optimality by determining the new values for ui , vj

and dij . Repeat the above steps if at least one of the new dij is negative.

By doing that we enter a new variable to the basis and remove the basic variable from

the basis. That bring us to an important observation, the cost coefficient dij represents

the opportunity to get a better solution for the Transportation model.

Now, at this stage the IFBS (obtained by one of the previous methods) need to be tested if optimal.

If happened not to be the case then a further improvement is possible. We shall begin with feasible

solution table from VAM.

Let’s illustrate on section 1.4, then we have 6 equations with 5 variables. By assigning any value

arbitrary (let’s say zero) to one of the variables, we can determine the values for ui and vj .
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

u1 + v2 = 2

u1 + v4 = 11

u2 + v3 = 9

u2 + v4 = 20

u3 + v1 = 4

u3 + v4 = 18

(1.7.1)

So, let u1 = 0 and after computing the variables ui , vj and dij we got:

v1 = −3 v2 = 2 v3 = 0 v4 = 11

u1 = 0 10 2 20 11 15

13 15 20 0

u2 = 9 12 7 9 20 25

6 -4 15 10

u3 = 7 4 14 16 18 10

5 5 9 5

5 15 15 15

We choose the most negative value of the non- basic variables, and making a loop and alternate

plus and minus sign at the corner points. Then choose the minimum value which is 10 from the

marked cells with minus signs. Then, adding and subtracting that quantity to and from the cells.
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v1 = 3 v2 = 2 v3 = 0 v4 = 11

u1 = 0 10 2 20 11 15

−→ - −→ ↓ +

13 15 20 0

u2 = 9 12 7 9 20 25

↑ + ←− ←− -

6 -4 15 10

u3 = 7 4 14 16 18 10

5 5 9 5

5 15 15 15

So x24 becomes the leaving variable and x22 the entering variable with value 10.

Once the new solution is obtained, the modifiers u , v and d have to be updated based on the new

basic variables. repeat the process if at least one of the the opportunity cost is negative.

In this case, we have no further improvement. The optimal solution has an objective function of 445

mill 1 mill 2 mill 3 mill 4

silo 1 10 2 20 11

5 10

silo 2 12 7 9 20

10 15

silo 3 4 14 16 18

5 5

Table 1.7.4: The optimal solution obtained after applying U-V method
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1.8 Analysis & Discussion

Generally, in the Transportation model, the goal is to find the shipping plan that satisfy the sup-

plies and demands constraints while minimizing the total shipping cost. Once the Transportation

model formulated, it can be solved by specialized methods. As earlier in the previous sections,

three methods have been presented to find the initial feasible solutions.

Analyzing the fact that in the NWM the idea is to find an initial solution quickly by following easy

steps. However, the result solution is not that good in terms of minimizing the total cost. In con-

trast, the attention in LCM is to select the lowest cost in the tableau. However, at the beginning of

assignment process we start assigning the least cost which would be a good choice at that time. As

a result of these earlier assignment, some of cells with least-cost may be crossed out, consequently

we will be forced to choose the next least cost cell which of course higher than the crossed out cost

in that row or column.

Meanwhile in the VAM, the concept behind computing the penalty, can be interpreted as an ad-

ditional cost needed to be paid if the least cost in that row or column is not selected. Hence by

computing the penalties, our attention will be dragged to the incremental amount that will be added

to the least cost if we miss it. So, the idea behind selecting the highest penalty is to avoid paying

that additional cost.

The penalty strategy in VAM brings us to the important fact that the solution produced by Vo-

gel’s approximation method is mostly better than those produced by the previous methods. Con-

sequently, the performance would be the best in VAM among the discussed methods and in terms

of the iterations number are needed in the optimality test. Additionally, based on carried out ex-

24



periments mentioned in [21] that VAM yielded to closest solutions to optimality by 80% of the time.

In essence, the final analysis is that obtaining a closer solution to the optimality is the target, and

indeed reaching the optimality is the desired result. A modification of Vogel’s Approximation

Method, will be presented in the following chapter. It generates a better and closer solution that is

optimal in most of the cases.

1.9 Conclusion

In this chapter, the Transportation model was discussed and specialized solution methods were

mentioned. It is a type of problem that deals with distributing units of commodity for given source-

destination pair. It can be solved by the Transportation algorithm which is a significant method in

linear programming models and it involves two steps to get to the optimality. In fact, the solution

for this kind of problem can be obtained by the simplex algorithm but time - consuming and com-

plicated computations are involved in the process.

Additionally, when the values of all the supply and demand equal to one the problem is called Lin-

ear Assignment problem (LAP). It is a particular case of transportation problem with the objective

of assigning a number of sources to an equal number of destinations. Several methods have been

developed to attempt to solve the LAP, the main and most popular one is the Hungarian Method

[35], [45] and [44]. In this thesis, we are more concentrated on the general Transportation model

than on the Assignment model.
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Chapter 2

Modified Vogel Method

2.1 Introduction

In this chapter, a modification of Vogel’s approximation method, namely Modified Vogel Method

(MVM), is introduced to obtain near to optimal solutions for the linear Transportation problems.

This method allows us to get the optimality for the most cases. The main two points needed to

be underlined in this chapter are that improvement rate of the proposed method from the Vogel’s

Approximation method, and the defined situations when we avoid using the classic Transportation

algorithm. Furthermore, some of rules and special cases have been identified in order to speed up

the algorithm and in some cases to get generate optimal solutions.

It is important to realize that the differences among the existing methods for solving Transportation

models come in two different points. The first one deals with quality of the produced initial solu-

tions. The second concern is the time complexity to produce that solution. In MVM, we are trying

to achieve the quite balance between the time and the result’s quality. Numerical tests are presented

to show the usefulness of this approach. These experiments also support the intuition that the new
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method provides optimal solutions most of the time, making it for some cases a viable alternative

to the classical transportation algorithm.

2.2 MVM perspective

MVM is a modified version of Vogel’s Approximation Method (VAM) which exhibit a performance

improvement of VAM for Transportation Problems. MVM was first introduced by [Diagne S.G.

& Gningue, Y. [10]] then improved and published in [3]. The general concept of this method is

based on the reduction and the penalty notion. There are several methods to determine the starting

solution and VAM has the advantage of producing the closest approximate solutions. Furthermore,

according to some published papers for testing the performance of VAM [5] & [21], that 20% of

the time the VAM coupled with total opportunity cost yielded the optimal solutions.

However, the solution obtained by Modified Vogel Method is the most efficient solution to the

Transportation Problems. MVM generates the closest solutions to the optimality which leads to a

reduced number of iterations during the Transportation Algorithm if needed. The main modifica-

tion is to construct an equivalent reduced cost matrix from the cost matrix C which is obtained by

applying successively row and column reductions. The reductions are computed by subtracting the

lowest cost at each row from all the entries of its row, then do the same for the columns. There-

fore, the Transportation problem associated to the reduced matrix is called Reduced Transportation

Problem (RTP) and has the property of having at least one zero at each row and column. Then we

apply VAM to RTP by computing the penalties for each row and column. His penalty is simply the

second lowest cost of that line. In fact, it represents the additional cost need to be paid if the least

cost at that row or column has not been selected. Therefore, the priority is given to the line with

the largest penalty.
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It is important to realize that the equivalence of problems/models means that they both have the

same optimal solution, and decision variables. Therefore, the procedure of MVM sets the reduced

cost of the basic variables to be null in advance as in the simplex method [41]. We consider the

solutions where some of the assigned variables are associated with zero reduced costs in RTP and

this makes them particularly appealing for the simplex transportation algorithms.

During the iteration, at each assignment, at least a line is crossed out and the remaining matrix may

need to be reduced completely. A certain number of rules are provided to eliminate the need to

recalculate a new reduced cost matrix. In addition, some new tie-breaking rules are proposed.

In RTP , the matrix already contains information about gaps among the original costs in each row

and column. Hence, the associated penalty are qualitatively better than the ones calculated in VAM.

In some situation, as described by the following theorems, we avoid using the optimality test in the

Transportation Algorithm or at least reduce the number of pivot operations to get to optimality.

Same examples are used to illustrate and illustrate the idea behind the proposed approach.

2.3 MVM Algorithm

In this section, the steps involved in execution of the proposed approach are outlined as follows:

Modified Vogel Algorithm

Step 1. Cost Matrix Reduction (R)

∀ i find ui = min
j
{Cij} then set Cij = Cij − ui ; j = 1, · · · ,m

28



∀ j find vj = min
i
{Cij} then set Rij = Cij − vj ; i = 1, · · · , n

The matrix R = (Rij) has at least a zero cost in each row and column.

Set Nred := 1 and UniqueLpen := 1.

Step 2. Penalty Determination

∀ i find min
j
{Rij} = Ri,k = 0 and pi = min

j 6=k
{Rij }

∀ j find min
i
{Ri,j} = Rs,j = 0 and qj = min

i 6=s
{Rij}

Step 3. Assigning Variable

Find the largest penalty such as

max
i,j
{pi, qj} = Lpen

If max{pi, qj} = pk and k unique then find a zero Rkr = 0 of row k

Else

if max{pi, qj} = qr and r unique then find a zero Rkr = 0 of column r

else

There is a tie and follow the tie-breaking rules. (see Appendix A )

and Set UniqueLpen := 0

endif

endIf

The variable to be assigned is Xkr
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Step 4. Updating

Xkr = min{ak , br} then ak := ak −Xkr and br := br −Xkr

Eliminate the saturated line (supply or demand fully satisfied )

Step 5. Stopping Test

If there is one remaining line then fill it and go to step 6

Step 6. Successive Reduction of Remaining Matrix

Reduce the remaining matrix if necessary then set Nred := Nred+ 1

go to step 1.

Step 7. Optimality Test

If Nred = 1 then the MVM solution is optimal.

Else

if UniqueLpen = 1 the MVM solution is optimal.

else

find the dual variables and test the optimality.

endIf

NOTE:

In the algorithm, we use the variable Nred to track the number of matrix reduction. If Nred=1 then

there was no further reduction, then the initial and the MVM solution is optimal. We also use a

logical variable UniqueLpen to check if the successive reductions are associated to situations where

the largest penalty is unique.
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2.4 Theorems & propositions

In some situations, using the Transportation algorithm to the solution generated by MVM is unnec-

essary. These cases are described and proved by the following theorems and propositions.

Theorem 1. The Reduced Transportation Problem ( RTP) is equivalent to the Linear Transporta-

tion Problem (LTP), and if its optimal cost is zero, then the optimal solution of RTP is optimal for

LTP.

Proof:

The row and column reductions that have been applied to the cost matrix to obtain the reduced cost

matrix are admissible transformations as defined in [17].

CRTP =
∑

i

∑
j RijXij =

∑
i

∑
j(Cij − ui − vj)Xij

=
∑

i

∑
j CijXij −

∑
i

∑
j uiXij −

∑
i

∑
j vjXij

= CLTP − (
∑

i

∑
j uiXij +

∑
i

∑
j vjXij)

= CLTP −
∑

i ui (
∑

j Xij) +
∑

j vj (
∑

iXij)

= CLTP − (
∑

i ui ai +
∑

j vj bj)

Note that it will be the same cost in LTP minus a constant. Furthermore, if CRTP = 0, then the

solution is optimal for RTP and LTP since the total cost is the minimal.

Theorem 2. If no new reduction is necessary during the iterations of the MVM, the solution

obtained is optimal for LTP.

Proof:

That means in all the iterations the matrix still reduced based on the initial reduction. Then, at the
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last iteration the assigned variable corresponds to a zero reduced cost of RTP. Hence, TCRTP = 0

therefore the MVM solution for the TP is optimal.

Theorem 3. If during the application of MVM, all the successive line removals are associated to

a unique largest penalty with null complementary line penalty, then LTP is optimal.

Proof:

At all the iterations if the penalty LPen = maxi,j{pi, qj} > 0, then there is only one reduced zero

in the matrix has the highest penalty and needs to be assigned. Furthermore, when the penalty of

complementary line is zero, the shrinked cost matrix remains reduced based on the initial reduction

and then by [Theorem 1] the MVM solution for the TP is optimal.

Remark 1:

At a given iteration, if the assigned variable Xrc is such that pr > 0 with ar ≤ bc (or qc > 0

with bc ≤ ar) then row r ( respectively column c ) is crossed out. If all the penalties remain un-

changed, then we can assign more than one variable in the same iteration. This situation happens

when LPen = pr > 0 ( or LPen = qc > 0 ) is unique with pr > qj ; ∀j 6= c ( respectively

qc > pi ; ∀i 6= r).

2.5 Special Rules and Cases

During the procedure of MVM, the variable corresponding to a null reduced cost is assigned. That

zero is that the intersection of a two lines. One of these lines is the penalty line (its penalty is

the highest penalty). We will call the other line the complementary line. At each iteration, one

line (penalty or complementary) of the current reduced matrix is removed. Thus, the remaining

shrinked matrix may not be in reduced form.
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However, if the highest penalty is nonzero, the penalty line is saturated (hence it is the one that is

removed), and the penalty of the complementary line is zero, then, the shrinked cost matrix remains

reduced. Indeed, all the line parallel to the penalty line remains unchanged. They stay reduced,

and their penalties are unchanged. Then, the highest penalty being non zero, there was only one

zero entry on the penalty line and that zero is also on the complementary line. Crossing the penalty

line do not remove a zero on the lines parallel to the complementary line. Hence, they stay re-

duced and their penalty would change only if their penalty was on crossed line. In such a case, the

new penalty is simply the next smallest nonzero cost. Finally, the complementary line, since its

penalty is 0, had at least two zero entries. Therefore, it has at least one zero remaining and stays

reduced and its penalty have to be recalculated. Hence, only a few penalties have to be recalculated.

In contrary, if the penalty of the complementary line is not zero, meaning there is only one zero

which is the one on the intersection between the largest penalty line and its complementary line.

Therefore, a new reduction is need for that line and it can perform easily be subtracting its penalty

from all the entries.

Note that such an operation is equivalent to applying an admissible transformation [17] to the

reduced cost matrix to solve an equivalent problem in which the complementary line has a zero

penalty. In summary, when the saturated line is the penalty line, the shrinked matrix is always

reduced, up to an admissible transformation. Hence, the following results holds.

2.5.1 Multiple Largest Penalties

During the determination process, the largest penalty is selected. If a tie between the penalties oc-

curred, then there would be two cases. If all the penalties are equal to zero, we would have a trivial

situation with LPen = 0. Therefore, the current reduced cost matrix contains a Zeros Independent
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solution. In this case, we would apply the Least-Cost algorithm since there is no penalty need to be

paid or we would start assigning with the row that has the maximum number of zeros to ensure the

shrinked matrix remains reduced.

In contrary, if the penalties are non-null, there are two sub-cases to be considered: paralleled largest

penalties and non-paralleled largest penalties.

In the paralleled penalties case, where at least two lines have the same highest penalty and both

lines (rows or columns) contains exactly one zero. Then, we are considering two situations de-

pending on the complementary lines. If they share the same complementary line, and if the sum

of supplies (resp. demands) fit the into the demand of the complementary column (resp. supply of

the complementary row) then we assign simultaneously. Otherwise, we try to reduce the amount to

be assigned to the third reduced cost after the largest penalty. Indeed, several instances in this case

have been studied.

Meanwhile, the case of non-paralleled penalties, where the lines corresponding to the largest

penalty are orthogonal, two situations are considered the conflictual and non-conflictual cases. The

keys here are to avoid as much as possible having further reductions on RTP and to assign as much

as possible to the zero reduced cost at earlier iterations. The interested reader may refer to more

details about these cases which have been studied and added to Appendix A.

2.5.2 Degeneracy

As we mentioned earlier, the solution is degenerate if the number of allocations are less than

n + m − 1. Degeneracy can occur either with Transportation Algorithm or MVM during
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the process of determining the solution. In that case, the Degeneracy occurs when there is the

equality between the supply and demand quantities during the process of assigning variables. In

order to overcome a degenerate solution, this problem can be handled easily by creating an artificial

assignment with a zero cost. It will be explained later in an example how it can be created.

In the following section, we will outline the general steps involved in solving the Transportation

problem using MVM.

2.6 Examples of Illustration

2.6.1 SunRay Transport Company Example

In this section, we would use the same example presented in the chapter 1, section 4.

10 2 20 11 15

12 7 9 20 25

4 14 16 18 10

5 15 15 15

performing row and column reduction, then calculating the penalties.
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8 0 16 0 15 p1 = 0

5 0 0 4 25 p2 = 0

0 10 10 5 10 p3 = 5

5 15 15 15

q1 = 5 q2 = 0 q3 = 10 q4 = 4

At the first iteration: the largest penalty is associated to the third column. At its zero, we assign the

minimum quantity between the supply and demand. Since its complementary line has null penalty,

no reduction is needed. Then we update the second row penalty and its supply as follows.

8 0 16 0 15 p1 = 0

5 0 0 4 25// 10 p2 = 4

15

0 10 10 5 10 p3 = 5

5 15 15// 0 15

q1 = 5 q2 = 0 q3 = 10 q4 = 4

At the second iteration: there is a tie between the third row and first column. In this case, both

lines share the reduced cost zero R13 so we assign the minimum quantity between the supply and

demand. Since its complementary row has non-null penalty, new reduction is needed for row 3.
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Then we update the associated penalties and adjust the supply.

8 0 16 0 15 p1 = 0

5 0 0 4 10 p2 = 4

15

0 ///10 5 10 //5 0 10// 5 p3 = 5

5

5/ 15 0 15

q1 = 5 q2 = 0 q3 = 10 q4 = 0

At the third iteration: p3 = 5 is the largest penalty in the matrix. Then, we assign the mini-

mum quantity between the supply and demand at its zero. No new reduction is necessary since its

complementary column has null penalty. Then we update the associated penalty and readjust the

demand.

8 0 16 0 15 p1 = 0

5 0 0 4 10 p2 = 4

15

0 5 10 0 5/ p3 = 5

5 5

0 15 0 15/// 10

q1 = 5 q2 = 0 q3 = 10 q4 = 0
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Finally, the remaining is a 2× 2 matrix with the largest penalty 4. So, we choose any and assign its

zero then re-adjust the remaining supply or demand. After that, fulfill the remaining cells.

8 0 16 0 15// 5 p1 = 0

5 10

5 0 0 4 0 p2 = 4

10 15

0 5 10 0 0 p3 = 5

5 5

0 15 0 10//

q1 = 5 q2 = 0 q3 = 10 q4 = 4

The assigned variables obtained by MVM is given by the following table with the objective function

of 445 :

10 2 20 11 15

5 10

12 7 9 20 25

10 15

4 14 16 18 10

5 5

5 15 15 15

Table 2.6.1: The optimal solution obtained by MVM for example 1

There was more than one reduction in this problem but all the cost coefficients for non-basic vari-

ables are positive ( see chapter 1), so the solution is optimal. Notice MVM generates the same

solution as what obtain after applying Transportation algorithm to the VAM solution.
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2.6.2 Example 2

Let’s solve the Transportation problem presented in the following tableau by MVM:

70 90 130 8000

80 130 60 7000

65 110 100 10000

95 80 35 5000

9000 12000 9000

After performing row and column reduction and computing the penalties, we got:

0 0 60 8000 p1 = 0

20 50 0 7000 p2 = 20

0 25 35 10000 p3 = 25

60 25 0 5000 p4 = 25

9000 12000 9000

q1 = 0 q2 = 25 q3 = 0
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The largest penalty is 25, however, there is tie between p3, p4 and q2. By considering the highest

value of the supply or demand, we assign X12. May the reader refer to Section (1.2 in Appendix A)

for more details about these comparisons. Since its complementary column has non-null penalty,

new reduction is needed for the second column.

0 0 60 8000////// p1 = 0

8000

20 25 0 7000 p2 = 20

0 0 35 10000 p3 = 0

60 0 0 5000 p4 = 0

9000 4000 9000

q1 = 20 q2 = 0 q3 = 0

Again, we have multiple largest penalties between the second row and the first column. By refer-

ring to the first case in Section 1.2.1.2 and considering the highest amount between supplies and

demands, we select X31. Based on that the first column is crossed out and the row penalties up-

dated. so, we got:
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0 0 60 8000////// p1 = 0

8000

20 25 0 7000 p2 = 25

0 0 35 1000 p3 = 35

9000

60 0 0 5000 p4 = 0

9000////// 4000 9000

q1 = 20 q2 = 0 q3 = 0

Now, the largest penalty is p3, then assign X32 = 1000 and updating the column penalties.

At the next iteration, we got a 2 × 2 matrix then we just assign and continue with the process.

Finally, we have:

70 90 130 8000

8000

80 130 60 7000

7000

65 110 100 10000

9000 1000

95 80 35 5000

3000 2000

9000 12000 9000

Table 2.6.2: The optimal solution obtained by MVM for example 2

From the tableau 2.6.2, the IBFS of MVM is the optimal solution of the given problem with the

total cost at $2, 145, 000. That done by testing the solution for optimality and we found there is
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no further improvement on the solution. Significantly, the optimality reached without additional

iterations compared to VAM where IBFS is given at $2, 205, 000

2.7 Computational Experiments

The experiments and the analysis of the experiment results are presented in this section. The main

goal here is to evaluate the computational times of VAM and MVM for solving the problems and

the improvement rates of MVM.

To illustrate our approach further, we did the following test on 1600 randomly generated transporta-

tion problems. In each case, the values of all cost coefficients, supply and demand were randomly

generated between 1 and 100 for problems of different size. The test design were implemented

using JAVA.

In this comparison the following terms have to be defined:

• The Average Time (AT):

The mean of times consumed to solve problem instances is calculated based on 100 samples

over different sizes.

• The Improvement Rate (IR) :

The average of improvement rate is computed over problem instances for each sizes. This

rate measures the improvement for the solution by MVM comparing with VAM. It does not

include the equality cases between the solutions obtained by VAM and MVM.

• The Number of Improved Cases (NIC):

A frequency of MVM when yields to better solutions than VAM
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Matrix Avg.Time in millisec IR % NIC %
size (nxm) VAM MVM-R MVM-C MVM-R MVM-C

5 x 5 0.8011 0.3147 0.3345 2.7801 1.7256 62

5 x10 1.7301 0.7008 0.5384 0.1650 0.4768 56

10 x 5 2.0130 0.5118 0.4943 0.6475 0.7838 52

10 x 10 2.0133 0.5511 0.6870 2.7809 3.2942 80

10 x 15 3.3982 0.6309 0.7688 1.983 1.2107 79

15 x 10 2.8305 0.8442 0.5078 0.5897 0.5674 71

15 x 15 4.3903 1.2692 1.7364 4.6653 5.0711 82

15 x 20 5.0397 1.3401 1.2515 1.1574 0.9305 70

20 x 15 4.6773 1.3726 1.3783 2.0883 2.0135 77

20 x 20 4.4285 1.2910 1.5391 4.7347 4.606 77

25 x 25 6.1323 2.26 2.1716 4.5304 5.43 80

35 x 35 7.8921 1.5868 1.6729 7.1476 8.3316 91

50 x 50 13.0368 1.3769 1.4486 10.1396 8.9907 88

70 x 70 24.7512 2.3996 2.003 7.93 4.9784 83

90 x 90 49.8013 5.5065 3.15418 9.9576 9.3848 88

100 x 100 66.7887 4.0272 4.8722 10.8697 9.7151 88

Table 2.7.2: The Computational Results of VAM and MVM for Linear Transportation Problems
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Through our computational experiment we indicate two versions of MVM based on where we start

reduction, for instance, MVM-R if we perform row then column reductions, and MVM-C if we

perform column then row reductions.

From table (2.7.7), it can be seen that MVM have over-performed VAM for most the problem in-

stances. In analysis, we found that the average improvement rates ranged from 0.1650% to 10.86%

for different sized Transportation Problems with the standard error at 0.0085. Furthermore, the so-

lutions of 76.5% of 1600 problem instances improved compared to VAM. In terms of running time,

MVM has required less computing time 12.455 ms in average for VAM compared to 1.576 ms for

MVM. Thus the experiment results bring us to an important observation of the effectiveness of the

solutions obtained by MVM.

2.8 Graphical Representation of The Results

In this section, the findings should be represented graphically.

Figure 2.8.1: The Number of Improved Cases by MVM for Different-sized Problems
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Figure 2.8.2: The Performance of MVM-R and MVM-C algorithms for Different-sized Problems

2.9 A Perspective for Maximization of Transportation Prob-

lems

The transportation model deals with minimizing the total cost of flow commodities between nodes

in a network. Instead of dealing with minimize the cost we could deal with problems where we need

to maximize the profit or performance. In that case, we have two scenarios, the first one we could

convert the problem into a standard minimum version model. That can be done by subtracting each

value in the matrix from the largest cost in the matrix. Then just apply MVM to the resulting matrix.

The second scenario, using the adopted version of MVM for the maximum transportation problem.

The reduction is done by selecting the maximum value for each line (row or column) then subtract

each cost from its maximum. Once the cost matrix reduced, the row and column penalties are

calculated by computing the difference between tow minimum costs. In the same manner as in the

minimum version, we continue with the procedure by selecting the largest penalty and assign to
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its zero. Important to realize that the result RTP has negative costs with positive penalties. The

algorithm details and numerical examples will not be mentioned here for similarity, redundancy

and space considerations.

To conclude, a modification of Vogel’s approximation method is introduced in this chapter as an al-

ternative algorithm for conducting a better initial feasible solution to Linear Transportation Model.

Surely, the procedure of MVM is understandable and intuitively easy to follow.

Vogel’s approximation method is one of well-known transportation methods for getting a good

starting solution comparing with other existing methods. Significantly, MVM generates a better

initial solution and has an important advantage by decreasing the number of iterations to reach the

optimality. Moreover, the proposed algorithm provides optimal solutions in several identified cases

and along with certain rules that have been defined in order to avoid using Transportation algorithm.
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Chapter 3

Zero Case Penalty Algorithm

3.1 Introduction

In this chapter, a new alternate algorithm for solving Linear Transportation Models is proposed,

namely, Zero Case Penalty Method (ZCP). This method is based on the concept of computing

penalties for the zeros in the Reduced form of the Transportation problem (RTP) which is obtained

by performing the row and column reduction on the initial transportation problem. The key of in-

troducing this method is how we are able to achieve a good initial solution or better, in some cases,

than the Modified Vogel Method. Therefore, a comparison is made among MVM and ZCP as well

as the improvement rate from VAM is calculated.

Furthermore, some of tie-breaking rules and special cases have been defined with illustration ex-

amples. Before presenting the Zero Case Penalty method, we do an analysis of the reduction

performance on the cost matrix.
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3.2 Analysis of the Matrix Reduction Process

In the previous chapter, MVM has been introduced and discussed along with the comparison to

VAM. As a result, we found that MVM gives better initial solutions and in some case it provides

the optimal solution.

To reduce the cost matrix, the procedure can be processed in two ways. Indeed we can reduce the

rows first then the columns which we call row-column reduction. In contrast, we can perform the

reduction for the columns first then the rows which we call column-row reduction. Both of these

two approaches provide a reduced matrix which is equivalent to the initial matrix cost. This means

the two reduced problems have the same optimal solution. However the application of MVM might

provide two different initial solutions. In the following subsection, we will present successively the

two approaches.

3.2.1 Row-Column Reduction

The procedure row-column for a cost matrix C with n rows and m columns can be presented as

follows.

Row-Column Reduction

For each i = 1, 2, · · · , n find

min
j
{Cij} = ui and set Cij = Ci,j − ui ; j = 1, · · · ,m

For each j = 1, 2, · · · ,m find

min
i
{Cij} = vj and set Ri,j = Cij − vj ; i = 1, · · · , n

48



This procedure, row-column reduction, is performed on the cost matrix to build a reduced matrix

cost which is associated to a transportation problem (RTP). If n is extremely large compared to m

i.e n � m then it is better to use the row-column reduction. Indeed by reducing the rows first

most of the columns are probably reduced. In many cases of this type of matrix, the reductions of

some columns are not necessary.

There are some cases, where the reduction of the rows implies directly zero in all columns of

the matrix. In this situation, the column reduction will not be necessary. The penalties for the

MVM and the original VAM are the same. However, the difference between these two will be the

following possibility of reduction for the MVM.

3.2.2 Column-Row Reduction

The procedure column-row for a matrix cost C with n rows and m columns can be presented as

follows.

Column-Row Reduction

For each j = 1, 2, · · · ,m find

min
i
{Cij} = vj and set Cij = Ci,j − vj ; i = 1, · · · , n

For each i = 1, 2, · · · , n find

min
j
{Cij} = ui and set Ri,j = Cij − ui ; j = 1, · · · ,m
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Similarly to the row-column procedure, if m is extremely large compared to n i.e m � n then it

is better to use the column-row reduction. Indeed by reducing the columns first most of the rows

are probably reduced. In many cases of this type of matrix, the reductions of some rows are not

necessary.

As we noticed for the row-column procedure, there are also some cases, where the reduction of the

columns implies directly zero in all rows of the matrix. In this situation, the row reduction will

not be necessary. The penalties for the MVM and the original VAM are the same. However, the

difference between these two will be the following possibility of reduction for the MVM.

3.3 Perspective for Zeros penalties

The order of performing these reductions may not result the same RTP but they are both equivalent

to the original problem. Notice based on that we may not have the same solution. Moreover, in

some cases, applying either row-column or column-row reduction is more convenience and con-

verges or at least gives the closest approximate solution to optimum.

After reducing the cost matrix by either one of the procedures, we evaluate the penalty of each

row and each column. The penalty of a line is the unit loss of miss assigning the zero on that line.

However, by missing a zero on a line we miss this zero also on the complementary line. Therefore,

the real penalty of not assigning that zero is sum of the penalty of the zero’s line and the penalty

of the complementary line. For this purpose, the focus should be more on the zero cases. Thus, we

define a new method called the Zero Case penalty (ZCP) method. It is another alternate method

for solving transportation based on that new technique for evaluating the penalties in order to make

better or least-cost assignments. In this approach, we deal with the penalty of each zero. Then
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selecting the zero with the largest penalty during the procedure of assigning variables. In fact, the

penalty of the zeros, it depends on the row and column penalties.

In the following section, we outline and discuss the general steps of the Zero Case penalty method

for solving the Transportation problem.

3.4 Zero Case Penalty Algorithm

In this section, the steps involved in execution of the proposed approach are outlined as following:

ZCP Algorithm

Step 1. Cost Matrix Reduction (R)

∀ i find ui = min
j
{Cij} then set Cij = Cij − ui ; j = 1, · · · ,m

∀ j find vj = min
i
{Cij} then set Rij = Cij − vj ; i = 1, · · · , n

The matrix R = (Rij) has at least a zero cost in each row and column.

Set Nred := 1 .

Step 2. Penalty Determination

∀ i find min
j
{Rij} = Ri,k = 0 and pi = min

j 6=k
{Rij }

∀ j find min
i
{Ri,j} = Rs,j = 0 and qj = min

i 6=s
{Rij}

For i = 1, 2, · · · , n calculate ZPen(i) such as

If pi = 0

51



∀j such that Rij = 0

Find qc = maxj{qj} and qk = maxj 6=c{qj} ≤ qc

Set ZPen(i) = qc − qk

else ( pi 6= 0 )

if qic = 0 ( penalty of complementary column c associated with the penalty of row i)

Find pr = maxi{pi} and ps = maxs 6=r{pi} ≤ pr

Set ZPen(i) = pr − ps

then set the ZPen associates with other zeros to be null.

else

Set ZPen(i) = pi + qic

endif

endIf

endFor

Step 3. Assigning Variable

Find the largest penalty LZPen = maxi{ZPen(i)} = ZPen(k)

If there is a tie, follow the tie-breaking rules. (see Appendix B )

Else

The variable to be assigned is Xkc

find a zero Rkc = 0 of column c

endif

Step 4. Updating

Xkc = min{ak , bc} then ak := ak −Xkc and bc := bc −Xkc
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Eliminate the saturated line (supply or demand fully satisfied )

Step 5. Stopping Test

If there is one remaining line then fill it and go to step 6

Step 6. Successive Reduction of Remaining Matrix

Reduce the remaining matrix if necessary then set Nred := Nred+ 1

go to step 1.

Step 7. Optimality Test

If Nred = 1 then the ZCP solution is optimal.

Else find the dual variables and test the optimality.

During the procedure of ZCP, the variable corresponding to a null reduced cost is assigned. That

zero has the highest penalty and it is calculated by summing up its row and column penalties.

However, there are two categories defining the zero case, dependent and independent zeros. The

independent case, means there is only one zero at the row and the complementary column with

non-null penalties. The penalty of this zero implies the sum of the second lowest cost of its row

and column.

In the contrary, for the second case, there are at least two zeros at the row or column or on both. So,

the priority is given to the zero with the largest penalty based on their complementary penalties.

However, the penalty of these zeros have to be modified by subtracting the second largest penalty

from the largest and adjust the second largest to be null, if there are more than two zeros, then they

are ignored during the process of selection.
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During the iterations, for each assignment, at least a line is crossed out and the remaining matrix

needs to be reduced if necessary. A certain number of rules are provided to eliminate the need to

recalculate a new reduced cost matrix. In addition, some new tie-breaking rules are defined in the

following sections.

3.5 Special Rules and Cases

Most of the rules for MVM can be applied in ZCP with some modifications. At each iteration, if the

penalties changed either for rows or columns, then the zero penalties have to be updated. However,

if the highest penalty is nonzero LZPen 6= 0 , the penalty line is saturated. Indeed, if the penalty

of the complementary line is zero, then the shrinked cost matrix remains reduced and the penalties

of the paralleled lines remain unchanged. However, the penalty of complementary line has to be

updated as well as the penalty of paralleled lines to the complementary line. Therefore, the zero

penalty for the lines that have a zero ,weather in the crossed line or the complementary line, need

to be recalculated.

In contrary, if the penalty of the complementary line is not zero, meaning there is only one zero.

Therefore, a new reduction is needed for that complementary line and it can perform easily by

subtracting its penalty from all the entries. Additionally, the penalty of orthogonal lines for the

complementary line and again, based on these changes, the zero penalties have to be updated.

3.5.1 Multiple Largest Penalties

During the determination process, a tie may occur between the zero penalties. In order to make right

choices as much as possible, these cases have been studied and we are considering two situations.

The two cases depend weather their zero charing the same column or not. In the first case, we
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assign simultaneously both lines if the sum of supplies fits into the demand of the complementary

column. Otherwise, the key is to reduce the amount to be assigned to the third largest reduced cost.

The interested reader may refer to more details about these cases which have been studied and

added to Appendix B. In the following section, simple examples are used to motivate the idea

behind the proposed approach.

3.6 Numerical Examples

3.6.1 Example 1

In this section, we would use the same example presented in the chapter 2 section 7.

10 2 20 11 15

12 7 9 20 25

4 14 16 18 10

5 15 15 15

After performing row and column reduction, then calculating the Zero penalties, we get:
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8 0 16 0 15 ZP1(1,4) = 4

5 0 0 4 25 ZP2(2,3) = 10

0 10 10 5 10 ZP3 = 10

5 15 15 15

At the first iteration: there is a tie between X23 and X31. By considering the highest actual penalty

associated to these zeros, we found q3 = 10. Then we assign X23 = 15 (refer to Section (1.2.1.2)

in Appendix B). Based on that the third column is crossed out with remaining 10 as supply for row

2. No further reduction is needed and then we update the remaining penalties.

8 0 16 0 15 ZP1(1,4) = 0

5 0 0 4 25// 10 ZP2(2,2) = 4

15

0 10 10 5 10 ZP3 = 10

5 15 15// 15

At the second iteration: the zero at the third row has the highest penalty. Then, we assign X31 = 5

and the column 1 is crossed out with remaining supply 5 at row 3. New reduction for row 3 is

needed then re-adjust the penalties.
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8 0 16 0 15 ZP1 = 0

5 0 0 4 10 ZP2 = 4

15

0 5 10 0 10// 5 ZP3 = 5

5

5/ 15 0 15

At the third iteration: the third row has the highest penalty. Then, we assign X34 = 5 and cross out

the third row. No new reduction is needed and we update the remaining penalties.

8 0 16 0 15 ZP1(1,4) = 4

5 0 0 4 10 ZP2 = 4

15

0 5 10 0 0 ZP3 = 5

5 5

0 15 15 10

Finally, the remaining is a 2 x 2 matrix with the largest penalty 4. Then we assign and continue

with the process.

57



18 0 16 0 15 ZP1(1,4) = 4

5 10

5 0 0 4 10 ZP2 = 4

10 15

0 3 3 0 0 ZP3 = 5

5 5

0 15 15 10

The Initial Solution using ZCP with its assigned variables are given by the following table with the

objective function of 445. It is the same cost obtained by MVM and it is optimal.

10 2 20 11 15

5 10

12 7 9 20 25

10 15

4 14 16 18 10

5 5

5 15 15 15

Table 3.6.1: The optimal solution obtained by ZCP for example1

3.6.2 Example 2

Let’s consider another problem with 5 sources and 4 destinations that presented in the following

tableau:
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30 72 4 20 80

47 81 70 98 70

62 68 28 73 86

27 32 69 95 91

38 78 87 90 49

63 1 19 293

After performing row and column reduction and computing the zeros penalties, we get the follow-

ing table:

26 63 0 0 80 ZP1(1,4) = 29

0 29 23 35 70 ZP2 = 0

34 35 0 29 86 ZP3 = 29

0 0 42 52 91 Zp4(4,2) = 29

0 35 49 36 49 Zp5 = 12

63 1 19 293

The largest penalty is 29, however, there is equality between ZP1, ZP3 and ZP4. By considering

the highest actual penalty, the tie is not broken. Then by choosing the highest supplies or de-
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mands, we assign X14 = 80. (refer to section (1.2.1.2) in Appendix B for more details in these

comparisons). So we have:

26 63 0 0 80 ZP1(1,4) = 29

80

0 29 23 35 70 ZP2 = 0

34 35 0 29 86 ZP3 = 29

0 0 42 52 91 Zp4(4,2) = 0

0 35 49 36 49 Zp5 = 12

63 1 19 293

By following the ZCP algorithm we got the basic variables as below:

30 72 4 20 80

80

47 81 70 98 70

70

62 68 28 73 86

19 67

27 32 69 95 91

63 1 27

38 78 87 90 49

49

63 1 19 293

Table 3.6.2: The optimal solution obtained by ZCP for example 2
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From the tableau 3.6.2, the IBFS of ZCP is the optimal solution of the given problem with the total

cost at $22, 951. Significantly, the optimality reached without additional iterations compared to

VAM and MVM where IBFS is given at $23, 375.

3.7 Computational Experiments

For evaluating the performance of ZCP and MVM, computational experiments were carried out.

The analysis of the experiment data are presented in this section. Again, we run the test on 1600

randomly generated transportation problems. In each case, the values of all cost coefficients, sup-

ply and demand were randomly generated between 1 and 100 for problems of different size. The

test design were implemented using JAVA.

In this comparison the following terms have to be defined:

• The Average Time (AT):

The mean of times consumed to solve problem instances is calculated based on 100 samples

over different sizes.

• The Improvement Rate (IR) :

The average of improvement rate is computed over problem instances for each sizes. This

rate measures the improvement of the solution obtained by both MVM and ZCP comparing

with VAM. Note, It does not include the equality cases of the solutions obtained by VAM.

• The Number of Improved Cases (NIC):

A frequency of both MVM and ZCP when yield to better solutions than VAM
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Matrix Avg.Time in millisec IR % NIC %
size MVM ZCP MVM ZCP MVM ZCP

5 x 5 0.1930 0.3027 0.9360 1.1798 57 56

5 x10 0.2676 0.5958 0.2160 0.9253 41 53

10 x 5 0.3064 0.7288 0.8136 1.1880 63 62

10 x 10 0.3906 0.6890 2.4128 1.9385 80 75

10 x 15 0.4570 1.0102 1.7765 1.7088 71 73

15 x 10 0.4648 1.3044 1.8545 2.8881 70 78

15 x 15 0.6054 1.6657 4.3170 3.939 77 80

15 x 20 0.8443 1.8556 0.8939 0.8450 70 70

20 x 15 0.9259 1.6530 0.4963 1.5775 71 75

20 x 20 0.8822 1.9216 5.9399 6.1476 84 88

25 x 25 1.2797 2.1123 5.5087 5.6069 80 78

35 x 35 1.5591 3.0308 6.4893 5.3806 86 85

50 x 50 1.2580 3.5593 7.720 7.0904 87 84

70 x 70 1.8605 4.7340 6.8199 8.8712 88 89

90 x 90 4.3039 6.9752 9.8814 11.1065 91 96

100 x 100 3.3737 7.3892 9.4109 11.3172 91 91

Table 3.7.1: The Computational Results of MVM & ZCP for Linear Transportation Problems compared to VAM
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In this experiments we test the performance of both algorithms MVM and ZCP. From table ( 3.7.1),

it can be seen both algorithms generate good starting solutions. In analysis, we found that ZCP

comes with higher average improvement rates and it ranged from 0.8450% to 11.3172%. In con-

trast, in terms of computing time, MVM requires less computing time at 1.1858 ms in average

compared to 2.4708 ms for ZCP. Furthermore, the solutions of about 77% of the tested instances

improved by ZCP compared to 75% by MVM.

The experiment results bring us to an important observation of the effectiveness of the solutions ob-

tained by both methods. another point, that further improvement established by ZCP which leads

to have a less number of iterations during the Transportation Algorithm if needed.

3.8 Graphical Representation of The Result

In this section, the finding is represented graphically.

Figure 3.8.1: The Improvement Rate of both ZCP and MVM from VAM
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3.9 Conclusion

In this chapter, we have applied new alternate algorithm for solving Transportation problems where

it is shown that this method also gives better initial solutions than VAM. Mainly, comparative study

between the new approach and Modified Vogel method has been established.

Significantly, both ZCP and MVM provide good solutions, in some cases, the optimum for the

Transportation problems. However, ZCP may require more time to run than MVM since each zero

in the matrix is studied individually.

In fact, the procedure of MVM implies more situations to be considered. It is mainly because in

the MVM, we consider the rows and columns penalties. However, in ZCP the penalties of rows

and columns are considered globally on the zero penalties. Therefore, the analysis of the ZCP

algorithm provides less structures. For theses reasons the convergence, if of course it is the case,

with ZCP does seem more probable than MVM.
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Chapter 4

The Unbalanced Transportation Model

4.1 Introduction

In network flow problems, the unbalanced Transportation model is a special case of The Trans-

portation model where the equality between the total supply and total demand does not hold. In the

real business world, unbalanced transportation problems more likely to find especially when the

total supply exceeds the total demand. Making the right decision may become not an easy task.

Indeed, the objective in this model is to minimize the shipping costs from any source to any destina-

tion without exceeding the supply and demand constraints as a main goal in solving Transportation

Model. In order to establish the goal, this problem need to be transformed into Balanced Trans-

portation problem (BTP). In fact, attempting to balance this Problems and solving them in less

operations, computational time and effort have been the target for many researchers.

In this chapter, a new approach to balance the unbalanced transportation problem (UTP) is in-
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troduced and a comparison to other existing methods is being carried out. In fact, this approach

was first proposed in [2] and the main concept based on performing the matrix reduction in such

a way that the equivalent cost matrix does not explicitly have a dummy line. Numerical exam-

ples are illustrated in support to our approach and some certain rules are provided to eliminate the

unnecessary calculations.

4.2 Mathematical Formulation of Unbalanced Transportation

Problems

The unbalanced Transportation problem consists of shipping any commodity from any group of

supply centers, called sources, to any group of receiving centers, called destinations, in such a way

the total shipping cost is minimized. Considering a supply ai for each source and demand bj for

each destination where the following condition is not satisfied in this kind of model as

n∑
i=1

ai 6=
m∑
j=1

bj

Mathematically, the Unbalanced Transportation Problem can be formulated as following:

UTP



min TC =
n∑

i=1

m∑
j=1

Cij Xij

m∑
j=1

Xij ≤ ai ; i = 1, · · ·n

n∑
i=1

Xij ≥ bj ; j = 1, · · ·m

Xij ≥ 0 ; i = 1, · · ·n ; j = 1, · · ·m

(4.2.1)

Obviously, it is a linear programming with (n×m) variables and (n + m) constraints where Xij
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represents the amount of commodity shipped from source i to destination j , and Cij is the shipping

cost of one unit form source i to destination j. The first set of the constraints expresses the fact that

the total amount shipped from the source i should not exceed the capacity ai, and the second set

illustrates the fact that the demand at each destination point j should be met. It should be clear that

the constraints in the above formulation are distinct and any node in the network must belong to

only one of the sets to the source or destination sets. Indeed, the objective function is to minimize

the total shipping cost with satisfying the supply restrictions and the demand requirements. Not to

mention, the decision variables Xij take only a positive integer value for all i and j. In fact the

unbalanced case of Transportation models means not all the availabilities will be exhausted, or not

all the demands will be satisfied.

4.3 Analysis & Discussion

The unbalanced version of the Linear Transportation problem has been extensively studied in Op-

erations Research. The process of balancing the UTP has taken several forms so we can classify

those approaches into three main categories.

Heuristics and Meta-heuristics approaches have been used to tackle the problem and some its ex-

tensions to cases with several objectives are considered. For example, Evolutionary Algorithms,

such that Genetic Algorithms [32]. Bee-behavior based algorithms [14] and [12] have been pro-

posed to solve the problems. Search algorithms such that Tabu Search [27] have been also used.

Another Heuristic approach, attempts to balance the problem by getting rid of the redundant which

is the difference between the total supply and total demand [4].

These approaches have in common that they start by finding feasible solutions to the problem then

try to improve them iteratively. Hence, they are impacted by the ease of obtaining such initial fea-

sible solutions.
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The second category of approaches aims at replacing the unbalanced Transportation problem by

another instance of linear program, and then solve it using the classical simplex algorithm or the

most recent interior points one. We have two types of examples. First, goal programming ap-

proaches have been used to tackle the problem. In this case, if the overall supply is higher than

the overall demand (respectively the overall demand higher than the overall supply), the demands

(respectively the supplies) are considered to be goals that have to be achieved and eventually over-

achieved. A goal programming (GP) (compromise or pre-emptive) problem is then solved using

an appropriate LP solver. Most of the time, this type of approach is also associated with budget

constraints which make the GP even more appealing [25]. Second, some approaches assume that

the unbalance aspects of the transportation problem are in fact the result of uncertainty of the sup-

plies and/or the demands. Hence, some uncertain linear programming method can be used: interval

method [31] and fuzzy linear programming approaches [11] have been applied. Once again, being

able to quickly obtain feasible solutions of the problem will be one of the factors of success.

Finally, the last category attempts to keep the transportation nature of the problem. This is achieved

by using artificial or dummy sources or destinations but they differ in calculating the cost for the

artificial line (row or column). The cost for the dummy is set to equal zero then solved by Vogel

approximation method to find the initial solution [15] or set to a big value as will be defined later

in our approach.

In general, UTP can be divide into two categories: supply exceeds demand, and demand exceeds

supply.
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• More Supply than Demand

In this case, unbalanced happen when the supply exceeds demand, then

n∑
i=1

ai ≥
m∑
j=1

bj

To balance the problem, we create a dummy (artificial) destination point which satisfies the

following:

bm+1 =
n∑

i=1

ai −
m∑
j=1

bj

To put it differently, that a virtual destination is created with demand equals to bm+1. In the

business world, means we introduce a virtual consumer that would take or consume the sur-

plus offer and the shipments to this consumer are not real.

• More Demand than Supply

In this case, unbalanced happen when the demand exceeds supply, then

m∑
j=1

bj ≥
n∑

i=1

ai

To balance the problem, we create a dummy (artificial) source point which satisfies the fol-

lowing:

an+1 =
m∑
j=1

bj −
n∑

i=1

ai

In other words, that a virtual source is created with supply equal to an+1. In the business

world, we introduce a virtual supplier that would offer the exact amount of the surplus request

(unmet demand) and again the shipments from this suppler are not real.

After balancing the problem, all the inequalities have transformed into equalities it can be written

mathematically into the following format:
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BTP



min TC =
n∑

i=1

m∑
j=1

Cij Xij

m∑
j=1

Xij = ai ; i = 1, · · ·n

n∑
i=1

Xij = bj ; j = 1, · · ·m

Xij ≥ 0 ; i = 1, · · ·n ; j = 1, · · ·m

(4.3.1)

Where n (n : = n + 1 ) or m ( m := m + 1 ) is a dummy row or column.

Clearly, this artificial source or destination is added to overcome the difference between the avail-

abilities and the requirements. All the approaches used to solve a (balanced) Transportation Prob-

lem (TP), require initial solutions to be computed. The most efficient method, and hence the most

used one, to obtain goods initial TP solutions, is the Vogel’s Approximation Method (VAM). Recall

that the Vogel method find the initial solution by iteratively selecting a pair (i, j) of the source i that

should currently supply destination j as much as possible. This pair is chosen based on the largest

penalty of the sources or destinations, knowing that the penalty of a source (resp. a destination) is

the difference between the two smallest shipping cost at the row (resp. column).

In the tradition approach, that shipping cost from/or dummy line (row or column) takes value of

zero before apply VAM. The disadvantage that it gives inefficient initial solutions by giving the

priority to assign dummy cells before the others.

When the Vogel method is applied to our equivalent balanced TP, the presence of big-M dummy
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costs make the calculation much more complicated, especially once we start simplex iterations. In

order to overcome this issue, all the applications of the VAM to a balanced TP with dummy sources

or destinations have proposed to ignore totally or partially dummy costs. Hence, Shimshak, (1981-

SVAM [37]) applies VAM while using only the penalties of lines that are parallel to the dummy

line. Goyal, (1984 - GVAM [36]) proposes to replace the big-M by the largest non dummy cost

and fully apply VAM. Balakrishnan, (1990 BVAM [33] ) proposes further modification of SVAM

by calculating all the penalties as the difference between the two smallest non dummy costs. Fi-

nally, Ramakrishnan, (1988 - RVAM [34]) proposes another modification of GVAM which is a

much more complex scheme based on reduction of the all lines parallel to the dummy line, the

replacement of all dummy costs with the largest remaining non dummy cost, before performing

a reduction of all the lines that are orthogonal to the dummy line, including it. This last scheme

seems to provide better solution than the previous approaches on a small number of test problems.

We propose a new approach of the above type where the big-M dummy costs are explicitly taken

into account and are simply eliminated during the process. Our approach is based on the Modified

Vogel Method (refer to chapter 2). It allows us to obtain an equivalent balanced TP obtained while

taking explicitly into account dummy costs.

4.4 New Approach for Transforming UTP to BTP

As defined earlier, in the process of balancing the TP, a dummy supply or demand is added to the

cost matrix to satisfy the equality. In our approach, the cost values at the dummy row or column

are given value M which should be large enough to discourage sending or receiving commodities.

Then after balancing the problem, we apply MVM. As defined, the cost reduction starting by either

row or column must be performed as a first step in modified Vogel algorithm. However, in this case

we need to pay more attention to whether start with row or column reduction. If a dummy row is
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added then a column reduction would be as first step then the row reduction. Likewise, in case of a

dummy column, a row reduction must perform first.

• In the Dummy Source

The cost value at that row takes the value

Cn+1,j = M, ∀ j = 1, · · ·m

In this case the dummy line is a row, we set dummy= n+1 and the reduction has to start with

the columns first then the rows. Otherwise, the cost at the dummy row turns to zeroes since

the coefficients associated to the dummy row are all equal to a sufficiently large M. Therefore

the dummy row will be reduced after performing the row reduction. That reduction make the

value M to disappear from the reduced matrix.

Therefore any value of M can be used if we avoid choosing the least cost on the dummy row.

• In the Dummy Destination

The cost value at that column takes the value

Ci,m+1 = M, ∀ i = 1, · · ·n

In this case the dummy line is a column, we set dummy=m+1 and we have to reduce the rows

first then the columns. Otherwise, the cost at the dummy column turns to zeroes since the

coefficients associated to the dummy column are all equal to a sufficiently large M. Therefore

the dummy column has to be reduced after we perform the column reduction. That reduction

makes the value M to disappear from the reduced matrix.

Therefore any value of M can be used if we avoid choosing the least cost on the dummy

column.
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4.4.1 Common Best Cases

In this subsection, we discuss situations where the minimum costs of the first reduced lines (rows

or columns) are all the same.

Dummy Column

In this case, the rows are reduced first with their minimum costs being equal. The reduction of the

dummy column leads to all its reduced cost equal to zero. Therefore, the penalties of rows become

all equal to zero since each row will have at least two zeroes: one at the location of the original

minimum cost and the second one in the dummy column. The only possible non null penalties

would be on the non-dummy columns. Then we have two situations. The first corresponds to the

case where the largest penalty is not null while the second is associated with a null largest penalty.

Case 1: No Null Penalty

The only non-null penalties are among the columns. We assign successively the columns associ-

ated to a non-null penalty until all the penalties of the remaining column are equal to zero. Then

we re-evaluate the penalty of the rows. If the penalties of the rows are all null then the situation is

described in case 2. In the other case there at least one row having a non- null penalty. Therefore

we can continue the algorithm.

Case 2: Null Penalty

In this case, all the penalties are null we can use the least cost algorithm to solve the problem.

We use the fact that the lowest costs of the rows are equal to the same value. We can assign

simultaneously these zero independent. Then we cross out the row or column with no supply or

demand.
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Dummy Row

In this case the columns are reduced first with their minimum costs being equal. The reduction of

the dummy row implies all its reduced cost equal zero. Therefore the penalties of columns become

all equal to zero. The only possible non null penalty would be on the other rows. Then we have

two situations. The first corresponds to the case where the largest penalty is null while the second

is associated to a no-null largest penalty. These situations are similar to the cases described in the

preceding subsection. The roles of the columns are replaced the ones of the rows.

A certain number of rules are provided to eliminate the need to recalculate a new reduced cost

matrix for the whole remaining table.

4.5 MVM Algorithm

The following is the matrix reduction procedure for Unbalanced Transportation problem which dif-

fers than the case of Balanced Transportation problem.

General Algorithm

Step 1. Balancing the Problem

If A Dummy Row n is added then

Go to step 3

else

Go to step 2
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Step 2. Row-Column Reduction

∀ i Find ui = minj{Cij} then set Cij = Cij − ui ; j = 1, · · · ,m

∀ j Find vj = mini{Cij} then set Rij = Cij − vj ; i = 1, · · · , n

Step 3. Column-Row Reduction

∀ j Find vj = mini{Cij} then set Cij = Cij − vj ; i = 1, · · · , n

∀ i Find ui = minj{Cij} then set Rij = Cij − ui ; j = 1, · · · ,m

At this stage Set NRed = 1 (Indicate the Number of Reductions for the matrix)

Step 4. Applying MVM

Then apply MVM for the reduced matrix by starting with the penalty calculations and then

continue with the process.

It is important to realize with this approach of balancing the problem, the dummy aspect is no

longer explicitly present. Therefore this yields to a BTP which can be solved by either MVM

or ZCP, and there proceeding results for the LTP can be applied to this problem after using the

balancing approach.

4.6 Example of Illustration

We shall consider the problem was introduced in [37] and solved by many researchers as [36] , [34]

and [33]:
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1 2 3 SP

A 6 10 14 50

B 12 19 21 50

C 15 14 17 50

DM 30 40 55

The initial solution is 1745 by Vogel’s Approximation Method:

6 10 14 0 50

40 10

12 19 21 0 50

30 20

15 14 17 0 50

25 25

30 40 55 25

Table 4.6.1: The initial solution obtained by VAM for UTP

The initial solution is 1695 by Shimshak’s Modified Method:

6 10 14 0 50

30 20

12 19 21 0 50

25 25

15 14 17 0 50

20 30

30 40 55 25

Table 4.6.2: The initial solution obtained by SVAM for UTP
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The initial solution is 1665 by Goyal’s Modified Method:

6 10 14 21 50

40 10

12 19 21 21 50

30 20

15 14 17 21 50

45 5

30 40 55 25

Table 4.6.3: The initial solution obtained by GVAM for UTP

The initial solution is 1650 by Ramakrishnan’s Method:

6 10 14 9 50

5 40 5

12 19 21 9 50

25 25

15 14 17 9 50

50

30 40 55 25

Table 4.6.4: The initial solution obtained by RVAM for UTP

The initial solution is 1650 by Balakrishnan’s Modified Method:
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6 10 14 0 50

5 40 5

12 19 21 0 50

25 25

15 14 17 0 50

50

30 40 55 25

Table 4.6.5: The initial solution obtained by BVAM for UTP

Now try to find the solution by MVM. In the following table, a virtual destination is added to the

problem to satisfy the balance condition.

1 2 3 Dummy SP

A 6 10 14 M 50

B 12 19 21 M 50

C 15 14 17 M 50

DM 30 40 55 25

The reduced matrix cost after performing the row then the column reduction implies the following

equivalent matrix:
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1 2 3 Dummy SP

A 0 4 6 9 50

B 0 7 7 3 50

C 0 0 0 0 50

DM 30 40 55 25

Obviously, the matrix does no longer have the dummy aspect. Then continue by applying MVM.

6 10 14 M 50

5 40 5

12 19 21 M 50

25 25

15 14 17 M 50

50

30 40 55 25

Table 4.6.6: The initial solution obtained by MVM

The total cost is 1650, which in fact the optimal.

4.7 Computational Test

To illustrate our approach further, we did the following experiment on 100x10 randomly generated

unbalanced transportation problems. The cost coefficients as well as supply and demand values are

distributed between 1 and 100.
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Matrix IR % NIC
size BVAM RVAM MVM BVAM RVAM MVM

5 x 5 -3.9461 6.1534 9.6225 20 65 79

5 x10 -18.2643 12.8477 15.1760 29 75 83

10 x 5 -24.7193 10.3684 14.1223 24 73 83

10 x 10 -4.7274 9.0171 12.2014 21 72 85

10 x 15 -6.2745 18.4432 20.8484 35 82 90

15 x 10 -8.1456 17.3828 21.125 32 86 92

15 x 15 -5.1838 9.0831 12.5156 15 70 80

15 x 20 -4.6008 18.1938 20.8842 35 87 93

20 x 15 -5.6086 16.6715 19.5103 30 83 92

20 x 20 0.6854 13.6854 15.9065 39 78 88

25 x 25 -0.815 13.6163 19.1398 30 78 91

35 x 35 -0.6673 10.0586 18.1335 27 71 90

50 x 50 -3.079 8.9345 16.7347 24 75 91

70 x 70 -0.684 10.9717 19.1653 39 75 95

90 x 90 0.3467 11.5076 19.3165 33 76 93

100 x 100 -0.6703 9.631 16.9191 35 75 89

Table 4.7.1: The Computational Results for Unbalanced Transportation Problems
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The comparison to VAM, SVAM, GVAM and BVAM were made to the potential significant of the

proposed approach. The results shown in table (4.7.1). As defined earlier, IR refers to the average

of improvement rate for 100 problems instances at each size while NIC for the number of improved

cases comparing to VAM.

The experiment results bring us to an important observation of the effectiveness of the solutions

obtained by MVM. In analysis, we found that the more efficient solutions are obtained by MVM. It

is important to point out that this efficiency of MVM comes with the general average improvement

rate at 16.96% compared to 12.29% for RVAM while there is no improvement for BVAM at the

average −5.4%. In addition, the statistical standard errors have been computed at 0.01725 , 0.0094

and 0.0086 for BVAM , RVAM and MVM respectively.

4.8 Graphical Representation of the results

In this section, the findings is represented graphically.

Figure 4.8.1: The Number of Improved Cases for BVAM, RVAM and MVM
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Figure 4.8.2: The Average Running Times of BVAM, RVAM and MVM for different-sized instances

Figure 4.8.3: The Average Improvement Rates of BVAM, RVAM and MVM for different-sized instances

4.9 Conclusion

In this chapter, a new approach is presented to solve the Linear Unbalanced Transportation Problem

without dealing explicitly with a dummy line. The reduction of the matrix provides an equivalent
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matrix which no longer has the dummy aspect. Then one of the presented methods in this thesis

can be applied, Modified Vogel method (MVM), or Zero Case Penalty algorithm (ZCP), to solve

the resulting transportation problem. A certain number of rules are provided to eliminate the need

to recalculate a new reduced cost matrix for the whole remaining table.

In some cases, simultaneously a bundle of variables are assigned. Important to realize, in the

case where all the reduced cost were zeroes, it provides the optimal solution. It also allows the

identification of the optimal solution whenever the reduced cost equals to zero. Consequently this

avoids, in these cases, the use of the transportation algorithm.
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Chapter 5

The Transshipment Model

5.1 Introduction

Transshipment Problems have lately gained more attention in several fields particularly with those

related with allocation or supply chain system. Transshipment model is an extension of Trans-

portation Problem where transit points exist and with the possibilities of shipping within sources

and within destinations.

In general, the Transshipment Problem consists in shipping a commodity from supply centers,

called sources, to receiving centers, called destinations where the shipments pass through interme-

diate points. Instances of problem arise in distribution networks where goods are shipped from

large warehouses to retails stores, either directly or through smaller and specialized warehouses

called cross-docking terminals [16], [23] & [15]. Transshipment Model is more realistic and more

difficult to deal with than the Transportation model since it does not deal only with direct paths for

each origin-destination pair but also with paths that go through junction points also called trans-

shipment points.
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This type of model exists when there is a need to ship via transit points before reaching the final

destination whether will be less costly or/and less time consuming.

Similarly to the Transportation model, the object here is to minimize the total cost of shipping units

from all the sources to all final destinations. Clearly, the goal is to determine the quantities that

need to be transported from a set of sources to a set of destinations via a set of transition points

with satisfying the supply and demand constraints.

Furthermore, the Transshipment Model has three groups of nodes as illustrated below:

• Source nodes:

Usually source nodes have output arcs and they provide positive supply and have zero de-

mand. These type of nodes are called pure sources. In the Transshipment model, however,

there exist another source node that could be a transit point as well when there are input arcs

and is referred to as a Transit-source node.

• Pure Transshipment points:

They provide zero supply and have zero demand. In another word, these nodes have non-zero

in-degree and out-degree.

• Destination nodes:

Generally, destination nodes have input arcs and they have positive demand and provide zero

supply. These type of nodes are called pure destinations. In the Transshipment model, a

destination node could be also a transit point with output arcs and is referred to as a transit-

destination node.
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Generally, this type of problem is solved after reformulated into regular Transportation model by

considering all the source and the destination points. In some cases, solving Transshipment prob-

lems may become more complicated by adding buffer values. In this thesis, our approach for

solving this model is to find the lowest-cost path for each source-destination pair. However, the

least-cost routes are unknown in advance for this type of problem. In fact, define these routes is not

an easy task and an appropriate algorithm should be chosen wisely. Furthermore, the minimum-cost

routes from one supply center to another receiving center may be direct or pass through intermedi-

ate transfer points. The intention in the proposed approach is to reduce the Transshipment models

to Transportation problem by using Floyd algorithm to find the shortest path and these paths be-

come the costs for TP.

After reformulation of the initial Transshipment problem into an easy-to-solve Transportation prob-

lem, the Modified Vogel method which mentioned into a detail in the previous chapter can be ap-

plied to find the optimal solution. Numerical examples are illustrated to show the usefulness of this

approach.

5.2 Formulation of Transshipment Problems

5.2.1 Network Representation

The Transshipment model can be defined as a network G = (N,A) where the set N is constituted

by all the nodes while A is the set of the existing links between these nodes. It can be defined by

the set A as {(i, j), i, j ∈ N} where N = {1, 2, · · ·L} ,with L = n+m+ t.

Assuming that we have n different sources in the set S = {1, 2, · · ·n}, m different destinations

in the set D = {1, 2, · · ·m} and t pure transshipment points in the set T = {1, 2, · · · t}. The unit

cost for shipping from the source i to destinations j is denoted by Cij . This allows the network

86



representation of the Transshipment problem as:

s1

s2

t1

t2

d1

d2

sn tr dm

Figure 5.2.1: The Transshipment Network

5.2.2 Mathematical Representation

Generally, the Transshipment Problem (TSHP) can be formulated as:

TSHP



min TC =
∑

(i,j)∈A
Cij Xij

∑
k/(i,k)∈A

Xik −
∑

k/(k,i)∈A
Xki = ai ; i ∈ S

∑
k/(k,j)∈A

Xkj −
∑

k/(j,k)∈A
Xjk = bj ; j ∈ D

∑
k/(k,r)∈A

Xkr −
∑

k/(r,k)∈A
Xrk = 0 ; r ∈ T

Xij ≥ 0 ; (i, j) ∈ A

(5.2.1)
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In the above model, Xij represents the amount of commodity shipped from node i to node j, the

first set of the constraints expresses the fact that the total amount shipped from the source i should

not exceed the capacity at i, and the second one means that the demand at destination j should be

met. Finally the third set of constraints illustrates the fact that no commodity remains at the transit

or junction points which means all commodities flow through these junction points.

Clearly, TSHP is a linear programming which could be solved by any specialized simplex method.

Note that in the classic transportation problem, no junction nodes exist and the above model can be

easily adapted. The sources could receive units for another source and act as transit points. Simi-

larly, the units can be shipped from destinations to other nodes and to act as transit points. So the

supply and demand constraints must be adjusted.

As mentioned earlier, solving this model it can be done by converting the problem into a Trans-

portation form. In the third section, we will discuss in details how to deal with this type of problem

and solve it in our approach and how to calculate the cost matrix. Therefore, several of the ap-

proaches that have been developed to tackle the Transshipment Problem consist in reformulating

into an equivalent Transportation Problem. This approach generally recognizes the relation be-

tween the unit amounts and the total cost of any route.

It is essential to highlight the fact that several kinds of transshipment models with very special

properties exist. Due to their properties, our approach can be applied with the need of considering

the special properties. Capacitated Transshipment problem, for instance, is a type that requires

having a logical maximum and minimum bounds on the shipment of each route. So, the object

is not only to minimize the shipping cost but also to meet the demand requirements with supply

availability without exceeding the lower and upper bounds. As the scope of this thesis, in this

chapter we only discuss the general Transshipment model.
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5.3 Transportation Algorithm for TSHP Problems

The concept of Transshipment Problems have been introduced and discussed in several papers and

textbooks by many researchers in the field of Mathematics and Operations Research [15], [23], [24]

and [7]. In this section, some of the previous methods need to be mentioned to give a necessary

background on this type of problem and how the TSHP is solved. This model can be translated

into Transportation model to solve with Transportation algorithm but the presence of transit points

makes the process complicated. However, in the field of optimization problems, alternative ap-

proaches exist in how to construct this model into a regular Transportation form.

This approach consists in considering all the nodes (source, destination and transit nodes) as both

source and destination points in the Transportation tableau in order to have always a square matrix

([7]-chapter4). So we obtain a transportation model with n + m + t sources and n + m + t

destinations where the supply and demand for the transit points are equal to total supply or demand.

While the supply value for destinations and the demand value for sources equales to zero. In addi-

tion, source nodes (respectively destination nodes) that were sources (respectively destinations) in

the Transshipment Problem keep the same capacity (respectively demand).

Another method is a buffer method which is the most common method for completing the trans-

formation of the problem into a regular Transportation model based on the concept of a buffer.

Basically, this method handles the transshipment points as sources and destinations at the same

time. Further, if any source acts as transit-source node should be added as well to the destinations

in the transportation table. Similarly, if any destination acts as transit-destination node should be

added as well to the sources in the transportation table. Consequently, each transit point has special

demand and supply variables to convert the problem into Transportation model.
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The basic idea is to consider any node that receive and ship commodity as a transshipment point

regardless of it being originally a source, destination or a transit node [15]and [13]. The exact

quantities of product that will pass through the transit points are unknown. So, by calculating a

stock buffer value B we can add it as supply and demand values for the pure transshipment points.

B is added to balance the problem and it can be equal to the sum of the supply or to the sum of the

demand and should be large enough to allow the units pass through these intermediate nodes. A

stock buffer value B is then calculated using the original demands and capacities in order to balance

the problem. It is usually equal to the sum of capacities or the sum of demands.

Then, each pure transshipment point is assigned a capacity and a demand equal to B when each

transit-source point, the demand value is equal to the sum of B and its original capacity. Likewise,

for each transit-destination point, the supply value is equal to the sum of B and its original demand.

Briefly, demand and supply can be defined as:

B



Si = Di = B ; i ∈ Pure Transshipment Points

Si = B + s , Di = B ; i ∈ Source− Transit Points

Si = B , Di = B + d ; i ∈ Destination− Transit Points

Si = s , Di = d ; i ∈ Pure Source or Destination points

(5.3.1)

Furthermore, the cost matrix has arbitrary large number M for cost of non-exited routes and zero

cost of circle routes. M is selected to be sufficiently large to ensure that the algorithm avoid assign-

ing to these routes as much as possible. After that, the Simplex Transportation Algorithm is just

used to the cost matrix in order to get optimal solution.
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In both approaches, the equivalent Transportation Problem is solved using transportation simplex.

However, in practice, solving this instance of transportation model is complicated due to the fact

that the equivalent problem is large in size, have at the same time unit cost equal to 0 and big M.

Consequently, needless computations are made to include non-existent routes in the Transportation

problem with cost M . In practice, this value serves no purpose in determining an optimum in this

type of problem.

5.4 Reduction to Smaller Transportation Model

In many applications, the process of formulating this type of problem can get more complicated

where we have to deal with hundreds or thousands of source, destination or transit points. It would

not be effective, as expected, since we are increasing the dimension of the problem by adding the

transshipment points as sources and destinations. The technique here, which was first introduced

in [1], is to solve Transshipment problem by Modified Vogel Method MVM after formulating the

problem in a context of transportation model with considering the minimum-cost route between

each source and destination. The number of sources and destinations remains the same as in the

original problem and that route would be either direct or indirect through a series of points.

Basically, the motivation of this approach is not to create only a transportation problem from the

Transshipment problem but to avoid including the transit points into the network model. In other

words, that means we would have reduced Transportation model instead of complex one which

also depends on the number of intermediate nodes. Obviously, the amount of computation will be

reduced by having a smaller Transportation problem.

Indeed, our equivalent problem has as many sources (resp. destinations) as the original Trans-
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shipment problem. Choosing the minimum-cost route between each source and destination can

be analyzed and formulated by using Floyd Algorithm which based on Graph Theory. In the fol-

lowing section, the function of Floyd Algorithm will be demonstrated and how can be applied in

our approach. consequently, the result transportation problem has the same sources and the same

destinations at the original problem where the direct links are the minimum cost paths obtained

from the Floyd Algorithm. Finally, we apply the Modified Vogel Method to obtain optimal or near

optimal solutions to the problem.

Needly to mention, while there are several algorithms based on graph theory that can eliminate the

transit points in order to determine the shortest paths, we find Floyd algorithm is the best suited

for our needs. Specifically, in our approach, the technique of Floyd algorithm allows us to keep

track of the intermediate nodes in an informative matrix during the process of determining the least-

cost path linking every source-destination pair. Dijkstra and Bellman algorithms are examples for

methods that solve shortest path problems. Generally, Dijkstra used to find the shortest path from

a single node to another. So, if we want to find the shortest path for the network model we need to

consider each node as starting node. Whereas, Bellmans algorithm finds the shortest route back-

ward from the destination to each source. In fact, an additional work is needed to determine the

shortest path for each destination and to keep track of all the paths at the end.

In the resulting model, the cost represented between each source and destination is associated to

a route that could be directed or undirected in the initial Transshipment model. Beside to the cost

or distance matrix in the Transshipment model, a P (revered to path) matrix is generated by Floyd

algorithm to facilitate the retracting of all the determined least paths once the solution is obtained.

Obviously, determining the right least-path algorithm is an educated choice to make a fundamental

contribution in terms of calculation time and efficiency.
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5.4.1 Floyd Algorithm

As stated previously, the path that corresponds to each route in the new model needs to be recog-

nized in order to translate the solution to a solution that fits the initial problem. For that reason,

Floyd algorithm is a good choice. This algorithm is more effective to deal and find the shortest path

between every two nodes in the whole network. This network will be represented as informative

square matrices.

Let’s denote D for the Distance matrix and P for the path matrix, where D gives the distance or

cost between node i and j for all i, j = 1, · · ·n and it could be finite if the link exist and infinite

otherwise. Where the matrix P illustrates the path included transit node if exist between each node

i and j. The diagonal elements in both matrices are blocked and could take zero value. Note that an

undirected path could consist a single transit point or a series of intermediate points.

Assuming that the network problem is presented with n nodes, so the D matrix n x n, first created

based on the initial cost (weight) of the path between each node i and j as following:

dij =



0 ; if i = j

w(i, j) ; if i 6= j , (i, j) ∈ A

∞ ; if i 6= j , (i, j) /∈ A

(5.4.1)

And the P matrix initially created with all the elements are equal to zero since there is no interme-

diate node at this step. The following procedure describe how the Floyd algorithm is applied to the

Transshipment problem.
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Floyd Algorithm

Step 1. Define D & P Matrices

Define the Distance matrixD and the Path matrix P from the Network. Both matrices are square

with n rows and n columns. In D matrix, its elements dij are the distance between the node i and

j and take finite value if the link exist and infinite otherwise. In P matrix, its elements pij are the

intermediate node between the node i and j but initially these elements are zeros.

Step 2. Pivot

Starting the pivot k when k = 1, · · ·n

Define the row and column pivot then apply the Triple Operation to each element in the D ma-

trix except the ones on the row and column pivot.

The Triple Operation equation is defined in the following form:

dik + dkj < dij where i 6= k, j 6= k and i 6= j. If that condition is satisfied then replace dij with

dik + dkj in D matrix.

Step 3. Determine the Shortest Routes & Update P matrix

In P matrix, replace the element at the position i, j with k at the kth iteration.

Step 4. Stop Case

If k = n+ 1

stop

else

k := k + 1
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Step 5. Read form Both D and P matrices

In D matrix, dij gives the cost of the shortest path between node i and node j. While, in P

matrix, the element pij yields the transit point between the node i and node j. If the node j is not

the final destination then continue the procedure between the node at the position ij to the node j.

At first, we look at each source and destination in order to calculate the lowest-cost path. Basi-

cally, the technique is to apply the algorithm to each source and then determine the least path to

each destination. Certainly, the algorithm will run for kth time where k is the number of transship-

ment points, whether they are pure transit, transit-source, or transit-destination nodes. Generally,

Floyd algorithm run for n nodes with time complexity O(n3).

In the output matrices, D returned the new cost between each node and P matrix provides all

the necessary information about the transit point if existed between each source and destination

in order to retain the initial path. So the element at position (i, j) at matrix P is either 0 or any

number between 1 and n. In the case of non-zero element, h for instance, means the path from i

to j containing the node h. which in another word there is a subpath from i to h and an another

subpath from h to j.

In our approach, both matrices D and P have the dimension L , where L = n+m+ t .

Remark:

In the Transshipment model, the Floyd Algorithm would be in the best case scenario. Since we start

with upper triangular matrix D with∞ under the main diagonal, the row or column corresponding

to the pivot element∞ would not be considered in the triple operation where this allows to speed

up the algorithm.
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5.4.2 General Algorithm

In this section, the steps involved in execution of the proposed method are outlined as following:

Reduction Algorithm

Step 1. Cost matrix Calculation

Determine the cost matrix C by conducting the Floyd Algorithm on the Transshipment problem.

The dimension of the cost matrix will be n x m and the shipping cost between each source i and

destination j will be the minimum cost in the rout ij.

Balance the problem if the equality between the supply total and the demand total does not hold.

Step 2. Apply MVM

Apply MVM to the cost matrix. Start by performing Row and Column reductions then evaluate

the row and column penalties.

Step 3. Solution Transformation

Translate the solution obtained in the previous step to fit the initial Transshipment problem.

The assigned variable for the TP is Ysi,dj = h, ∀i, j. Then the corresponding assignment variable

to the Transshipment problem is determined as follows:

xsi,pl1 := xsi,pl1 + h , xpl1 ,pl2 := xpl1 ,pl2 + h , · · · · · · , xplr ,dj := xplr ,dj + h , plr ∈ L

96



5.5 Examples of Illustration

In this section, the procedure of the algorithm is illustrated by the following problems.

5.5.1 Example 1

DA

Htn

Chgo

LA

SF

NY

9
29

14

13

16

27

26

17

18

7 15

17

Figure 5.5.1: The Transshipment network of example 1

A company manufactures a product in Dallas and Houston. The daily capacities at Dallas and

Houston are 160 and 200 respectively. Products are shipped by air to customers in San Francisco

and New York. The customer’s daily needs at both cities are 140 units. Because of the deregulation

of air fares, it may be a cheaper to the company to fly to transit points then to the final destinations.

Chicago or Los Angeles could be the transit cities. The costs per unit between the cities are shown

in the network (5.5.1). The company wants to minimize the shipment costs for daily required prod-

ucts.
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Apply Floyd Algorithm to determine the least path from the origin 1 and 2 to all the destinations 6

and 7. The steps are illustrated as following:

STEP 1. Based on the initial network, we define the D matrix:

DA Htn Chgo LA SF NY

DA 0 ∞ 9 14 ∞ 29

Htn ∞ 0 16 13 27 26

Chgo ∞ ∞ 0 7 17 18

LA ∞ ∞ ∞ 0 15 17

SF ∞ ∞ ∞ ∞ 0 ∞

NY ∞ ∞ ∞ ∞ ∞ 0

and P matrix:

DA Htn Chgo LA SF NY

DA 0 0 0 0 0 0

Htn 0 0 0 0 0 0

Chgo 0 0 0 0 0 0

LA 0 0 0 0 0 0

SF 0 0 0 0 0 0

NY 0 0 0 0 0 0
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STEP 2: Starting the Floyd iterations:

Iteration: 1

Set the pivot k = 1, so the first row is the pivot row and the first column is the pivot column. Then

shade the first row and first column, and check for improvement by applying the triple operation.

Iteration: 2

Set k = 2 , there are no changes.

Iteration: 3

Set k = 3 , cell (1,5) changes to 26 and (1,6) changes to 27.

After finding a shorter path, we need to update P matrix in order to tell that k = 3 provides

the shortest path between the source 1 and destination 5 as well as between the source 1 and the

destination 6.

Iteration: 4

Set k = 4 , there are no changes.

Iteration: 5

Set k = 5, there are no changes.

Iteration: 6

Set k = 6, there are no changes. At the end, the result matricesD and P have the following values.
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DA Htn Chgo LA SF NY

DA 0 ∞ 9 14 26 27

Htn ∞ 0 16 13 27 26

Chgo ∞ ∞ 0 7 17 18

LA ∞ ∞ ∞ 0 15 17

SF ∞ ∞ ∞ ∞ 0 ∞

NY ∞ ∞ ∞ ∞ ∞ 0

Table 5.5.1: The Cost Matrix after using Floyd algorithm

DA Htn Chgo LA SF NY

DA 0 0 0 0 3 3

Htn 0 0 0 0 0 0

Chgo 0 0 0 0 0 0

LA 0 0 0 0 0 0

SF 0 0 0 0 0 0

NY 0 0 0 0 0 0

Table 5.5.2: The Path Matrix after using Floyd algorithm

STEP 3: In this step we rewrite the problem in a transportation format with the help from the

Floyd algorithm. We get :
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SF NY Sp

DA 26 27 160

Htn 27 26 200

Dm 140 140

Table 5.5.3: The result Transportation tableau for example 1

STEP 4: Now we just apply MVM to the previous problem to get the optimal solution or at least

near to optimal solution.

The process for balancing the problem is needed since the supplies exceed the demands. So we get:

SF NY Dummy Sp

DA 26 27 M 160

Htn 27 26 M 200

Dm 140 140 80

After apply MVM, we have:
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SF NY Suuply

DA 26 27 160

140

Htn 27 26 200

140

Demand 140 140

Table 5.5.4: The solution by MVM for example 1

Based on the previous table, we can determine the assignment variables for the initial transship-

ment problem.

Since YDa,SF = 140 and the shortest path from Dallas to San Francisco being defined byDallas→

Chicago→ SF then

XDa,Chgo = 140 and XChgo,SF = 140

Since YHtn,NY = 140 and the shortest path from Houston to New York being the direct path then

XHn,NY = 140

The resulting network based on the reduction approach is shown below:
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NY
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26

17

Figure 5.5.2: The network representation of the solution to the Transshipment problem 1

5.5.2 Example 2

In this example, we shall apply our technique to a problem was introduced in [23]. The transship-

ment problem consist three sources, five transit points and four destinations. In their text, they

transformed the problem into a Transportation problem and the resulting was 12× 12 matrix (table

5.5.6) which becomes too large to solve according to their views. The objective function is to de-

termine the routes and allocation of units which will minimize the total cost.

In comparison, in our approach the resulting Transportation problem would be 3× 4. The determi-

nation of the shortest paths for each source-destination pair can be done be Floyd algorithm.
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to Cannery Junction Warehouse

From 1 2 3 4 5 6 7 8 9 10 11 12 supply

Cannery

1 0 146 − 324 286 − − − 452 505 − 871 75

2 146 0 − 373 212 570 609 − 335 407 688 784 125

3 − − − 658 − 405 419 158 − 685 359 673 100

Junction

4 322 371 656 0 262 398 430 − 503 234 329 −

5 284 210 − 262 0 406 421 644 305 207 464 558

6 − 569 403 398 406 0 81 272 597 253 171 282

7 − 608 418 431 422 81 0 287 613 280 236 229

8 − − 158 − 647 274 288 0 831 501 293 482

Warehouse

9 453 336 − 505 307 599 615 831 0 359 706 587

10 505 407 683 235 208 254 281 500 357 0 362 341

11 − 687 357 329 464 171 236 290 705 362 0 457

12 868 781 670 − 558 282 229 480 587 340 457 0

Demand 80 65 70 85

Table 5.5.6: The Transportation tableau of Transshipment example 2
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The summary for D and P matrices as follow:

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 0 0 5 4 5

2 0 0 0 0 0 0 0 0 0 5 5 10

3 0 0 0 0 0 0 0 0 8 6 0 8

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 10

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0

The Transportation model arises from Transshipment problem after using the Floyd algorithm is

shown below:

9 10 11 12

1 452 493 653 834

2 335 407 676 748

3 989 658 359 640

Table 5.5.7: The Transportation tableau after using Floyd algorithm to Transshipment example 2
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The next tableau shows the basic feasible solution which was determined by using Modified Vogel

Method. Notice this technique provides an optimal solution.

9 10 11 12 Supply

1
452 493 653 834 160

65 10

2
335 407 676 748 125

80 45

3
989 658 359 640 100

70 30

Demand 80 65 70 85

Table 5.5.8: The Transportation solution tableau for example 2 after using MVM

The total cost is $ 145,175

It is an optimal solution for both the transportation problem and the transshipment problem. From

the previous tableau and P matrix, we can determine the assignment variables and retain the path

for the initial transshipment problem.

Since Y1,10 = 65 and the shortest path from source 1 to destination 10 being defined by 1→ 5→ 10

then

X1,5 = 65 and X5,10 = 65

Since Y1,12 = 10 and the shortest path from source 1 to destination 12 being defined by 1 → 5 →

10→ 12 then
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X1,5 := X1,5 + 10 = 75 , X5,10 := X6,10 + 10 = 75 and X10,12 = 10

Since Y2,9 = 80 and the shortest path from source 2 to destination 9 being defined by the direct

path 2→ 9 then

X2,9 := 80

Since Y2,12 = 45 and the shortest path from source 2 to destination 12 being defined by 2→ 10→

12 then

X2,10 = 45 and X10,12 := X10,12 + 45 = 55

SinceY3,11 = 70 and the shortest path from source 3 to destination 11 being defined by the direct

path 3→ 11 then

X3,11 := 70

Since Y3,12 = 30 and the shortest path from source 3 to destination 12 being defined by 3→ 8→ 12

then

X3,8 = 30 and X8,12 = 30

The resulting network based on the reduction approach is shown below:
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Figure 5.5.3: The network representation of the solution to the Transshipment problem 2

5.6 Conclusion

In this chapter, we studied the Transshipment models which have a relation on the general feature

with the Transportation models. The reductive approach which provides interesting advantages

over the existed methods for solving the Transshipment problems, have been proposed.

Arising a small and less-complex Transportation model from the initial Transshipment model is the

best advantage of the proposed method compared to virtually unsolvable problem that the buffer

method would produce. The Floyd algorithm provides a clear view of the turning process to Trans-

portation problem since it is a matrix-based algorithm. Another key point, that the result Trans-

portation problem can be solved by one of MVM or ZCP algorithms that we introduced in this

thesis.
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Chapter 6

Application to the Traveling Salesman

Problems

6.1 Introduction

The Traveling Salesman Problem (TSP) is widely studied by many researchers in the field of Math-

ematics and Computer science. In terms of Combinatorial Optimizations, TSP falls in the category

of NP-complete problems and play an important role in Operations Research and theoretical Com-

puter science.

In general, TSP has several practical applications, which extends beyond the definition of cities

and distances, in business, industry and engineering. In fact, several heuristic algorithms have been

applied to solve TSP. The primary goal is to find the optimal tour that minimize the total distances

or the required costs.
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In this thesis, we present a new heuristic algorithm for the traveling salesman problem. It uses

the Modified Vogel Method (MVM) to improve one of the effective heuristic algorithm, the near-

est neighbor algorithm. It also has the potential of being a convergent algorithm in some cases.

Numerical examples will be considered to illustrate the procedure.

6.2 Traveling Salesman Problem

In the graph theory, Traveling Salesman Problem (TSP) is stated as a complete graph G = (N,E)

where N is a set of nodes {1, 2, · · ·n}, and E is a set of edges {(i, j) = eij , i, j ∈ N}. while

the distance or cost (as represented in this chapter) cij corresponding to each edge eij . Generally,

the nodes represent cities and the edges represent the distance between the cities. The goal is to

find the lowest cost or the shortest path tour T between n cities. In terms of graphs, it is to find the

Hamiltonian cycle associated with the shortest total distance.

TSP can also be formulated as Linear Integer programming problems. In fact, TSP has a distinct

restriction which makes the difference between TSP and Assignment problems (AP). The new re-

striction is called the subtour elimination constraint.

Let’s assuming that each edge represents the cost for traveling from node i to node j. Thus, TSP can

be illustrated in a matrix form in (table 6.2.1). If the cost matrix is symmetric such that Cij = Cji;

∀ i, j, then the traveling salesman problem is said symmetric and noted as STSP. In Contrary, ∃ i, j

; Cij 6= Cji , then the traveling salesman problem is said asymmetric and noted as ATSP. Cer-

tainly, in STSP the distance between two cities is the same in each opposite direction while it is

not the case for the ATSP. Realizing that difference between these two types of TSPs would help

to understand the reason when some algorithm might behave better with one category than the other.
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− c12 c13 · · · c1n

c21 − c23 · · · c2n

c31 c32 − · · · c3m

...
...

... . . . ...

cn1 cn2 cn3 · · · −

Table 6.2.1: The TSP tableau

The variables for TSP are defined by:

Xi,j =


1 ; if (i , j) ∈ T

0 ; else
(6.2.1)

TSP



min TC =
∑

(i,j),i 6=j

Cij Xij

n∑
j=1,i 6=j

Xij = 1 ; i = 1, · · · , n

n∑
i=1,i 6=j

Xij = 1 ; j = 1, · · · ,m

∑
i∈T

∑
i∈T̄

Xij ≥ 1 ; T̄ = { 1, · · ·n} − T

Xij = 0 or 1 ; i, j = 1, · · ·n

(6.2.2)

111



This allows the traveling Salesman Problem to be mathematically formulated as in (6.2.2). Obvi-

ously, this model is defined as an assignment problem with n2 variables and 2n constraints. The

first two equalities ensure that each city should be visited only once which give a tour. The assign-

ment Xij = 1, means the tour or path is passing from i to j. However, an additional restriction in

this model is needed to prevent subtours and that represented in the third constraint. The subtour

elimination constraint enforces to construct only a single tour that cover all cities instead of tours

that formed between intermediate nodes and not connected to the origin.

It is important to realize that the cost for the same node Cii sets to be infinity or big-M to disallow

linking the node to itself. There are a number of algorithms that can be used to solve TSP. We

can classify these approaches into three categories: exact solution TSP algorithms, local search

(greedy) heuristic and Meta-heuristic.

At the first category, the algorithms have been approved to get the optimality theoretically but

they may end with unreasonable amount of time. Branch & Bound algorithm and Cutting-Plane

algorithm are an instance in this approach. In the second category, the intention is to generate an

initial solution then randomly iterate the search to improve the quality of the solution. For example,

Nearest-Neighbor Heuristic and reversal Heuristic. Finally, Meta-Heuristic has more flexibilities

by escaping the local search procedure to complex learning processes. Tabu search Algorithm,

Simulated Annealing Algorithm and Genetic Algorithm are examples to find near to optimal solu-

tions.
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6.3 The Nearest Neighbor Algorithm

The nearest neighbor algorithm (NNA) also called greedy algorithm is one of the tour constructing

methods. Generally, the solution can be found by starting with any node then begin selecting the

closet neighbor until the tour is formed.

The steps can be summarized as following:

Nearest Neighbor Algorithm

Step 1. Choose an Initial City

Let i0 be the initial city then

Set P = N − {i0} and k = i0

Step 2. Choose The Next Nearest City

Find Ckr = minj∈P {Ckj}

Step 3. Updating

Set k = r and P = N − {k}

If P = φ then go to step 4

Else go to step 2

Step 4. Return to Initial City

Return to the initial city i0 and stop
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The nearest neighbor algorithm (NNA) is heuristic and yields an effectively tour. It corresponds to

the natural behavior of a salesman with a very low number of cities. For n randomly distributed

cities, the algorithm on average yields approximately 75% times the optimal path [28] and runs in

a polynomial time O(n2). However, there exists many specially arranged city distribution which

make the NNA algorithm gives the worst route [22]. This is true for both asymmetric and symmetric

TSPs [19]. Rosenkrantz and al. [38] showed that the NNA has the approximation factor O(ln n)

for instances satisfying the triangle inequality. The NNA is strongly sensible to the starting city

which can impair its accuracy. A variation of the NNA, called Nearest Fragment (NF) operator can

find a shorter route with successive iterations. Instead of one city at each step, the NF algorithm

connects a fragment or bundle of the nearest unvisited cities [18].

6.4 Application of Modified Vogel Method to TSP

After formulating the problem into a matrix form C, MVM can be applied to get the good starting

node or city. In the MVM procedure, the starting city would be the one that corresponds to the

largest penalty in Reduced matrix. If the largest penalty is associated to row i then the starting city

becomes i0 = i. If the largest penalty is associated to column j then there exists row i0 which

contains a zero of column j and is such that C(i0, j) = 0 . Therefore the starting city becomes i0.

At this point the NNA is applied to find a tour which can be improved by considering the penalty

of missing zero at each row. The row with the largest missing zero penalty is then selected to be

progressively reduced. When we reach a point no total cost reduction is permitted then the MVM-

TSP algorithm stops.

The steps are summarized as following:
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MVM-TSP

Step 1. Apply MVM

At this step MVM is applied to the Cost Matrix C

Start by performing Row and Column reduction then evaluate pi for each row i and qj for each

column j.

Step 2. Select the Starting City

If the largest penalty is reached at the row i then

i is the starting city

Else

the largest penalty is reached at the column j then find i0

such that Ri,j = 0. So the starting city become i0

After providing the starting city then

Set k = i0 and P = N − {k}

Step 3. NNA algorithm

Apply the NNA to find a Tour T

Step 4. Evaluate the Missing Zeros

At this step the penalties of not assigning the reduced cost zeros are calculated

For each row i, Find the reduced cost of the assigned variable mzi

If the assigned variable corresponds to zero reduced cost, then

mzi = 0

Else
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mzi = ai , where ai is the reduced cost at the row i

Step 5. A Row to be Improved

The row im with assigned cost Rim,c, has the largest missing zero which needs to be improved

So we start with the row im by assigning the next lowest cost Rim,j , such that

Rim,j < Rim,c

Then continue progressively to reduce the TC until no reduction is permitted

Then algorithm ends

6.5 Convergence Results

We know that the TSP can be solved by using the Branch and Bound method. By relaxing the

last constraint that avoid constructing sub tours, the TSP becomes an Assignment Problem (AP).

Therefore the optimal cost of AP becomes a lower bound of the optimal value of the TSP. The

equality occurred when the associated solution of AP is a complete tour.

Similarly, the optimal solution provided by MVM is an upper bound solution since the heuristic

MVM provides a complete tour. Therefore we have the relation:

ZAP ≤ ZTSP ≤ ZMVM ≤ ZNNA

The Branch and Bound method tries to find the optimal solution from the lower bound ZAP . If the

solution of ZAP is associated to a complete tour then that solution becomes optimal. Otherwise, the

attempt is to built a complete tour by breaking the smallest subtour into different branches. Each

branch should be evaluated. Then the process is repeated until there is no subtour. Finally, the
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optimal solution will be the one that corresponds to a complete tour with the minimal cost.

The MVM provides an upper bound which is improved by the row with the largest missing zero. If

the largest missing zero is null, it means that the solution ZMVM is optimal as it is established by

the following result.

Theorem 1. If the largest missing zero is null, then the solution obtained by MVM-TSP is opti-

mal.

Proof:

We know by definition that ZMVM ≥ 0. If the largest missing zero is null, then ZMVM = 0.

Therefore, the minimal value is reached and ZMVM is optimal.

Theorem 2. If there is only one strictly positive missing zero then the solution ZMVM is optimal.

Proof:

Let k be the only row with the missing zero then the only way to improve the minimization of

the total cost is by decreasing the missing zeros gradually until there is no possibility of selecting

lowest cost. Therefore, the associated cost ZMVM become optimal.

Theorem 3. If the largest missing zero associated to row k is unique and all the other positive

missing zero are reduced during the improvement of row k then the solution ZMVM is optimal.

Proof:

All the possibilities to improve the total cost by row k are visited. Since the decrease of the miss-

ing zero of row k affects the other entries associated with rest missing zeros then these rows are

dependent on k. Therefore all the possible situations are considered and the associated cost ZMVM

is optimal.
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6.6 Illustrative Examples

6.6.1 Example 1

Let’s consider a ATSP with 8 cities [9] defined by the following matrix:



− 76 43 38 51 42 19 80

42 − 49 26 78 52 39 87

48 28 − 40 63 44 68 61

72 31 29 − 42 49 50 38

30 52 38 47 − 64 72 82

66 51 83 51 22 − 37 71

77 62 93 54 69 38 − 26

42 58 66 76 41 52 83 −



(6.6.1)

If we apply the NNA form the city number 1 we will get the following tour

1→ 7→ 8→ 5→ 3→ 2→ 4→ 6→ 1, with TC = 319.

If we apply the NNA form the city number 2 we will get the following tour

2→ 4→ 3→ 6→ 5→ 1→ 7→ 8→ 2, with TC = 254.

but If the tour starts with city 8, then we get :

8→ 6→ 5→ 1→ 7→ 4→ 3→ 2→ 8, with TC = 321.

From the above, we notice that the starting city is very important. We can use the MVM in order

to determine the starting city. Thus the reduced matrix will become
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

− 57 24 19 32 12 0 61

16 − 23 0 52 15 13 61

20 0 − 12 35 5 13 33

43 2 0 − 13 9 21 9

0 22 8 17 − 23 42 52

44 29 61 29 0 − 15 49

51 36 67 28 43 1 − 0

1 17 25 35 0 0 42 −



(6.6.2)

The penalties of the rows are

p1 = 12; p2 = 13; p3 = 5; p4 = 2; p5 = 8; p6 = 15; p8 = 0

While the penalties of the columns are

q1 = 1; q2 = 2; q3 = 8; q4 = 12; q5 = 0; q6 = 1; q7 = 13; q8 = 9

The largest penalty is therefore p6 = 15. The starting city then 6 yields the assignment X6,5 = 1.

Therefore, row 6 and column 6 are crossed out.

Since the starting city has been selected, we continue with NNA by adding unvisited city until a

tour is defined.

6→ 5→ 1→ 7→ 8→ 2→ 4→ 3→ 6 , with TC = 254.
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At the second stage, we compute the penalty of a missing zero at each row. Then we get:



− 57 24 19 32 12 0 61

16 − 23 0 52 15 13 61

20 0 − 12 35 5 13 33

43 2 0 − 13 9 21 9

0 22 8 17 − 23 42 52

44 29 61 29 0 − 15 49

51 36 67 28 43 1 − 0

1 17 25 35 0 0 42 −



mz1 = 0

mz2 = 0

mz3 = 5

mz4 = 0

mz5 = 0

mz6 = 0

mz7 = 0

mz8 = 17

(6.6.3)

these penalties come with total = 22.

Therefore, row 8 has the highest penalty of missing assigning its zero then we construct a new tour

start at city 8 and assign the second lowest cost such that R8,j < 17. Thus, city 1 is added to the

tour and we continue constructing the tour. We get:

8→ 1→ 7→ 6→ 5→ 3→ 2→ 4→ 8

Then , re-calculate the penalty of a missing zero at each row:



− 57 24 19 32 12 0 61

16 − 23 0 52 15 13 61

20 0 − 12 35 5 13 33

43 2 0 − 13 9 21 9

0 22 8 17 − 23 42 52

44 29 61 29 0 − 15 49

51 36 67 28 43 1 − 0

1 17 25 35 0 0 42 −



mz1 = 0

mz2 = 0

mz3 = 0

mz4 = 9

mz5 = 8

mz6 = 0

mz7 = 1

mz8 = 1

(6.6.4)

with total = 19, that means the total cost has been decrease by 3 and the new TC = 251
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Now we test if further reduction can be made on the solution by selecting the third lowest cost

comparing to 17. In this case, would be a zero and there is a tie between city 5 and 6, breaking

the tie by choosing the lowest initial cost. Again, we start the tour with city 8 and add city 5 and

continue adding unvisited city until a unbreaking tour is defined.

8→ 5→ 1→ 7→ 6→ 2→ 4→ 3→ 8

with new missing zero penalties:

mz1 = 0; mz2 = 0; mz3 = 33; mz4 = 0; mz5 = 0; mz6 = 29; mz7 = 1; mz8 = 0;

with total = 63 which is greater than 22 and that means the total cost will be increase by 41.

As a result, there is no further improvement after we try with the other zero and then the procedure

stopped. Thus, the shortest tour was found with total cost 251 which is the optimum. In contrast,

the optimal solution for this example cannot be generated by the Nearest-Neighbor algorithm.

This example was introduced in [8] and solved by using the Branch and Bound method. Based

on releasing the subtour constraint, the optimal solution of the Assignment problem (AP) return

a total cost equal to TC = 232 corresponding to a solution with two sub tours (1-7-8-6-5-1) and

(2-4-3-2). The smaller subtour (2-4-3-2) is broken by considering three branches. For each branch,

a new Assignment problem is solved. Only one branch provides more than one subtour. Then that

branch is also broken to provide three new branches. Finally the solution to all these three APs

provide a tour. Then we stop and choose the minimal value of these tours which is TC = 251.

For this example, seven APs are solved while just 3 NNA iterations was necessary for the MVM-

TSP algorithm. We can notice these assignment problems have each a complexity of O(n3) while

the complexity of each of the 3 NNAs is O(n2). This gives us an idea of the functionality and the
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performance of MVM-TSP algorithm in solving TSPs.

6.6.2 Example 2

Let’s consider the following problem STSP with 5 cities [9] which produces a symmetric cost ma-

trix as below.



− 132 217 164 58

132 − 290 201 79

217 290 − 113 303

164 201 113 − 196

58 79 303 196 −


(6.6.5)

Notice that if we are applying NNA for all the cities, we would have the following table:

City Tour TC

1 1→ 5→ 2→ 4→ 3→ 1 668

2 2→ 5→ 1→ 4→ 3→ 2 694

3 3→ 4→ 1→ 5→ 2→ 3 697

4 4→ 3→ 1→ 5→ 2→ 4 668

5 5→ 1→ 2→ 4→ 3→ 5 807

Table 6.6.1: The NNA solutions for example 2
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Now by applying MVM to get the starting city, we would have the following reduced matrix:



− 53 159 106 0

53 − 211 122 0

104 156 − 0 190

51 67 0 − 83

0 0 245 138 −


(6.6.6)

with the row and column penalties :

p1 = 53 ; p2 = 53 ; p3 = 104 ; p4 = 51 ; p5 = 0

q1 = 51 ; q2 = 53 ; q3 = 159 ; q4 = 106 ; q5 = 0

Therefore, q3 = 159 is the largest penalty. Then, we look for the row i that satisfies Ri,3 = 0, so

i = 4 and it becomes the starting city.

Hence, we continue with MVM-TSP, by applying NNA for city 4. we get the following tour:

4→ 3→ 1→ 5→ 2→ 4 , with TC = 668.

Now, we compute the missing zeros penalties to know how much improvement can be made.



− 53 159 106 0

53 − 211 122 0

104 156 − 0 190

51 67 0 − 83

0 0 245 138 −



mz1 = 0

mz2 = 122

mz3 = 104

mz4 = 0

mz5 = 0

(6.6.7)

these penalties come with total = 226.

Therefore, row 2 has the highest penalty of missing zero then we construct a new tour start at city
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2 and assign the second lowest cost such that satisfy R2,j < 122. Thus, a new tour is constructing

at the city 2 then city 1 is added to the tour and we continue until we get:



− 53 159 106 0

53 − 211 122 0

104 156 − 0 190

51 67 0 − 83

0 0 245 138 −



mz1 = 0

mz2 = 53

mz3 = 156

mz4 = 0

mz5 = 138

(6.6.8)

with total zero penalty = 347 which will increase the total cost by 121. As a result, there is no

further improvement can be mad on the solution and the shortest tour was found with the total cost

668 which is the optimal solution.

6.7 Conclusion

TSP is well-known problem in Combinatorial Optimizations and can be applied to solve many

practical problems in our daily lives. Despite the fact that TSP has simple and easy structure, it is

one of the NP-complete problems class.

In this chapter, we proposed a new heuristic approach involves MVM and NNA to solve TSPs

which in fact improves the functionality of NNA. Significantly, the combination of these algo-

rithms converges to the optimality in some cases. Furthermore, the MVM-TSP approach links

TSPs to the Transportation models.
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General Conclusion

The Transportation model is a classic Operational Research problem where the objective is to de-

termine the optimal distribution that fulfills the demands of destination points using the supplies of

source points with minimizing the total shipping cost. Although it can be solved by simplex algo-

rithm as one of the Linear programming problem, it results with unreasonable time and calculations.

Therefore, this model can by solved be the Transportation algorithm which is an adaptation of the

simplex method, at two steps. Firstly, an initial feasible solution must be generated before applying

the second step of the Transportation algorithm. The Vogel’s approximation method is one of the

most known algorithm, hence the most efficient, to generate a better approximate solution for LTPs.

In this thesis, alternate algorithms for the Linear Transportation models were proposed to obtain

near to optimal or in some defined cases the optimal solutions. The first algorithm called the

Modified Vogel Method (MVM) is a modified version of the classic Vogel Approximation method

(VAM) and the main modification consists in performing the row and column reduction before

applying VAM. Although MVM gives better solutions to TPs with comparable computing time, it

still a heuristic method. Based on the experimental test, MVM provides optimal solutions for some

cases and they defined earlies in chapter 2.

The Zero Case Penalty algorithm (ZCP) was introduced also as another method attempt to solve

LTPs. The aim is to improve MVM by obtaining good starting solutions. As a result of the compu-

tational test, both algorithms simultaneously alternate to produce good approximate solutions and,

in some cases, the optimum. Unlike the MVM, Zero Case Penalty algorithm requires more time to

run since all the zeros are taken into account. However, ZCP has an advantage of considering less

special rules than MVM during the iteration of assigning variables. It presents a better feature for

improving the convergence of the algorithm. Based on our experimental results, the solutions of

about 77% of the 1600 problems instances are improved by Zero Case Penalty algorithm compared
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to 75% by Modified Vogel Method.

As a scope of future work, further development can be made on both algorithms in order to get the

optimality. Hence, more cases should be identified, if not all, where we have a guarantee that MVM

or/and ZCP provide optimal solutions. Consequently, that would allow MVM or ZCP to become a

viable alternative to the transportation algorithm.

The Unbalanced version of the Transportation model was studied and solved by balancing approach

that create artificial source or destination. In the new technique, MVM applied to the equivalent

balanced TP in such way that eliminate the concept of having dummy costs. In fact, ZCP can be

applied to the resulting Transportation problem in similar way as MVM.

Additionally, the Transshipment model was discussed and solved with new perspective than the

existing techniques. The Transshipment problems reformulated into smaller and less complicated

Transportation problems by considering the shortest path between the source-destination pairs.

Thus, Floyd algorithm used to find the lowest-cost paths in order to construct reduced Transporta-

tion problems. Hence, we plane to implement the algorithm and compare it to the buffer approach

especially on large-sized instances. Similarly, the proposed approach can be adopted to solve spe-

cial class of the Transshipment models as the capacitated Transshipment problems where they

required an additional restriction of logical maximum and minimum bounds on the shipping routs.

Significantly, Traveling Salesman Problems as one of the combinatorial optimization problems

were studied as an application of MVM and solved by MVM-TSP algorithm which provides better

heuristic solutions than NNA. In the MVM-TSP method, the Nearest-Neighbor algorithm improved

as an essential part of the procedure. The convergence as one of the ultimate goals, further inves-
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tigation and experimental test need to be made since the MVM-TSP algorithm has the potential of

becoming a convergent algorithm.

Another attempt towards the optimality, that a further adjustment procedure can be studied to solve

another linear programming transportation problems such as the Assignment models. This model

is another special case of the Transportation problems where the objective goal is to find an optimal

matching between two sets of equal cardinality.
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Appendices

Appendix A

1.1 MVM Algorithm

In this section, the steps involved in execution of the MVM approach are outlined as following:

1.1.1 Cost Matrix Reduction

We are presenting in this section a procedure to reduce the cost matrix and evaluate the penalty

associated to each row and column.

Procedure 1. Cost Matrix Reduction

Set NCrossRow = 0 and NCrossCol = 0 (The Number of crossed out rows & columns )

For each row i = 1, · · · , n

Set Ci = Ci1

(Find the minimum of row i )

for r = 1, · · · , n

if Ci > Cir then

Ci = Cir

endif

endfor
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(Reduce the row i )

for j = 1, · · · , n then

Set Rij = Cij − min
j
{Cij} = Cij − Ci

if Rij = 0 then set

NZRow(i) := NZRow(i) + 1 (Number of zero of row i )

ZRow(i) := ZRow(i) ∪ {j} (Set of zero of row i )

NZCol(j) := NZCol(j) + 1 (Number of zero of column j )

ZCol(j) := ZCol(j) ∪ {i} (Set of zero of column j )

Redcol(j) := 1 (Indicates column j is reduced)

endif

endfor

endFor

For each column j = 1, · · · , n

If Redcol(j) = 1 then

if NZCol(j) ≥ 2 then

Pencol(j) := 0

EPcol(j) := 1 (Indicates that penalty of column j is evaluated)

else

Pencol(j) = min
i
{Rij : Rij 6= 0}

endif

else

find min
i
{Rij} = Rkj = Rj
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Then

Set Rij = Rij −mini{Rij} = Rij − Rj

if Rij = 0 then set

NZRow(i) := NZRow(i) + 1 (Number of zero of row i )

ZRow(i) := ZRow(i) ∪ {j} (Set of zero of row i )

ZCol(j) := ZCol(j) ∪ {i} (Set of zero of column j )

NZCol(j) := NZCol(j) + 1 (Number of zero of column j )

Penrow(i) := 0

EProw(i) := 1 (Indicates that penalty of row i is evaluated)

endif

if NZCol(j) ≥ 2 then

Pencol(j) := 0

else

Pencol(j) = mini{Rij : Rij 6= 0}

endif

endIf

endFor

For each row i = 1, · · · , n

If EProw(i) = 0 then

Penrow(i) = min
j
{Rij : Rij 6= 0}

endIf

endFor

Set Nred = 1 (Indicate the Number of Reduction for the matrix )
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Find the following parameters

LProw = max
i
{Penrow(i)} and

LPcol = max
j
{Pencol(j)} and

LPen = max{LProw, LPcol}

1.1.2 Determining the assigned Variables

To determine the assigned line (row or column) we consider row k and column r such that

Lpen = LProw = LProw(r) or Lpen = LPcol = LPcol(c)

For each of these lines, we consider its zero and choose the one associated with the largest comple-

mentary penalty. If we have more than one, we choose one variable among these with the lowest

initial cost. We use the following procedure.

Procedure 2. Determining Variable

if the large penalty is a row (column) penalty

such that

Lpen = LProw = LProw(r)

For the row r determine its zero Xr,s and

the complement line is the column s with penalty qs.

OR

Lpen = LPcol = LPcol(c)
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For the column c determine its zero Xk,c and

the complement line is the row k with penalty pk.

Set UniqueLpen = 1 (Indicate that the Largest Penalty is uniqune )

1.1.3 Null Penalty Case

When all the penalties equal zero then LPen = 0 and there is at least two zeros on each row and

each column.

Proposition 1.1.3.1. When LPen = 0 then the current reduced cost matrix contains a

Zeros independent solution.

This situation include the trivial one where the remaining reduced matrix is null.

Procedure 3. Null Penalty Case

Set MaxZrow = NZrow(1) and row = 1

Set MaxZcol = NZcol(1) and col = 1

While n − NCrossRow ≥ 2 and m − NCrossCol ≥ 2 do

For i = 2, · · · , n do

If crossrow(i) = 0
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if MaxZrow < NZrow(i) then

MaxZrow = NZrow(i)

row = i

endFor

For j = 2, · · · ,m do

If Crosscol(j) = 0

if MaxZcol < NZcol(j) then

MaxZcol = NZcol(j)

col = j

endFor

Assign Xrow,col

if arow < bcol then

Call procedure 3. Assigning Row

else

if bcol < arow then

Call procedure 4. Assigning Column

else

Call procedure 5. Equality Case

endif

Set crossrow(row) = 1 AND crosscol(col) = 1

Evaluate NCrossRow := NCrossRow + 1 and

NCrossCol := NCrossCol + 1

endWhile
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1.1.4 Assigning variable

Once the variable is determined, we assign one and cross out the associated row and column.

Procedure 3. Assigning Row

For the variable Xt,z

Set Xt,z = at

Set crossrow(t) = 1

bz = bz − at ( updating the demand)

Zrow(t) = Zrow(t)− {z}

Zcol(z) = Zcol(z)− {t}

NCrossRow = NCrossRow + 1

Procedure 4. Assigning Column

For the variable Xt,z

Set Xt,z = bz

Set crosscol(z) = 1

at = at − bz ( updating the supply)

Zrow(t) = Zrow(t)− {z}

Zcol(z) = Zcol(z)− {t}

NCrossCol = NCrossCol + 1

we consider the situation where pt and qz for the variable Xt,z are equal.
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Procedure 5. Equality Case

For the variable Xt,z

Set Xt,z = qz = pt

Set crossrow(t) = 1 and crosscol(z) = 1

Zrow(t) = Zrow(t)− {z}

Zcol(z) = Zcol(z)− {t}

NCrossRow = NCrossRow + 1

NCrossCol = NCrossCol + 1

1.1.4.1 Multiple Largest Penalties

Procedure 6. Multiple Penalties

we consider the case when there are multiple largest penalties for rows or columns.

therefore, there are multiple cases have to be considered. refer to section 1.2.

Then we set UniqueLpen = 0

1.1.5 Reduction

1.1.5.1 Null Complementary Column Case

We consider the situation where the column penalty is null and the column c is crossed out.

Note: the column penalties must be re-evaluated.
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Procedure 7. Row Penalties in Null Case

If qc = 0 (then there is other zero, at least one on Zcol(c) )

Zcol(c) = Zcol(c)− k (updating the set Zcol(c) after assigning Xk,c )

For each s ∈ Zcol(c)

If Penrow(s) > 0 then (reduce the row s )

for each column j = 1, · · · , n in the row s

if crosscol(j) = 0 then

Rsj = Rsj − penroww(s)

If Rsj = 0 then set

ZRow(s) := ZRow(s) ∪ {j}

NZRow(s) := NZRow(s) + 1 (updating the number of zeros in the row s)

NZCol(j) := NZCol(j) + 1 (updating the number of zeros in the column

j)

if NZCol(j) ≥ 2 then

Set qj = 0

else

if Rsj < qj then (updating the column j penalty)

Set qj = Rsj

endif

endIf

endfor

endIf

endFor

Nred := Nred + 1

endIf
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1.1.5.2 Null Complementary Row Case

We consider the situation where the row penalty is null and the rowr is crossed out.

Note: the row penalties must be re-evaluated.

Procedure 8. Column Penalties in Null Case

If pr = 0 (then there is other zero, at least one on Zrowl(r) )

Zrow(r) = Zrow(r)− {s} (updating the set Zrow(r) after assigning Xr,s )

For each s ∈ Zrow(r)

If Pencol(s) > 0 then (reduce the column s )

for each row i = 1, · · · , n

if crossrow(i) = 0 then

Ris = Ris − pencol(s)

If Ris = 0 then set

ZRow(i) := ZRow(i) ∪ {s}

NZRow(i) := NZRow(i) + 1 (updating the number of zeros in the row i)

NZCol(s) := NZCol(s) + 1 (updating the number of zeros in the column

s)

if NZRow(i) ≥ 2 then

Set pi = 0

else

if Ris < pi then

Set pi = Ris
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endif

endIf

endfor

endIf

endFor

Nred := Nred + 1

endIf

1.1.6 Updating

1.1.6.1 Row Penalties Evaluation

Procedure 9. Updating Row Penalties

For i = 1, · · · , n do

If crossrow(i) = 0 then

if Ri,z ≤ pi then

if NZRow(i) ≥ 2 then

Set pi = 0

else

Find minj {Ri,j : Ri,j 6= 0}

Set pi = min{Rij : Rij 6= 0}

Endif

endIf

endFor
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1.1.6.2 Column Penalties Evaluation

Procedure 10. Updating Column Penalties

For j = 1, · · · , n do

If crosscol(j) = 0 then

if Rt,j ≤ qj then

if NZCol(j) ≥ 2 then

Set qj = 0

else

Find mini {Ri,j : Ri,j 6= 0}

Set qj = min{Rij : Rij 6= 0}

Endif

endIf

endFor

1.1.7 General algorithm

Step 1. Cost Matrix Reduction

Call procedure 1. Cost Matrix Reduction

Step 2. Determined the assigned Variables

Call procedure 2. Determining variables

If LPen = 0 then

Call procedure 1. Null penalty
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print the optimal solution

else

If LPen = LPRow then

if ar < bs then

Call procedure 3. Assigning Row

else

if bs < ar then

Call procedure 4. Assigning Column

else (Equality Case )

Call procedure 5. Equality Case

endif

else

If LPen = LPCol then

if ak < bc then

Call procedure 3. Assigning Row

else

if bc < ak then

Call procedure 4. Assigning Column

else

Call procedure 5. Equality Case

endif

else ( if LPRow = LPCol)

Call procedure 6. Multiple Penalties

endIf
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Step 3. Stopping Test

If NCrossRow = 1 OR NCrossCol = 1 then

if NCrossRow = 1

For each column j = 1, · · · ,m in row t do

If crosscol(j) = 0 then

Assign Xt,j = bj

endIf

endFor

else ( NCrossCol = 1)

For each row i = 1, · · · , n in column z do

If crossrow(i) = 0 then

Assign Xi,z = ai

endIf

endFor

endif

else

continue

endIf

Step 4. Updating Penalties

If LPen = LPRow then

Call procedure 7. Row Penalties in Null Case

Call procedure 9. Updating Row Penalties

else

If LPen = LPCol then
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Call procedure 8. Column Penalties in Null Case

Call procedure 10. Updating Column Penalties

else

If LPen = LPCo = LProwl then

if the assigned line is a row then

Call procedure 7. Row Penalties in Null Case

Call procedure 9. Updating Row Penalties

else

( if the assigned line is a column) then

Call procedure 8. Column Penalties in Null Case

Call procedure 10. Updating Column Penalties

Step 5. Parameter Updating

go to step 2

Step 6. Optimality Test

If Nred := 1 then the MVM solution is optimal.

Else

if UniqueLpen := 1 the MVM solution is optimal.

else

find the dual variables and test the optimality.
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1.2 Special Cases for Multiple Largest Penalties

1.2.1 Largest penalty Row-Column

We consider the situation where there a unique row k and a unique column r such that

LPen = LProw = max
i
{Penrow(i)} = Penrow(k) = pk

and

LPen = LPcol = max
j
{Penrcol(i)} = Penrow(r) = qr

1.2.1.1 Mutual Complementarity Case

In this case

Rk,r = 0 kc = r and rc = k

There is a unique choice. The variable to be assigned is Xk,r

If ak = br

Assign Xk,r = ak then crossrow(k) =1 (cross out row k)

Find on column r the variable Xrl,r such that Rrl,r = LPen

Set Xrl,r = 0 then crosscol(r) =1 (cross out row r)

else

if ak < br then (Simultaneous assignment, Matrix reduced)

Assign Xk,r = ak then crossrow(k) =1 (cross out column r)

Set br = br − ak then reduce column r

else

if ak > br then

148



Assign Xk,r = br then crosscol(r) =1 (cross out column r)

Set ak = ak − br then reduce row k

endif

endif

endif

1.2.1.2 Confluctual & non-Cnofluctual cases

In this section, we consider the cases when

kc 6= r rc 6= k

Then we have four sub-cases from the supplies and demand perspective :

1.

If ak ≤ bkc and br ≤ arc then

Choose a line with complementary penalty null.

Assign row k if qkc = 0 with Xk,kc = ak

else

Assign column r if prc = 0 with Xr,rc = br

else ( if both complementary lines have non-null penalty)

Compare between ak and br and choose the line with the largest.

cross out out at least a line.

If ak = bkc cross out row k then assign zero to the least cost of column kc
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and cross out column kc.

If arc = br cross out column r then assign zero to the least cost of row rc

and cross out row rc.

Reduce if necessary the remain matrix.

Endif

2.

If ak ≤ bkc and br > arc then

we are considering two situations when Rk,r > LPen and Rk,r = LPen

case 1: if Rk,r > LPen

Compare the left over costs br − arc and bkc − ak and choose the line with the largest cost.

Then cross out at least a row.

If ak = bkc cross out also column kc after assigning zero to the least cost of that column.

Reduce if necessary the remain matrix.

Endif

case 2: if Rk,r = LPen

The column r has the priority because it will need second lowest cost

Xr,rc = arc

cross out at lest row rc

If ak = bkc cross out row k then assign zero to the least cost of column kc and

cross out column kc.
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Reduce if necessary the remain matrix.

Update if necessary the row penalties.

Endif

3.

If ak > bkc and br ≤ arc then

we are considering two situations when Rk,r > LPen and Rk,r = LPen

case 1: if Rk,r > LPen

Compare the left over costs arc − ar and ak − bkc and choose the line with the largest cost.

Then cross out at least a column.

If br = arc cross out also row rc after assigning zero to the least cost of that row.

Reduce if necessary the remain matrix.

Endif

case 2: if Rk,r = LPen

The row k has the priority because it will need second lowest cost

Xk,kc = bkc

cross out at least column kc

If br = arc cross out column r then assign zero to the least cost of row rc and

cross out row rc.

Reduce if necessary the remain matrix.

Update if necessary the row penalties.
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Endif

4.

If ak > bkc and br > arc then

we are considering two situations when Rk,r > LPen and Rk,r = LPen

Let b1 be the demand associated with the complementarity column k2 containing the reduced

cost LPen of the row k

Let a1 be the supply associated with the complementarity row r2 containing the reduced cost

LPen of the column r

case 1: if Rk,r > LPen

we need to compute the following costs:

Mk = max{0, ak − bkc − b1} and Mr = max{0, br − arc − a1}

Assign the line associated with the maximum cost.

If the tie remains, compare the left over ak − bkc and br − arc and choose the line with largest.

cross out the row or column with zero supply or demand.

Reduce if necessary the remain matrix.

Endif

case 2: if Rk,r = LPen

Row k or column r has to be reduced, making the large penalty equal to zero.

Thus we need to compare the left over values that need to be assigned to the Largest penalty and

then choose the larger.
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By computing the costs:

Mk = max{ak − bkc − br, 0} and Ms = max{br − arc − ak, 0}

Assign the line associated with the maximum cost.

If the tie remains, compare the left over ak − bkc and br − arc and choose the line with largest.

cross out the row or column with zero supply or demand.

Reduce if necessary the remain matrix.

Endif

1.2.2 Largest Penalty Paralleled lines

We consider the situation where there two rows (columns) k and s such that

LPen = LProw = max
i
{Penrow(i)} = Penrow(k) = Penrow(s)

The row k contains exactly one zero Rk,kc = 0 which is on the complementary column kc with its

penalty equal to qkc . The supply of the rows k and s are respectively ak and as.

1.2.2.1 Same Complementary Column

In this case, the two rows have the same complementary column:

Rk,kc = 0 Rs,sc = 0 with kc = sc

153



Case 1. ak + as ≤ bkc

Assign Xk,kc = ak and cross out row k .

Set bkc = bkc − ak

then assign Xk,kc = as and cross out row s

If ak + as = bkc then cross out column kc

else

Set bkc = bkc − as

Update the penalties of the rows and column.

Case 2. ak + as > bkc

Let b1 be the demand associated with the complementarity column k2 containing the reduced

cost LPen of the row k

Let b2 be the demand associated with the complementarity column s2 containing the reduced

cost LPen of the row s

Let b = max{b2}

Case 2.1 ak ≤ bkc and as ≤ bkc

First we need to compare the left over with the demands b1 and b2

If ak + as − bkc ≤ b = b2

Assign Xk,kc = ak and cross out row k .

Then assign Xs,kc = bkc − ak and Xs,s2 = ak + as − bkc

cross out row s and column kc

Reduce if necessary the remaining rows that contain their zeros in column kc
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Update if necessary the row penalties.

If ak + as − bkc ≤ b = b1

Assign Xs,kc = as and cross out row s .

Then assign Xk,kc = bkc − as and Xk,k2 = ak + as − bkc

cross out row k and column kc

Reduce if necessary the remaining rows that contain their zeros in column kc

Update if necessary the row penalties.

If ak + as − bkc > b

Find φk the third largest reduced cost of row k

Find φs the third largest reduced cost of row s

Define the costs:

F (k) = LPen b2 + (ak + as − bkc − b2)φs and

F (s) = LPen b1 + (ak + as − bkc − b1)φk

If F (k) ≤ F (s)

Assign Xk,kc = ak and cross out row k .

Then assign Xs,kc = bkc − ak and Xs,s2 = ak + as − bkc

cross out row s and column kc

Reduce if necessary the remaining rows that contain their zeros in column kc

Update if necessary the row penalties.

else

Assign Xs,kc = as and cross out row s .

Then assign Xk,kc = bkc − as and Xk,k2 = ak + as − bkc

cross out row k and column kc

Reduce if necessary the remaining rows that contain their zeros in column kc
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Update f necessary the row penalties.

Endif

Case 2.2 ak ≤ bkc and as > bkc

We need to check if there is remaining supplies on row k and s after assigning the largest

penalties.

Define the parameters

Mk = max{0, as + ak − bkc − b2}

Ms = max{0, as − bkc − b2} + max{0, ak − b1}

If Mk > Ms

Assign Xk,kc = ak and cross out row k .

Then assign Xs,kc = bkc − ak and Xs,s2 = min{b2, ak + as − bkc}

cross out column kc and other rows or columns with zero supply or demand

Reduce if necessary the remaining matrix

Update if necessary the penalties.

else

Assign Xs,kc = bkc and cross out column kc .

Then assign Xk,k2 = min{b1, ak} and Xs,s2 = min{b2, as − bkc}

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

Endif

Case 2.3 ak > bkc and as ≤ bkc
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We need to check if there is remaining supplies on row k and s after assigning the largest

penalties.

Define the parameters

Mk = max{0, ak − bkc − b1} + max{0, as − b2}

Ms = max{0, ak + as − bkc − b1}

If Mk ≥Ms

Assign Xk,kc = bkc and cross out column kc .

Then assign Xk,k2 = min{b1, ak − bk−c} and Xs,s2 = min{b2, as}

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

else

Assign Xs,kc = as and cross out row s .

Then assign Xk,kc = bkc − as and Xk,k2 = min{b1, ak + as − bkc}

cross out column kc and other rows or columns with zero supply or demand

Reduce if necessary the remaining matrix

Update if necessary the penalties.

Endif

Case 2.4 ak > bkc and as > bkc

Define the parameters

Mk = max{0, ak − bkc − b1} + max{0, as − b2}

Ms = max{0, as − bkc − b2} + max{0, ak − b1}

If Mk > Ms

157



Assign Xk,kc = bkc and cross out column kc .

Then assign Xk,k2 = min{b1, ak − bk−c} and Xs,s2 = min{b2, as}

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

else

Assign Xs,kc = bkc and cross out column kc .

Then assign Xk,k2 = min{b1, ak} and Xs,s2 = min{b2, as − bkc}

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

Endif

1.2.2.2 Different Complementary Columns

In this case, the two rows or columns have different complementary columns.Since analysis for two

columns are similar, we consider the situation two rows

Rk,kc = 0 Rs,sc = 0 with kc 6= sc

Case 1. If ak ≤ bkc and as ≤ bsc then

Assign simultaneously Xk,kc = ak Xs,kc = as

Cross out at least two rows k and s

If ak = bkc assign zero to the least cost of column kc and Cross out column kc

If as = bsc assign zero to the least cost of column sc and Cross out column sc

else
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Set bkc = bkc − ak and bsc = bsc − as

Then we reduce if necessary the columns kc and sc .

Update the penalties of the rows and columns.

Case 2. If ak ≤ bkc and as > bsc then

Row s has the priority to avoid having the reduction for row s and to have less left-over quantity

on the demand.

Xs,kc = bsc

Cross out column sc

Set as = as − bsc

Then we reduce row s .

Update the penalties of the rows and columns.

Case 3. If ak > bkc and as ≤ bsc then

Row k has the priority to avoid having the reduction for row k and to have less left-over quntity

on the demand.

Xk,kc = bkc

Cross out column kc

Set ak = ak − bkc

Then we reduce row k .

Update the penalties of the rows and columns.

Case 4. If ak > bkc and as > bsc then
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we are considering four situations as following:

If Rk,sc = LPen and Rs,kc > LPen

Assign Xk,kc = bkc and cross out the column kc

Set ak = ak − bkc

Then we reduce if necessary the rows.

Evaluate the penalties of the rows and columns.

If Rk,sc > LPen and Rs,kc = LPen

Assign Xs,kc = bsc and cross out the column sc

Set as = as − bsc

Then we reduce if necessary the rows.

Evaluate the penalties of the rows and column.

If Rk,sc = LPen and Rs,kc = LPen

Both rows k and s will need at least their second least costs and may need the third lest costs.

So, we need to compare the left over quantities for rows k and s

Define the parameters

Mk = max{0, ak − bkc − bsc}

Ms = max{0, as − bsc − bkc}

If Mk > Ms

Assign Xk,kc = bkc and cross out column kc .

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix
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Update f necessary the penalties.

else

if Ms > Mk

Assign Xs,kc = bkc and cross out column kc .

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

else

comparison between (ak−bkc) and (as−bsc) and assign line associates with the larger

Endif

If Rk,sc > LPen and Rs,kc > LPen

Let b1 be the demand associated with the complementarity column k2 containing the reduced

cost LPen of the row k

Let b2 be the demand associated with the complementarity column s2 containing the reduced

cost LPen of the row s

Define the parameters

Mk = max{0, ak − bkc − b1}

Ms = max{0, as − bsc − b2}

If Mk > Ms

Assign Xk,kc = bkc and cross out column kc .

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.
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else

if Ms > Mk

Assign Xs,kc = bkc and cross out column kc .

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

else

comparison between (ak − bkc) and (as − bsc) and assign the line associates with the

larger
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1.3 Java Code

In this section, we present the Java code of MVM.

p u b l i c c l a s s MVMR {

/ / da ta f i e l d s

p r i v a t e s t a t i c double [ ] [ ] m a t r i x ;

p r i v a t e s t a t i c double [ ] [ ] c o s t ;

p r i v a t e s t a t i c double [ ] [ ] x ; / / t h e s o l u t i o n m a t r i x

p r i v a t e s t a t i c i n t [ ] [ ] ZPos ; / / t h e z e r o p o s i t i o n s i n t h e m a t r i x

p r i v a t e s t a t i c double [ ] p ; / / row p e n a l t i e s

p r i v a t e s t a t i c double [ ] q ; / / column p e n a l t i e s

p r i v a t e s t a t i c i n t [ ] dm ; / / column demands

p r i v a t e s t a t i c i n t [ ] sp ; / / row s u p p l i e s

p r i v a t e s t a t i c i n t [ ] crossRows ; / / d e l e t e d rows ( z e r o i f n o t c r o s s e d o u t )

p r i v a t e s t a t i c i n t [ ] c rossColumns ; / / d e l e t e d columns

p r i v a t e s t a t i c i n t [ ] NZRow; / / number o f z e r o s i n each row

p r i v a t e s t a t i c i n t [ ] NZCol ; / / number o f z e r o s i n each column

p r i v a t e s t a t i c i n t [ ] EPRow ; / / i n d i c a t e t h e e v a l u a t e d row p e n a l t i e s

p r i v a t e s t a t i c i n t [ ] RedCol ; / / i n d i c a t e t h e reduced columns

p r i v a t e s t a t i c i n t LPen ; / / i n d i c a t e t h e h i g h e s t p e n a l t y

p r i v a t e s t a t i c double LPRow ; / / h i g h e s t row p e n a l t y

p r i v a t e s t a t i c double LPCol ; / / h i g h e s t column p e n a l t y

p r i v a t e s t a t i c double sum ;

s t a t i c double TC ; / / t h e t o t a l s h i p p i n g c o s t

p r i v a t e s t a t i c double sumSup ; / / sum o f t h e t o t a l s u p p l y

p r i v a t e s t a t i c double sumDem ; / / sum o f t h e t o t a l demand

p r i v a t e s t a t i c i n t NCrossRows =0 , NCrossCols =0; / / t h e number o f c r o s s e d
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rows and columns

p r i v a t e s t a t i c i n t n ,m , var , RedNum ;

p r i v a t e s t a t i c i n t pARow , pAColumn , qARow , qAColumn , Row , Col ;

p r i v a t e s t a t i c DecimalFormat d f ;

p r i v a t e s t a t i c boolean uniquePen , S o l O p t i m a l ;

/∗ ∗

∗ The R e d u c t i o n Func t ion− row−column r e d u c t i o n

∗ /

p u b l i c s t a t i c vo id M a t r i x R e d u c t i o n ( ) {

RedNum++;

f o r ( i n t i =0 ; i<n ; i ++){

double rowMin= c o s t [ i ] [ 0 ] ;

f o r ( i n t j =1 ; j<m ; j ++){ / / c h o o s i n g t h e minimum v a l u e

i f ( c o s t [ i ] [ j ]< rowMin )

rowMin= c o s t [ i ] [ j ] ;

}

f o r ( i n t k =0; k<m ; k ++){

c o s t [ i ] [ k ] = c o s t [ i ] [ k]− rowMin ;

i f ( c o s t [ i ] [ k ]==0) {

NZRow[ i ] + + ; / / i n c r e m e n t t h e number o f z e r o s i n row i

NZCol [ k ] + + ; / / i n c r e m e n t t h e number o f z e r o s i n column k

RedCol [ k ] = 1 ; / / column k has been reduced

ZPos [ i ] [ k ] = 1 ; / / mark t h e p o s i t i o n

}

}

}

/ / co lumns

f o r ( i n t j =0 ; j<m; j ++){

i f ( RedCol [ j ]==1) { / / column reduced
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i f ( NZCol [ j ] >=2){ / / i f t h e r e are more than one z e r o

q [ j ] = 0 ;

}

e l s e { / / i f t h e r e i s o n l y one z e r o

double colMin= sum ;

/ / c h o o s i n g t h e minimum v a l u e

f o r ( i n t i =0 ; i<n ; i ++){ / / i =0

i f ( c o s t [ i ] [ j ]< colMin && c o s t [ i ] [ j ] ! = 0 )

colMin= c o s t [ i ] [ j ] ;

}

q [ j ]= colMin ;

}

}

e l s e { / / i f t h e column i s n o t reduced y e t

double colMin= c o s t [ 0 ] [ j ] ;

/ / c h o o s i n g t h e minimum v a l u e

f o r ( i n t i =1 ; i<n ; i ++){ / / i =0

i f ( c o s t [ i ] [ j ]< colMin )

colMin= c o s t [ i ] [ j ] ;

}

double [ ] m i n L i s t = new double [ n ] ;

f o r ( i n t k =0; k<n ; k ++){

c o s t [ k ] [ j ] −= colMin ;

m i n L i s t [ k ]= c o s t [ k ] [ j ] ; / / t o compute t h e column p e n a l t y

i f ( c o s t [ k ] [ j ]==0) {

NZRow[ k ] + + ;

NZCol [ j ] + + ; / / i n c r e m e n t t h e number o f z e r o s i n column k

p [ k ] = 0 ; / / re−compute t h e row p e n a l t y

EPRow[ k ] = 1 ; / / mark t h e e v a l u a t e d p e n a l t y

ZPos [ k ] [ j ] = 1 ;

}

}
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A rr ay s . s o r t ( m i n L i s t ) ;

q [ j ]= m i n L i s t [1]−m i n L i s t [ 0 ] ; / / column p e n a l t i e s

} / / end e l s e

} / / e n d f o r

/ / choose t h e row p e n a l t i e s

f o r ( i n t i =0 ; i<n ; i ++){

i f ( EPRow[ i ] ! = 1 ) { / / i f t h e row p e n a l t y n o t e v a l u a t e d

i f (NZRow[ i ] >=2){

p [ i ] = 0 ;

}

e l s e {

/ / o t h e r w i s e , i f t h e p e n a l t i e s v a l u e s o t h e r than z e r o s

double rowMin= sum ;

/ / c h o o s i n g t h e minimum v a l u e

f o r ( i n t j =0 ; j<m ; j ++){ / / i =0

i f ( c o s t [ i ] [ j ]< rowMin && c o s t [ i ] [ j ] ! = 0 )

rowMin= c o s t [ i ] [ j ] ;

}

p [ i ]= rowMin ;

} / / end e l s e

} / / end i f

} / / end f o r

}

/∗ ∗

∗ T h i s f u n c t i o n d e t e r m i n e s t h e a s s i g n i n g v a r i a b l e s

∗ /

p u b l i c s t a t i c vo id C o n s i d e r i n g V a r i a b l e ( ) {

LPRow=−1;

pARow=−1;

LPCol= −1;
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qAColumn= −1;

LPen=−1;

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] !=1 ) {

i f ( i ==0){

LPRow=p [ 0 ] ;

pARow=0;

f o r ( i n t j =0 ; j<m ; j ++){ / / choose t h e minimum

i f ( ( c rossColumns [ j ] ! = 1 ) && ZPos [ 0 ] [ j ]==1) {

pAColumn= j ; / / column

}

}

}

e l s e i f ( p [ i ]> LPRow) {

LPRow=p [ i ] ;

pARow= i ;

f o r ( i n t j =0 ; j<m ; j ++){ / / choose t h e minimum

i f ( ( c rossColumns [ j ] ! = 1 ) && ZPos [pARow ] [ j ]==1) {

pAColumn= j ;

}

}

}

e l s e i f ( p [ i ] == LPRow) { / / p a r a l l e l rows

i n t pos2 =0;

f o r ( i n t j =0 ; j<m ; j ++){ / / choose t h e minimum

i f ( ( c rossColumns [ j ] ! = 1 ) && ZPos [ i ] [ j ]==1) {

pos2= j ;

}

}

/ / i f t h e complementary columns are t h e same

i f ( pos2 == pAColumn && m−NCrossCols ! = 2 ) {

/ / 2 c a s e s
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/ / i f ( sp [ i ] +sp [pARow] <= dm[ pAColumn ] ) {

/ / s i m u l t a n e o u s l y

i f ( sp [ i ] +sp [pARow] > dm[ pAColumn ] ) { / / 4 s u b c a s e s

i n t b1=−1 , b2=−1, max=−1;

A r r a y L i s t<Double> min1= new A r r a y L i s t<Double >() ;

A r r a y L i s t<Double> min2 = new A r r a y L i s t<Double >() ;

double ph i1 =0 , ph i2 =0 , fpARow , f i ;

f o r ( i n t c =0; c<m; c ++){

i f ( c rossColumns [ c ] ! = 1 ) {

min1 . add ( c o s t [pARow ] [ c ] ) ;

min2 . add ( c o s t [ i ] [ c ] ) ;

i f ( c o s t [pARow ] [ c ]== LPRow)

b1=c ;

i f ( c o s t [ i ] [ c ]== LPRow)

b2=c ;

}

} / / end f o r

C o l l e c t i o n s . s o r t ( min1 ) ;

C o l l e c t i o n s . s o r t ( min2 ) ;

ph i1 = min1 . g e t ( 2 ) ; / / phi−k

ph i2 = min2 . g e t ( 2 ) ; / / phi−s

i f (dm[ b1 ] >= dm[ b2 ] )

max =0; / / b1

e l s e

max =1; / / b2

i f ( sp [pARow] <= dm[ pAColumn ] && sp [ i ] <= dm[ pAColumn ] ) { / / 1

i f ( max==0 && ( sp [pARow]+ sp [ i ]−dm[ pAColumn ] ) <= dm[ b1 ] ) {

pARow= i ;

168



}

e l s e i f ( ( sp [pARow]+ sp [ i ]−dm[ pAColumn ] ) > dm[ b1 ] | | ( sp [pARow

]+ sp [ i ]−dm[ pAColumn ] )> dm[ b2 ] ) {

/ / need t h e 3 rd

fpARow= (LPRow∗dm[ b2 ] ) + ( ( sp [pARow]+ sp [ i ]−dm[ pAColumn]−

dm[ b2 ] ) ∗ ph i2 ) ;

f i = (LPRow∗dm[ b1 ] ) + ( ( sp [pARow]+ sp [ i ]−dm[ pAColumn]−dm[

b1 ] ) ∗ ph i1 ) ;

i f ( fpARow > f i )

pARow= i ;

/ / e l s e rema ins

}

}

e l s e i f ( sp [pARow] <= dm[ pAColumn ] && sp [ i ] > dm[ pAColumn ] ) { / /

2

fpARow = Math . max ( 0 , ( sp [ i ]− dm[ pAColumn ] + sp [pARow] −dm[ b2

] ) ) ;

f i = Math . max ( 0 , ( sp [ i ]− dm[ pAColumn ] −dm[ b2 ] ) ) +

Math . max ( 0 , ( sp [pARow]− dm[ b1 ] ) ) ;

/ / i f ( fRow > sRow )

/ / pARow=pARow ;

i f ( f i >= fpARow )

pARow= i ; / / s

}

e l s e i f ( sp [pARow] > dm[ pAColumn ] && sp [ i ] <= dm[ pAColumn ] ) { / /

3

fpARow = Math . max ( 0 , ( sp [pARow]− dm[ pAColumn ] −dm[ b1 ] ) ) +
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Math . max ( 0 , ( sp [ i ]− dm[ b2 ] ) ) ;

f i = Math . max ( 0 , ( sp [pARow]− dm[ pAColumn ] + sp [ i ] −dm[ b1 ] ) )

;

/ / i f ( fRow >= sRow )

/ / pARow=pARow ;

i f ( f i > fpARow )

pARow= i ;

}

e l s e i f ( sp [pARow] > dm[ pAColumn ] && sp [ i ] > dm[ pAColumn ] ) { / / 4

fpARow = Math . max ( 0 , ( sp [pARow]− dm[ pAColumn ] −dm[ b1 ] ) ) +

Math . max ( 0 , ( sp [ i ]− dm[ b2 ] ) ) ;

f i = Math . max ( 0 , ( sp [ i ]− dm[ pAColumn ] −dm[ b2 ] ) ) +

Math . max ( 0 , ( sp [pARow]− dm[ b1 ] ) ) ;

/ / i f ( fRow >= sRow )

/ / pARow=pARow ;

i f ( f i > fpARow )

pARow= i ;

}

} / / e l s e end

}

e l s e { / / d i f f e r e n t complementary column

/ / 4 c a s e s

i f ( sp [pARow] <= dm[ pAColumn ] && sp [ i ] <= dm[ pos2 ] ) {

i f ( ( dm[ pos2 ] − sp [ i ] ) > (dm[ pAColumn ] − sp [pARow ] ) ) {

pARow= i ;
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pAColumn=pos2 ;

}

/ / e l s e− t h e same

}

e l s e i f ( sp [pARow] <= dm[ pAColumn ] && sp [ i ] > dm[ pos2 ] ) {

pARow= i ;

pAColumn=pos2 ;

}

/ / i f ( sp [pARow] > dm[ pAColumn ] && sp [ i ] <= dm[ pos2 ] )

/ / t h e same pARow

e l s e i f ( sp [pARow] > dm[ pAColumn ] && sp [ i ] > dm[ pos2 ] ) {

/ / 4 c a s e s

/ / i f ( c o s t [pARow ] [ pos2]== LPRow && c o s t [ i ] [ pAColumn ]!= LPRow )

/ / LPRow remains

i f ( c o s t [pARow ] [ pos2 ] ! = LPRow && c o s t [ i ] [ pAColumn]== LPRow) {

pARow= i ;

pAColumn=pos2 ;

}

e l s e {

/ / compare t h e l e f t ove r

i f (m−NCrossCols ==2){

/ / i f ( ( sp [pARow]−dm[ pAColumn ] ) > ( sp [ i ] − dm[ pos2 ] ) )

/ / LPRow remains

i f ( ( sp [pARow]−dm[ pAColumn ] ) < ( sp [ i ] − dm[ pos2 ] ) ) {

pARow= i ;

pAColumn=pos2 ;

}

}

e l s e { / / i f (m−NCrossCols !=2)

171



i f ( c o s t [ i ] [ pAColumn]== LPRow && c o s t [pARow ] [ pos2 ]== LPRow

) {

double fRow = Math . max ( 0 , ( sp [pARow] − dm[ pAColumn ] −

dm[ pos2 ] ) ) ;

double sRow = Math . max ( 0 , ( sp [ i ] − dm[ pos2 ] − dm[

pAColumn ] ) ) ;

/ / i f ( fRow > sRow )

/ / pARow t h e same

i f ( sRow > fRow ) {

pARow= i ;

pAColumn=pos2 ;

}

e l s e i f ( sRow == fRow ) {

i f ( ( sp [ i ] − dm[ pos2 ] ) > ( sp [pARow] − dm[ pAColumn ] ) )

{

pARow= i ;

pAColumn=pos2 ;

}

}

}

e l s e i f ( c o s t [pARow ] [ pos2 ] ! = LPRow && c o s t [ i ] [ pAColumn ] ! =

LPRow) {

i n t b1=−1, b2=−1;

f o r ( i n t c =0; c<m; c ++){

i f ( c rossColumns [ c ] ! = 1 ) {

i f ( c o s t [pARow ] [ c ]== LPRow)

b1=c ; / / f i r s t row

i f ( c o s t [ i ] [ c ]== LPRow)
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b2=c ; / / s econd row

}

} / / end f o r

double fRow = Math . max ( 0 , ( sp [pARow] − dm[ pAColumn ] −

dm[ b1 ] ) ) ;

double sRow = Math . max ( 0 , ( sp [ i ] − dm[ pos2 ] − dm[ b2 ] ) )

;

/ / i f ( fRow > sRow )

/ / pARow t h e same

i f ( sRow > fRow ) {

pARow= i ;

pAColumn=pos2 ;

}

e l s e i f ( sRow == fRow ) {

i f ( ( sp [ i ] − dm[ pos2 ] ) > ( sp [pARow] − dm[ pAColumn ] ) )

{

pARow= i ;

pAColumn=pos2 ;

}

}

}

} / / i f end

}

}

} / / e n d i f

} / / end i f

}

} / / end f o r

/ / e v a l u a t e t h e l a r g e s t p e n a l t y
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f o r ( i n t j =0 ; j <m; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

i f ( j ==0){

LPCol= q [ 0 ] ;

qAColumn= 0 ; / / column

f o r ( i n t i =0 ; i<n ; i ++){ / / choose t h e minimum

i f ( ( crossRows [ i ] ! = 1 ) && ZPos [ i ] [ 0 ] = = 1 ) {

qARow= i ; / / row

}

}

}

e l s e i f ( q [ j ]> LPCol ) {

LPCol= q [ j ] ;

qAColumn= j ;

f o r ( i n t i =0 ; i<n ; i ++){ / / choose t h e minimum

i f ( ( crossRows [ i ] ! = 1 ) && ZPos [ i ] [ qAColumn ]==1) {

qARow= i ;

}

}

}

e l s e i f ( q [ j ]== LPCol ) { / / p a r a l l e l e q u a l i t y

i n t pos3 =0;

f o r ( i n t i =0 ; i<n ; i ++){ / / choose t h e minimum

i f ( ( crossRows [ i ] ! = 1 ) && ZPos [ i ] [ j ]==1) {

pos3= i ;

}

}

/ / i f t h e columns have t h e same complementary row

i f ( pos3 == qARow && n−NCrossRows ! = 2 ) {

/ / 2 c a s e s

/ / i f ( dm[ qAColumn]+dm[ j ] <= sp [qARow ] )

/ / a s s i g n s i m u l t a n e o u s l y
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i f (dm[ qAColumn ]+dm[ j ] > sp [qARow ] ) {

/ / 4 s u b c a s e s

i n t a1 =−1, a2 =−1, max=−1;

A r r a y L i s t<Double> min1= new A r r a y L i s t<Double >() ;

A r r a y L i s t<Double> min2 = new A r r a y L i s t<Double >() ;

double ph i1 =0 , ph i2 =0 , fqAColumn , f j ;

f o r ( i n t r =0 ; r<n ; r ++){

i f ( ( crossRows [ r ] ! = 1 ) ) {

min1 . add ( c o s t [ r ] [ qAColumn ] ) ;

min2 . add ( c o s t [ r ] [ j ] ) ;

i f ( c o s t [ r ] [ qAColumn]== LPCol )

a1= r ;

i f ( c o s t [ r ] [ j ]== LPCol )

a2= r ;

}

} / / end f o r

C o l l e c t i o n s . s o r t ( min1 ) ;

C o l l e c t i o n s . s o r t ( min2 ) ;

ph i1 = min1 . g e t ( 2 ) ; / / phi−k

ph i2 = min2 . g e t ( 2 ) ; / / phi−s

i f ( sp [ a1 ] >= sp [ a2 ] )

max =0; / / a1

e l s e

max =1; / / a2

i f (dm[ qAColumn ] <= sp [qARow] && dm[ j ]<= sp [qARow ] ) { / / 1

i f ( max==0 && (dm[ qAColumn ]+dm[ j ]− sp [qARow ] )<=sp [ a1 ] ) {

qAColumn= j ;

}

e l s e i f ( ( dm[ qAColumn ]+dm[ j ]− sp [qARow ] )> sp [ a1 ] && (dm[

qAColumn ]+dm[ j ]− sp [qARow ] )> sp [ a1 ] ) {
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/ / need t h e 3 rd

fqAColumn= ( sp [ a2 ]∗ LPCol ) + ( ( dm[ qAColumn ]+dm[ j ]− sp [

qARow]− sp [ a2 ] ) ∗ ph i2 ) ;

f j =( sp [ a1 ]∗ LPCol ) + ( ( dm[ qAColumn ]+dm[ j ]− sp [qARow]− sp

[ a1 ] ) ∗ ph i1 ) ;

i f ( fqAColumn> f j )

qAColumn= j ;

}

}

e l s e i f (dm[ qAColumn ] <= sp [qARow] && dm[ j ] > sp [qARow ] ) {

/ / 2

fqAColumn = Math . max ( 0 , (dm[ j ]− sp [qARow] + dm[

qAColumn ] − sp [ a2 ] ) ) ;

f j = Math . max ( 0 , (dm[ j ]− sp [qARow] − sp [ a2 ] ) ) +

Math . max ( 0 , (dm[ qAColumn]− sp [ a1 ] ) ) ;

/ / i f ( f C o l > sCol )

/ / qAColumn= qAColumn ;

i f ( f j >= fqAColumn )

qAColumn= j ; / / s c

}

e l s e i f (dm[ qAColumn ] > sp [qARow] && dm[ j ]<= sp [qARow ] ) { / /

3

fqAColumn = Math . max ( 0 , (dm[ qAColumn]− sp [qARow] − sp [ a1

] ) ) +

Math . max ( 0 , (dm[ j ]− sp [ a2 ] ) ) ;

f j = Math . max ( 0 , (dm[ qAColumn]− sp [qARow] + dm[ j ] − sp [ a1
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] ) ) ;

/ / i f ( f C o l >= sCol )

/ / qAColumn = qAColumn ;

i f ( f j > fqAColumn )

qAColumn= j ;

}

e l s e i f (dm[ qAColumn ] > sp [qARow] && dm[ j ]> sp [qARow] ) { / / 4

fqAColumn = Math . max ( 0 , (dm[ qAColumn]− sp [qARow] − sp [ a1 ] )

) +

Math . max ( 0 , (dm[ j ]− sp [ a2 ] ) ) ;

f j = Math . max ( 0 , (dm[ j ]− sp [qARow] − sp [ a2 ] ) ) +

Math . max ( 0 , (dm[ qAColumn]− sp [ a1 ] ) ) ;

/ / i f ( f C o l >= sCol )

/ / qAColumn = qAColumn ;

i f ( f j > fqAColumn )

qAColumn= j ;

}

}

}

e l s e { / / d i f f e r e n t complementary row

/ / 4 c a s e s / /

i f (dm[ qAColumn ] <= sp [qARow] && dm[ j ] <= sp [ pos3 ] ) {

/ / both− b u t here

i f ( ( sp [ pos3 ] − dm[ j ] ) > ( sp [qARow] − dm[ qAColumn ] ) ) {
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qAColumn= j ;

qARow=pos3 ;

}

/ / e l s e− t h e same

}

/ / i f ( dm[ qAColumn ] > sp [qARow] && dm[ j ] <= sp [ pos3 ] )

/ / t h e same qAColumn

e l s e i f (dm[ qAColumn ] <= sp [qARow] && dm[ j ] > sp [ pos3 ] ) {

qAColumn= j ;

qARow=pos3 ;

}

e l s e i f ( dm[ qAColumn ] > sp [qARow] && dm[ j ] > sp [ pos3 ] ) {

/ / 4 c a s e s

/ / i f ( c o s t [ pos3 ] [ qAColumn ] == LPCol && c o s t [qARow ] [ j ] !=

LPCol )

/ / LPCol rema ins

i f ( c o s t [ pos3 ] [ qAColumn ] != LPCol && c o s t [qARow ] [ j ] == LPCol )

{

qAColumn= j ;

qARow=pos3 ;

}

e l s e {

/ / compare t h e l e f t ove r

i f ( n−NCrossRows ==2){

/ / i f ( ( dm[ qAColumn]−sp [qARow ] ) > ( dm[ j ] − sp [ pos3 ] ) )

/ / LPCol rema ins

i f ( ( dm[ qAColumn]− sp [qARow ] ) < (dm[ j ] − sp [ pos3 ] ) ) {

qAColumn= j ;
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qARow=pos3 ;

}

}

e l s e { / / n−NCrossRows !=2

i f ( c o s t [qARow ] [ j ] == LPCol && c o s t [ pos3 ] [ qAColumn ] ==

LPCol ) {

double fCo l = Math . max ( 0 , (dm[ qAColumn]− sp [qARow] −

sp [ pos3 ] ) ) ;

double sCol = Math . max ( 0 , (dm[ j ] − sp [ pos3 ] − sp [qARow

] ) ) ;

/ / i f ( f C o l > sCol )

/ / t h e same

i f ( sCol > fCo l ) {

qAColumn= j ;

qARow=pos3 ;

}

e l s e i f ( sCol == fCo l ) {

i f ( ( dm[ j ] − sp [ pos3 ] ) > (dm[ qAColumn]− sp [qARow ] )

) {

qAColumn= j ;

qARow=pos3 ;

}

}

}

e l s e i f ( c o s t [qARow ] [ j ] != LPCol && c o s t [ pos3 ] [ qAColumn ]

!= LPCol ) {

i n t a1= −1, a2= −1 ;

f o r ( i n t r =0 ; r<n ; r ++){

i f ( ( crossRows [ r ] ! = 1 ) ) {
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i f ( c o s t [ r ] [ qAColumn]== LPCol )

a1= r ; / / f

i f ( c o s t [ r ] [ j ]== LPCol )

a2= r ; / / s

}

} / / end f o r

double fCo l = Math . max ( 0 , (dm[ qAColumn]− sp [qARow] −

sp [ a1 ] ) ) ;

double sCol = Math . max ( 0 , (dm[ j ] − sp [ pos3 ] − sp [

qARow ] ) ) ;

/ / i f ( f C o l > sCol )

/ / t h e same

i f ( sCol > fCo l ) {

qAColumn= j ;

qARow=pos3 ;

}

e l s e i f ( sCol == fCo l ) {

i f ( ( dm[ j ] − sp [ pos3 ] ) > (dm[ qAColumn]− sp [qARow ] )

) {

qAColumn= j ;

qARow=pos3 ;

}

}

}

} / / i f end

}

}

} / / e l s e end

} / / end i f

} / / end i f

} / / end f o r
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/ / e v a l u a t e t h e l a r g e s t p e n a l t y

i f (LPRow > LPCol )

LPen= 0 ; / / LPRow

e l s e i f ( LPCol > LPRow)

LPen= 1 ; / / LPCol

e l s e { / / non= p a r a l l e l e q u a l i t y

/ / 3 c a s e s

i f (pARow == qARow && qAColumn == pAColumn ) / / mu tua l

LPen= 0 ; / / LPRow ;

e l s e {

/ / non−c o n f l i c t e d

i f ( sp [pARow] <= dm[ pAColumn ] && dm[ qAColumn]<= sp [qARow ] ) {

i f ( q [ pAColumn ] ==0)

LPen= 0 ;

e l s e i f ( p [qARow]==0)

LPen= 1 ;

e l s e {

i f ( sp [pARow] >= dm[ qAColumn ] )

LPen= 0 ;

e l s e

LPen= 1 ;

}

}

e l s e i f ( sp [pARow] <= dm[ pAColumn ] && dm[ qAColumn]> sp [qARow ] ) {

i f ( c o s t [pARow ] [ qAColumn ] == LPCol )

LPen= 1 ;

e l s e {
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i f ( ( dm[ pAColumn ] − sp [pARow ] ) > (dm[ qAColumn ] − sp [qARow ] ) )

LPen= 0 ;

e l s e

LPen= 1 ;

}

}

e l s e i f ( sp [pARow] > dm[ pAColumn ] && dm[ qAColumn]<= sp [qARow ] ) {

i f ( c o s t [pARow ] [ qAColumn ] == LPCol )

LPen= 0 ;

e l s e {

i f ( ( sp [pARow] − dm[ pAColumn ] )> ( sp [qARow] −dm[ qAColumn ] ) )

LPen= 1 ;

e l s e

LPen= 0 ;

}

}

e l s e {

i f ( c o s t [pARow ] [ qAColumn ] == LPCol ) {

i f ( n−NCrossRows !=2 && m−NCrossCols ! = 2 ) {

double row2 = sp [pARow] − dm[ pAColumn ] ;

double c o l 2 = dm[ qAColumn ] − sp [qARow ] ;

double row = Math . max ( 0 , sp [pARow]− dm[ pAColumn]− dm[

qAColumn ] ) ;

double c o l = Math . max ( 0 , dm[ qAColumn]− sp [qARow] − sp [

pARow ] ) ;

i f ( row > c o l )

LPen= 0 ;

e l s e i f ( row < c o l )

LPen= 1 ;
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e l s e {

i f ( row2 > c o l 2 )

LPen= 0 ;

e l s e

LPen= 1 ;

}

}

e l s e {

i f ( n−NCrossRows ==2)

LPen= 1 ;

e l s e

LPen =0;

}

}

e l s e { / / != LPCol

/ / bo th

i n t b= −1 , a = −1 ;

f o r ( i n t r =0 ; r<n ; r ++){

i f ( ( crossRows [ r ] ! = 1 ) && c o s t [ r ] [ qAColumn]== LPCol )

a= r ;

}

f o r ( i n t c =0; c<m; c ++){

i f ( c rossColumns [ c ] ! = 1 && c o s t [pARow ] [ c ] == LPRow)

b =c ;

}

double row = Math . max ( 0 , sp [pARow]− dm[ pAColumn]− dm[ b ] ) ;

double c o l = Math . max ( 0 , dm[ qAColumn]− sp [qARow] − sp [ a ] ) ;

double row2= sp [pARow]− dm[ pAColumn ] ;

double c o l 2 = dm[ qAColumn]− sp [qARow ] ;

i f ( row > c o l )

LPen= 0 ;

183



e l s e i f ( row < c o l )

LPen= 1 ;

e l s e {

i f ( row2 > c o l 2 )

LPen= 0 ;

e l s e

LPen= 1 ;

}

}

}

}

} / / end e l s e

}

/∗ ∗

∗ The A s s i g n i n g F u n c t i o n

∗ @param r − row

∗ @param c − column

∗ @param t − t h e minimum v a l u e be tween t h e s u p p l y and demand

∗ /

p u b l i c s t a t i c vo id A s s i g n i n g ( i n t r , i n t c , i n t t ) {

x [ r ] [ c ]= t ∗ m a t r i x [ r ] [ c ] ;

TC+= x [ r ] [ c ] ;

v a r ++;

NZRow[ r ]−−;

NZCol [ c]−−;

}

/∗ ∗
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∗ T h i s f u n c t i o n c a l l s t h e r e d u c t i o n f u n c t i o n f o r a column i f needed

∗ @param r − row

∗ @param qc − complementary column

∗ /

p u b l i c s t a t i c vo id RowCrossed ( i n t r , i n t qc ) {

i f ( p [ r ] ==0){

f o r ( i n t j =0 ; j<m; j ++){

i f ( c rossColumns [ j ] ! = 1 && ZPos [ r ] [ j ]==1) {

i f ( j != qc ) { / / e x c e p t t h e a s s o c i a t e d column

NZRow[ r ]−−;

NZCol [ j ]−−;

i f ( q [ j ] ! = 0 ) {

ReducingCol ( j ) ;

}

}

}

}

}

i f ( q [ qc ] !=0 && crossColumns [ qc ] ! = 1 ) { / / t h e a s s o c i a t e d column

ReducingCol ( qc ) ;

}

}

/∗ ∗

∗ The R e d u c t i o n F u n c t i o n f o r a column

∗ @param c − column

∗ /

p u b l i c s t a t i c vo id ReducingCol ( i n t c ) {

RedNum++;

f o r ( i n t i =0 ; i<n ; i ++){
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i f ( crossRows [ i ] ! = 1 ) { / /

c o s t [ i ] [ c ] −= q [ c ] ;

i f ( c o s t [ i ] [ c ] ==0){

ZPos [ i ] [ c ] = 1 ;

NZRow[ i ] + + ;

NZCol [ c ] + + ;

i f (NZRow[ i ]>=2) / / u p d a t i n g t h e row p e n a l t y

p [ i ] = 0 ;

}

i f ( c o s t [ i ] [ c ] < p [ i ] ) / / u p d a t i n g t h e column p e n a l t y

p [ i ]= c o s t [ i ] [ c ] ;

}

}

}

/∗ ∗

∗ T h i s f u n c t i o n c a l l s t h e r e d u c t i o n f u n c t i o n f o r a row i f needed

∗ @param pr − t h e complementary row

∗ @param c − column

∗ /

p u b l i c s t a t i c vo id ColCrossed ( i n t pr , i n t c ) {

i f ( q [ c ] ==0){

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 && ZPos [ i ] [ c ]==1) {

i f ( i != p r ) { / / e x c e p t t h e a s s o c i a t e d row

NZRow[ i ]−−;

NZCol [ c]−−;

i f ( p [ i ] ! = 0 ) {
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ReducingRow ( i ) ;

}

}

}

}

}

i f ( p [ p r ] !=0 && crossRows [ p r ] ! = 1 ) { / / a s s o c i a t e d row

ReducingRow ( pr ) ;

}

}

/∗ ∗

∗ The R e d u c t i o n F u n c t i o n f o r a row

∗ @param r − row

∗ /

p u b l i c s t a t i c vo id ReducingRow ( i n t r ) {

RedNum++;

f o r ( i n t j =0 ; j<m ; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

c o s t [ r ] [ j ] −= p [ r ] ;

i f ( c o s t [ r ] [ j ] ==0){

ZPos [ r ] [ j ] = 1 ;

NZRow[ r ] + + ;

NZCol [ j ] + + ;

i f ( NZCol [ j ]>=2)

q [ j ] = 0 ;

}

i f ( c o s t [ r ] [ j ] < q [ j ] ) / / u p d a t i n g t h e column p e n a l t y

q [ j ]= c o s t [ r ] [ j ] ;
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}

} / / end f o r

}

/∗ ∗

∗ T h i s f u n c t i o n r e c o m p u t e s t h e row p e n a l t i e s

∗ @param pc − column

∗ /

p u b l i c s t a t i c vo id U pd a t in gR o wP en a l i t y ( i n t pc ) {

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 ) {

i f ( c o s t [ i ] [ pc]<= p [ i ] ) {

i f (NZRow[ i ]>=2){

p [ i ] = 0 ;

}

e l s e {

double min = sum ;

f o r ( i n t j =0 ; j<m ; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

i f ( c o s t [ i ] [ j ] !=0 && c o s t [ i ] [ j ] < min )

min= c o s t [ i ] [ j ] ;

}

}

p [ i ]= min ;

}

}

}

}

}
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/∗ ∗

∗ T h i s f u n c t i o n r e c o m p u t e s t h e column p e n a l t i e s

∗ @param qr − row

∗ /

p u b l i c s t a t i c vo id U p d a t i n g C o l P e n a l i t y ( i n t qr ) {

f o r ( i n t j =0 ; j<m ; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

i f ( c o s t [ q r ] [ j ]<= q [ j ] ) {

i f ( NZCol [ j ]>=2){

q [ j ] = 0 ;

}

e l s e {

double min = sum ;

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 ) {

i f ( c o s t [ i ] [ j ] !=0 && c o s t [ i ] [ j ] < min )

min= c o s t [ i ] [ j ] ;

}

}

q [ j ]= min ;

}

}

}

}

}

/∗ ∗

∗ The s top−case method

∗ /

p u b l i c s t a t i c vo id s t o p C a s e ( ) {

i f ( n−NCrossRows ==1){ / / j u s t one row l e f t

i n t row=−1;
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f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 )

row= i ;

}

f o r ( i n t j =0 ; j<m; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

/ / a s s i g n i n g t h e r e m a i n i n g columns

A s s i g n i n g ( row , j , dm[ j ] ) ;

}

}

}

e l s e i f (m−NCrossCols ==1){ / / one column l e f t

i n t c o l =−1;

f o r ( i n t j =0 ; j<m ; j ++){

i f ( c rossColumns [ j ] ! = 1 )

c o l = j ;

}

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 ) {

/ / a s s i g n i n g t h e r e m a i n i n g rows

A s s i g n i n g ( i , co l , sp [ i ] ) ;

}

}

}

}

/∗ ∗

∗ The Nul l−P e n a l t y F u n c t i o n

∗ /

p u b l i c s t a t i c vo id N u l l P e n a l t y ( ) {

i n t minNZRow , minNZCol ;
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i n t row=−1, c o l =−1;

minNZRow= n +1;

minNZCol= m+1;

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 ) {

i f (NZRow[ i ] < minNZRow ) {

minNZRow = NZRow[ i ] ;

row= i ;

}

}

}

f o r ( i n t j =0 ; j<m; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

i f ( ZPos [ row ] [ j ]==1 && NZCol [ j ] < minNZCol ) {

minNZCol= NZCol [ j ] ;

c o l = j ;

}

}

}

pARow=row ;

pAColumn= c o l ;

LPen =0;

}

/∗ ∗

∗ T h i s f u n c t i o n t e s t s i f t h e s o l u t i o n i s o p t i m a l

∗ @return t r u e i f o p t i m a l . Otherwise , f a l s e

∗ /

p u b l i c s t a t i c boolean I s O p t i m a l ( ) {

boolean o p t i m a l = f a l s e ;

i f ( RedNum ==1 )
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o p t i m a l = t rue ;

e l s e {

i f ( un iquePen == t rue )

o p t i m a l = t rue ;

}

re turn o p t i m a l ;

}

/∗ ∗

∗ The g e n e r a l A l g o r i t h m o f MVM

∗ @param a r r a y

∗ @param sup

∗ @param dem

∗ /

p u b l i c s t a t i c S t r i n g G e n e r a l A l g o r i t h m ( double [ ] [ ] a r r a y , i n t [ ] sup , i n t

[ ] dem ) {

n= a r r a y . l e n g t h ;

m= a r r a y [ 0 ] . l e n g t h ;

c o s t = new double [ n ] [m] ; / / c o s t m a t r i x

m a t r i x = new double [ n ] [m] ; / / copy t h e c o s t m a t r i x

sp = new i n t [ n ] ;

dm = new i n t [m] ;

sumSup =0; sumDem=0;

f o r ( i n t i =0 ; i<n ; i ++){

f o r ( i n t j =0 ; j<m ; j ++){

i f ( a r r a y [ i ] [ j ] <0)

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( ” The c o s t must be p o s t i v e ” ) ;

sum+= a r r a y [ i ] [ j ] ;
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}

System . a r r a y c o p y ( a r r a y [ i ] , 0 , c o s t [ i ] , 0 , a r r a y [ i ] . l e n g t h ) ;

System . a r r a y c o p y ( a r r a y [ i ] , 0 , m a t r i x [ i ] , 0 , a r r a y [ i ] . l e n g t h ) ;

sp [ i ]= sup [ i ] ;

sumSup+= sp [ i ] ;

}

crossRows = new i n t [ n ] ;

c rossColumns = new i n t [m] ;

p = new double [ n ] ;

q = new double [m] ;

NZRow = new i n t [ n ] ;

NZCol = new i n t [m] ;

EPRow = new i n t [ n ] ;

RedCol = new i n t [m] ;

ZPos = new i n t [ n ] [m] ;

x = new double [ n ] [m] ;

TC=0;

NCrossRows =0; NCrossCols =0;

RedNum =0; v a r =0;

LPen=−1;

Row=−1; Col =−1;

d f = new DecimalFormat ( ” # ,### ,### ” ) ;

un iquePen = t rue ;

f o r ( i n t j =0 ; j<m ; j ++){

dm[ j ]= dem [ j ] ;

sumDem+= dm[ j ] ;

}

i f ( sumSup !=sumDem )

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( ” The TP i s n o t b a l a n c e d ” ) ;
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e l s e {

M a t r i x R e d u c t i o n ( ) ;

whi le ( n−NCrossRows !=1 && m−NCrossCols ! = 1 ) {

C o n s i d e r i n g V a r i a b l e ( ) ;

i f (LPRow==0 && LPCol ==0){

N u l l P e n a l t y ( ) ;

}

i f ( LPen == 0) {

Row = pARow ;

Col = pAColumn ;

}

e l s e {

Row = qARow ;

Col = qAColumn ;

}

i f ( sp [Row] < dm[ Col ] ) { / / row−c r o s s e d

A s s i g n i n g (Row , Col , sp [Row ] ) ;

crossRows [Row] = 1 ;

NCrossRows ++;

dm[ Col ]=dm[ Col]− sp [Row ] ;

sp [Row] = 0 ;

RowCrossed (Row , Col ) ;

U p d a t i n g C o l P e n a l i t y (Row) ;

}

e l s e { / / column−c r o s s e d

A s s i g n i n g (Row , Col , dm[ Col ] ) ;
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c rossColumns [ Col ] = 1 ;

NCrossCols ++;

/ / t h e e q u a l i t y case be tween t h e s u p p l y and demand

i f ( sp [Row] == dm[ Col ] ) {

sp [Row]= 0 ;

NCrossRows ++;

crossRows [Row] = 1 ;

v a r ++;

RowCrossed (Row , Col ) ;

U p d a t i n g C o l P e n a l i t y (Row) ;

}

e l s e

sp [Row]= sp [Row]−dm[ Col ] ;

Co lCrossed (Row , Col ) ;

dm[ Col ] = 0 ;

U pd a t i n gR o wP en a l i t y ( Col ) ;

}

} / / end w h i l e

s t o p C a s e ( ) ;

S o l O p t i m a l = I s O p t i m a l ( ) ;

} / / end e l s e

re turn df . f o r m a t (TC) ;

}

}
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Appendix B

1.1 ZCP Algorithm

In this section, the steps involved in execution of the proposed approach are outlined as following:

1.1.1 Cost Matrix Reduction

We are presenting in this section a procedure to reduce the matrix cost and evaluate the penalty

associated to each row and column.

Procedure 1. Cost Matrix Reduction

Set NCrossRow = 0 and NCrossCol = 0 (The Number of crossed out rows & columns )

For each row i = 1, · · · , n

Set Ci = Ci1

(Find the minimum of row i )

for r = 1, · · · , n

if Ci > Cir then

Ci = Cir

endif

endfor

196



(Reduce the row i )

for j = 1, · · · , n then

Set Rij = Cij − min
j
{Cij} = Cij − Ci

if Rij = 0 then set

NZRow(i) := NZRow(i) + 1 (Number of zero of row i )

ZRow(i) := ZRow(i) ∪ {j} (Set of zero of row i )

NZCol(j) := NZCol(j) + 1 (Number of zero of column j )

ZCol(j) := ZCol(j) ∪ {i} (Set of zero of column j )

Redcol(j) := 1 (Indicates column j is reduced)

endif

endfor

endFor

For each column j = 1, · · · , n

If Redcol(j) = 1 then

if NZCol(j) ≥ 2 then

Pencol(j) := 0

EPcol(j) := 1 (Indicates that penalty of column j is evaluated)

else

Pencol(j) = min
i
{Rij : Rij 6= 0}

endif

else

find min
i
{Rij} = Rkj = Rj
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Then

Set Rij = Rij −mini{Rij} = Rij − Rj

if Rij = 0 then set

NZRow(i) := NZRow(i) + 1 (Number of zero of row i )

ZRow(i) := ZRow(i) ∪ {j} (Set of zero of row i )

ZCol(j) := ZCol(j) ∪ {i} (Set of zero of column j )

NZCol(j) := NZCol(j) + 1 (Number of zero of column j )

Penrow(i) := 0

EProw(i) := 1 (Indicates that penalty of row i is evaluated)

endif

if NZCol(j) ≥ 2 then

Pencol(j) := 0

else

Pencol(j) = mini{Rij : Rij 6= 0}

endif

endIf

endFor

For each row i = 1, · · · , n

If EProw(i) = 0 then

Penrow(i) = min
j
{Rij : Rij 6= 0}

endIf

endFor

Set Nred = 1 (Indicate the Number of Reduction for the matrix )
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1.1.2 Determining the Assigned Variables

To determine the assigned row we consider all the zero case penalties k such that

Zpen = ZPen(k) = Penrow(k) + Pencol(kc)

For each of these lines, the zero cell should be defined. Break the ties, If found, by choosing the

variable with the lowest initial cost. We use the following procedure.

Procedure 2. Determining Variable

For each row r = 1, · · · , n then

If crossrow(r) = 0

if Penrow(r) = 0

there is at least two zeros at the row r, then

we compare the associated column penalties.

then evaluate ZPen(r) by computing the difference between the largest and the sec-

ond largest.

else ( Penrow(r) not null )

if Pencol(rc) = 0

there is at least two zeros at the column rc, then

we compare the associated row penalties.

then set ZPen of the largest row penalty after subtracting the second largest.

then set the ZPen associates with other zeros to be null.
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else

Set ZPen(r) = pr + qrc

endif

endFor

Find the following parameters

LZPen = max
i
{ZPen(i)}

If there us multiple ZPen, then Call procedure 3.

1.1.2.1 Multiple largest penalties

Procedure 3. Multiple Penalties

we consider the case when there are multiple largest penalties for the zeros.

therefore, there are multiple cases have to be considered. Section ?? provides some rules help to

choose the assignment line.

1.1.3 Assigning Variables

Once the variable is determined, we assign Xr,rc and cross out the associated row and column.
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Procedure 4. Assigning Row

For the variable Xt,z

Set Xt,z = at

Set crossrow(t) = 1

bz = bz − at ( updating the demand)

Zrow(t) = Zrow(t)− {z}

Zcol(z) = Zcol(z)− {t}

NCrossRow = NCrossRow + 1

Procedure 5. Assigning Column

For the variable Xt,z

Set Xt,z = bz

Set crosscol(z) = 1

at = at − bz ( updating the supply)

Zrow(t) = Zrow(t)− {z}

Zcol(z) = Zcol(z)− {t}

NCrossCol = NCrossCol + 1

we consider the situation where pt and qz for the variable Xt,z are equal.

Procedure 6. Equality Case

For the variable Xt,z

Set Xt,z = qz = pt

Set crossrow(t) = 1 and crosscol(z) = 1
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Zrow(t) = Zrow(t)− {z}

Zcol(z) = Zcol(z)− {t}

NCrossRow = NCrossRow + 1

NCrossCol = NCrossCol + 1

1.1.4 Reduction

1.1.4.1 Null Column Penalty

We consider the situation where

LZPen = ZPen(k) = Penrow(r) + Pencol(rc), such that qrc = 0

Procedure 7. Row Reduction

If qrc = 0 (then there is other zero, at least one on Zcol(rc) )

Zcol(rc) = Zcol(rc)− k (updating the set Zcol(rc) after assigning Xk,rc )

For each s ∈ Zcol(rc)

If Penrow(s) > 0 then (reduce the row s )

for each column j = 1, · · · , n in the row s

if crosscol(j) = 0 then

Rsj = Rsj − penroww(s)

If Rsj = 0 then set

ZRow(s) := ZRow(s) ∪ {j}

NZRow(s) := NZRow(s) + 1 (updating the number of zeros in the row s)
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NZCol(j) := NZCol(j) + 1 (updating the number of zeros in the column

j)

if NZCol(j) ≥ 2 then

Set qj = 0

else

if Rsj < qj then (updating the column j penalty)

Set qj = Rsj

endif

endIf

endfor

endIf

endFor

Nred := Nred + 1

endIf

1.1.4.2 Null Row Penalty

We consider the situation where

LZPen = ZPen(r) = Penrow(r) + Pencol(rc), such that pr = 0

Procedure 8. Column Reduction

If pr = 0 (then there is other zero, at least one on Zrowl(r) )

Zrow(r) = Zrow(r)− {s} (updating the set Zrow(r) after assigning Xr,s )

For each s ∈ Zrow(r)
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If Pencol(s) > 0 then (reduce the column s )

for each row i = 1, · · · , n

if crossrow(i) = 0 then

Ris = Ris − pencol(s)

If Ris = 0 then set

ZRow(i) := ZRow(i) ∪ {s}

NZRow(i) := NZRow(i) + 1 (updating the number of zeros in the row i)

NZCol(s) := NZCol(s) + 1 (updating the number of zeros in the column

s)

if NZRow(i) ≥ 2 then

Set pi = 0

else

if Ris < pi then

Set pi = Ris

endif

endIf

endfor

endIf

endFor

Nred := Nred + 1

endIf
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1.1.5 Updating Penalty

Some of the row and column penalties need to be re-evaluated after each assignment. Assuming

that Xkr is the assigned variable.

1.1.5.1 Row Penalty Evaluation

Procedure 9. Updating Row Penalties

For each row i = 1, · · · , n do

If crossrow(i) = 0 then

if Ri,rc ≤ pi then

if NZRow(i) ≥ 2 then

Set pi = 0

else

Find min{Ri,j / Ri,j 6= 0}

Set pi = min Ri,j

endIf

endFor

endif

endIf

endFor

1.1.5.2 Column Penalty Evaluation

Procedure 10. Updating Column Penalties
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For each column j = 1, · · · , n do

If crosscol(j) = 0 then

if Rr,j ≤ qj then

if NZCol(j) ≥ 2 then

Set qj = 0

else

Find min{Ri,j / Ri,j 6= 0}

Set qj = min Ri,j

endIf

endFor

endif

endIf

endFor

1.1.6 General algorithm

Step 1. Cost Matrix Reduction

Call procedure 1. Cost Matrix Reduction

Step 2. Determined the assigned Variables

Call procedure 2. Determining variables

if ar < brc then

Call procedure 4. Assigning Row
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else

if brc < ar then

Call procedure 5. Assigning Column

else (Equality Case )

Call procedure 6. Equality Case

endif

Step 3. Stopping Test

If NCrossRow = 1 OR NCrossCol = 1 then

if NCrossRow = 1

For each column j = 1, · · · ,m in row t do

If crosscol(j) = 0 then

Assign Xt,j = bj

endIf

endFor

else ( NCrossCol = 1)

For each row i = 1, · · · , n in column z do

If crossrow(i) = 0 then

Assign Xi,z = ai

endIf

endFor

endif

else

continue
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endIf

Step 4. Updating penalties

If Procedure 4 is called then

Call procedure 7. Row Reduction

Call procedure 9. Updating Row Penalties

else

If Procedure 5 is called then

Call procedure 8. Column Reduction

Call procedure 10. Updating Column Penalties

else

If Procedure 6 is called then

if the assigned line is a row then

Call procedure 7. Row Reduction

Call procedure 8. Column Reduction

Call procedure 9. Updating Row Penalties

Call procedure 10. Updating Column Penalties

Step 5. Parameter Updating

go to step 2

Step 6. Optimality Test

If Nred = 1 then the MVM solution is optimal.

Else
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find the dual variables and test the optimality.

1.2 Special Cases for Multiple Largest Penalties

During the procedure of ZCP, a tie can take a place between the zero penalties. Therefore, there are

some rules help to break the tie and select a good assignment.

1.2.1 Largest Penalty Paralleled lines

We consider the situation where there two lines k and s such that

LZPen(k) = LZPen(s)

Where is zero Rk,kc = 0 on the line k has the penalty Penrow(k) + Pencol(kc). Similarly, the

zero Rs,sc = 0 on the line s has the penalty Penrow(s) + Pencol(sc).

we are considering two cases:

1.2.1.1 Same complementary column

In this case, the two rows have the same complementary column:

Rk,kc = 0 Rs,sc = 0 with kc = sc
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Case 1. ak + as ≤ bkc

Assign Xk,kc = ak and cross out row k .

Set bkc = bkc − ak

then assign Xk,kc = as and cross out row s

If ak + as = bkc then cross out column kc

else

Set bkc = bkc − as

Update the penalties of the rows and column.

Case 2. ak + as > bkc

Let b1 be the demand associated with the complementarity column k2 containing the reduced

cost pk of the row k

Let b2 be the demand associated with the complementarity column s2 containing the reduced

cost ps of the row s

Let b = max{b2}

Case 2.1 ak ≤ bkc and as ≤ bkc

First we need to compare the left over with the demands b1 and b2

If ak + as − bkc ≤ b = b2

Assign Xk,kc = ak and cross out row k .

Then assign Xs,kc = bkc − ak and Xs,s2 = ak + as − bkc

cross out row s and column kc

Reduce if necessary the remaining rows that contain their zeros in column kc
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Update if necessary the row penalties.

If ak + as − bkc ≤ b = b1

Assign Xs,kc = as and cross out row s .

Then assign Xk,kc = bkc − as and Xk,k2 = ak + as − bkc

cross out row k and column kc

Reduce if necessary the remaining rows that contain their zeros in column kc

Update if necessary the row penalties.

If ak + as − bkc > b

Find φk the third largest reduced cost of row k

Find φs the third largest reduced cost of row s

Define the costs:

F (k) = ps b2 + (ak + as − bkc − b2)φs and

F (s) = pk b1 + (ak + as − bkc − b1)φk

If F (k) ≤ F (s)

Assign Xk,kc = ak and cross out row k .

Then assign Xs,kc = bkc − ak and Xs,s2 = ak + as − bkc

cross out row s and column kc

Reduce if necessary the remaining rows that contain their zeros in column kc

Update if necessary the row penalties.

else

Assign Xs,kc = as and cross out row s .

Then assign Xk,kc = bkc − as and Xk,k2 = ak + as − bkc

cross out row k and column kc

Reduce if necessary the remaining rows that contain their zeros in column kc
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Update f necessary the row penalties.

Endif

Case 2.2 ak ≤ bkc and as > bkc

We need to check if there is remaining supplies on row k and s after assigning the largest

penalties.

Define the parameters

Mk = max{0, as + ak − bkc − b2}

Ms = max{0, as − bkc − b2} + max{0, ak − b1}

If Mk > Ms

Assign Xk,kc = ak and cross out row k .

Then assign Xs,kc = bkc − ak and Xs,s2 = min{b2, ak + as − bkc}

cross out column kc and other rows or columns with zero supply or demand

Reduce if necessary the remaining matrix

Update if necessary the penalties.

else

Assign Xs,kc = bkc and cross out column kc .

Then assign Xk,k2 = min{b1, ak} and Xs,s2 = min{b2, as − bkc}

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

Endif

Case 2.3 ak > bkc and as ≤ bkc
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We need to check if there is remaining supplies on row k and s after assigning the largest

penalties.

Define the parameters

Mk = max{0, ak − bkc − b1} + max{0, as − b2}

Ms = max{0, ak + as − bkc − b1}

If Mk ≥Ms

Assign Xk,kc = bkc and cross out column kc .

Then assign Xk,k2 = min{b1, ak − bk−c} and Xs,s2 = min{b2, as}

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

else

Assign Xs,kc = as and cross out row s .

Then assign Xk,kc = bkc − as and Xk,k2 = min{b1, ak + as − bkc}

cross out column kc and other rows or columns with zero supply or demand

Reduce if necessary the remaining matrix

Update if necessary the penalties.

Endif

Case 2.4 ak > bkc and as > bkc

Define the parameters

Mk = max{0, ak − bkc − b1} + max{0, as − b2}

Ms = max{0, as − bkc − b2} + max{0, ak − b1}

If Mk > Ms
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Assign Xk,kc = bkc and cross out column kc .

Then assign Xk,k2 = min{b1, ak − bk−c} and Xs,s2 = min{b2, as}

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

else

Assign Xs,kc = bkc and cross out column kc .

Then assign Xk,k2 = min{b1, ak} and Xs,s2 = min{b2, as − bkc}

cross out rows or columns with zero supply and demand

Reduce if necessary the remaining matrix

Update f necessary the penalties.

Endif

1.2.1.2 Different Complementary Columns

In this case, the two rows have different complementary columns.Since analysis for two columns

are similar, we consider the situation two rows

Rk,kc = 0 Rs,sc = 0 with kc 6= sc

If Penrow(k) = 0 OR Pencol(kc) = 0 then

we consider row k by assigning Xk,kc = min{ak, bkc}

Adjust the supply or demand.

Then we reduce if necessary the row k or column kc .

Update the penalties of the rows and columns.
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If Penrow(s) = 0 OR Pencol(sc) = 0 then

we consider row s by assigning Xs,sc = min{as, bsc}

Adjust the supply or demand.

Then we reduce if necessary the row s or column sc .

Update the penalties of the rows and columns.

else

Case 1. If ak ≤ bkc and as ≤ bsc then

If Pencol(kc) > Pencol(sc) then

Assign row k , Xk,kc = ak and cross out row k.

If ak = bkc assign zero to the least cost of column kc and Cross out column kc

Set bkc = bkc − ak

Then we reduce if necessary the column kc.

Update the penalties of the rows and columns.

else

If Pencol(sc) > Pencol(kc) then

Assign row s , Xs,sc = as and cross out row s.

If as = bsc assign zero to the least cost of column sc and Cross out column sc

Set bsc = bsc − as

Then we reduce if necessary the column sc .

Update the penalties of the rows and columns.

else
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Compare the left over values bkc − ak and bsc − as

Assign the line associated with the largest value.

Cross out the row or column with zero supply or demand.

Reduce if necessary the remain matrix.

endif

Case 2. If ak ≤ bkc and as > bsc then

If Penrow(s) > Pencol(kc) then

Assign row k , Xk,kc = ak and cross out row k.

If ak = bkc assign zero to the least cost of column kc and Cross out column kc

Set bkc = bkc − ak

Then we reduce if necessary the column kc.

Update the penalties of the rows and columns.

else

If Penrow(s) > Pencol(kc) then

Assign row s , Xs,sc = bsc and cross out column sc.

Set as = as − bsc

Then we reduce if necessary the row s .

Update the penalties of the rows and columns.

else

Compare the left over values bkc − ak and as − bsc

Assign the line associated with the largest value.

Cross out the row or column with zero supply or demand.

Reduce if necessary the remain matrix.
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endif

Case 3. If ak > bkc and as ≤ bsc then

If Penrow(k) > Pencol(sc) then

Assign row k , Xk,kc = bkc and cross out column kc.

Set ak = ak − bkc

Then we reduce if necessary the row k.

Update the penalties of the rows and columns.

else

If Penrow(k) > Pencol(sc) then

Assign row s , Xs,sc = as and cross out row s.

If as = bsc assign zero to the least cost of column sc and Cross out column sc

Set bsc = bsc − as

Then we reduce if necessary the column sc .

Update the penalties of the rows and columns.

else

Compare the left over values bsc − as and ak − bkc

Assign the line associated with the largest value.

Cross out the row or column with zero supply or demand.

Reduce if necessary the remain matrix.

endif

Case 4. If ak > bkc and as > bsc then
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If Penrow(k) > Penrow(s) then

Assign row k , Xk,kc = bkc and cross out column kc.

Set ak = ak − bkc

Then we reduce if necessary the row k.

Update the penalties of the rows and columns.

else

If Penrow(s) > Penrow(k) then

Assign row s , Xs,sc = bsc and cross out column sc.

Set as = as − bsc

Then we reduce if necessary the row s .

Update the penalties of the rows and columns.

else

Compare the left over values ak − bkc and as − bsc

Assign the line associated with the largest value.

Cross out the row or column with zero supply or demand.

Reduce if necessary the remain matrix.

endif
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1.3 Java Code

In this section, we present the Java code of ZCP.

p u b l i c c l a s s ZCProw {

p r i v a t e s t a t i c double [ ] [ ] m a t r i x ;

p r i v a t e s t a t i c double [ ] [ ] c o s t ;

p r i v a t e s t a t i c double [ ] [ ] x ; / / t h e s o l u t i o n m a t r i x

p r i v a t e s t a t i c i n t [ ] [ ] ZPos ;

p r i v a t e s t a t i c double [ ] p ; / / row p e n a l t i e s

p r i v a t e s t a t i c double [ ] q ; / / column p e n a l t i e s

p r i v a t e s t a t i c double [ ] sumP ; / / z e r o p e n a l t i e s

p r i v a t e s t a t i c i n t [ ] dm ; / / column demands

p r i v a t e s t a t i c i n t [ ] sp ; / / row s u p p l i e s

p r i v a t e s t a t i c i n t [ ] crossRows ; / / d e l e t e d rows ( z e r o i f n o t c r o s s e d o u t )

p r i v a t e s t a t i c i n t [ ] c rossColumns ; / / d e l e t e d columns

p r i v a t e s t a t i c i n t [ ] NZRow; / / number o f z e r o s i n each row

p r i v a t e s t a t i c i n t [ ] NZCol ; / / number o f z e r o s i n each column

p r i v a t e s t a t i c i n t [ ] sumpass ; / / i n d i c a t e t h e e v a l u a t e d row p e n a l t i e s

p r i v a t e s t a t i c i n t [ ] pAColumn ; / / i n d i c a t e t h e p o s i t i o n o f column

p e n a l t i e s

p r i v a t e s t a t i c i n t [ ] RedCol ; / / i n d i c a t e t h e reduced columns

p r i v a t e s t a t i c i n t [ ] EPRow ; / / i n d i c a t e t h e e v a l u a t e d row p e n a l t i e s

p r i v a t e s t a t i c double LPen ; / / i n d i c a t e t h e h i g h e s t p e n a l t y

p r i v a t e s t a t i c double sum ;

p r i v a t e s t a t i c double sumSup ; / / sum o f t h e t o t a l s u p p l y

p r i v a t e s t a t i c double sumDem ; / / sum o f t h e t o t a l demand

p r i v a t e s t a t i c i n t NCrossRows , NCrossCols , pARow , column ;

s t a t i c i n t TC ; / / t h e t o t a l s h i p p i n g c o s t
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p r i v a t e s t a t i c i n t n ,m , var , RedNum ;

p r i v a t e s t a t i c DecimalFormat d f ;

p r i v a t e s t a t i c boolean S o l O p t i m a l ;

/∗ ∗

∗ The R e d u c t i o n F u n c t i o n − column−row R e d u c t i o n

∗ /

p u b l i c s t a t i c vo id M a t r i x R e d u c t i o n ( ) {

RedNum++;

f o r ( i n t i =0 ; i<n ; i ++){

double rowMin= c o s t [ i ] [ 0 ] ;

f o r ( i n t j =1 ; j<m ; j ++){

i f ( c o s t [ i ] [ j ]< rowMin )

rowMin= c o s t [ i ] [ j ] ;

}

/ / t h e n s u b t r a c t t h e min from each c o s t

f o r ( i n t k =0; k<m ; k ++){

c o s t [ i ] [ k ] = c o s t [ i ] [ k]− rowMin ;

i f ( c o s t [ i ] [ k ]==0) {

NZRow[ i ] + + ; / / i n c r e m e n t t h e number o f z e r o s i n row i

NZCol [ k ] + + ; / / i n c r e m e n t t h e number o f z e r o s i n column k

RedCol [ k ] = 1 ; / / column k has been reduced

ZPos [ i ] [ k ] = 1 ; / / mark t h e p o s i t i o n

}

}

}

/ / co lumns

f o r ( i n t j =0 ; j<m; j ++){

i f ( RedCol [ j ]==1) {

i f ( NZCol [ j ] >=2){
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q [ j ] = 0 ;

}

e l s e {

double colMin= sum ;

/ / c h o o s i n g t h e minimum v a l u e

f o r ( i n t i =0 ; i<n ; i ++){

i f ( c o s t [ i ] [ j ]< colMin && c o s t [ i ] [ j ] ! = 0 )

colMin= c o s t [ i ] [ j ] ;

}

q [ j ]= colMin ;

}

}

e l s e { / / i f t h e column n o t reduced

double colMin= c o s t [ 0 ] [ j ] ;

/ / c h o o s i n g t h e minimum v a l u e

f o r ( i n t i =0 ; i<n ; i ++){ / / i =0

i f ( c o s t [ i ] [ j ]< colMin )

colMin= c o s t [ i ] [ j ] ;

}

double [ ] m i n L i s t = new double [ n ] ;

f o r ( i n t k =0; k<n ; k ++){

c o s t [ k ] [ j ] −= colMin ;

m i n L i s t [ k ]= c o s t [ k ] [ j ] ;

i f ( c o s t [ k ] [ j ]==0) {

NZRow[ k ] + + ;

NZCol [ j ] + + ; / / i n c r e m e n t t h e number o f z e r o s i n column k

p [ k ] = 0 ; / / r ecompute t h e row p e n a l t y

EPRow[ k ] = 1 ; / / mark t h e e v a l u a t e d p e n a l t y

ZPos [ k ] [ j ] = 1 ;

}

}

A rr ay s . s o r t ( m i n L i s t ) ;
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q [ j ]= m i n L i s t [ 1 ] ;

} / / end e l s e

} / / e n d f o r

/ / c a l c u l a t e t h e row p e n a l t i e s

f o r ( i n t i =0 ; i<n ; i ++){

/ / i f t h e row p e n a l t y n o t e v a l u a t e d

i f ( EPRow[ i ] ! = 1 ) {

i f (NZRow[ i ] >=2){

p [ i ] = 0 ;

}

e l s e {

/ / o t h e r w i s e , i f t h e p e n a l t i e s v a l u e s o t h e r than z e r o s

double rowMin= sum ; / / sum ;

/ / c h o o s i n g t h e minimum v a l u e

f o r ( i n t j =0 ; j<m ; j ++){ / / i =0

i f ( c o s t [ i ] [ j ]< rowMin && c o s t [ i ] [ j ] ! = 0 )

rowMin= c o s t [ i ] [ j ] ;

i f ( ZPos [ i ] [ j ]==1)

pAColumn [ i ]= j ; / / z e r o p o s i t i o n

}

p [ i ]= rowMin ;

} / / end e l s e

}

} / / end f o r

}

/∗ ∗

∗ T h i s f u n c t i o n d e t e r m i n e s t h e a s s i g n i n g v a r i a b l e s

∗ /

p u b l i c s t a t i c vo id C o n s i d e r i n g V a r i a b l e ( ) {
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pARow=−1;

LPen=−1;

A r r ay s . f i l l ( sumpass , 0 ) ;

/ / e v a l u a t i n g t h e z e r o p e n a l t i e s

f o r ( i n t i =0 ; i<n ; i ++){ / / row

i f ( crossRows [ i ] !=1 && sumpass [ i ] ! = 1 ) {

i f ( p [ i ] ==0){

double l a r g e r = −1, S l a r g e r = −1;

A r r a y L i s t<I n t e g e r > p o s t i o n s = new A r r a y L i s t<I n t e g e r > ( ) ;

A r r a y L i s t<Double> SACol = new A r r a y L i s t<Double> ( ) ;

f o r ( i n t j =0 ; j<m ; j ++){

i f ( ( c rossColumns [ j ] ! = 1 ) && ZPos [ i ] [ j ]==1) {

p o s t i o n s . add ( j ) ;

SACol . add ( q [ j ] ) ;

i f ( q [ j ]> l a r g e r ) {

l a r g e r = q [ j ] ;

pAColumn [ i ]= j ; / / t o a s s i g n t h e l a r g e r

}

/ / i n e q u a l i t y case => choose t h e minimum c o s t

e l s e i f ( q [ j ]== l a r g e r ) {

i f ( m a t r i x [ i ] [ j ] < m a t r i x [ i ] [ pAColumn [ i ] ] )

pAColumn [ i ]= j ;

e l s e i f ( m a t r i x [ i ] [ j ] == m a t r i x [ i ] [ pAColumn [ i ] ] ) {

i f ( dm[ pAColumn [ i ] ] < dm[ j ] )

/ / s e l e c t t h e l a r g e r

pAColumn [ i ]= j ;

}

}
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}

}

C o l l e c t i o n s . s o r t ( SACol ) ;

S l a r g e r = SACol . g e t ( SACol . s i z e ( ) −2) ;

sumP [ i ] = l a r g e r − S l a r g e r ;

}

e l s e { / / p [ i ] !=0

sumP [ i ] = q [ pAColumn [ i ] ] ;

i f ( q [ pAColumn [ i ] ] ==0 ) {

double l a r g e r =0 , S l a r g e r =0 ;

A r r a y L i s t<Double> RowPen = new A r r a y L i s t<Double> ( ) ;

A r r a y L i s t<I n t e g e r > RowPos i t ion = new A r r a y L i s t<I n t e g e r > ( ) ;

/ /

RowPen . add ( p [ i ] ) ;

RowPos i t ion . add ( i ) ;

f o r ( i n t r =0 ; r<n ; r ++){

i f ( crossRows [ r ] !=1 && ZPos [ r ] [ pAColumn [ i ] ] = = 1 ) {

i f ( r != i && p [ r ] ! = 0 ) {

RowPen . add ( p [ r ] ) ;

RowPos i t ion . add ( r ) ;

}

}

} / / end f o r

i f ( RowPen . s i z e ( ) >=2){

C o l l e c t i o n s . s o r t ( RowPen ) ;

l a r g e r = RowPen . g e t ( RowPen . s i z e ( ) −1) ;

S l a r g e r = RowPen . g e t ( RowPen . s i z e ( ) −2) ;
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/ / t h e p e n a l t y o f z e r o i s t h e d i f f e r e n c e be tween

/ / t h e l a r g e s t and t h e second l a r g e s t

f o r ( i n t r : RowPos i t ion ) {

i f ( p [ r ] == l a r g e r ) {

sumP [ r ] = l a r g e r − S l a r g e r ;

}

e l s e {

sumP [ r ] = 0 ;

/ / marked

sumpass [ r ] = 1 ;

}

}

}

e l s e { / / RowPen . s i z e ( )< 2

sumP [ i ] = p [ i ] ;

}

}

e l s e { / / q !=0

sumP [ i ] += p [ i ] ;

}

} / / end e l s e

/ / c o n s i d e r t h e l a r g e s t p e n a l t y

i f ( sumP [ i ]> LPen ) {

LPen=sumP [ i ] ;

pARow= i ;

}

e l s e i f ( sumP [ i ]== LPen ) {

/ / t h e same complementary column

i f ( ( pAColumn [ i ] == pAColumn [pARow ] ) && m−NCrossCols >= 3) {

/ / 2 c a s e s

/ / i f ( sp [ i ] +sp [pARow] <= dm[ pAColumn ] ) {

225



/ / s i m u l t a n e o u s l y

i f ( sp [ i ] +sp [pARow] > dm[ pAColumn [ i ] ] ) {

/ / 4 subcases , 2 unchangeab le

i n t b1=−1 , b2=−1, max=−1;

A r r a y L i s t<Double> min1= new A r r a y L i s t<Double >() ;

A r r a y L i s t<Double> min2 = new A r r a y L i s t<Double >() ;

double ph i1 =0 , ph i2 =0 , fpARow , f i ;

f o r ( i n t c =0; c<m; c ++){

i f ( c rossColumns [ c ] ! = 1 && c != pAColumn [pARow ] ) {

min1 . add ( c o s t [pARow ] [ c ] ) ;

min2 . add ( c o s t [ i ] [ c ] ) ;

i f ( c o s t [pARow ] [ c ]== p [pARow ] )

b1=c ;

i f ( c o s t [ i ] [ c ]== p [ i ] )

b2=c ;

}

} / / end f o r

C o l l e c t i o n s . s o r t ( min1 ) ;

C o l l e c t i o n s . s o r t ( min2 ) ;

ph i1 = min1 . g e t ( 1 ) ; / / phi−k / / 2

ph i2 = min2 . g e t ( 1 ) ; / / phi−s / / 2

i f (dm[ b1 ] >= dm[ b2 ] )

max =0; / / b1

e l s e

max =1; / / b2

i f ( sp [pARow] <= dm[ pAColumn [ i ] ] && sp [ i ] <= dm[ pAColumn [ i ] ] ) { / / 1

i f ( max==0 && ( sp [pARow]+ sp [ i ]−dm[ pAColumn [ i ] ] ) <= dm[ b1 ] ) {

pARow= i ;

}
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e l s e i f ( ( sp [pARow]+ sp [ i ]−dm[ pAColumn [ i ] ] ) > dm[ b1 ] | | ( sp [pARow

]+ sp [ i ]−dm[ pAColumn [ i ] ] )> dm[ b2 ] ) {

/ / need t h e 3 rd

fpARow= ( p [ i ] ∗dm[ b2 ] ) + ( ( sp [pARow]+ sp [ i ]−dm[ pAColumn [ i ]]−

dm[ b2 ] ) ∗ ph i2 ) ;

f i = ( p [pARow] ∗dm[ b1 ] ) + ( ( sp [pARow]+ sp [ i ]−dm[ pAColumn [ i ]]−

dm[ b1 ] ) ∗ ph i1 ) ;

i f ( fpARow > f i )

pARow= i ;

}

}

e l s e i f ( sp [pARow] <= dm[ pAColumn [ i ] ] && sp [ i ] > dm[ pAColumn [ i ] ] ) {

/ / 2

fpARow = Math . max ( 0 , ( sp [ i ]− dm[ pAColumn [ i ] ] + sp [pARow] −dm[ b2

] ) ) ;

f i = Math . max ( 0 , ( sp [ i ]− dm[ pAColumn [ i ] ] −dm[ b2 ] ) ) +

Math . max ( 0 , ( sp [pARow]− dm[ b1 ] ) ) ;

/ / i f ( fRow >= sRow )

/ / pARow=pARow ;

i f ( f i >= fpARow )

pARow= i ;

}

e l s e i f ( sp [pARow] > dm[ pAColumn [ i ] ] && sp [ i ] <= dm[ pAColumn [ i ] ] ) {

/ / 3

fpARow = Math . max ( 0 , ( sp [pARow]− dm[ pAColumn [ i ] ] −dm[ b1 ] ) ) +

Math . max ( 0 , ( sp [ i ]− dm[ b2 ] ) ) ;

f i = Math . max ( 0 , ( sp [pARow]− dm[ pAColumn [ i ] ] + sp [ i ] −dm[ b1 ] ) )
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;

/ / i f ( fRow >= sRow )

/ / pARow=pARow ;

i f ( f i > fpARow )

pARow= i ;

}

e l s e i f ( sp [pARow] > dm[ pAColumn [ i ] ] && sp [ i ] > dm[ pAColumn [ i ] ] ) {

/ / 4

fpARow = Math . max ( 0 , ( sp [pARow]− dm[ pAColumn [ i ] ] −dm[ b1 ] ) ) +

Math . max ( 0 , ( sp [ i ]− dm[ b2 ] ) ) ;

f i = Math . max ( 0 , ( sp [ i ]− dm[ pAColumn [ i ] ] −dm[ b2 ] ) ) +

Math . max ( 0 , ( sp [pARow]− dm[ b1 ] ) ) ;

/ / i f ( fRow >= sRow )

/ / pARow=pARow ;

i f ( f i > fpARow )

pARow= i ;

}

} / / e l s e end

}

/ / d i f f e r e n t complementary l i n e s

e l s e {

/ / i f ( p [pARow]==0 | | q [ pAColumn [pARow ] ] ==0)
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/ / pARow ;

i f ( ( p [pARow] !=0 && q [ pAColumn [pARow ] ] ! = 0 ) && ( p [ i ]==0 | | q [

pAColumn [ i ] ] ==0) ) {

pARow= i ;

}

e l s e {

i f ( sp [pARow] <= dm[ pAColumn [pARow ] ] && sp [ i ] <= dm[ pAColumn [ i ] ] )

{

/ / i f ( q [ pAColumn [pARow ] ] > q [ pAColumn [ i ] ] )

/ / pARow

i f ( q [ pAColumn [ i ] ] > q [ pAColumn [pARow ] ] ) {

pARow= i ;

}

e l s e i f ( q [ pAColumn [pARow ] ] == q [ pAColumn [ i ] ] ) {

i f ( ( dm[ pAColumn [ i ] ] − sp [ i ] ) > (dm[ pAColumn [pARow ] ] − sp [

pARow ] ) ) {

pARow= i ;

}

}

}

e l s e i f ( sp [pARow] <= dm[ pAColumn [pARow ] ] && sp [ i ] > dm[ pAColumn [ i

] ] ) {

i f ( p [ i ] > q [ pAColumn [pARow ] ] ) {

pARow= i ;

}

e l s e i f ( p [ i ] == q [ pAColumn [pARow ] ] ) {
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i f ( ( sp [ i ] − dm[ pAColumn [ i ] ] ) > (dm[ pAColumn [pARow ] ] − sp [

pARow ] ) ) {

pARow= i ;

}

}

}

e l s e i f ( sp [pARow] > dm[ pAColumn [pARow ] ] && sp [ i ] <= dm[ pAColumn [ i

] ] ) {

i f ( q [ pAColumn [ i ] ] > p [pARow ] ) {

pARow= i ;

}

e l s e i f ( q [ pAColumn [ i ] ] == p [pARow ] ) {

i f ( (dm[ pAColumn [ i ] ] − sp [ i ] ) > ( sp [pARow] − dm[ pAColumn [

pARow ] ] ) ) {

pARow= i ;

}

}

}

e l s e i f ( sp [ i ] > dm[ pAColumn [ i ] ] && sp [pARow] > dm[ pAColumn [pARow

] ] ) {

i f ( p [ i ] > p [pARow ] ) {

pARow= i ;

}

e l s e i f ( p [ i ] == p [pARow ] ) {

i f ( ( sp [ i ] − dm[ pAColumn [ i ] ] ) > ( sp [pARow] − dm[ pAColumn [

pARow ] ] ) ) {

pARow= i ;
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}

}

}

} / / end e q u a l t y

}

}

} / / end i f

} / / end f o r

}

/∗ ∗

∗ The A s s i g n i n g F u n c t i o n

∗ @param r − row

∗ @param c − column

∗ @param t − t h e minimum v a l u e be tween t h e s u p p l y and demand

∗ /

p u b l i c s t a t i c vo id A s s i g n i n g ( i n t r , i n t c , i n t t ) {

x [ r ] [ c ]= t ∗ m a t r i x [ r ] [ c ] ;

TC+= x [ r ] [ c ] ;

v a r ++;

NZRow[ r ]−−;

NZCol [ c]−−;

}

/∗ ∗

∗ T h i s f u n c t i o n c a l l s t h e r e d u c t i o n f u n c t i o n f o r a column i f needed

∗ @param r − row

∗ @param qc − t h e complementary column

∗ /

p u b l i c s t a t i c vo id RowCrossed ( i n t r , i n t qc ) {

i f ( p [ r ] ==0){

f o r ( i n t j =0 ; j<m; j ++){
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i f ( c rossColumns [ j ] ! = 1 && ZPos [ r ] [ j ]==1) {

i f ( j != qc ) {

NZRow[ r ]−−;

NZCol [ j ]−−;

i f ( q [ j ] !=0 && NZCol [ j ]==0) { / / i f t h e r e i s a n o t h e r z e r o

ReducingCol ( j ) ;

}

}

}

}

}

i f ( q [ qc ] !=0 && crossColumns [ qc ] ! = 1 ) { / / t h e a s s o c i a t e d column

ReducingCol ( qc ) ;

}

}

/∗ ∗

∗ The R e d u c t i o n F u n c t i o n f o r a column

∗ @param c − column

∗ /

p u b l i c s t a t i c vo id ReducingCol ( i n t c ) {

RedNum++;

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 ) {

c o s t [ i ] [ c ]= c o s t [ i ] [ c]−q [ c ] ;

i f ( c o s t [ i ] [ c ] ==0){

ZPos [ i ] [ c ] = 1 ;

NZRow[ i ] + + ;

NZCol [ c ] + + ;
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/ / u p d a t i n g t h e row p e n a l t y

p [ i ] = 0 ;

}

e l s e i f ( c o s t [ i ] [ c ] < p [ i ] ) / / u p d a t i n g t h e column p e n a l t y

p [ i ]= c o s t [ i ] [ c ] ;

}

}

}

/∗ ∗

∗ T h i s f u n c t i o n c a l l s t h e r e d u c t i o n f u n c t i o n f o r a row i f needed

∗ @param pr − t h e complementary row

∗ @param c − column

∗ /

p u b l i c s t a t i c vo id ColCrossed ( i n t pr , i n t c ) {

i f ( q [ c ] ==0){

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 && ZPos [ i ] [ c ]==1) {

i f ( i != p r ) { / / e x c e p t t h e a s s o c i a t e d row

NZRow[ i ]−−;

NZCol [ c]−−;

i f ( p [ i ] !=0 && NZRow[ i ]==0 ) { / / i f t h e row i has a n o t h e r z e r o

ReducingRow ( i ) ;

}

}

}

}

}

i f ( p [ p r ] !=0 && crossRows [ p r ] ! = 1 ) { / / a s s o c i a t e d row

ReducingRow ( pr ) ;
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}

}

/∗ ∗

∗ The R e d u c t i o n F u n c t i o n f o r a row

∗ @param r − row

∗ /

p u b l i c s t a t i c vo id ReducingRow ( i n t r ) {

RedNum++;

f o r ( i n t j =0 ; j<m ; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

c o s t [ r ] [ j ]= c o s t [ r ] [ j ]−p [ r ] ;

i f ( c o s t [ r ] [ j ] ==0){

ZPos [ r ] [ j ] = 1 ;

NZRow[ r ] + + ;

NZCol [ j ] + + ;

pAColumn [ r ] = j ;

/ / u p d a t i n g t h e row p e n a l t y

q [ j ] = 0 ;

}

e l s e i f ( c o s t [ r ] [ j ] < q [ j ] ) { / / u p d a t i n g t h e column p e n a l t y

q [ j ]= c o s t [ r ] [ j ] ;

}

}

} / / end f o r

}
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/∗ ∗

∗ T h i s f u n c t i o n r e c o m p u t e s t h e row p e n a l t i e s

∗ @param pc − column

∗ /

p u b l i c s t a t i c vo id U pd a t in g Ro wP en a l i t y ( i n t pc ) {

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 ) {

i f ( c o s t [ i ] [ pc ] <= p [ i ] ) {

i f (NZRow[ i ]>=2){

p [ i ] = 0 ;

}

e l s e {

double min = sum ;

f o r ( i n t j =0 ; j<m ; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

i f ( c o s t [ i ] [ j ] !=0 && c o s t [ i ] [ j ] < min )

min= c o s t [ i ] [ j ] ;

i f ( ZPos [ i ] [ j ]==1)

pAColumn [ i ]= j ;

}

}

p [ i ]= min ;

}

}

}

}

}

/∗ ∗

∗ T h i s f u n c t i o n r e c o m p u t e s t h e column p e n a l t i e s
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∗ @param qr − row

∗ /

p u b l i c s t a t i c vo id U p d a t i n g C o l P e n a l i t y ( i n t qr ) {

f o r ( i n t j =0 ; j<m ; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

i f ( c o s t [ q r ] [ j ] <= q [ j ] ) {

i f ( NZCol [ j ]>=2){

q [ j ] = 0 ;

}

e l s e {

double min = sum ;

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 ) {

i f ( c o s t [ i ] [ j ] !=0 && c o s t [ i ] [ j ] < min )

min= c o s t [ i ] [ j ] ;

}

}

q [ j ]= min ;

}

}

}

}

}

/∗ ∗

∗ The s top−case method

∗ /

p u b l i c s t a t i c vo id s t o p C a s e ( ) {

i f ( n−NCrossRows ==1){ / / j u s t one row l e f t

i n t row=−1;

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 )
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row= i ;

}

f o r ( i n t j =0 ; j<m; j ++){

i f ( c rossColumns [ j ] ! = 1 ) {

/ / a s s i g n i n g t h e r e m a i n i n g columns

A s s i g n i n g ( row , j , dm[ j ] ) ;

}

}

}

e l s e i f (m−NCrossCols ==1){ / / one column l e f t

i n t c o l =−1;

f o r ( i n t j =0 ; j<m ; j ++){

i f ( c rossColumns [ j ] ! = 1 )

c o l = j ;

}

f o r ( i n t i =0 ; i<n ; i ++){

i f ( crossRows [ i ] ! = 1 ) {

/ / a s s i g n i n g t h e r e m a i n i n g rows

A s s i g n i n g ( i , co l , sp [ i ] ) ;

}

}

}

}

/∗ ∗

∗ T h i s f u n c t i o n t e s t s i f t h e s o l u t i o n i s o p t i m a l

∗ @return t r u e i f o p t i m a l . Otherwise , f a l s e

∗ /

p u b l i c s t a t i c boolean I s O p t i m a l ( ) {

boolean o p t i m a l = f a l s e ;

i f ( RedNum ==1 )
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o p t i m a l = t rue ;

re turn o p t i m a l ;

}

/∗ ∗

∗ The Genera l A l g o r i t h m f o r ZCP

∗ @param a r r a y

∗ @param sup

∗ @param dem

∗ /

p u b l i c s t a t i c S t r i n g G e n e r a l A l g o r i t h m ( double [ ] [ ] a r r a y , i n t [ ] sup , i n t [ ]

dem ) {

n= a r r a y . l e n g t h ;

m= a r r a y [ 0 ] . l e n g t h ;

c o s t = new double [ n ] [m] ; / / c o s t m a t r i x

m a t r i x = new double [ n ] [m] ; / / copy t h e c o s t m a t r i x

sp = new i n t [ n ] ;

dm = new i n t [m] ;

sumSup =0; sumDem=0;

f o r ( i n t i =0 ; i<n ; i ++){

f o r ( i n t j =0 ; j<m ; j ++){

i f ( a r r a y [ i ] [ j ] <0)

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( ” t h e c o s t must be p o s t i v e ” ) ;

sum+= a r r a y [ i ] [ j ] ;

}

System . a r r a y c o p y ( a r r a y [ i ] , 0 , c o s t [ i ] , 0 , a r r a y [ i ] . l e n g t h ) ;
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System . a r r a y c o p y ( a r r a y [ i ] , 0 , m a t r i x [ i ] , 0 , a r r a y [ i ] . l e n g t h ) ;

sp [ i ]= sup [ i ] ;

sumSup+= sp [ i ] ;

}

ZPos = new i n t [ n ] [m] ;

x = new double [ n ] [m] ;

crossRows = new i n t [ n ] ;

c rossColumns = new i n t [m] ;

p = new double [ n ] ;

q = new double [m] ;

NZRow = new i n t [ n ] ;

NZCol = new i n t [m] ;

EPRow = new i n t [ n ] ;

RedCol = new i n t [m] ;

pAColumn= new i n t [ n ] ;

sumpass= new i n t [ n ] ;

sumP= new double [ n ] ;

TC=0;

NCrossRows =0; NCrossCols =0;

RedNum =0; v a r =0;

LPen=−1; column =−1;

d f = new DecimalFormat ( ” # ,### ,### ” ) ;

f o r ( i n t j =0 ; j<m ; j ++){

dm[ j ]= dem [ j ] ;

sumDem+= dm[ j ] ;

}

i f ( sumSup !=sumDem )

throw new I l l e g a l A r g u m e n t E x c e p t i o n ( ” The TP i s n o t b a l a n c e d ” ) ;
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e l s e {

M a t r i x R e d u c t i o n ( ) ;

whi le ( n−NCrossRows !=1 && m−NCrossCols ! = 1 ) {

C o n s i d e r i n g V a r i a b l e ( ) ;

column= pAColumn [pARow ] ;

i f ( sp [pARow] < dm[ column ] ) { / / row−c r o s s e d

A s s i g n i n g (pARow , column , sp [pARow ] ) ;

crossRows [pARow ] = 1 ;

NCrossRows ++;

dm[ column ]=dm[ column]− sp [pARow ] ;

sp [pARow ] = 0 ;

RowCrossed (pARow , column ) ;

U p d a t i n g C o l P e n a l i t y (pARow) ;

}

e l s e { / / column−c r o s s e d

A s s i g n i n g (pARow , column , dm[ column ] ) ;

c rossColumns [ column ] = 1 ;

NCrossCols ++;

/ / t h e e q u a l i t y case be tween t h e s u p p l y and demand

i f ( sp [pARow] == dm[ column ] ) {

sp [pARow]= 0 ;

NCrossRows ++;

crossRows [pARow ] = 1 ;

v a r ++;
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RowCrossed (pARow , column ) ;

U p d a t i n g C o l P e n a l i t y (pARow) ;

}

e l s e {

sp [pARow]= sp [pARow]−dm[ column ] ;

}

dm[ column ] = 0 ;

Co lCrossed (pARow , column ) ;

U pd a t i n gR o wP en a l i t y ( column ) ;

}

} / / end w h i l e

s t o p C a s e ( ) ;

S o l O p t i m a l = I s O p t i m a l ( ) ;

} / / end e l s e

re turn df . f o r m a t (TC) ;

}

}
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