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Abstract 

Black shale in the Little Dal Group (ca. <817 Ma), Mackenzie Mountains Supergroup 

(<1005 Ma; >779 Ma), was deposited during the early Neoproterozoic, and is one of the 

few known black shale deposits from this crucial time in Earth’s evolutionary history. 

Relative iron enrichment (FeT/Al) and conventional iron speciation (DOP), along with 

enrichment in molybdenum, total sulphur, and total organic carbon, were studied. Iron 

systematics (FeT/Al >0.5 and DOP <0.80) indicate ferruginous, anoxic, and possibly oxic 

bottom-water conditions over the time of deposition of the entire black shale unit. The 

enrichment factors of several of the authigenic redox-sensitive trace elements (U, Mo, V) 

are strongly correlated, and appear to be related to both the FeT and the organic carbon 

content of the black shale. Molybdenum enrichment (<10 ppm) is limited, which is in 

very good agreement with data from Mesoproterozoic black shales, but is much lower 

than Mo enrichments in Paleozoic black shales (typically >100 ppm). Several black 

muddy siltstones yielded similar results, but authigenic iron was greatly overwhelmed by 

siliciclastic sedimentation. These new data support the theory that ocean bottom-waters 

returned from sulphidic to ferruginous prior to development of oxygenated conditions in 

the Ediacaran open ocean. This study documents a predominantly open-marine basin that 

was characterised by ferruginous conditions, similar to Archean and early 

Paleoproterozoic conditions, with brief intervals when oxic conditions developed. 
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CHAPTER 1: Thesis Introduction 

1.1 Statement of Problem 

It has been amply demonstrated that Earth’s surface, including both its atmosphere and ocean, 

has evolved from a reducing condition to the modern oxic condition through the gradual addition 

of molecular oxygen produced by photosynthesising organisms. Although the overall shift from 

reduced to oxidised is not in dispute, the timing and geochemical status of the transitional stages 

are controversial. One of the early, popular, and commonly used models for Proterozoic ocean 

chemistry is referred to as the ‘Canfield ocean,’ (Canfield, 1998; Canfield et al., 2008). This 

model proposed that the Archean global ocean was dominated by anoxic ferruginous conditions 

marked by the deposition of banded iron formations (BIF). At some point between 2.3 and 2.0 

Ga, after the “Great Oxygenation Event” (GOE), the global ocean began a gradual compositional 

change from ferruginous to sulphidic, as indicated by a sulphur-isotope excursion (Hayes et al., 

1992). According to this model, cessation of BIF deposition, at approximately 1.8 Ga, marked a 

transition to deep oceans dominated by sulphidic conditions. This model calls on renewed 

deposition of BIFs at ca. 700 Ma, when the global ocean once again returned to a ferruginous 

state before becoming fully oxygenated by ca. 580 Ma. The ‘Canfield ocean’ model is testable 

using the chemistry of marine shales (fissile, black, organic-rich mudstones) that span the 

proposed duration of the sulphidic ocean. A complete reconstruction of the evolution Proterozoic 

ocean chemistry requires the study of rare open-marine sediment deposited throughout this time 

span. Many recent studies have found significant evidence to suggest that ferruginous conditions 

may have dominated the deep ancient ocean, contrary to the proposed sulphidic conditions in the 



	   2	   	  
	  
	  

	  

‘Canfield ocean’ model (Canfield et al., 2008; Feng et al., 2010; Johnston et al., 2010; Li et al., 

2010; Och et al., 2013; Planavsky et al., 2011; Xiao et al., 2012). The late Meso- to 

Neoproterozoic was a time when very little black shale was deposited and, consequently, the 

ocean chemistry of this time span remains relatively underconstrained. This thesis presents the 

results of a study on such a shale, deposited during the late Proterozoic. 

 

Black shale is a commonly used source of data about the redox conditions of ocean water at the 

time of sediment deposition. Some of the widely used proxies for paleoredox conditions include 

degree of pyritisation, DOP; total iron compared to aluminium, FeT/Al; highly reactive iron, 

FeHR; pyrite iron, FePY, trace metal enrichments (e.g., MoEF, UEF, VEF), and total organic carbon 

(TOC). These proxies, when accompanied by other data such as rare earth element plus yttrium 

patterns, and sedimentological/stratigraphic data, allow for basin reconstruction and an 

understanding of the major geochemical components of the sedimentary system.  

 

One basic measure of ancient redox status is FeT/Al, which evaluates the proportion of 

authigenic Fe relative to the volume of siliciclastic sediment to provide a view on the dissolved 

oxygen concentration of bottom water (Lyons and Severmann, 2006). When applied as a redox 

proxy, FeT/Al is understood to indicate oxic conditions when the ratio is below 0.5, and anoxic 

conditions above 0.5. Sulphidic conditions commonly have FeT/Al values above 0.6, but this is 

not a definitive measurement because significant siliciclastic input can elevate the boundary for 

oxic sediments and depress the boundary for sulphidic sediments (Lyons and Severmann, 2006).  
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A number of recent studies have suggested to supersede the FeT/Al proxy in favour of other more 

sensitive measurements of iron speciation but their validity relies on perfectly preserved 

apportioning of iron from sediment to sedimentary rock. 

 

Degree of pyritisation (DOP), the ratio of Fe in pyrite to that in pyrite and in phases soluble in 

HCl (FePY/FePY+FeHCl), is considered to be a reliable proxy for redox status, although boundary 

values between redox states vary among studies and between ancient and modern materials (e.g., 

Raiswell et al., 1988; Lyons and Severmann, 2006). The proxy values used for ancient rocks has 

an oxic to anoxic/ferruginous boundary at 0.46 and an upper boundary indicating sulphidic 

depositional conditions at 0.75. DOP is a good proxy for ancient materials because it is 

unaffected by loss of reactive iron phases during burial alteration, but is commonly replaced by 

more sensitive proxies originally designed for use on modern sediments (Lyons et al., 2009; 

Raiswell and Canfield, 1998). 

 

Total organic carbon (TOC) is the organic (reduced) carbon remaining in rock; “high” TOC 

values are generally taken to indicate that fixation of C from biological sources was not matched 

by its respiration (decay) such that organic C was buried without being recycled in the biosphere. 

Organic carbon burial generally takes place under anoxic conditions, where bacterial decay is 

suppressed by the absence of free oxygen, and so TOC is a fairly simple proxy for redox 

conditions. The role of TOC in paleoredox studies is important because certain redox-sensitive 

elements bind preferentially to organic matter and can themselves be used as redox proxies. TOC 
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values below approximately 2.5 wt.% indicate sediments deposited in a low-oxygen oxic 

environment, values up to approximately 10 wt.% indicate an anoxic environment, and values 

exceeding 10 wt.% indicate a complete depletion of benthic O2 and an accumulation of free H2S 

in the water column causing sulphidic conditions (Algeo and Maynard, 2004). 

 

Highly reactive iron (FeHR) refers to the amount of iron bound in sedimentary sulphides, 

carbonates, and oxides. The ratio of FeHR to total iron (FeHR/FeT) is used as a measure of the 

redox status of the water beneath which a given sediment was deposited.  Studies of modern and 

Phanerozoic basins have shown that sediment deposited under a restricted, anoxic water column 

has FeHR/FeT ratios ≥0.38, whereas sediment deposited under an oxic water column has FeHR/FeT 

ratios of ≤0.22 (Poulton and Canfield, 2011; Poulton and Raiswell, 2002; Raiswell and Canfield, 

1998; Wijsman et al., 2001). Under certain circumstances, it is possible that anoxic conditions 

existed even if measured values of FeHR are between 0.22 and 0.38, because the FeHR pool may 

have become depleted during burial diagenesis or metamorphism, when unsulphidised iron-

bearing minerals may be converted to unreactive sheet silicate phases (Poulton and Canfield, 

2011). Furthermore, dramatic increases in sedimentation rate can mask water-column Fe 

enrichments (Canfield, 1998; Poulton et al., 2004). The details of FeHR enrichment are outlined 

in the shelf-to-basin shuttle review of Lyons et al. (2009). 

 

The FePY/FeHR ratio indicates the amount of FeHR that resides in pyrite versus the other 

biogeochemically available reservoirs (Raiswell and Canfield, 1998), and is an indication of the 

concentration of dissolved sulphide in the water from which a sediment was deposited. Modern 
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sulphidic basins such as the Black Sea contain sediment with FePY/FeHR ratios ≥0.80, whereas 

ferruginous basins have sediment with FePY/FeHR ratios ≤0.80 (Anderson and Raiswell, 2004; 

Canfield et al., 2008; Poulton et al., 2004). März et al. (2008), working on Phanerozoic 

sedimentary rocks, found that the upper threshold for a ferruginous water column is 

approximately 0.7. Although FeHR/FeT and FePY/FeHR were not obtained in the present study, 

these measures have been used in the redox assessment of other black shale deposits, and are 

addressed in the discussion below. 

 

Redox-sensitive elements are also used in redox studies of ancient sedimentary rocks. The 

various metals used have different redox behaviours, and so the use of each one may be subject 

to specific conditions. For example, although Mo is considered to be a good indicator of 

oxic/anoxic status, and can be used to identify sulphidic conditions, its relationship with sulphide 

is not simple. Other redox-sensitive elements that are commonly used include V and U. The 

relative redox-sensitive trace element concentrations are often reported as ‘enrichment factors’, 

which eliminates any possible detrital contribution of the element by normalising relative to a 

proxy for siliciclastic content. Enrichment factors can then be compared to possible controlling 

factors such as TOC (for elements that preferentially bind to organic matter) and DOP (for 

elements that preferentially combine with sulphide). 

 

Most known black shale units were deposited during the Phanerozoic, at a time when complex 

life was well established. This project, however, summarises the results of field and laboratory 

investigations of a rare Proterozoic black shale deposit from a previously poorly understood time 
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in Earth’s history. This rare black shale unit belongs to the mid to late Proterozoic Mackenzie 

Mountains Supergroup (MMSG) of the Northwest Territories and Yukon. The shale analysed is 

part of the Stone Knife Formation (<817 Ma; >779 Ma; Heaman et al., 1992; Powell and 

Scheider, 2013).  

 

1.2 Thesis Objectives 

• to produce detailed geochemical analyses of the black shale unit, to better understand 

redox conditions during the Proterozoic; 

• to test the ‘Canfield ocean’ model (Fig. 1A) proposed by Canfield (1998) 

Field work was completed in the summers of 2009 and 2010 by E.C. Turner. Laboratory work 

was completed early in 2012. The results of the Little Dal black shale project were presented in 

the poster session of GAC-MAC 2011 (O'Hare et al., 2011) and will be submitted to Chemical 

Geology as a complete manuscript in 2014.  
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1.3 Regional Geology 

The Mackenzie Mountains Supergroup  

This information expands on the brief description in Chapter 2 of the geological setting of the 

project area. For a completed detailed description of all units mentioned, see such works as 

Turner and Long (2008; 2012), Turner (2011), Turner et al., (2011), Long and Turner (2012) and 

papers cited therein. The Proterozoic sedimentary strata of northwestern Canada have been 

divided into three major unconformity-bounded sequences (A, B, and C), approximately 

corresponding to the Mesoproterozoic, early Neoproterozoic, and late Neoproterozoic (Young et 

al., 1979; Young et al., 1982). The unconformities separating the sequences are dated at ca. 1000 

Ma (A/B) and ca. 750 Ma (B/C). In the Wernecke and Mackenzie Mountains the strata of 

sequence B that overlie the Pinguicula Group and underlie the Coates Lake Group have been 

named the Mackenzie Mountains Supergroup (MMSG; Fig.1; Aitken, 1981; Gordey and Roots, 

2011; Long et al., 2008; Long and Turner, 2012; Narbonne and Aitken, 1995; Rainbird et al., 

1996; Turner, 2011; Turner and Long, 2008; Turner and Long, 2012; Young et al., 1979; Young 

et al., 1982). 

 

Approximately 4-5 kilometres of strata in the Mackenzie Mountains and >1 kilometre of  strata 

in the Wernecke Mountains make up the MMSG (Fig. 1; Turner, 2011; Turner et al., 2011), 

which is composed of terrigenous clastic, carbonate and evaporite rocks that were deposited in 

fluvial to deep-marine settings in an extensional basin. These strata in stratigraphic order are: the 
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Hematite Creek Group (Wernecke Mtns; >810 m, Mackenzie Mountains; ~2 km), Katherine 

Group (Wernecke Mtns; unmeasured, Mackenzie Mtns; ~1.5 km), and Little Dal Group 

(Wernecke Mtns; >250 m, Mackenzie Mtns; ~2 km; Turner, 2011; Turner et al., 2011). The 

strata of the MMSG collectively record deposition on the Laurentian continent in an extensional 

basin, at a relatively low paleolatitude (Evans, 2006; Park and Jefferson, 1991), during the early 

to middle Neoproterozoic (Turner and Long, 2008). In the Northwest Territories, the MMSG 

extends approximately 500 kilometres along strike. The supergroup occupies a prominent, 

arched deviation in the structural grain of the Canadian Cordillera that mimics the inferred 

margin of the Neoproterozoic basin (Aitken, 1981). The Shaler Supergroup of Victoria Island 

and the adjacent mainland is directly correlative to the MMSG (Aitken and Long, 1978; Long et 

al., 2008; Rainbird et al., 1996). Other possible correlative units have been proposed in the Tindir 

and Fifteenmile groups, although definitive evidence remains to be found. 

 

The material in this study is from the Little Dal Group, of which the maximum possible 

depositional age is 817 Ma (Ar-Ar detrital muscovite; Powell and Schneider, 2013) A minimum 

age for the top of the supergroup is given by Rb-Sr dates of 770 Ma from diabase sills that cut 

the Tsezotene Formation and Katherine Group (Armstrong et al., 1982), and by a fault-bounded 

quartz diorite body dated at 779 Ma (Heaman et al., 1992; Jefferson and Parrish, 1989), all of 

which are thought to be related to the “Little Dal basalt,” which lies between the MMSG and 

overlying Coates Lake Group. 
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The top contact of the MMSG is unconformable, and depending on geographic location, is 

overlain by younger Neoproterozoic units (“Little Dal basalt”; Coates Lake Group; upper 

Windermere Supergroup), or by Cambro-Ordovician stratigraphic units. The erosional surface 

between the MMSG and Paleozoic rocks gradually cuts downward eastward from the Plateau 

fault (Turner et al., 2011). In the area surrounding the Plateau fault, the upper units of the 

MMSG are overlain by the Coates Lake Group (or, locally, by the “Little Dal basalt”). Jefferson 

(1983) has shown that there are only minor variations in the stratigraphic level of these contacts, 

implying that the hiatus between deposition of the upper MMSG and lower Coates Lake Group 

was brief. 

 

Little Dal Group 

The Little Dal Group has been subdivided into seven formal units: Dodo Creek, Stone Knife, 

Silverberry, Gayna, Ten Stone, Snail Spring, and Ram Head Formations (Turner and Long, 

2012). The group unconformably overlies the Katherine Group, is > 3 kilometres thick, and 

forms an internally conformable succession. The upper unit of the Little Dal Group (Ram Head 

Formation) is unconformably overlain by the Coates Lake Group and locally by the “Little Dal 

basalt” (Turner et al., 2011). 
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Dodo Creek Formation  

The Dodo Creek Formation (formerly the Mudcracked formation of Aitken, 1981) is a thin (10-

68 m) terrigenous clastic unit that, depending on location, slightly unconformably (Batten et al., 

2004) to conformably (Turner et al., 1997) overlies the Katherine Group (Aitken, 1981). Many 

sections have been measured through this formation by Aitken (1981), Turner (1999), Batten 

(2002), and Aitken et al. (2011). The formation is dominated by quartz arenite and green, red and 

grey siltstone, with subordinate carbonate layers. Shallow-marine sedimentary structures are 

pervasive throughout the formation, and include hummocky cross-stratification, trough cross-

bedding, both asymmetrical and symmetrical ripple cross-laminations, tool marks, synaeresis 

cracks, gutter casts, halite casts, and tempestites with graded shale chips. Many of the bedding 

surfaces have a black veneer that was probably a microbial mat during the time of deposition 

(Turner et al., 2011). The upper contact of the Dodo Creek Formation is conformable, and was 

placed at the base of an orange-weathering oncoid grainstone, that acts as an easily discernible 

marker unit (Turner and Long, 2012). 

 

Stone Knife Formation  

The Stone Knife Formation (formerly Basinal assemblage; Aitken, 1981; Turner et al., 1997; 

Turner, 1999; Turner and Long, 2008, 2012) is 143 to 622 metres thick, depending on location, 

and is the deep-water lateral equivalent of, and is contemporaneous with, the Silverberry 

Formation. The conformable basal contact with the underlying Dodo Creek Formation is placed 
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at the base of a regional oncoid marker unit. The Stone Knife Formation is composed of four 

shale-to-carbonate cycles (LD1 to 4; Turner et al., 1997; Turner and Long, 2008) that define 

informal members, each with laterally variable thickness, between 16 and 400 metres. Recessive, 

green-grey siltstone and fissile mudstone, overlain by a distinctive, ubiquitous, resistant 

weathering stromatolite biostrome make up member 1 (16 to >91 m) of the formation. Member 2 

is composed of black- to red-weathering fissile mudstone, commonly with intraclast rudstone 

near the base of the member, which is normally in part interlayered with nodular to medium-

bedded, medium-grey-weathering lime mudstone (85 - 200 m), and is overlain by a resistant, 

medium-bedded lime mudstone with no conspicuous sedimentary structures (12 - 300 m). 

Member 3 generally consists of recessive, argillaceous lime mudstone, or medium-grey siltstone 

and mudstone (15 - 115 m) that is overlain by silty, argillaceous lime mudstone (20 - 110 m). 

Rarely, the carbonate rocks of member 3 contain stromatolites, molar-tooth structure, and/or 

desiccation cracks. Member 4 consists of grey to black fissile mudrocks (0 - 60 m) overlain by 

molar-tooth bearing lime mudstone (25 - 100 m). Among carbonate rocks of member 4, 15 

metres of magnetite-facies iron-formation have been reported (Hewton, 1982), but this 

observation has not been validated.  

 

The Stone Knife Formation was deposited in a deep-water environment that experienced cyclic 

changes in sea-level and sea-water composition, that affected water-column chemistry (Turner et 

al., 2011). Relative rises in sea level are recorded as the shale-dominated lower parts of the four 

members, whereas highstands and falls are recorded as the carbonate mudstone dominated upper 



	   12	   	  
	  
	  

	  

sections of the members (Turner et al., 1997). Each of these shallowing-upwards cycles records a 

distinct bathymetric succession of lithofacies (Turner and Long, 2008). During the time of 

deposition, the basin floor was below the photic zone, and normally below storm wave-base, 

except during the deposition of the shallowest parts of the carbonate units (Turner et al., 1997). 

The fault-influenced paleotopography of the basin floor (Turner and Long, 2008) controlled the 

redistribution of pelagic lime mudstone, originally precipitated from the water column (Turner et 

al., 1997), and hemipelagic terrigenous fines, as thin, poorly defined turbidites. The upper 

contact with the Gayna Formation is placed where molar-tooth bearing lime mudstone passes 

gradationally upward to dolomitic ooid-intraclast grainstone. See Turner (1999; appendix) and 

Aitken et al., (2011) for detailed sections. 

 

Silverberry Formation  

The Silverberry Formation (previously the Platformal assemblage; Aitken, 1981; Batten et al., 

2004; Turner and Long, 2008; Turner and Long, 2012) is up to 812 metres thick, and is laterally 

equivalent to, and contemporaneous with, the Stone Knife Formation. The basal contact of the 

formation is conformable and placed below the oncoid marker unit at the top of the Dodo Creek 

Formation. The formation is dominated by stromatolitic, oolitic, intraclastic, and molar-tooth 

bearing carbonate rocks. Similar to the Stone Knife Formation, it contains four transgressive-

regressive cycles (Batten et al., 2004). The first cycle is capped with a thick stromatolitic unit 

that forms a basin-wide stratigraphic marker. The rest of the cycles consist of transgressive 

intraclastic units which are overlain, with some lateral variation by lime mudstone, shallowing 
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into molar-tooth bearing dolomudstone, ooid grainstone and stromatolitic boundstone (Turner 

and Long, 2008). The Silverberry Formation records repeated shallowing of a carbonate ramp 

system from near to or below storm wave-base up to sea-level (Turner et al., 2011). The upper 

contact with the Gayna Formation is gradational and conformable, marked with desiccation-

cracked dolomudstone. 

 

Gayna Formation  

The Gayna Formation (previously the Grainstone formation; Aitken, 1981; Batten, 2002; Batten 

et al., 2004; Hewton, 1982) is up to 390 m thick, and conformably overlies the laterally 

equivalent Stone Knife and Silverberry Formations. The formation is dominated by yellow-buff-

weathering, thin-bedded, quartz-silty, buff-orange-weathering oolitic and intraclastic dolo-

grainstone, desiccation-cracked dolomudstone, and local molar-tooth, stromatolitic, and cherty 

units. The sedimentary structures in the dolograinstones include ripple cross-lamination, trough 

cross-stratification, hummocky cross-stratification, and grading. Fine quartz sand and silt are also 

present in the upper dolostones (Turner et al., 2011). The Gayna Formation erases the 

pronounced paleotopographic differential between the formerly deep- and shallow-water areas of 

the Stone Knife and Silverberry Formations, marking the return to a comparatively uniform 

bathymetric environment throughout the Little Dal Group’s depositional area (Turner et al., 

2011). The upper contact of the Gayna Formation is not gradational, and no transitional facies is 

present. This suggests that the then exposed desiccation-cracked, thin-bedded, quartz-silty and 



	   14	   	  
	  
	  

	  

shaly dolostones of the supratidal flat were abruptly placed in a considerably deeper-water 

setting, probably by a basin-wide tectonic adjustment  (Turner, 2009). 

 

1.4 Precambrian oceanic paleoredox conditions 

The reconstruction of paleo-ocean redox conditions is crucial for understanding connections 

between ocean chemistry and the evolution of the atmosphere and biosphere. There is 

widespread, but not total, support for the hypothesis that continued oxygenation of the deep 

ocean did not take place during the first rise in global oxygen (the Great Oxidation Event; GOE, 

Holland, 1984) at approximately 2.4 Ga, but instead took place over a lengthy time-span 

following the GOE and/or during the Neoproterozoic oxygenation event (NOE; ~850 Ma; 

Shields-Zhou and Och, 2011). Protracted anoxia would have constrained eukaryote evolution 

and limited primary productivity, which would have limited organic carbon burial and, in turn, 

oxygen accumulation (Anbar and Knoll, 2002). According to some workers, at 580 Ma there was 

a final rise in oxygen levels that ventilated the deep ocean and allowed for the subsequent and 

rapid evolution of the first large, multicellular plants and animals (Canfield et al., 2008; Canfield 

et al., 2007). On the other end of the spectrum, times of ocean anoxia in the Paleozoic have been 

used to explain prominent episodes of mass extinction (Meyer and Kump, 2008), whereas anoxic 

events (OAEs) during the Mesozoic  have been linked to rapid radiation and turnover in marine 

plankton (Leckie et al., 2002). 
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Detailed knowledge of the exact nature of ocean oxidation-reduction (redox) conditions relies on 

interpretation of the links between evolution of the biosphere and the ocean chemistry in which 

organisms lived for the first 85-90% of life’s history. Previous reconstructions of ocean redox 

conditions have tended to focus on extreme cases of anoxia (i.e., sulphidic or euxinic conditions), 

primarily as a result of the available geochemical analytical techniques. However, the redox state 

of the ocean, and of individual basins, can vary widely, both spatially and temporally, from 

various levels of oxygenation, to oxygen depletion, into ferruginous (anoxic, Fe2+ -rich, but non-

sulphidic conditions) to fully sulphidic (with free H2S). It is in the intermediate state between 

oxic and euxinic end-members that ferruginous conditions develop and that the environmental 

behaviour of iron plays a central role in redox reactions. Iron can be mobilised as ferrous iron 

[Fe(II)], which will result in the development of ferruginous water-column conditions (Poulton 

and Canfield, 2011). As an anti-thesis to the “Canfield ocean” model, ferruginous conditions 

may have been the dominating feature of anoxic oceanic intervals throughout much of early 

Earth’s history, and so understanding the mechanisms driving these conditions and the broader 

effects of such conditions is currently an area of major interest and debate. 

 

Understanding the processes that lead to ferruginous water-column conditions can be assisted by 

studies of the modern global iron cycle, and considerable effort has been spent in quantifying the 

operation of the global iron cycle. Major advances have resulted from studying biogeochemically 

reactive iron minerals in surface and near-surface environments (Poulton and Raiswell, 2002; 

Raiswell and Canfield, 1998; Raiswell et al., 2006). In the modern ocean, under oxic conditions, 
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most of the Fe(II) generated by deep-sea hydrothermal vents is either oxidised to ferric (oxyhydr) 

oxide minerals or reacts rapidly with dissolved sulphide and is deposited close to the vents as 

pyrite (FeS2). Iron(II) generated by reductive dissolution of reactive ferric (oxyhydr) oxide 

minerals, during diagenesis may also be released to the overlying water column. As with 

hydrothermal iron, some of the Fe(II) is quickly reoxidised and deposited. Both sources may 

have some Fe(II) escape precipitation, and this iron would contribute to the oceanic dissolved-

iron inventory (Raiswell, 2006; Tagliabue et al., 2010). 

 

The role of diagenetic and hydrothermal dissolved-Fe(II) sources becomes much more 

significant under anoxic conditions. Reduced iron released from these sources is virtually stable 

until transported to an environment where precipitation and deposition can occur (Poulton and 

Canfield, 2011). Under a sulphidic environment, Fe(II) is quickly titrated when it encounters 

water-column sulphide, which results in enrichment of pyrite in the deposited sediment (Raiswell 

and Canfield, 1998). It has been suggested that enrichments in sediment iron following water-

column precipitation in anoxic environments is a unique feature of sulphidic depositional 

conditions (Lyons and Severmann, 2006). However, recent work on ancient sediments (Canfield 

et al., 2008; Canfield et al., 2007; Feng et al., 2010; Johnston et al., 2010; Li et al., 2010; Marz et 

al., 2008; Planavsky et al., 2011; Poulton et al., 2004; Poulton et al., 2010; Xiao et al., 2012) has 

found that enrichments in sediment iron content may also develop during ferruginous 

depositional conditions. Under ferruginous conditions the additional iron flux is the result of 

water-column formation of unsulphidised minerals, such as ferrous carbonates (e.g., siderite) 
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and/or ferric (oxyhydr)-oxides (e.g. ferrihydrite). These minerals may readily react with 

dissolved sulphide, and are commonly partially sulphidised during diagenesis. In general the 

tendency is for sulphidic iron enrichments to be dominated by pyrite, whereas ferruginous 

conditions tend to keep a significant proportion of the authigenic iron minerals unsulphidised 

(Canfield et al., 2008; Poulton et al., 2004). 

 

1.5 Structure of thesis 

This thesis is written as two chapters: an introduction, which summarises the problem 

investigated, provides a detailed regional geology, outlines the geochemical concepts involved, 

and provides a description of the thesis structure. This is followed by a draft of a scientific 

journal article intended for submission to Chemical Geology. The text, figures and reference 

styles are in compliance with the format of Chemical Geology. All geochemical data are 

presented in Appendix A. 

 

1.6 Statement of responsibilities 

The thesis as presented includes one journal paper with co-authors. The candidate performed all 

of the analytical research, prepared all of the samples for analysis, performed all laboratory work 

up to submission for analysis, and wrote the first draft of the thesis. Drs. E.C. Turner and B.S. 

Kamber designed the project, provided supervision, guidance, and advice during the research, 
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and edited the penultimate versions of the papers and thesis. Sample collection was undertaken 

by E.C. Turner, and solution analysis was performed by B.S. Kamber and the Ontario 

Geoscience Laboratories (GeoLabs). 
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1.7 Figures 
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Figure 1. Geological context of the Little Dal black shale. (A) The “Canfield ocean” timeline 

(Canfield, 1998; Canfield et al., 2008) proposed that widespread anoxia in the lower part of the 

global water column persisted to at least 540 Ma. At 1800 Ma the deep ocean became dominated 

by H2S rather than Fe, ending the deposition of banded iron formation (BIF). At ~700 Ma the 

deep oceans are suggested to have returned to a ferruginous state, allowing once again deposition 

of BIFs, before reaching present day deep-ocean oxygenation. (B) Location map of the study 

area in Northwest Territories, Canada. (C) Distribution of shallow- and deep-water environments 

of the Silverberry and laterally equivalent Stone Knife Formations during deposition of black 

shale, Little Dal Group, based on Aitken et al. (2011). Isolated pink circle is Stone Knife 

Formation inlier in Yukon (Turner, 2011). (D) Stratigraphic section through the Mackenzie 

Mountains Supergroup and overlying Windermere Supergroup. Formal names for the formation-

scale units of the Little Dal Group (above the section) are from Turner and Long (2012). 

Radiometric dates are from Heaman et al. (1992), Leslie (2009), and Powell and Scheider 

(Powell and Scheider, 2013).  
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Figure 2. Exposure and stratigraphic context of black shale in the Stone Knife Formation, Little 

Dal Group. (A) and (B) Exposure of Stone Knife Formation layered strata and associated deep-

water reef near Stone Knife River. Subdivisions (LD2-4) of the Stone Knife Formation 

correspond to transgressive-regressive packages (Turner and Long, 2008). The black shale 

interval (upper part of lower LD2) analysed in this paper is highlighted in (B) and (C). The lower 
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part of the Stone Knife Formation is not exposed at this location. (C) Strata exposed in (A) and 

(B) form part of composite section 92-SKR (Turner and Long, 2008). (D) Paleogeographic 

reconstruction of the transgressive phase of Stone Knife Formation member 2, showing sea-floor 

lithofacies, relative disposition of water-column interfaces, faults that were active during 

deposition of LD2 transgressive phase, limited distribution of black shale and reefs, and location 

of studied section JS. Diagram is modified after Turner and Long (2008). 
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2.1 Abstract 
Black shale in the Little Dal Group (ca. <817 Ma), Mackenzie Mountains Supergroup (<1005 
Ma; >779 Ma), was deposited during the early Neoproterozoic, and is one of the few known 
black shale deposits from this crucial time in Earth’s evolutionary history. Relative iron 
enrichment (FeT/Al) and conventional iron speciation (DOP), along with enrichment in 
molybdenum, total sulphur, and total organic carbon, were studied. Iron systematics (FeT/Al >0.5 
and DOP <0.80) indicate ferruginous, anoxic, and possibly oxic bottom-water conditions over 
the time of deposition of the entire black shale unit. The enrichment factors of several of the 
authigenic redox-sensitive trace elements (U, Mo, V) are strongly correlated, and appear to be 
related to both the FeT and the organic carbon content of the black shale. Molybdenum 
enrichment (<10 ppm) is limited, which is in very good agreement with data from 
Mesoproterozoic black shales, but is much lower than Mo enrichments in Paleozoic black shales 
(typically >100 ppm). Several black muddy siltstones yielded similar results, but authigenic iron 
was greatly overwhelmed by siliciclastic sedimentation. These new data support the theory that 
ocean bottom-waters returned from sulphidic to ferruginous prior to development of oxygenated 
conditions in the Ediacaran open ocean. This study documents a predominantly open-marine 
basin that was characterised by ferruginous conditions, similar to Archean and early 
Paleoproterozoic conditions, with brief intervals when oxic conditions developed. 
 
 
2.2 Keywords: 
Paleo-redox conditions 
Neoproterozoic 
Iron speciation 
Molybdenum 
Ocean chemistry 
Black shale 
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2.3 Introduction 

Paleoredox conditions of the ancient ocean are a vital component in understanding ocean 

chemistry and the evolution of early life. During the Neoproterozoic (1000-541 Ma), the Earth 

underwent dramatic climatic changes, which included multiple glaciations (Hoffman et al., 1998) 

and a proposed change from sulphidic, to ferruginous, and eventually to fully ventilated and 

oxygenated ocean conditions (Canfield, 1998; Canfield et al., 2008). These climatic changes 

would have had dramatic effects on evolution: iron geochemistry, along with sulphur isotope 

data from Australia, Canada, China, and Oman, suggest a stepwise oxygenation of the Ediacaran 

ocean that would have promoted the evolution of early aerobic life (Canfield et al., 2007; Fike et 

al., 2006; Komiya et al., 2008; Maruyama and Santosh, 2008; Poulton and Canfield, 2011; Scott 

et al., 2008).  

 

One of the early models for Protoerozoic redox evolution, the ‘Canfield ocean’ proposed that 

global open-ocean anoxia persisted to at least 540 Ma (Fig. 1A; Canfield, 1998; Canfield et al., 

2008). According to this model, after the Great Oxidation Event at approximately 2,400 Ma, the 

ocean underwent a gradual compositional shift from a ferruginous to a sulphidic state. Fully 

sulphidic conditions dominated by approximately 1,800 Ma, bringing to an end the deposition of 

banded iron formation (BIF; Canfield, 1998). The deep ocean then apparently returned to a 

ferruginous state around 700 Ma, allowing for renewed deposition of BIFs. Eventually, the ocean 

became fully oxygenated, without reverting to a sulphidic or ferruginous state (ca. 540 Ma; 

Canfield, 1998; Canfield et al., 2008). More recent work suggests a more complex evolution than 

the “Canfield ocean” hypothesis (e.g., Planavsky et al., 2011), requiring models accommodating 
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both ferruginous and sulphidic oceans. Specifically, a number of studies (e.g., Baldwin et al., 

2012; Canfield et al., 2008; Johnston et al., 2010; Li et al., 2010; Poulton and Canfield, 2011; 

Poulton et al., 2010) have identified extensive evidence for widespread, ferruginous deep-ocean 

conditions and only sporadic evidence for sulphidic conditions, prior to ~0.58 Ga, when 

widespread deep-ocean oxygenation took place (Canfield et al., 2007). These studies suggest a 

deep ocean dominantly in a ferruginous state, but with oxygenated near-surface waters, and a 

wedge-shaped, persistent or transient, sulphidic zone. This new model serves as a useful 

discussion point for ancient redox studies. 

 

Proterozoic black shale (fissile, black, sulphide-bearing, organic-rich mudstone) units are of 

particular interest in reconstructing paleoredox evolution because they are capable of recording 

critical events in ocean geochemistry. Currently there is a limited amount of black shale data 

from the early to middle Neoproterozoic, which severely limits the understanding of this critical 

time. The reason for the paucity in data is that very limited black shale from this time interval is 

preserved, meaning that the rare black shale successions that are known from this time are 

especially critical to understanding early to middle Neoproterozoic ocean composition. The 

Stone Knife Formation of the Little Dal Group (Mackenzie Mountains Supergroup; <1005 Ma; 

>779 Ma; Aitken, 1981; Heaman et al., 1992; Leslie, 2009; Turner and Long, 2012) contains one 

of the few known black shale deposits of early Neoproterozoic age (Fig. 2). The geochemistry of 

this black shale thus helps to fill a knowledge gap during a crucial part of the middle 

Neoproterozoic. 
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The redox status of ancient ocean bottom waters can be addressed via several proxies derived 

from black shale. The proxies do not yield exactly the same information (e.g. some address 

anoxia, others euxinia), and conflicting conclusions have been drawn from different redox proxy 

data. The proxies used in any given study depend on subject material, preservation status of the 

sedimentary rocks, analytical capacity, and the ability to compare results of different studies can 

be complicated by the differences among the proxies. In cases where different proxies yield 

conflicting results, it can be difficult to determine whether the proxies truly indicate a 

meaningful contrast, whether they are fundamentally unreliable, or whether the material analysed 

was inappropriate (i.e., not truly black shale). Unfortunately, the published literature on ancient 

redox conditions also contains many misleading datasets obtained from material not suitable for 

the analytical techniques employed. 

 

One basic measure of ancient redox status is FeT/Al, which evaluates the proportion of 

authigenic Fe relative to the volume of siliciclastic sediment, and provides a measure for 

dissolved oxygen concentration of bottom water (Lyons and Severmann, 2006). When applied as 

a redox proxy, FeT/Al is understood to indicate oxic conditions when the ratio is below 0.5, and 

anoxic conditions above 0.5. Sulphidic conditions commonly have FeT/Al values above 0.6, but 

this is not a conclusive measurement as a significant siliciclastic sedimentation rate can increase 

the threshold for oxic sediments and decrease the limit for sulphidic sediments (Lyons and 

Severmann, 2006).  A number of recent studies have suggested to supersede the FeT/Al proxy in 

favour of other more sensitive measurements of iron speciation but their validity relies on 

perfectly preserved apportioning of iron from sediment to sedimentary rock. 
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Degree of pyritisation (DOP), the ratio of Fe in pyrite to that in pyrite and in phases soluble in 

HCl (FePY/FePY+FeHCl), is considered to be a reliable proxy for redox status, although boundary 

values between redox states vary among studies and between ancient and modern materials (e.g., 

Raiswell et al., 1988; Lyons and Severmann, 2006). The proxy values used for ancient rocks has 

an oxic to anoxic/ferruginous boundary at 0.46 and an upper boundary indicating sulphidic 

depositional conditions at 0.75. DOP is a good proxy for ancient materials because it is 

unaffected by loss of reactive iron phases during burial alteration, but is commonly replaced by 

more sensitive proxies originally designed for use on modern sediments (Lyons et al., 2009; 

Raiswell and Canfield, 1998). 

 

Total organic carbon (TOC) is the organic (reduced) carbon remaining in rock; “high” TOC 

values are generally taken to indicate that fixation of C from biological sources was not matched 

by its respiration (decay) such that organic C was buried without being recycled in the biosphere. 

Organic carbon burial generally takes place under anoxic conditions, where bacterial decay is 

suppressed by the absence of free oxygen, and so TOC is a fairly simple proxy for redox 

conditions. The role of TOC in paleoredox studies is important because certain redox-sensitive 

elements bind preferentially to organic matter and can themselves be used as redox proxies. TOC 

values below approximately 2.5 wt.% indicate sediments deposited in a low-oxygen oxic 

environment, values up to approximately 10 wt.% indicate an anoxic environment, and values 

exceeding 10 wt.% indicate a complete depletion of benthic O2 and an accumulation of free H2S 

in the water column causing sulphidic conditions (Algeo and Maynard, 2004). 
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Highly reactive iron (FeHR) refers to the amount of iron bound in sedimentary sulphides, 

carbonates, and oxides. The ratio of FeHR to total iron (FeHR/FeT) is used as a measure of the 

redox status of the water beneath which a given sediment was deposited.  Studies of modern and 

Phanerozoic basins have shown that sediment deposited under a restricted, anoxic water column 

has FeHR/FeT ratios ≥0.38, whereas sediment deposited under an oxic water column has FeHR/FeT 

ratios of ≤0.22 (Poulton and Canfield, 2011; Poulton and Raiswell, 2002; Raiswell and Canfield, 

1998; Wijsman et al., 2001). Under certain circumstances, it is possible that anoxic conditions 

existed even if measured values of FeHR are between 0.22 and 0.38, because the FeHR pool may 

have become depleted during burial diagenesis or metamorphism, when unsulphidised iron-

bearing minerals may be converted to unreactive sheet silicate phases (Poulton and Canfield, 

2011). Furthermore, dramatic increases in sedimentation rate can mask water-column Fe 

enrichments (Canfield, 1998; Poulton et al., 2004). The details of FeHR enrichment are outlined 

in the shelf-to-basin shuttle review of Lyons et al. (2009). 

 

The FePY/FeHR ratio indicates the amount of FeHR that resides in pyrite versus the other 

biogeochemically available reservoirs (Raiswell and Canfield, 1998), and is an indication of the 

concentration of dissolved sulphide in the water from which a sediment was deposited. Modern 

sulphidic basins such as the Black Sea contain sediment with FePY/FeHR ratios ≥0.80, whereas 

ferruginous basins have sediment with FePY/FeHR ratios ≤0.80 (Anderson and Raiswell, 2004; 

Canfield et al., 2008; Poulton et al., 2004). März et al. (2008), working on Phanerozoic 

sedimentary rocks, found that the upper threshold for a ferruginous water column is 

approximately 0.7. Although FeHR/FeT and FePY/FeHR were not obtained in the present study, 
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these measures have been used in the redox assessment of other black shale deposits, and are 

addressed in the discussion below. 

 

Redox-sensitive elements are also used in redox studies of ancient sedimentary rocks. The 

various metals used have different redox behaviours, and so the use of each one may be subject 

to specific conditions. For example, although Mo is considered to be a good indicator of 

oxic/anoxic status, and can be used to identify sulphidic conditions, its relationship with sulphide 

is not simple. Other redox-sensitive elements that are commonly used include V and U. The 

relative redox-sensitive trace element concentrations are often reported as ‘enrichment factors’, 

which eliminates any possible detrital contribution of the element by normalising relative to a 

proxy for siliciclastic content. Enrichment factors can then be compared to possible controlling 

factors such as TOC (for elements that preferentially bind to organic matter) and DOP (for 

elements that preferentially combine with sulphide). 

 

Several studies (Canfield, 2004; Canfield et al., 2008; Scott et al., 2008) have suggested that 

sulphidic conditions were not the dominant state of the deep ocean in the mid-Proterozoic, but 

instead that the deep ocean was ferruginous. Canfield (2004) proposed that this chemical 

condition was due to the subduction of sedimentary sulphides, which would have lowered the 

mass of the Earth-surface sulphur pool. Scott et al. (2008) suggested that a nutrient-limiting 

feedback associated with molybdenum made sulphidic conditions unsustainable, and therefore an 

improbable condition for the dominant redox state of the deep ocean. A significant amount of 

data presented by Canfield et al. (2008) showed that the late Neoproterozoic deep ocean was 
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predominantly ferruginous, with a few instances of possibly localised sulphidic conditions. Feng 

et al. (2010) concluded that Neoproterozoic Datangpo Formation black shale was deposited 

under predominantly ferruginous conditions, with brief sulphidic and possibly oxic excursions. 

Johnston et al. (2010) also found that ferruginous conditions dominated late Neoproterozoic deep 

ocean sediment preserved in the Chuar Group of the Grand Canyon. Coupled with the data 

presented by Canfield et al. (2008), Johnston et al. (2010) proposed a model dominated by 

ferruginous conditions, but with variable to long-lived mid-depth sulphidic conditions that were 

similar to the ‘sulphidic wedge’ model proposed by Poulton et al. (2010) for the 1.8 Ga Rove 

Formation (Thunder Bay, Ontario). Li et al. (2010) developed a similar ‘sulphidic wedge’ model, 

but upon closer inspection of geochemical signatures from the Doushantuo Formation samples 

(Fig. 3), it is obvious that the majority of the samples analysed by these authors were not truly 

black shale. When such samples are excluded from the dataset, the evidence and data trends for 

the proposed model disappear. Xiao et al. (2012), working on similar sections in the South China 

Block, found that the lower Doushantuo Formation sediment was deposited in a non-sulphidic 

water column, but state that more data are required before a sulphidic wedge model can be 

confirmed. Working on different sections in the South China Block (Shiyantou and Yuanshan 

Formations), Och et al. (2013), proposed a stratified ocean model in which rising sea level led to 

an increase in the Mo budget and subsequent upwelling of sulphidic waters onto the 

predominantly ferruginous Yangtze Platform. Based on these disparate models, further work is 

required to resolve the evolving picture of the basin chemistry of the South China Block. The 

South China Block, along with other preserved Neoproterozoic basins, is an essential asset in 

determining the ancient ocean redox state and the implications for life at this time. Planavsky et 
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al. (2011) studied several black shale deposits, including the 1.64 Ga Barney Creek formation in 

the McArthur basin, the 1.64 Ga Lady Loretta formation in the Mount Isa basin, the 1.7 Ga 

Chuanlinggou Formation in northern China, the 1.45 Ga Belt Supergroup in the north-central 

USA, and the 1.1 Ga Borden basin in Arctic Canada. The majority of samples from these basins 

yielded a ferruginous signature, with only minor episodes in which sulphidic conditions were 

reached. A more recent, detailed study of the Arctic Bay Formation, in the Borden Basin (Turner 

and Kamber, 2012), found that that basin was in fact deposited under primarily sulphidic 

conditions.  

 

In summary, it is evident that the various proxies applied to the relatively few "black shale" 

occurrences have in some cases yielded conflicting information about the redox state of the 

Neoproterozoic ocean. This conundrum may be because of variable redox states, because 

information from black shale is not always totally reliable, because the deduced redox conditions 

only apply to a relatively isolated basin and not the open ocean, or because some studies were 

not performed on true black shales but instead on dark siltstone or calcareous shale. For example, 

close inspection of major element geochemistry from the Doushantuo Formation (Li et al., 2010) 

reveals that most of the samples were carbonates that had very low amounts of iron and 

aluminium, which in turn resulted in extremes in the iron speciation data. In contrast, the Stone 

Knife Formation, studied here, contains true black shale from a particularly crucial time in the 

Neoproterozoic. 
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This paper presents a detailed geochemical study of the black shale from the Little Dal Group, 

and compares it with other black shale deposits of Precambrian and Phanerozoic age. The study 

is based on major and ultra-trace element analysis, complemented by an analysis of the iron to 

aluminium ratio, and conventional iron speciation. Iron speciation and redox-sensitive trace 

metals (e.g., Mo) are used as proxies for ancient basin redox conditions.  

 

2.4 Geologic Setting 

Neoproterozoic strata of the Mackenzie Mountains, northwestern Canada, include the epicratonic 

Mackenzie Mountains Supergroup (Aitken, 1981; Long and Turner, 2012; Turner and Long, 

2012) and the rift to passive margin succession of the Windermere Supergroup (Fig. 1; Long et 

al., 2008; Narbonne and Aitken, 1995). The Little Dal Group is dominated by carbonate, 

evaporite, and fine clastic rocks, and forms the upper part of the Mackenzie Mountains 

Supergroup (Fig. 1; Aitken, 1981). The Little Dal Group is conformably underlain by the fluvio-

deltaic Katherine Group (Aitken et al., 1978; Long, 1977; Long and Turner, 2012) and is 

unconformably overlain by the Coates Lake Group (basal Windermere Supergroup; Aitken, 

1981; Rainbird et al., 1996; Young et al., 1982). The Little Dal Group has been subdivided into 

seven units (Fig. 1; Turner and Long, 2012) and outcrops throughout the Mackenzie Mountains 

with an average thickness of 2 km.  

 

The lowest formation-scale unit in the Little Dal Group is the Dodo Creek Formation, which is 

composed primarily of siltstone and sandstone that were deposited on a shallow-water shelf. It is 

conformably overlain by the Stone Knife and Silverberry Formations (Aitken, 1981; Batten et 
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al., 2004; Turner et al., 1997; Turner and Long, 2008; Turner and Long, 2012), which are the 

units most relevant to this study. The shallow-water Silverberry Formation in the southeast is 

composed primarily of dolomitic ooid and intraclast grainstone and stromatolites (Aitken, 1981; 

Batten et al., 2004). This lithofacies assemblage passes northwestward, crossing a boundary at a 

high angle to the paleo-basin margin, into the Stone Knife Formation (Aitken, 1981; Turner and 

Long, 2008). The deep-water Stone Knife Formation, the unit investigated in this paper (Figs. 2 

& 4), is composed primarily of thin-bedded lime mudstone, shale and siltstone (black, grey and 

red), and large microbial build-ups (Turner et al., 1997). Black shale in the Stone Knife 

Formation was deposited in the deepest zone of a tilted subaqueous half-graben, which formed 

between two transfer faults in a zone of crustal extension (Turner and Long, 2008) that limits its 

geographic distribution. Based on all available data, the small area identified herein appears to be 

the only one that contains true black shale (Aitken et al., 2011; Turner and Long, 2008). 

Conformably overlying both the Silverberry and Stone Knife Formations are shallow-water ooid 

dolograinstone and dolomudstone of the Gayna Formation. The remainder of the Little Dal 

Group is not relevant to the present study; only the Stone Knife Formation is known to contain 

black shale. 

 

The maximum possible depositional age of the Little Dal Group is provided by a detrital 

muscovite 40Ar/39Ar age of 817.8±0.9 Ma from the basal Dodo Creek Formation (Powell and 

Scheider, 2013), and by a youngest detrital zircon age of 1005 Ma from quartz arenite of the 

Katherine Group (U-Pb; Leslie, 2009). The minimum possible depositional age of the Little Dal 

Group is provided by a Pb-Pb age of 779 Ma on baddeleyite from a regionally continuous sill in 
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the Tsezotene Formation (Fig. 1), which has been interpreted as being coeval with dykes that 

cross-cut the Little Dal Group and with the “Little Dal basalt” (Heaman et al., 1992), a volcanic 

unit that locally overlies the Little Dal Group. The Stone Knife Formation has not been directly 

dated. In more general stratigraphic terms, it is important to note that the Stone Knife Formation 

underlies the ~720 Ma Rapitan Group banded iron formation by at least 2 km of strata belonging 

to the Little Dal and Coates Lake groups. By comparison with other Neoproterozoic black shales 

recently studied, the Stone Knife Formation is clearly older. 

 

2.5 Materials and Methods 

2.5.1 Samples 

2.5.1.1 Terrigenous Clastic Sediment 

Black shale and black muddy siltstone samples were collected for this study from the JS section 

of the Stone Knife Formation west of the Stone Knife River (equivalent to part of composite 

section 92-SKR of Turner and Long, 2008, and “Flank Gully” section of Aitken et al., 2011; Fig. 

1C; NTS 106A, 64°47’ N, 129°40’ W). Samples were collected from a steep slope underlain by 

very gently dipping black shale and black siltstone near the base of Member 2 of the Stone Knife 

Formation (Turner et al., 1997; Turner and Long, 2008). The base of the shale interval is not 

exposed at this location but other work indicates that the black shale interval may be as much as 

85 m thick in a poorly exposed drift-covered section nearby (Turner, 1999). The possibility of 

post depositional alteration was addressed and there is no significant evidence to suggest that this 

is a matter of concern at present. Deglaciation of the Mackenzie Mountains took place between 
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~18 and ~12 ka (Dyke, 2004), and so it should be understood that the material sampled has 

probably experienced a small degree of modern weathering. To minimize the influence of 

modern weathering, a shallow pit was excavated (~30 – 50 cm) for each sample and a large 

amount (ca. 1 kg) of material from a thin stratigraphic interval (1 – 3 cm) was removed using a 

pocket knife or rock pick. The freshest possible chips of shale were isolated for high-precision 

ultra-trace element and highly reactive iron analysis at Laurentian University. Elements that are 

typically mobile under modern weathering conditions (e.g., U) show no significant loss, 

indicating that the data in this study are robust. In addition, three strongly weathered yellow 

shale layers were also included in the sample set to assess the effects of weathering. 

 

2.5.1.2 Sample Preparation 

Thirty-five samples (~1.0 kg) were crushed using a hardened steel mallet, and from this a small 

sample, devoid of visible weathering, was hand-picked. The non-weathered material was 

pulverised to a +6 phi size and homogenised in a hardened steel percussion mill, which was 

cleaned thoroughly between samples to prevent cross-contamination. 

 

2.5.2 Trace Element Analysis 

The digestion and solution preparation procedures are similar to those described in Babechuk et 

al. (2010). All samples were digested using a low-pressure, closed beaker attack. Aliquots of the 

sample and rock standards weighing 100 mg were digested in Teflon beakers on hotplates at 

130°C. Procedural blanks were prepared for each batch of samples. All acids used for the 

digestion were purified through a sub-boiling distillation process to minimize blank contribution. 
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Samples were attacked with 2.5 mL of concentrated HF acid and 1.0 ml of concentrated HNO3 

for 60 hours and then dried down. Upon dry-down, 1 mL of concentrated HCl was added to each 

beaker to further attack the remaining carbonaceous material. The HCl was then dried down and 

residues converted using concentrated HNO3. The samples were evaporated to dryness once 

more and dissolved into a final 3N HNO3 stock solution. Solutions were transferred to 

transparent polystyrene tubes, and inspected for residual fluorides and undissolved refractory 

minerals. Other than a residual carbonaceous flocculate suspended in some sample solutions, no 

refractory minerals or fluorides were noted. In preparation for ultra-trace analysis, the solutions 

were transferred to pre-cleaned polypropylene test tubes, an internal standard was added, and the 

samples were diluted with Milli-Q water to yield a 2% HNO3 solution with dilution factors of 

3,000. Samples were analysed at Laurentian University on a Thermo XSeriesII inductively 

coupled plasma mass spectrometer (ICP-MS) using the analytical procedures described in Eggins 

et al. (1997) and the modifications outlined in Kamber et al. (2005) and Kamber (2009). A full 

suite of trace elements for 32 Little Dal black shale samples was analysed as part of two separate 

experiments. For each batch of samples the calibration standards were 2,500x dilutions of two 

separate digestions of W-2 analysed at the start of each experiment run. The preferred calibration 

concentrations for W-2 have been published previously (e.g., Babechuk et al., 2010; Kamber et 

al., 2003; Marx and Kamber, 2010), and can be found in the Supplementary Information. The 

full trace element data for each sample are also presented in the Supplementary Information. An 

abbreviated version, with the most relevant data is reported in Table 1. 
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In addition to the black shales, each experiment batch included a digest of the USGS Cody Shale 

standard (SCo-1) to establish the accuracy and precision of the sample preparation and analysis. 

Siliciclastic sedimentary rocks may contain refractory heavy minerals such as zircon, which are 

resistant to the low-pressure chemical digestion procedure outlined above. From analyses of 

SCo-1 in previous studies, in the laboratory, it was apparent that the beaker digestion does not 

liberate all of the Zr, Hf, HREE, Ti, and Cr, as compared to a high-pressure bomb digest (Marx 

and Kamber, 2010). The analyses of all other lithophile elements and metals, however, compared 

well between the two digestion procedures. In the supplementary information, the data from the 

SCo-1 digest that accompanied each experiment batch are reported in addition to the average of 

the beaker and bomb digests obtained by the lab previously. In the case of the Little Dal black 

shale, the lack of visible residual minerals suggests that the low-pressure digest was successful at 

dissolving all of the mineral phases, and that the underestimation of Zr, Hf, and the REE has not 

significantly influenced the reported data. This conclusion is further supported by constant ratios 

of Zr/Hf in the black shale (Table 1). To demonstrate the reproducibility of the low-abundance 

lithophile elements using the low-pressure digest, the long-term average for the depleted basalt 

standard BIR-1 is also reported in the Supplementary Information.    

 

2.5.3 Major Element Analysis 

The major elements other than silicon were determined by ICP-MS using a more diluted 

(18,000x) aliquot of the original stock solution, which allows direct comparison for the Fe 

speciation data. The internal standards and operating procedures were the same as those 

described in section 3.2 for the trace element analyses. The data were calibrated using the 
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average of two digests of W-2 at the same dilution factor as the samples, to matrix-match the 

solutions; the certified USGS values were used for the calibration. Dilutions of SCo-1 and the 

more widely analysed USGS standards BCR-2 and BHVO-2 were also run as part of the major 

element experiment for the purpose of quality control (see Supplementary Table 1). The major 

element oxide determinations for BCR-2 and BHVO-2 are within 3% of the certified USGS 

values, with the exception of P2O5, and deviate by less for most of the elements. The accuracy of 

the major element determinations for SCo-1 relative to the certified USGS values is lower, but 

still within acceptable limits: the major element oxide values were within 20% or less of the 

certified USGS values for the first experiment batch and between 4 and 12% for the second 

experiment. The lower reproducibility of the SCo-1 standard almost certainly reflects a weigh-in 

mistake during preparation of the dilution. One consequence of analysing the major elements on 

the ICP-MS from an HF-HNO3 digest is the inability to determine the Si concentration due to its 

volatility as a fluoride during the digestion procedure. For this reason, the major elements 

reported in Table 1 for the Little Dal black shale do not include SiO2. 

 

Carbon and sulphur contents were measured at the Ontario Geoscience Laboratories (GeoLabs). 

The elements were measured via infrared absorption as carbon and sulphur oxides generated 

during combustion in an oxygen-rich environment. Determination of the carbonate content and 

calcite/dolomite ratio was also performed at the GeoLabs using a Chittick apparatus. The total C 

was used in combination with the percentage of calcite and dolomite in the sample to determine 

the total organic carbon composition (TOC) of the black shale samples. All of the 

aforementioned values are reported in Table 1. 
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2.5.4 Degree of Pyritisation and Associated Trace Metal Analysis 

Most studies of modern sediment and unweathered, well-preserved black shale employ a 

sequential extraction for iron speciation. Here, the traditional, non-sequential 12 N HCl boil 

degree of pyritisation (DOP) extraction technique for ancient sedimentary deposits 

(Roychoudhury et al., 2003), described in Raiswell et al. (1988; 1994) and Poulton and Canfield 

(2005) was used for the liberation of FeHCl for two reasons. First, because the paleomagnetic 

signature of the Little Dal black shale contains secondary components (Park, 1981) that must 

affect iron speciation, since the shale does not preserve its original mineralogy. Second, because 

an additional objective of this study was to attempt a determination of redox-sensitive trace 

metals in the HCl-digested fraction. The sequential extraction (Poulton and Canfield, 2005) uses 

a large number of chemicals and apparatus that cannot be easily cleaned to the level of purity 

required for ultra-trace element analysis. The desire to analyse the trace metals in the HCl extract 

necessitated a few small modifications to the conventional DOP method. Most importantly, 

triple-distilled acid and Teflon beakers were used instead of standard glass test tubes because 

elements can be leached from the glass and add significant contaminants. A precisely weighed 

100 mg aliquot of sample was transferred into a Teflon beaker. A batch of concentrated, triple-

distilled HCl was brought to a boil and added as a 1 mL aliquot to each beaker, which was 

subsequently sealed and placed on a hotplate for a full one-minute acid attack. The samples were 

then quenched by placing the sealed beakers in dry ice to avoid digestion of any of the unreactive 

silicate phases. The supernatant was centrifuged to separate the unreacted silicate phases from 

the HCl solution and transferred to pre-cleaned polypropylene test tubes. This solution was 

weighed and transferred back into a Teflon beaker to be dried down and converted using HNO3, 
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in the same manner described in the trace element analysis section. A final 2% HNO3 stock 

solution was diluted by 250x for elemental analysis by ICP-MS following the same procedure as 

for the whole rocks. The Fe2O3 from this HCl extraction was used in combination with the 

Fe2O3(T) and S data to calculate the various species of Fe (reported in Table 1).  

 

2.6 Results and Discussion 

2.6.1 Major element geochemistry 

The Little Dal black shale samples plot in a tight cluster on an Al2O3, MgO, CaO ternary plot, 

indicating that there is very little variation in the major element composition of the black shale 

(Fig. 3A). Three black shale standards, United States Geological Survey (USGS) SDO-1, and 

Vinogradov Institute of Geochemistry (VIG) SCHS-1 and SLg-1, along with USGS marine shale 

SCo-1 and carbonate-rich shale SGR-1, were compared to the Little Dal black shale (Fig. 3A). 

The Little Dal black shale samples plot close to the black shale standards but have a somewhat 

greater proportion of Al2O3, indicating that the sediment supplied to the basin had experienced a 

greater degree of weathering than the standards, or that the shale standards contain a greater 

proportion of CaO. The Little Dal black shale is locally interbedded with rare carbonate rocks, 

and so calcite and dolomite were also plotted (Fig. 3A) to verify that the samples were not 

contaminated with calcareous material, or that black carbonates had not been sampled 

inadvertently. 
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2.6.2 Characteristics of sediment sources for Little Dal Group 

Prior to detailed discussion of redox-sensitive trace metals, it is important to examine rare earth 

element + yttrium (REE+Y) patterns, Nb/Ta, Zr/Hf, and Y/Ho ratios, to determine the sediment 

source of the black shale, and to establish that the source remained constant throughout 

deposition. Consistency of the sediment source is an important factor when considering trace 

metal enrichments, because change in apparent enrichment may be related to variations in 

sediment supply. Normalised REE+Y patterns and elemental ratios such as Nb/Ta, Zr/Hf, and 

Y/Ho can be used to distinguish sedimentary sources; significant changes in these ratios likely 

reflect a change in sediment source. The shale-normalised REE+Y pattern for the Little Dal 

black shale (Fig. S1) is relatively flat, which is expected of sediment derived from weathering of 

upper continental crust (UCC). There is a negative Eu anomaly, which is consistent with 

extensive weathering of the precursor material via loss of plagioclase (e.g., Marx and Kamber, 

2010). The high field strength element ratios are very constant through the profile. The Nb/Ta 

ratio averages 12.81±0.46, the Zr/Hf ratio yields an average of 34.76±0.53, and the Y/Ho 

average is 25.69±1.09. All of these values are within the range of typical upper-crustal averages. 

The flat REE+Y pattern and the small spread of the conservative element ratios suggest not only 

that the sediment source remained stable throughout deposition, even though there is a minor 

grain-size distribution change over the depositional interval, but also that variations in trace 

metal concentrations cannot be attributed to a change in sediment source.  

 

The only notable difference between shale and siltstone samples is the level of total organic 

carbon (TOC). The shale samples have an average TOC of 4.79 wt% (maximum value 8.05 
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wt%), whereas the muddy siltstone samples have an average TOC of 1.91 wt% (maximum value 

5.22 wt%) (Fig. 5A). Both sediment types are organic-rich as compared to material in other black 

shale studies (Canfield et al., 2008; Feng et al., 2010; Johnston et al., 2010);	  approximately half 

of the samples are in the low-oxygen oxic range and half are in the anoxic range. Most of the 

shale samples are above the 2.5 wt.% threshold for anoxia, and most of the siltstones fall below 

this threshold into oxic conditions. However, the minimum TOC criterion may not apply to the 

siltstone samples due to the increased sedimentation rate. 

 

2.6.3 Iron speciation 

Iron concentrations are relatively constant throughout the stratigraphic interval studied, with a 

total iron (FeT) average of 4.26±0.93 wt.% (maximum value 6.44 wt.%). These values compare 

well with those from other black shales (Canfield et al., 2008; Feng et al., 2010; Johnston et al., 

2010). The FeT consists of two components: unreactive iron (FeU), contributing on average 40% 

of the Fe, and FeHCl, contributing the remaining 60% of the Fe on average. The FeHCl pool was 

also determined to be, on average, 25% held in pyrite (FePY), and 75% in the oxide and carbonate 

phases. The FePY concentration ranges from 0.01 wt.% to 1.65 wt.% throughout the studied 

interval, with the highest enrichments in the lowest 15 m and the least enriched samples in the 

15-30 m interval. 

 

Ratios of iron species, for example FeT/Al, FeHR/FeT, FePY/FeHR and DOP, give valuable 

information on the redox state of ocean systems. At the present time it is unclear whether the 

more classic measures of Fe speciation (FeT/Al and DOP) yield more valid conclusions than the 
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more sophisticated sequential extraction technique (FeHR/FeT and FePY/FeHR), because the latter 

was developed for unconsolidated sediment, whereas the former has been successfully applied 

only to rocks. The one very obvious requirement for being able to analyse FeHR is that the 

sedimentary rock carries a purely primary magnetisation, which ensures that all Fe is still in 

near-original state. The Little Dal Group is known to carry both a primary and secondary 

magnetisation (Park, 1981), and so this criterion is not met by the studied samples.  

 

The most cautious approach for the Little Dal black shale is to interrogate the section initially 

with FeT/Al and DOP. Trace metal concentrations in black shale have varied through time, a 

phenomenon that has been attributed to the oxygenation of the atmosphere and increased 

continental weathering through time (Scott et al., 2008). The trace metal concentrations in shale, 

particularly those that are redox-sensitive, are strongly affected by the oxidation state of the 

paleo-atmosphere, the composition of the sedimentary rocks being deposited and the redox status 

of the overlying water column.  

 

In the Black Sea, a modern sulphidic basin, the FeT/Al ratio ranges from 0.6 to 1.2. Ancient 

sulphidic basins generally have FeT/Al ratios >1, and can have values as high as 13, whereas 

ancient black shales deposited under oxic conditions have FeT/Al ratios up to 0.5 (Feng et al., 

2010; Lyons and Severmann, 2006; Raiswell et al., 2008; Raiswell et al., 2011; Reinhard et al., 

2009). The Little Dal black shale and siltstone samples have FeT/Al values from 0.29 to 0.85, 

with an average of 0.51 (Fig. 5B). This range is very similar to the average FeT/Al for Mud of 

Queensland (MUQ), an UCC proxy derived from C-rich modern alluvial sediment (Kamber et 
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al., 2005). The Little Dal black shale samples have FeT/Al values from 0.36 to 0.85 (average 

0.58); the majority of samples are above the oxic threshold, indicating that they were deposited 

beneath an anoxic water column (Fig. 5B). The black muddy siltstone samples have lower 

FeT/Al values, ranging from 0.29 to 0.68 (average 0.47; Fig. 5B). The majority of the black 

siltstone samples fall into the range indicating oxic conditions, but several are in the anoxic field. 

The Little Dal Group has been largely unaffected by modern weathering and is 

unmetamorphosed, indicating that there has not been a significant gain or loss of Al. Low FeT/Al 

can develop under ferruginous conditions when authigenic Fe is volumetrically overwhelmed by 

a comparatively high siliciclastic supply (Lyons and Severmann, 2006). This may be the origin 

of the lower FeT/Al values in the coarser-grained (silty) samples. If a comparatively high 

sedimentation rate overwhelmed the authigenic Fe produced under anoxic, ferruginous 

conditions, material that had been deposited under anoxic conditions could yield misleading oxic 

results. This problem highlights the importance of ensuring that shale samples used in redox 

studies are truly black shale rather than silty shale or siltstone. Even though many of the Little 

Dal samples yielded anoxic FeT/Al signatures, the relatively low FeT/Al suggests that the 

sediment was not deposited under a predominantly sulphidic water column, as would be 

predicted by the Canfield (1998) and Canfield et al. (2008) ocean model. 

 

This study places special emphasis on degree of pyritisation (DOP; Raiswell et al. (1988) the 

ratio of FePY/ (FePY + FeHCl). Sediment deposited beneath a sulphidic water column yields DOP 

>0.8. When the pyrite formed by the shuttle-enrichment of iron (Lyons and Severmann, 2006) is 

overwhelmed by significant siliciclastic sedimentation, the DOP value can fall below the 0.8 
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threshold, yielding misleading data. The samples from the Stone Knife Formation have DOP 

values ranging from 0.002 to 0.458, with an average ratio of 0.188 (Fig 5F). Both black shale and 

black muddy siltstone fall well below the sulphidic threshold, but it should be noted that, as 

indicated by Lyons and Severmann (2006), coarser material (deposited under conditions of 

increased siliciclastic sedimentation) has a lower average DOP than does pure black shale. The 

black shale samples have an average ratio of 0.21, and the black muddy siltstones have an 

average ratio of 0.17 (Fig 5F). The unexpectedly low DOP values may suggest that sulphide 

production by sulphate reduction in the Little Dal sediments was slow, and that pyrite formation 

was limited by the availability of reactive iron (Canfield et al., 1992). This would suggest that all 

the iron oxyhydroxides and oxides were not consumed in pyrite formation and that free H2S was 

not in the water column. The low DOP ratio, suggesting a non-sulphidic basin, is in agreement 

with the FeT/Al values. 

 

Based on the speciation of Fe, elevated FeT/Al, and low DOP, the depositional environment of 

the Little Dal black shale was predominantly ferruginous with oxic episodes, rather than 

sulphidic (Lyons et al., 2009). This implies that the Little Dal black shale was deposited in either 

a shallow-marine setting that at times was ferruginous, or a deep ferruginous basin with oxic 

episodes. The sedimentology and stratigraphy of the Stone Knife Formation strongly support a 

comparatively deep basin (below photic zone and storm wave-base; Turner et al., 1997; Turner 

and Long, 2008). Deposition of the Stone Knife Formation took place under comparatively 

normal, open-marine conditions, with no significant restriction of water circulation; the 

succession contains no evidence of evaporite minerals, indicating that no physical barrier limited 
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circulation of marine water into the basin, that fetch would not have been limited, and that storm 

wave-base was not constrained by basin configuration. The four members of the Stone Knife 

Formation were deposited as four transgressive – regressive cycles that are shale- or siltstone-

dominated in their lower, transgressive parts and lime-mudstone-dominated in their upper, 

regressive parts (Turner et al., 1997; Turner and Long, 2008). The transgressive interval of Stone 

Knife Formation Member 2 contains the deepest-water lithofacies of the entire Little Dal Group, 

represented by the black shale that is the focus of this study (Figs. 1, 2D). The Stone Knife 

Formation above the top of Member 1 was deposited entirely below the photic zone and almost 

entirely below storm wave-base: level-bottom strata of Stone Knife Formation Members 2 and 3 

in the black shale location contain no microbialites and regionally contain only local, rare 

hummocky cross-stratification (HCS), in the shallowest parts of regressive cycle tops (Turner, 

1999; Turner et al., 1997), suggesting a hypothetical minimum water depth of approximately 50-

70 m for a sea-floor under a comparatively clear water column. The black shale location is 

spatially associated with large, deep-water reefs (Fig. 2). Geometric relations between the reefs 

and surrounding layered strata of the Stone Knife Formation (Turner et al., 1997) suggest that the 

basin floor was at some times >100 m below the reef growth surface, which was in the middle of 

the photic zone during most stages of reef growth, based on stromatolite morphology, associated 

sediment composition and sedimentary structures in the reefs (Turner et al., 2000). Reef talus 

blocks that fell from reefs during shale deposition of Member 2 are up to several tens of metres 

in diameter, providing another assessment of minimum basin depth. This collective evidence 

indicates paleo-water-depth of at least 100 m during deposition of Stone Knife Formation 

Member 2 black shale.  
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The ferruginous state of deep water during deposition of this part of the Little Dal Group 

indicates that the mid-Neoproterozoic ocean, by the time of Little Dal shale deposition, may not 

have been sulphidic, as was proposed by Canfield (1998) and Canfield et al. (2008). These 

findings from the Little Dal black shale are consistent with recent work published by Feng et al. 

(2010), Johnston et al. (2010), Planavsky et al. (2011), and Sperling (2013). The Datangpo black 

shale of the South China Block, deposited between 663 and 654.5 Ma (Zhang et al., 2008; Zhou 

et al., 2004), shows fairly constant ferruginous paleoredox conditions, with the exception of 

several oxic excursions that generated FeHR/FeT ratios of <0.38. The interpretation of the 

Datangpo black shale is in good agreement with that of the Little Dal black shale: predominantly 

ferruginous conditions with the exception of several brief intervals during which sulphidic 

conditions developed (Feng et al., 2010). By comparison, black shale in the Chuar Group, 

U.S.A., deposited at approximately 742 Ma (Karlstrom et al., 2000), shows slightly more 

complex ocean paleoredox conditions than does the Little Dal black shale. Data published by 

Johnston et al. (2010), which contains Chuar Group black shale data previously published by 

Canfield et al. (2008), shows a basin that had significant depositional intervals of both anoxia 

and oxia. The significant thickness of Chuar Group black shale with FeHR/FeT values <0.38 may 

record cyclic incursions of oxygenated water into an anoxic basin, or significant thicknesses of 

black shale deposited in an oxygenated, shallow-shelf setting. The remaining samples, with 

FeHR/FeT values >0.38, would have been deposited in a deeper zone, below an anoxic water 

column. The FePY/FeHR data of Johnston et al. (2010) showed that all of the samples studied had 

been deposited under ferruginous conditions (FePY/FeHR ratios <0.80). The data from Canfield et 

al. (2008) contain several samples high in the studied stratigraphic interval that were deposited 
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under sulphidic conditions (FePY/FeHR >0.80). The combined Chuar Group data suggest that that 

basin experienced both oxic and ferruginous conditions, and also that there was an interval late in 

basin development during which sulphidic conditions were reached. Additionally, the 800 Ma 

black shale of the Fifteenmile Group, Ogilvie Mountains, Canada, show similar paleoredox 

conditions as the Little Dal and Datangpo sediments. The Fifteenmile black shale indicates an 

oxygenated surface layer, down to storm wave base, overlying a generally anoxic deep basin. 

The deep basin had several fluctuations between mainly ferruginous and sporadic sulphidic 

conditions (Sperling et al., 2013). 

 

Other ferruginous basins appear to have experienced redox fluctuations. Black mudstones from 

the 1.64 Ga Barney Creek and Lady Loretta formations in the McArthur and Mount Isa basins, 

1.7 Ga Chuanlinggou Formation in northern China, and the 1.45 Ga Belt Supergroup in the 

north-central USA were found to have had prolonged intervals of a deep ferruginous water 

column with brief episodes approximating sulphidic conditions (Planavsky et al., 2011). The Mt 

Isa superbasin and the Belt Supergroup had several samples with significant iron enrichments 

and FePY/FeHR ratios above the 0.7-0.8 sulphidic threshold, indicating that sulphidic conditions 

may have been episodic. The interpretation for these mid-Proterozoic black mudstones is also in 

good agreement with the Little Dal black shale. In summary, the four older mid-Proterozoic and 

the two younger Neoproterozoic basins had paleoredox conditions that resemble those of the 

Little Dal black shale, although their geochemical histories, in certain instances, were more 

complex. The South China Block, Chuar Group, Mt Isa, and Belt basins experienced a wide 

range of redox conditions that included both brief sulphidic episodes and extended intervals of 
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oxia, which could be the result of changing basin architecture, or the effect of changing sea level 

that moved a ‘sulphidic wedge’ through the water column (Li et al., 2010). The Stone Knife 

Formation basin appears to have been ferruginous with oxic, rather than sulphidic, excursions. 

 

2.6.4 Trace elements and metal enrichment factors 

Calculation of enrichment factors (EF) allows for detailed analysis of metal enrichments 

throughout a given black shale succession, and relationships among different metals can be 

identified. With a stable sediment source, variations in trace metal concentration can be 

attributed to organic scavenging of metals, scavenging by sedimentary particles, or interactions 

with pore water (Lyons et al., 2009). To determine trace metal enrichments in the Little Dal 

black shale, EFs were calculated (Fig. 5C-E) by normalising the trace metal concentrations to Al 

and comparing them to the upper crust average MUQ: , where X 

represents the metal in question. Traditionally, EFs have been calculated by comparing Al-

normalised trace metals to the average shale values of Wedepohl (1971; 1991) (e.g., Feng et al., 

2010; Tribovillard et al., 2004), but in this study, MUQ was used because it removes from 

consideration both authigenic enrichment during deposition and supergene weathering. The 

FeT/Al ratio of MUQ is approximately 0.5, which is consistent with other averages of the UCC 

(Taylor and McLennan, 1985), and justifies the use of MUQ in calculating EFs for the materials 

used in this study. An EF >1 for the trace metal indicates enrichment relative to MUQ, whereas a 

value <1 indicates depletion.  

 

( ) ( )MUQMUQX AlXAlXEF ///=
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Molybdenum is of particular interest because it tends to have low background values and is a 

sensitive redox proxy for both local and global paleoredox. In the modern ocean, Mo is the most 

overly enriched transition metal. It occurs as the molybdate anion (MoO4
2-), which converts to 

thiomolybdate (MoO4-xSx
2-) or oxythiomolybdate ions (MoOxS4-x

2-) in environments with free 

hydrogen sulphide. These ions may then have interactions with organic matter or sulphide 

minerals and become incorporated into the minerals and accumulate in sediment (Erickson and 

Helz, 2000; Helz et al., 1996; Lyons et al., 2009; Tribovillard et al., 2004; Zheng et al., 2000). 

Marine molybdenum concentrations were relatively low during the Precambrian, modestly 

enriched during the Paleoproterozoic, and significantly higher from the Cambrian to the present 

(Fig. 6). According to the sulphidic ocean model, Mo enrichment in Proterozoic black shale was 

limited owing to constant burial of Mo and organic carbon, which decreased the oceanic Mo 

reservoir (Scott et al., 2008). Considering that the Little Dal black shale was deposited under 

ferruginous conditions during the early Neoproterozoic, and in keeping with other Proterozoic 

black shale, its Mo concentrations (Figs. 5C & 6) are significantly lower than those of 

Phanerozoic examples. This is in agreement with previously published values for Mo 

concentration, and indicates that the oceanic Mo pool at the time was limited (Alberdi-Genolet 

and Tocco, 1999; Caplan and Bustin, 1998; Cruse and Lyons, 2004; Dahl et al., 2011; Feng et 

al., 2010; Hatch and Leventhal, 1992; Hatch and Leventhal, 1997; Hirner and Xu, 1991; 

Leventhal, 1991; Mongenot et al., 1996; Och et al., 2013; Sageman et al., 2003; Scott et al., 

2008; Sperling et al., 2013; Werne et al., 2002; Yamaguchi, 2002). This condition is most readily 

explained by semi-continuous transfer of Mo into S-rich sediment that was accumulating in parts 

of the ocean. Molybdenum concentrations increased markedly at around 663 Ma (Scott et al., 
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2008), which may indicate a rise in the global ocean molybdate reservoir caused by oxidative 

weathering and a shift away from sulphidic shallow-water conditions.  

 

The markedly low Mo concentrations (maximum 7 ppm) in the Little Dal black shale do not 

mean that Mo is not enriched, because there is a strong correlation with many other trace metal 

enrichment factors (Fig. 5D-E). Iron speciation, trace metal enrichments, and TOC are proxies 

for the redox state of seawater (Fig. 5). In the present dataset, enrichment of Mo, U, and V 

covary. These trace metal enrichments coincide with elevated FeT/Al, and with increased TOC 

values (Fig. 5). The enrichment of these trace metals varies under certain conditions; Mo reacts 

to euxinic conditions, becoming enriched, whereas U and V do not. The enrichment of Mo, 

elevated FeT/Al, and TOC at the top of the succession also corresponds with elevated DOP 

values, suggesting that the water column may have been approaching sulphidic conditions during 

this interval. Confirming sulphidic conditions would require a full sequential extraction, but 

given that the Stone Knife Formation material is not completely unweathered, and does not have 

iron in its original species, as shown by its complex paleomagnetic signature, the necessary 

conditions for sequential extraction are not met. 

 

From the existing dataset, it can be gathered that generally, the samples with the highest DOP 

also have strong enrichments in the trace metals, including enrichment in Mo that deviates from 

U and V. These relationships suggest either that persistent oxic weathering took place on land, 

increasing the global availability of these trace metals, or that scavenging of these trace metals 

by organic carbon controlled metal enrichments in the black shale. Based on the model of Algeo 
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and Tribovillard (2009) the enrichment factors of Mo and U in the Little Dal black shale indicate 

that the sediment was deposited in an anoxic open-marine setting similar to the Eastern Tropical 

Pacific, with minor sill-restriction that was similar to that of the Cariaco basin, but not nearly as 

extreme (Fig. 7).   

 

The FeEF in the Little Dal sediment yields surprising results suggesting that there was an overall 

deficit in Fe compared to average UCC (Fig 8A). The Fe in the material studied is predominantly 

in the highly reactive phases, and although its concentration is highest in black shale and its 

depletion relative to UCC the least pronounced, the Fe concentration in the other two rock types 

is not significantly different. This indicates that the Little Dal sediments were not strongly anoxic 

and that there may have been episodes of deposition under an oxic water column. A possible 

cause for the unexpected depletion of Fe is the weathering status of the original source material. 

MUQ is weathered from an Fe-rich mafic source, whereas the Little Dal sediments would have 

been sourced from older exposed strata and cratonic granites from the present-day east.  

 

A novel aspect of this study is that several trace elements were also analysed in the highly 

reactive iron phase. Of those Mo, U, and V were of particular interest due to levels of enrichment 

and correlations with redox proxies in the whole rocks (Fig. 8). Results from the highly reactive 

iron phase analysis show that Mo has an association with pyrite, with a large proportion being 

held in the highly reactive phases liberated during the HCl extraction (Fig 9A,C, & 8B), and is 

the most enriched relative to MUQ (Fig. 8A). Although Mo is known to be shuttled to the sea-

floor with sulphur under sulphidic conditions, in the Stone Knife sediments it is more strongly 
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associated with TOC than with pyrite (Fig. 9B & D). Both FeT and DOP are low in Stone Knife 

sediments, and although sulphur was involved with the shuttle to the sea-floor, apparently 

sulphide was not involved with long-term sequestration in the sediment, due possibly to depleted 

levels of Fe. This outcome seems to strongly support the conclusions of Chappaz et al. (2013) 

that Mo is not held in highly reactive pyrite phases. Given that the multiple redox proxies do not 

indicate sulphidic water-column conditions, it is unclear why Mo enrichment occurred in the 

Stone Knife sediment. One possibility is that Mo may not require sulphidic conditions in order to 

be exported to the seafloor, and that instead low oxygen or ferruginous conditions may be 

sufficient for Mo removal. Thus, the redox behaviour of Mo may be more complicated than 

originally proposed (see also Scholz et al., 2013 & Chappaz et al., 2013) and may be explained 

by the strong association with TOC rather than with pyrite formed under euxinic conditions. 

 

It is clear that U and V enrichments are not associated with pyrite in the Stone Knife material, 

and only a small proportion is held in the highly reactive phases (Fig. 9E, G, I, K, & 8B), 

suggesting that the majority of U and V are held in silicate minerals. Relative to MUQ, both U 

and V are enriched (Fig. 8A), but they are most strongly enriched in the black shale, which may 

reflect a minor hydrogenous contribution relative to the clastic component. There is a weak 

correlation between U and TOC that is not present with V, suggesting a difference in redox 

behaviour whereby U was scavenged by organic matter but V was not. Both U and V covary 

with Mo (Fig. 5) but do not show the same levels of enrichment, or the strong association with 

TOC, suggesting that a different redox mechanism controlled their enrichment. This relationship 

requires further study. 
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2.6.5 Implications for paleoredox conditions 

Recent work on Proterozoic to early Paleozoic black shale formations has revealed a general 

trend of primarily ferruginous conditions, with isolated sulphidic areas, throughout this interval 

(Canfield et al., 2008; Feng et al., 2010; Johnston et al., 2010; Li et al., 2010; Och et al., 2013; 

Planavsky et al., 2011; Poulton et al., 2010; Sperling et al., 2013; Turner and Kamber, 2012; 

Xiao et al., 2012). A compilation of Proterozoic to early Paleozoic black shale FePY/FeHR helps to 

clarify the evolving perception of ocean chemistry at this time. Very few Neoproterozoic black 

shale units have FePY/FeHR >0.7 or DOP >0.8, and so most were not deposited under sulphidic 

conditions. Most black shale successions deposited during the Neoproterozoic were deposited 

under ferruginous conditions, and even though the early Cambrian does record an increase in 

sulphidic conditions, the majority of these shale units were deposited under a non-sulphidic 

water column.  
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2.7 Conclusions 

The material collected from the Little Dal Group is true black shale, with high TOC, moderate 

enrichment in redox-sensitive metals, and limited geographic extent. Black muddy siltstone 

samples are geochemically very similar to black shale samples, with the only major (and 

expected) distinctions being lower TOC and lower authigenic iron in the siltstone. This 

relationship highlights the importance of using only true black shale in redox studies, because 

misleading variability in paleoredox results can be produced by even subtle increases in 

siliciclastic sediment supply. Iron speciation ratios and Mo concentrations from the Little Dal 

samples indicate that early to mid Neoproterozoic (<817 Ma; >780 Ma) deep-ocean water 

conditions were ferruginous with episodic transitions to oxia. One stratigraphic interval yielded 

iron species ratios and trace element enrichment that may indicate a brief episode during which 

the lower water column was strongly anoxic; this may represent a short-lived excursion, or 

perhaps the migration of a sulphidic wedge relative to sea level or sulphate production in mid-

depth waters. These findings alone are not definitive regarding the sulphidic wedge model for 

ocean chemistry, but when combined with other studies (e.g., Baldwin et al., 2012; Canfield et 

al., 2008; Feng et al., 2010; Johnston et al., 2010; Poulton and Canfield, 2011; Poulton et al., 

2010) the evidence for a mid-depth sulphidic wedge is compelling. The geochemistry of the 

Little Dal black shale shows that the predominant redox structure of the early Neoproterozoic 

deep ocean was ferruginous with oxic episodes, and the findings of Poulton and Canfield (2011) 

stating that the late Neoproterozoic deep-water conditions were ferruginous rather than sulphidic, 

can be extended back into the early Neoproterozoic. 
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2.9 Figures 

 

Figure 1. Geological context of the Little Dal black shale. (A) The “Canfield ocean” timeline 

(Canfield, 1998; Canfield et al., 2008) proposed that widespread anoxia persisted to at least 540 

Ma. At 1800 Ma the deep ocean became dominated by H2S rather than Fe, ending the deposition 
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of banded iron formations (BIFs). At ~700 Ma the deep oceans are suggested to have returned to 

a ferruginous state allowing, once again, for deposition of BIFs before reaching present-day 

deep-ocean oxygenation. (B) Location map of the study area in Northwest Territories, Canada. 

(C) Distribution of shallow- and deep-water environments of the Silverberry (blue) and laterally 

equivalent Stone Knife formations (red, grey, and black) during deposition of black shale, Little 

Dal Group, based on Aitken et al. (2011). Isolated pink circle is Stone Knife Formation inlier in 

Yukon (Turner, 2011). (D) Stratigraphic section through the Mackenzie Mountains Supergroup 

and overlying Windermere Supergroup. Radiometric dates are from Heaman et al. (1992) and 

Leslie (2009).  
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Figure 2. Exposure and stratigraphic context of black shale in the Stone Knife Formation, Little 

Dal Group. (A) and (B) Exposure of Stone Knife Formation layered strata and associated deep-

water reef near Stone Knife River. Subdivisions (LD2-4) of the Stone Knife Formation 

correspond to transgressive-regressive packages (Turner and Long, 2008). The black shale 

interval (upper part of lower LD2) analysed in this paper is highlighted in (B) and (C). The lower 

part of the Stone Knife Formation is not exposed at this location. (C) Strata exposed in (A) and 

(B) form part of composite section 92-SKR (Turner and Long, 2008). (D) Paleogeographic 
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reconstruction of the transgressive phase of Stone Knife Formation member 2, showing sea-floor 

lithofacies, relative disposition of water-column interfaces, faults that were active during 

deposition of LD2 transgressive phase, limited distribution of black shale and reefs, and location 

of section JS. Diagram is modified after Turner and Long (2008). 
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Figure 3. Major element geochemistry of the Little Dal black shale. (A) Al2O3, MgO, CaO 

ternary plot for Little Dal black shale, as well as black shale standards SDO-1, SCHS-1, and 

SLg-1, including non-black marine shale SCo-1, carbonate-rich shale SGR-1, and elemental 
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concentrations of calcite, dolomite, ankerite, and magnesite. Due to very consistent trace element 

geochemistry, the Little Dal black shale samples plot in a tight cluster at >70% Al2O3, approx. 

15-20% MgO, and <10% CaO. Comparison of the shale standards and carbonate rocks with the 

Little Dal samples shows that the latter was not contaminated by calcareous material. The Little 

Dal black shale samples and the black shale standards do not overlap perfectly, perhaps owing to 

original compositional variations or to weathering. (B) Al2O3, MgO, CaO ternary plot for 

material from the Doushantuo Formation (unpublished data from Li et al., 2010). Comparison of  

Doushantuo Formation material with shale standards and carbonate rocks (A) shows that most 

samples do not plot near black shale or other shale standards, but that the majority of the samples 

overlap with calcite, ankerite, and dolomite. When this is taken into account the trends and 

evidence for the ‘sulphidic wedge’ model proposed by Li et al. (2010) are no longer evident. 
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Figure 4. Detailed stratigraphic section showing the Stone Knife Formation (LD lower member 

2). The deep-water Stone Knife Formation is composed primarily of thin-bedded lime mudstone, 

shale and siltstone (black, grey and red), and large microbial build-ups (Turner et al., 1997). The 

shallow-water area is composed primarily of transgressive intraclastic carbonate and deep-water 

lime mudstone that is overlain by a shallowing succession of stromatolites, oolite, and molar-

tooth bearing carbonates (Turner and Long, 2008). Black shale in the Stone Knife Formation was 

deposited in the deepest zone of a tilted half-graben, which formed between two transfer faults in 

a zone of crustal extension (Turner and Long, 2008). Numbers correspond to samples and letter 

colour corresponds to sample type. 
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Figure 5. Stratigraphic variation in TOC (wt. %), iron relations (FeT/Al and DOP), and trace 

metal enrichment factors, that reflect aspects of water column chemistry and the paleo-redox 

state of the Little Dal basinal seawater. (A) TOC is elevated in all black shale samples and many 

of the black muddy siltstones as well, have peaks at similar stratigraphic positions as those in the 

trace metal enrichments, suggesting that the redox-sensitive metal content is a function of 
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organic carbon. Dashed line indicates change in water column redox state: values <2.5 wt. % 

indicate low oxygen oxic, values between 2.5-10 wt. % indicate anoxic, and values >10 wt. % 

indicate sulphidic conditions (Algeo and Maynard, 2004). (B) Stratigraphic variation in FeT/Al, 

that reflects aspects of water column chemistry and the paleo-redox state of the Little Dal basinal 

seawater. The FeT/Al ratio is a proxy for oxygenation state, with values ≤0.5 indicating oxic 

conditions, whereas values ≥0.5 indicating anoxic conditions (dashed line). (C) Molybdenum 

enrichment factors (MoEF). Because background concentrations of Mo are so low, Mo is the most 

sensitive redox trace metal. (D) UEF and (E) VEF trends resemble the Mo trend, indicating that the 

parameters causing enrichment in these trace metals are related. (D) DOP measures the amount 

of Fe2+ bound in a sulphide phase, and indicates oxic conditions when values fall below 0.46, 

anoxic conditions when values are between 0.46-0.75, whereas sulphidic conditions are reached 

when values are ≥0.8 (dashed lines). The samples that plot the highest are iron-rich, with FeT/Al 

above 0.5, however, the low DOP values may suggest that sulphide production by sulphate 

reduction in the Little Dal sediments was slow and that pyrite formation was limited by the 

availability of reactive iron (Canfield et al., 1992). This would suggest that all the iron 

oxyhydroxides and oxides were not consumed in pyrite formation and that free H2S was not in 

the water column. The low DOP ratio, suggesting a non-sulphidic basin, is in agreement with the 

FeT/Al values. 
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Figure 6. Temporal trends in Mo concentration from black shales deposited between the late 

Archean and late Mesozoic. Red circles represent samples from this study and blue circles 

represent data from previous work (Alberdi-Genolet and Tocco, 1999; Caplan and Bustin, 1998; 

Cruse and Lyons, 2004; Dahl et al., 2011; Feng et al., 2010; Hatch and Leventhal, 1992; Hatch 

and Leventhal, 1997; Hirner and Xu, 1991; Leventhal, 1991; Mongenot et al., 1996; Och et al., 

2013; Sageman et al., 2003; Scott et al., 2008; Sperling et al., 2013; Werne et al., 2002; 

Yamaguchi, 2002). The concentration of Mo, which is scavenged from seawater under sulphidic 

conditions, increased markedly around 663 Ma. This change in Mo concentrations may indicate 

a rise in the global ocean molybdate reservoir caused by oxidative weathering and a shift away 

from a sulphidic ocean. This would indicate that the deep oceans prior to the mid-Neoproterozoic 
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were anoxic. Inset shows the same data from 1250 Ma to 600 Ma, and from 0 ppm to 20 ppm. 

The Little Dal black shale Mo concentrations are spread between <1 ppm and approximately 7 

ppm.  

 

 

Figure 7. MoEF and UEF scatter plot for Little Dal black shale superimposed on the 

paleoceanographic model of Algeo and Tribovillard (2009), in which covariation of MoEF and 

UEF in sediment are used to define different redox-sensitive basin types. When sulphidic 

conditions are reached in weakly restricted (silled) basins (upper left), Mo is strongly fixed as 
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long as it is continually refreshed, whereas U fixation, which is not controlled by H2S, continues 

to be fixed at a steady background rate. When sulphidic conditions are reached in strongly 

restricted basins, Mo rapidly becomes supply-limited, but because the rate of U fixation is so 

low, the limited recharge is adequate for U fixation to occur at approximately the same 

background rate (right). Under open-marine conditions, two trends can develop. In a low-oxygen 

oxic continental margin upwelling system, very minor amounts of Mo are fixed and U fixation 

continues at a constant background rate (bottom). In an evolving, unrestricted, sulphidic open-

marine system there is an abundant supply of Mo and U, with sufficient recharge for both to 

maintain a steady enrichment (centre). The Little Dal black shale data follow a trend that 

resembles the path proposed for open-marine circulation; at higher metal concentrations, 

however, MoEF starts to level out while UEF continues to increase, indicating that minor basin-

restriction may have occurred. 
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Figure 8. Fe, Mo, U, and V enrichment factors and absolute abundances for Little Dal black 

shale, black muddy siltstone, and yellow shale samples. Fe is fairly similar in all three rock 

types; depleted compared to MUQ and ~60% is bound in the reactive phases liberated during the 

HCl digestion. The depletion of Fe may be caused by differences in the original source material. 

MUQ is weathered from an Fe-rich mafic source whereas the Little Dal sediments would have 

weathered from older exposed sediments and cratonic granites. Mo was most highly enriched in 

the black shale and the majority was bound in the reactive phases liberated during the HCl 

digestion. Some Mo would be shuttled to the sea-floor along with sulphur, but the majority 

would be transported alongside the organic carbon, which is highest in the black shale and lower 

in the other sedimentary types. Both U and V are enriched relative to MUQ with the black shales 

having the highest levels of enrichment reflecting a minor hydrogenous contribution relative to 

the clastic component. The majority of the U and V are bound in silicate phases and this is 

represented by the minor amounts liberated during the HCl digestion. 
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Figure 9. Enrichment factors and absolute abundances of Mo, U, and V compared to DOP and 

TOC. (A-D) A significant portion of the Mo is held in the highly reactive phases liberated during 

the HCl extraction but there is not a significant correlation between Mo enrichment and pyrite 

formation, or DOP. Mo enrichment and the Mo liberated during the HCl extraction are, however, 

strongly correlated to TOC, suggesting that elevated Mo in black shale deposits is not caused 

entirely by euxinic conditions, but by elevated levels of TOC. (E-L) U and V are primarily bound 

within the silicate minerals and not pyrite as a very little fraction was liberated during the HCl 

extraction. U does show a weak correlation with TOC similar to Mo suggesting that U may also, 

under the correct redox conditions, be scavenged by organic matter, whereas V is not. U and V 
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do covary with Mo, but do not show the same levels of enrichment, or the strong association 

with TOC. This would suggest that there is a different redox mechanism controlling their 

enrichment which requires further study. 
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Appendix A  

A.1 Supplementary Figures 

 

 

Figure S1. Shale-normalised (Mud of Queensland; Kamber et al., 2005) REE+ Y plot for the 

Little Dal samples are relatively flat trends, indicating no LREE/HREE enrichment or depletion. 

Negative Eu anomalies can be attributed to weathering of the sediment source. The consistent 

shape of REE patterns of the Little Dal black shale indicate a constant and stable sediment 

supply source for all three sedimentary types. 
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