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Abstract
Fault detection and isolation (FDI) are essential in ensuring safe and reliable operations in in-

dustrial systems. Extensive research has been carried out on FDI for one dimensional (1-D)

systems, where variables vary only with time. The existing FDI strategies are mainly focussed

on 1-D systems and can generally be classified as model based and process history data based

methods. In many industrial systems, the state variables change with space and time (e.g., sheet

forming, fixed bed reactors, and furnaces). These systems are termed as distributed parameter

systems (DPS) or two dimensional (2-D) systems. 2-D systems have been commonly repre-

sented by the Roesser Model and the F-M model. Fault detection and isolation for 2-D systems

represent a great challenge in both theoretical development and applications and only limited

research results are available.

In this thesis, model based fault detection strategies for 2-D systems have been investigated

based on the F-M and the Roesser models. A dead-beat observer based fault detection has been

available for the F-M model. In this work, an observer based fault detection strategy is investi-

gated for systems modelled by the Roesser model. Using the 2-D polynomial matrix technique,

a dead-beat observer is developed and the state estimate from the observer is then input to a

residual generator to monitor occurrence of faults. An enhanced realization technique is com-

bined to achieve efficient fault detection with reduced computations. Simulation results indicate

that the proposed method is effective in detecting faults for systems without disturbances as well

as those affected by unknown disturbances.

The dead-beat observer based fault detection has been shown to be effective for 2-D systems

but strict conditions are required in order for an observer and a residual generator to exist. These

strict conditions may not be satisfied for some systems. The effect of process noises are also not

considered in the observer based fault detection approaches for 2-D systems. To overcome the

disadvantages, 2-D Kalman filter based fault detection algorithms are proposed in the thesis.
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A recursive 2-D Kalman filter is applied to obtain state estimate minimizing the estimation

error variances. Based on the state estimate from the Kalman filter, a residual is generated

reflecting fault information. A model is formulated for the relation of the residual with faults

over a moving evaluation window. Simulations are performed on two F-M models and results

indicate that faults can be detected effectively and efficiently using the Kalman filter based fault

detection.

In the observer based and Kalman filter based fault detection approaches, the residual signals

are used to determine whether a fault occurs. For systems with complicated fault information

and/or noises, it is necessary to evaluate the residual signals using statistical techniques. Fault

detection of 2-D systems is proposed with the residuals evaluated using dynamic principal com-

ponent analysis (DPCA). Based on historical data, the reference residuals are first generated us-

ing either the observer or the Kalman filter based approach. Based on the residual time-lagged

data matrices for the reference data, the principal components are calculated and the threshold

value obtained. In online applications, the T2 value of the residual signals are compared with

the threshold value to determine fault occurrence. Simulation results show that applying DPCA

to evaluation of 2-D residuals is effective.

Key words: Two dimensional systems, Fault detection, Kalman filter, Observer, Polynomial

theory
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Chapter 1

Introduction

1.1 Fault detection and model based fault detection

The term fault is generally defined as a departure from an acceptable range of an observed vari-

able or a calculated parameter associated with a process (Himmelblau, 1978). Fault detection

and diagnosis deals with the timely detection, diagnosis and correction of abnormal conditions

of faults in a process. Early detection and diagnosis of process faults while the plant is still

operating in a controllable region can help avoid abnormal event progression and reduce pro-

ductivity loss. Since the petrochemical industries lose an estimated 20 billion dollars every year,

they have rated Abnormal Event Management (AEM), of which fault detection and diagnosis

is the central component, as their number one problem that needs to be solved (Nimmo, 1995).

Hence, there is considerable interest in this field now from industrial practitioners as well as

academic researchers.

1.1.1 Existing research and techniques

Fault detection and isolation (FDI) is a relatively young research field since 90s’ but has be-

come an integral component of system engineering. The overall concept of FDI consists of the

following two components:

• Fault detection: detection of the occurrence of faults in the functional units of process,
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which could lead to undesirable or intolerable compromise of a whole plant.

• Fault isolation: localization or classification of different faults based on historical data.

Extensive research has been carried out on FDI of one dimensional (1-D) systems. There is

an abundance of literature on process fault detection ranging from analytical methods to artifi-

cial intelligence and statistical approaches (Wu et al., 2012). A classification of FDI techniques

is given in Figure 1.1. The FDI methods can also be classified as model based methods and pro-

cess history data based methods. Using the process history data, multivariate statistical process

modeling methods (see e.g., Jackson (1991)) have been extensively used in process monitoring

and fault detection (Ku et al., 1995; Lee et al., 2004; Kourti and MacGregor, 1996). The meth-

ods are data-driven and one of the most commonly used tools is principal component analysis

(PCA) (Wise and Gallagher, 1996; Russell et al., 2000). Multiway PCA (MPCA) and dynamic

PCA (DPCA) are extensions of PCA for batch processes (Nomikos and MacGregor, 1994; Wise

et al., 1999), and has been used in various applications (Gameroa et al., 2006; Khosravi et al.,

2009). These methods are efficient in detecting abnormal events, but use of the contribution

plots in fault diagnosis may sometimes lead to inaccurate results. Fault diagnosis can also be

conducted by comparing the real time signals with a database of reference signals represent-

ing various faults. The challenge is that two similar signals are often slightly different and do

not match each other perfectly. Dynamic time warping (DTW) has been used to overcome the

challenge and it was used in fault detection and diagnosis of batch processes or transition pe-

riods (Kassidas et al., 1998; Srinivasan and Qian, 2005, 2006; Dai and Zhao, 2011). A hybrid

FDI method using online DTW in combination of PCA and SymCure reasoning under the G2

Optegrity was recently developed for chemical process startups (Wang et al., 2012). Artificial

neural networks (ANNs) have also been applied in fault detection and diagnosis with the avail-

able online training methods (Ruiz et al., 2000; Zhang, 2006). This approach requires a large

amount of training samples, but signal samples with faults are usually very limited in the indus-

trial applications. Other techniques such as petri net and expert systems have been proposed to

solve the problem for batch processes (Power and Bahri, 2004; Mehranbod et al., 2005).

2
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Analytical model fault diagnosis strategies have attracted interests of researchers (Frank,

1996). A priori process knowledge plays a crucial role in diagnostic decision-making and could

be in the form of material and energy balances (Mehra and Peschon, 1971; Kramer, 1987),

suitably transformed process models (Willsky and Jones, 1976; Gertler, 1991; Frank, 1990)

or distribution information in the measurement space (Hoskins and Himmelblau, 1988). The

first-principles models (also classified as macroscopic transport phenomena model (Himmel-

blau, 1978)) have not been very popular in fault diagnosis studies because of the computational

complexity in utilizing these models in real-time fault diagnostic systems and the difficulty in

developing these models. The models that have been heavily investigated in fault diagnosis are

input-output or state space models. Faults in the state space framework are described in a se-

ries of papers by Gertler (1991, 1993) and in the recent books on fault detection and diagnosis

written by (Gertler, 1998; Chen and Patton, 1999; Russell et al., 2000).

Model-based FDI requires a process model running in parallel to the process. The analytical

schemes for fault diagnosis are basically signal processing techniques using state estimation,

parameter estimation, adaptive filtering and so on (Venkatasubramanian et al., 2003). The key

component in these schemes is diagnostic observers for residue generation. Generation of di-

agnostic observers for nonlinear systems has also been considered to a certain extent in the

literature (Clark, 1979; Frank, 1990; Massoumnia, 1996). Most of the work on observer de-

sign focuses on the generation of residuals for dynamic systems with satisfactory decoupling

properties. Another solution (Basseville, 1988; Willsky and Jones, 1976) to the fault diagno-

sis problem in such systems entails monitoring the innovation process or the prediction errors.

The objective is to design a state estimator with minimum estimation error. It involves the use

of optimal state estimate, e.g. the Kalman filter, which is designed on the basis of the system

model in its normal operating mode. The statistical analysis of Kalman filter was pioneered by

Willsky and Jones (1976) and further explored by Basseville (1993) and the references therein.

It has been shown that a bank of Kalman filters (Basseville, 1993) designed on the basis of all

the available possible system models under all possible changes can be used for the isolation

4



purpose. Literature (Fathi et al., 1993) included adaptive analytical redundancy models in the

diagnostic reasoning loop of knowledge-based systems. The modified extended Kalman fil-

ter (EKF) is used in designing local detection filters in their work. In a recent work, literature

(Chang and Hwang, 1998) explored the possibility of using suboptimal EKF in order to enhance

computation efficiency without sacrificing diagnosis accuracy.

The analytical model based FDI is illustrated in Figure 1.2. In this scheme, a process model is

constructed according to the process input and output, the certain features are extracted, which

could be used as residual generator. By comparing with the normal behavior, the detection

results are obtained. The residual signal is generally corrupted with disturbances and uncertain-

ties caused by parameter changes. To achieve a successful fault detection based on the available

residual signal, a widely accepted way is to generate such a feature of the residual signal, by

which we are able to distinguish the faults from the disturbances and uncertainties. Residual

evaluation and threshold setting serve for this purpose. A decision on the possible occurrence

of a fault is then made by means of a simple comparison between the residual feature and the

threshold. The fault isolation may require some analytical schemes to evaluate the historical

faulty data in order to locate the fault type and associated information.

1.1.2 Residual generation

In model based FDI, residual generation is to compare system measurements with the model

based reconstruction of system outputs. Design of a residual generator requires that a residual

signal is an indicator of possible faults. Process faults usually cause changes in the state vari-

ables and/or the model parameters. Based on a process model, one can estimate the unmeasur-

able state variables using state estimation and parameter estimation methods. State estimation

is often required in residual generation. Kalman filters or observers have been widely used for

state estimation. Techniques relying on parity equations for residual generation have also been

developed. In this subsection, the basic idea of model based residual generation is illustrated us-

ing a fault detection filter, which is the first type of observer based residual generators proposed
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Figure 1.2: The diagram of a model-based FDI

by Beard and Jones in the early 1970s.

Consider a system described by the following discrete time state-space equations:

x(t+ 1) = Ax(t) +Bu(t) + Ff(t)

y(t) = Cx(t)

where t indicates the discrete time, x, u, y and f indicate the state, input, output and fault,

respectively. A, B, C and F are given system matrices of proper dimension. A state observer

can be designed:

x̂(t+ 1) = Ax̂(t) +Bu(t) + L[y(t)− Cx̂(t)]

where x̂ denotes the estimate of the state x. A residual signal can be simply defined as:

r(t) = y(t)− ŷ = y(t)− Cx̂(t)
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Denoting state estimation error as e(t) = x(t)− x̂(t), e(t) and r(t) can then be expressed as:

e(t+ 1) = (A− LC)e(t) + Ff(t)

r(t) = Ce(t)

If the absolute values of the eigenvalues of (A − LC) are less than 1, e(t) → 0 as t → ∞. As

a result, in fault-free case, i.e., f = 0, the estimation error and consequently the residual track

the process. When a fault f occurs, the error and the residual carry the information of the faults

and faults are reflected in estimation error and residual.

Since the early development of the fault detection filter, a variety of different observer based

approaches have been proposed such as those that can deal with unknown disturbance decou-

pling. In the observer based residual generation, observers are designed such that they are

sensitive to a subset of faults while insensitive to the remaining faults and the unknown inputs.

In a fault-free case, the observers track the process closely with small residuals. If a fault oc-

curs, the observers that are sensitive to the fault deviate from the process significantly and result

in residuals of large magnitude.

Residual generation is an important step for model based fault detection. With the gener-

ated residual signal, residual evaluation and threshold setting is then performed to detect and

diagnose the faults.

1.1.3 Residual evaluation and threshold setting

The residual signal is generally corrupted with disturbances and uncertainties caused by pa-

rameter changes. To achieve a successful fault detection based on the available residual signal,

further efforts are needed. A widely accepted way is to generate such a feature of the residual

signal, by which we are able to distinguish the faults from the disturbances and uncertainties.

Residual evaluation and threshold setting serve for this purpose. A decision on the possible oc-

currence of a fault is then made by means of a simple comparison between the residual feature

and the threshold.
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Two strategies including the statistical testing and the norm based testing are often used for

residual evaluation. In the norm based residual evaluation, an evaluation function that gives the

mathematical feature of the residual signal is first defined and the decision on fault detection

is made based on comparison of the evaluation function with a threshold value. For a given

residual sequence, the peak value is one of the most straightforward evaluation function. The

peak value of a discrete time residual signal r(k) is defined as:

Jpeak = ‖r‖peak := sup
k>0
‖r(k)‖

with the norm of r(k) defined by:

‖r(k)‖ = (
kmax∑
i=1

r2
i (k))1/2

where kmax is the length of the signal sequence. Based on the peak value of r, faults can be

detected by comparing it with a threshold value:

Jpeak > Jth,peak ⇒ alarm, fault is detected

Jpeak < Jth,peak ⇒ no alarm, fault-free

where Jth,peak is the threshold for Jpeak. Determination of a threshold is to find out the tolerant

limit for disturbances and model uncertainties under fault-free operation conditions. Jth,peak in

the above equation is defined by

Jth,peak = sup
fault free

Jpeak

Different evaluation functions, such as the trend value and average value, are also available for

residual evaluation. In practice, the limit monitoring and trend analysis have been very popular

in fault detection due to their ease of applications.

In addition to the norm based residual evaluation, statistical techniques have been success-
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fully applied for residual evaluation and threshold setting. Statistical distribution functions,

e.g., t , χ2 and F distributions, have been adopted to calculate the control limit. Likelihood ra-

tio (LR) and generalized likelihood ratio (GLR) methods are one of the most popular statistical

methods for fault detection. The GLR method is applied to evaluate the residual and calculate

the threshold for the Kalman filter based fault detection in this thesis. A good review on the

statistical approach based residual evaluation can be found in the book by (Ding, 2008).

1.2 Two dimensional systems

In many industrial systems, the state variables change with space and time (e.g., sheet forming,

fixed bed reactors, and furnaces). These systems are termed as distributed parameter systems

(DPS) or two dimensional (2-D) systems. Motivated by interest in processing two-dimensional

data, such as sampled seismic data, gravitational and magnetic maps, and 2-D images (Fornasini

and Maichesini, 1977), 2-D state space models were proposed as a means to unify the study of

these linear systems. The Fornasini & Marchesini (F-M) (Fornasini and Maichesini, 1977) and

the Roesser models (Roesser, 1975) were presented in the 1970’s and since then they have com-

monly been adopted to describe discrete-time, discrete-space linear 2-D systems, and research

on 2-D systems has been carried out on the topics commonly investigated in one-dimensional

(1-D) settings. The concept of 2-D transfer function, controllability and observability were de-

fined for the F-M model and Roesser model (Rikus, 1979; Criftcibasi and Yuksel, 1983). The

model representations such as ARX and ARMAX in 1-D notation was extended to 2-D cases

(Isaksson, 1993). Identification techniques for 2-D systems were investigated using least square

and its extensions (Zhao and Yu, 1993) and subspace identification (Ramos, 1993; Ramos et al.,

2011). Active research has also been carried out on filters (Woods and Radewan, 1977; Makoto

and Sumihisa, 1991; Wang, 1988; Wu et al., 2008; Li and Gao, 2012; Xu and Zou, 2011; Li

and Gao, 2013), state estimation (Kaczorek, 2001; Ntogramatzidis and Cantoni, 2012; Xu et

al., 2012), realization (Fornasini and Maichesini, 1988; Antoniou et al., 1988; Birgit, 2002) and

control design (Yang et al., 2006; Xu and Zou, 2011; Ye et al., 2011; Li et al., 2012) of 2-D
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systems.

1.2.1 2-D state space models

The Roesser model is defined by (Roesser, 1975):

xh(i+ 1, j)

xv(i, j + 1)

 =

A11 A12

A21 A22

xh(i, j)
xv(i, j)

+

B1

B2

u(i, j)

y(i, j) =
[
C1 C2

]xh(i, j)
xv(i, j)

+Ku(i, j)

(1.1)

where i and j indicate the horizontal (or spacial) and vertical (or time) indices, xh is the state

variable evolving horizontally (or spatially), xv is the state variable evolving vertically (or in

time), u and y indicate the process input and output, respectively, A’s, B’s, C’s and K are the

real matrices of suitable dimensions. The system can be described in abbreviation by

{A11, A12, A21, A22, B1, B2, C1, C2, K}.

The F-M model is defined by (Fornasini and Maichesini, 1977):

x(i+ 1, j + 1) =A1x(i+ 1, j) + A2x(i, j + 1)

+B1u(i+ 1, j) +B2u(i, j + 1)

y(i, j) =C(i, j)x(i, j) +Kuu(i, j)

(1.2)

Another form of F-M model (Attasi, 1976) is described by:

x(i+ 1, j + 1) =A1x(i+ 1, j) + A2x(i, j + 1) + A3x(i, j)

+Bu(i, j)

y(i, j) =Cx(i, j) +Kuu(i, j)

(1.3)

where x, u and y indicate the process state, input and output, respectively, Ak’s, Bk’s(k = 1, 2),

C’s and Ku are the real matrices of suitable dimensions.

A practical example of Roesser model and F-M model can be found in a forced-flow steam-
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jacketed tabular heat exchanger described by a linear hyperbolic PDE written as:

∂(T, t)

∂t
+ a

∂T (, t)

∂x
= bT (x, t) + cu(x, t), (1.4)

where T denotes the temperature of the heat exchanger within the tube, the input u could be the

jacket temperature. Its analytical solution, found using the method of characteristics, is:

T (xo + a∆t, to + ∆t) = T (xo, to)e
b∆t + (

c

b
eb∆t − c

b
)u(xo, to). (1.5)

By setting ∆x = a∆t, Equation (1.5)is in the form of an F-M model:

T (i+ 1, j + 1) = eb∆tT (i, j) + (
c

b
eb∆t − c

b
)u(i, j). (1.6)

Define xh(i, j) = T (i, j) and xv(i, j) = T (i + 1, j). Equation (1.5) can also be expressed as

the Roesser model form xh(i+ 1, j)

xv(i, j + 1)

 =

 0 1

eb∆t 0

 xh(i, j)

xv(i, j)

+

 0

c
b
eb∆t − c

b

u(i, j)

y(i, j) =
[
1 0

]xh(i, j)
xv(i, j)

 +Du(i, j) (1.7)

The Roesser Model describes the time domain as the horizontal vector and the spatial domain

as the vertical vector, and a process is described by a series of two dimensional coordinates. The

F-M model has two dimensional coordinates but does not have two directional vectors. Its recur-

sive forward process is determined by several previous 2-D coordinates. So far, Roesser Model

has been used in the areas of control and realization while F-M model used in estimation and

filter problems. Fornasini and Marchesini provided the algebraic view of a 2-D system. In their

interpretation, the state space arises from the factorization of the 2-D input-output map. They

indicated that the main difference between 1-D and 2-D systems lies in that we can introduce a

global state and a local state in 2-D cases. For the Roesser model, on the other hand, the “circuit
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approach” has been used for the state space model’s realization (Criftcibasi and Yuksel, 1983).

Although the two dimensional systems are widely available in industrial processes, the control

theory and methods in 2-D form, especially in fault detection and isolation domain, represent a

great challenge in both research and applications.

Both Roesser model and F-M model can be used to represent linear discrete 2-D systems.

(Kung et al., 1977) showed that Roesser model was a more general model form for 2-D systems

and F-M model represents a special case of the systems described by Roesser model. For a

more generalized F-M model (Attasi, 1976) described by:

x(i+ 1, j + 1) =A1x(i+ 1, j) + A2x(i, j + 1) + A3x(i, j)

+Bu(i, j)

y(i, j) =Cx(i, j) +Kuu(i, j)

(1.8)

Let ξ(i, j) = x(i, j + 1)− A1x(i, j) such that

ξ(i+ 1, j) = A2x(i, j + 1) + A3x(i, j) +Bu(i, j) (1.9)

Equation (1.8) can thus be expressed in the Roesser model form:

ξ(i+ 1, j)

x(i, j + 1)

 =

A2 A3 + A2A1

In A1

ξ(i, j)
x(i, j)

+

B
0

u(i, j)

y(i, j) =
[
0 C

]ξ(i, j)
x(i, j)

 (1.10)

Equation (1.2) is a special case when A3 = 0.

On the other hand, the Roesser model can also be described in the F-M model form. By

12



defining x(i, j) =

xh(i+ 1, j)

xv(i, j + 1)

, Equation (1.1) can then be written as:

x(i+ 1, j + 1) =

 0 0

A21 A22

x(i+ 1, j) +

A11 A12

0 0

x(i, j + 1)

+

 0

B2

u(i+ 1, j) +

B1

0

u(i, j + 1)

y(i, j) =Cx(i, j) +Du(i, j)

(1.11)

Despite their exchangeability, research has been focused on both Roesser and F-M models

instead of replacing one by the other. In this thesis, fault detection methods for these two model

forms are investigated using the 2-D observer based and Kalman filter based approaches.

In 1-D applications, research has been understandably focussed on the systems that are

causal. This is reasonable as any current input can only affect the outputs in the future. In

2-D applications, the systems may not be causal in space. Due to complexity of 2-D systems,

causality has, however, been assumed in both time and spatial directions as in Roesser and F-M

models. In this thesis, it is assumed that the 2-D systems are causal in both time and spatial

directions, and can be expressed by Roesser or F-M models.

1.2.2 2-D observers for state estimation and fault detection

Observers have been used for state estimate in the process control area for decades. Two kinds

of observers are available: state observer and output observer. State observer adjust the state

variables according to initial conditions and to the evolvement of the measured input and output

signals. The observer-based estimation technique has been active in the area of control theory

and engineering. System observability is an important prerequisite for the design of a state

observer. In the early development stage of the observer-based estimate technique, system

observability was considered as a necessary structural condition for the observer construction.

The 2-D dead-beat observer has been introduced into process estimate for a long time. But
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application of the dead-beat observer into fault detection and isolation in 2-D systems appeared

only in the recent years, when literature (Bisiaco and Valcher, 2004, 2006; Bisiacco and Valcher,

2008) applied the dead-beat observer in fault detection and isolation (FDI) by constructing a

residual generator. 2-D polynomial matrices are essential to construct the residual generator.

The observer-based FDI is an approach of fault detection that requires the properties related

with the two dimensional polynomial matrix theories. In the papers presented by (Bisiacco and

Valcher, 2008), the unaffected FDI and the UIO (unknown input observer) FDI represent two

different scenarios occurring in faulty 2-D F-M systems.

1.2.3 2-D Kalman filters

Filters have been widely applied in state estimation in many industrial fields. 1-D Kalman

Filters, known for its high efficiency, has been successfully used in industrial processes. For

2-D systems, recursive filters have been adopted for state estimation. Some early developments

such as that in (Celebi and Kurz, 1991; Hinamoto et al., 1997) were focused on the structural

filtering for 2-D state space models. Although it is efficient and mathematically accessible,

advantages of filtering have not fully realized.

Motivated by applications of 2-D state space models in 2-D signal and image processing, it

is promising to extend the Kalman filter to 2-D cases. In a 2-D case, the enormous quantity of

the data calls particularly for an efficient recursion processor. Originally, 2-D Kalman filters

were introduced to handle image restoration and some signal processing related fields (Azimi-

Sadjadi and Wong, 1987; Azimi-Sadjadi and Bannour, 1991; Suresh and Shenoi, 1981; Zhang

and Steenaart, 1990; Kaufman et al., 1983). The concept of 2-D Kalman filter is fully examined

by Woods (Woods and Radewan, 1977; Woods, 1979; Woods and Ingle, 1981). Unfortunately,

the efforts to achieve a true recursive 2-D Kalman filter were of only limited success because

of both the difficulty in establishing a suitable 2-D recursion model and the high dimension

of the resulting state vector. In fact, a straightforward extension of one-dimensional Kalman

filter techniques would result in a number of state variables proportional to N for the filtering
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of an N × N digital image (Sheng and Zou, 2007; Kwan and Lewis, 1999; Katayama and

Kosaka, 1979). From 1970s, there have been many researches that are involved with attempting

to introduce the 2-D Kalman filters, such as (Shanks et al., 1972; Woods and Radewan, 1977;

Katayama and Kosaka, 1979; Sebek, 1992). However, to achieve a full recursive Kalman filter

is still of limited success.

A new 2-D recursive Kalman filter structure was recently developed in (Sheng and Zou,

2007). In this thesis, a fault detection method based on the recursive Kalman filter is investi-

gated.

1.3 Thesis organization and contributions

The thesis is divided into 6 chapters. In Chapter 1, an introduction and a literature review on FDI

and two dimensional systems are presented. A background of polynomial theory is provided in

Chapter 2. The contributions of this dissertation can be found in Chapters 3 through 5. Finally,

the conclusions and future work are given in Chapter 6.

The contributions of this thesis are summarized as follows:

• Chapter 3: This chapter presents a development of dead beat observer based fault de-

tection for 2-D systems described by the Roesser model. Based on a PBH observability

matrix, a state observer is calculated and the obtained state estimate enters a residual gen-

erator to provide a residual signal reflecting the fault information. An efficient realization

technique is incorporated to obtain the state space models of the observer and the residual

generator. The proposed fault detection strategy is effective for systems without unknown

disturbances as well as those with unknown disturbances.

• Chapter 4: This chapter presents a fault detection approach for systems described by the

F-M model with noises. Using a 2-D recursive Kalman filter, a state estimate is obtained

by minimizing the estimation variances and a residual signal is then obtained from an

innovation process. The model for the residual over the evaluation window is formulated
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relating the residual with the faults. Evaluation of the residual signal is explored using the

generalized likelihood ratio (GLR) test.

• Chapter 5: In Chapters 3 and 4, residual signals reflecting fault occurrences are obtained

using an observer based residual generator or a Kalman filter based residual generator.

To determine occurrences of faults more accurately, it is necessary to perform residual

evaluation and threshold setting in 2-D systems. In Chapter 5, the fault detection method is

proposed with the residual signals evaluated using dynamic principal component analysis.

A historical reference data are used to obtain the DPCA models for the residuals. By

calculating the T 2 value of the residual signals and comparing it with its threshold value,

a fault is detected.
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Chapter 2

Mathematical Background on Polynomial

Matrices

In developing model based fault detection for 2-D systems, 2-D polynomial matrices have been

used, especially for the observer based fault detection method. In this chapter, mathematics

background on polynomial matrices in 2-D systems is introduced for the convenience of reading

the subsequent chapters.

2.1 Polynomial matrices in 1-D systems

Since the sixties, polynomial matrices have constituted a fundamental tool for investigating the

dynamics of a linear system and for designing feedback control laws (Rosenbrock, 1970). The

input-output behavior of a system can be described as a polynomial matrix commonly called

a transfer function. For a linear time invariant(LTI) system, the polynomial representation is

a standard mathematical form in the frequency domain. Denoting Gyu(p) ∈ R is the transfer

function of input vector u ∈ R and output vector y ∈ R, the system can be described by:

y(p) = Gyu(p)u(p)

Among the different polynomial representations, Laurent polynomial is the most used one,
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especially in the process control domain.A Laurent polynomial with coefficients in a field F is

defined as an expression of the form p =
∑
k

pkX
k, pk ∈ F , where X is a formal variable, the

summation index k is a integer (not necessarily positive) and only finitely many coefficients pk

are non-zero. Two Laurent polynomials (L-polynomial) are equal if their coefficients are equal.

Such expressions can be added, multiplied, and brought back to the same form by reducing

similar terms. Formulas for addition and multiplication are exactly the same as for the ordi-

nary polynomials, with the only difference that both positive and negative powers of X can be

present:

(
∑
i

aiX
i) + (

∑
i

biX
i) =

∑
i

(ai + bi)X
i

and

(
∑
i

aiX
i) · (

∑
i

biX
i) =

∑
k

(
∑

i,j;i+j=k

aibj)X
k

Since only finitely many coefficients ai and bj are non-zero, all sums in effect have only finitely

many terms, and hence represent Laurent polynomials. In fact, in LTI systems, most trans-

fer functions can be expressed as L-polynomials. L-polynomials are widely used in behavior

approaches of LTI systems.

Consider a discrete time state space model given by:

x(k + 1) =Ax(k) +Bu(k), x(0) = x0

y(k) =Cx(k) +Du(k)

The above state space model can be derived either by direct modeling or from a transfer function

Gyu(p) ∈ F. The latter process is called realization of the transfer function Gyu(p) = C(pI −

A)−1B +D and denote by:

Gyu(p) =

A B

C D


It is desirable to make (A,B,C,D) the minimal realization of Gyu(p).

System analysis has been investigated using Laurent polynomial matrices. Many applica-
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tions based on Laurent polynomial matrices are in the areas of realization, factorization, decod-

ing and residual generators. In a 1-D context, the polynomial matrix algebra applied for solving

the aforementioned problems is rather simple. Based on elementary transformations, efficient

algorithms allow for a complete analysis of the system dynamics.

2.2 Polynomial matrices in 2-D systems

The use of polynomial matrices in 2-D system analysis and control began in the late seventies

(Bisiacco, 1985; Morf et al, 1977; Guiver and Bose, 1985), while more recently Rocha and

Willems (1991) resorted to polynomial matrices in two variables for introducing 2-D behaviors.

The structure of a 2-D trajectories on Z × Z is endowed with the higher complexity exhibited

by 2-D polynomial rings and matrices.

Let F be a field and denote by z the n-tuple (z1, z2, · · · , zn)and by zci the (n − 1)-tuple

(z1, z2, · · · , zi−1, zi+1, · · · , zn), so that F[z, z−1] and F[zci , (z
−1
i )c] are shorthand notations for

the L-polynomial rings in the indeterminates z1, · · · , zn and z1, · · · , zi−1, zi+1, · · · , zn, respec-

tively, and F(z) denotes the field of rational functions with coefficients in F. For the 2-D system,

a polynomial ring is denoted as a ring which belong to F(z1, z2).

2.2.1 Primeness

A matrixG ∈ F[z, z−1]p×m has rank r if it has a nonzero r-th order minor, whereas all its higher

orders minors are zero. The rank of a matrix coincides with the dimensions of the F(z)-spaces

generated either by its rows or by its columns. By referring to the maximal order minors, we can

introduce the following right-primeness notions and the analogous definitions of left-primeness

are obvious.

An L-polynomial matrix G ∈ F [z, z−1]p×m is:

• right minor prime (rMP) if p ≥ m and all the L-polynomials in the ideal τG, generated by

its maximal order minors, are devoid of (nontrivial) common factors.
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• right variety prime (rVP) if p ≥ m and the ideal τG includes (nonzero) L-polynomials in

F [zi, z
−1
i ], for every i = 1, 2, · · · , n.

• right zero prime (rZP) if p ≥ m and the ideal τG is the ring F [z, z−1] itself. In particular,

when p = m, a right (and hence left) zero prime matrix is called unimodular.

From the above definition, It is obvious that in the 1-D case all properties of the above definition

are equivalent to right factor primeness. For 2-D L-polynomial matrices, only factor, minor and

variety primeness coincide. As a simple example in the 2-D case, consider the polynomials:

a(z1, z2) = z1 − 1, b(z1, z2) = z2 − 1

These two polynomials are not factor coprime but have common zeros.

In 2-D systems, the concepts of common divisor, greatest common divisor, common multi-

ple, least common multiple can be defined as those in 1-D case with left and right being the two

scenarios which depend on the location of the divisor (multiple).

For 2-D polynomial matrices, the three coprimeness are defined by:

• Polynomial matrices A ∈ Fp×m[z1, z2], B ∈ Fq×m[z1, z2] are called Minor Right Co-

prime(MRC) if all the m × m minors of the matrix

A
B

 are coprime(relatively prime),

i.e. their greatest common polynomial divisor is a non-zero constant.

• Polynomial matrices A ∈ Fp×m[z1, z2], B ∈ Fq×m[z1, z2] are called Factor Right(Left)

Coprime (FRC/FLC) if great right (left) common divisor (GRCD/GLCD) is a unimodular

matrix U = U(z1, z2)(det(U) ∈ R).

• Polynomial matrices A ∈ Fp×m[z1, z2], B ∈ Fq×m[z1, z2](p+ q ≥ m ≥ 1) are called Zero

Right Coprime(ZRC) if there exists no pair (z1, z2) which is a zero of all them×mminors

of the matrix

A
B

. Polynomial matrices A ∈ Fp×m[z1, z2], B ∈ Fq×m[z1, z2] are called

Zero Left Coprime(ZLC) if the transposed matrices AT , BT are ZRC.
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Consider two polynomial matrices A ∈ Fp×m[z1, z2], B ∈ Fq×m[z1, z2](p + q ≥ m ≥ 1).

The matrices is Zero Left Coprime(ZLC) if there exists no pair (z1, z2) which is a zero of all

the m × m minors of the matrix
[
A B

]
. A and B are ZLC if and if only there exists two

polynomial X = X(z1, z2) ∈ F p×m[z1, z2], Y = Y (z1, z2) ∈ F q×m[z1, z2] such that:

AX +BY = Im

The primeness of polynomial matrices play a important role in the polynomial algebra and

ZRC and ZLC often serve as the conditions of certain algorithms. In this thesis, the concept of

ZRC is applied to determine the existence of dead-beat observer and residual generator.

2.2.2 Factorization

In 2-D systems, due to the two indeterminates z1 and z2, it is difficult to factorize directly for

the general case. Let F[z1][z2] indicate the polynomial matrices with z2 as terms and z1 as the

coefficients, vise versa. The primitive matrix A(z1, z2) is a polynomial matrix which is full

rank for all fixed z0
1 in F[z1][z2]. Similarly, A(z1, z2) also holds for F[z2][z1]. Let A(z1, z2) ∈

Fm×n[z1, z2](m ≤ n) be a full rank matrix, then there exists a unique A∗(z1, z2) (modulo a left

unimodular matrix) and a unique Ā(z1, z2) (modulo a right unimodular matrix) such that

A(z1, z2) = Ā(z1, z2)A∗(z1, z2)

where det(Ā)(z1, z2) = ā(z2) ∈ F[z2] and A∗(z1, z2) is primitive in F [z2][z1]. The primitive

factorization of A∗(z1, z2) is therefore obtained. The primitive factorization only extract one

polynomial which does not contain one of the indeterminates, and another polynomial is still a

primitive polynomial.

If det(A(z1, z2)) =
k∏
i=1

ai(z1, z2), a more general factorization result can be obtained and the
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polynomial matrix A(z1, z2) can be factored such that:

A(z1, z2) =
k∏
i=1

Ai(z1, z2) (2.1)

where det(Ai(z1, z2)) = ai(z1, z2)(i = 1, 2, · · · , k) and ai(z1, z2) are arbitrary polynomials.

Clearly, the factorization in general is not unique since the possibilities of many factored poly-

nomial ai(z1, z2).

2.2.3 Matrix fraction description

In 2-D polynomial matrices, it is essential to obtain a factored matrix pair and then perform the

related calculations. Consider a 2-D rational matrix(which means the matrix could be reducible)

G(z1, z2) ∈ Fm×n[z1, z2], it can always be written as:

G(z1, z2) = BA−1 (2.2)

or

G(z1, z2) = A−1
1 B1 (2.3)

where A = A(z1, z2) ∈ Fn×n[z1, z2],B = B(z1, z2) ∈ Fm×n[z1, z2], and A1 = A1(z1, z2) ∈

Fm×m[z1, z2],B1 = B1(z1, z2) ∈ Fm×n[z1, z2].

The equations. (2.2) and (2.3) are called matrix fraction description( MFD ). If B and A are

right coprime, that is A, B have no nontrivial right common factor, then (2.2) is a irreducible

representation. MFD requires to find the greatest common right divisor(GCRD) of polynomial

matrices. Let

U

 A

B

 =

 R

0


where U,A,B,R are 2-D polynomials, and det(U) ∈ F[z2]. If R has a primitive left factoriza-

tion R = R̄R∗ in F[z2][z1], then R∗ is a right common factor of A and B.
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Let G(z1, z2) ∈ Fl×m(z1, z2) be a 2-D system described as transfer function:

G(z1, z2) =


G11(z1, z2) · · · G1m(z1, z2)

...
...

...

Gl1(z1, z2) · · · Glm(z1, z2)

 (2.4)

Using the algorithm (Morf et al, 1977) to find the least common denominator of G1k, G2k , · · · ,

Gmk ( k = 1, 2, · · · ,m ). The above equation can be rewritten as:

G(z1, z2) =


N11(z1, z2)

D1(z1, z2)
· · · N1m(z1, z2)

Dm(z1, z2)
...

...
...

Nl1(z1, z2)

D1(z1, z2)
· · · Nlm(z1, z2)

Dm(z1, z2)

 = NRD
−1
R (2.5)

where

NR =


N11(z1, z2) · · · N1m(z1, z2)

...
...

...

Nl1(z1, z2) · · · Nlm(z1, z2)


and

DR =



D1(z1, z2) 0 · · · 0

0 D2(z1, z2) · · · 0

...
...

...
...

0 0 · · · Dm(z1, z2)


The MFD is thus achieved by the above equations.

2.2.4 Bézout identity

Let NR(z1, z2), DR(z1, z2) (or NL(z1, z2), DL(z1, z2)) be two polynomial matrices being right

(left) coprime, then there exists a polynomial matrix in z2, say ER(z2) (or EL(z2)) and two
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polynomial matrices XR, YR (XL, YL) such that:

XR(z1, z2)NR(z1, z2) + YR(z1, z2)DR(z1, z2) = ER(z2)

NL(z1, z2)YL(z1, z2)−DL(z1, z2)XL(z1, z2) = EL(z2)
(2.6)

LetG(z1, z2) = NRD
−1
R = D−1

L NL withNR = NR(z1, z2), DR = DR(z1, z2) right coprime and

NL = NL(z1, z2), DL = DL(z1, z2) left coprime, then det(DL) = det(DR). The equation (2.6)

is usually called Bézout identity in 2-D systems. The problem of solving the Bézout identity

equation needs to extend the solution to a general case:

AX +BY = C

or

XA+ Y B = C

whereA ∈ Rp×l[z1, z2], B ∈ Rq×l[z1, z2], C ∈ Rm×l[z1, z2], X ∈ Rm×p[z1, z2], Y ∈ Rm×q[z1, z2].

The necessary and sufficient condition for the existence of solution of general polynomial

matrices equations is expressed as:

ĀX̄ + B̄Ȳ = C̄ (2.7)

where Ā =

A 0

0 0

 ∈ Rr×r[z1, z2], B̄ =

B
0

 ∈ Rr×q[z1, z2], C̄ =

C
0

 ∈ Rr×m[z1, z2], X̄ =

X
X

′

 ∈ Rr×m[z1, z2], Ȳ = Y ∈ Rq×m[z1, z2] and r ∈ max(l, p + q),X ′ ∈ R(r−p)×m[z1, z2] is

arbitrary.

If equation (2.7) has a solution, then the general case also has a solution. There always exists

a unimodular matrix U ∈ R(r+q)×(r+q)[z1, z2] such that:

[
Ā B̄

]
U =

[
G 0

]
(2.8)
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where G ∈ Rr×r[z1, z2] and G is the greatest common left divisor (GCLD) of Ā an B̄.

The algorithm of finding the solution of AX + BY = C could be achieved by applying the

elementary column operation to carry out the reduction:
A B C

Il 0 0

0 Iq 0

 −→

A B 0

Il 0 U1

0 Iq U2


So the solution would be X = −U1 and Y = −U2. Also, the solution of XA+ Y B = C could

be found by utilizing the transpose of AX +BY = C.

Another algorithm is given by the solution of ĀX̄+B̄Ȳ = C̄. First, by defining the equation

(2.8)’s Ā, B̄, C̄ and r = max(l, p + q). Then, using the elementary column operation (the

elementary column operation could be found in literature (Galkowski, 2001)) to carry out the

following reduction, it is easy to obtain:
Ā B̄

Il 0

0 Iq

 −→

G 0

U1 U2

U3 U4


then the solution X̄ and Ȳ can be obtained by equation:

X̄
Ȳ

 =

U1 U2

U3 U4

C̄o
T


with C̄ = GC̄0 and T is arbitrary. Finally, the solution of X and Y could be obtained by the

definitions of X̄ and Ȳ .

2.2.5 2-D transfer function and realization

Similar to 1-D systems described in section 1, a 2-D transfer function can be expressed by a

combination of system matrices and the conversion process is called realization. For Roesser
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model (1.1), its transfer function can be written as:

G(z1, z2) = C(Z − A)−1B +D

where Z =

I1z1 0

0 I2z2

. The transfer function of F-M model (1.2) is

G(z1, z2) = C(Inz1z2 − A1z1 − A2z2)−1(B1z1 +B2z2) +D

The transfer function of Roesser model can also be written in the form

G(z1, z2) = C(z2)[In1z1 − A(z2)]−1B(z2) +D(z2) (2.9)

where

A(z2) = A11 + A12[In2z2 − A22]−1A21

B(z2) = B1 + A12[In2z2 − A22]−1B2

C(z2) = C1 + C2[In2z2 − A22]−1A21

D(z2) = C2[In2z2 − A22]−1B2 +D

The equation (2.9) is called first level realization. The realization algorithm for F-M model is

present by Fornasini and Maichesini (1976).

In some recent research, the transfer functions of F-M model and Roesser model have been

written differently due to different definition of the Z-transform. By defining (Bisiacco et al.,

1989)

X(z1, z2) =
∑
i+j>0

x(i, j)zi1z
j
2

U(z1, z2) =
∑
i+j>0

u(i, j)zi1z
j
2

Y (z1, z2) =
∑
i+j>0

y(i, j)zi1z
j
2 (2.10)
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the transfer function of F-M model (1.2) can be obtained:

G(z1, z2) = C(In − A1z1 − A2z2)−1(B1z1 +B2z2) +D (2.11)

The transfer function of Roesser model becomes:

G(z1, z2) = CZ(I − AZ)−1B +D (2.12)

In the observer based fault detection method described in the next Chapter, the transfer function

of Roesser model in 2.12 is used.

2.3 Polynomial matrices applications in fault detection of 2-D systems

Polynomial matrices are useful in representing the system dynamics, such as the transfer func-

tions, the observability of 2-D systems. In this thesis, most applications of polynomial matri-

ces are for developing the observer based fault detection method. In the observer based fault

detection, in order for an observer and residual generator to exist, zero primeness of the corre-

sponding polynomial matrices has to be satisfied, meaning that the solution of Equation 2.1 is

a pair of non-zero polynomial matrices. The Bézout identity presented in 2.2.4 is necessary in

the observer based fault detection method as it is required in deriving the transfer functions of

the observers and residual generator.

The concept of minimal left annihilator (MLA) (Rocha and Willems, 1991) is the 2-D ex-

pansion of zero space involved with solution of polynomial equations. For a given polynomial

R(z1, z2), if R is a p×q polynomial matrix of rank r, a polynomial matrix L is a left annihilator

of R if LR = 0. A left annihilator L of R is an MLA if it is of full row rank and for any other

left annihilator M of R, we have M = PL for some polynomial matrix P . If p = r, the MLA

of R is clearly an empty matrix, which means a zero-dimensional matrix. By this definition,

zero space of 2-D system is achieved. MLA is always exists with the (p − r) × p left factor

prime. Calculating MLA is also required in deriving the observer based fault detection.
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Realization is necessary to derive the observers and residual generators in the observer based

fault detection method. 2-D polynomial matrices are used for realization related calculations.

With the obtained 2-D transfer functions, MFD strategies in section 2.2.3 can be used to de-

compose the transfer function to two polynomial matrices corresponding to its denominator

and numerator. Polynomial matrix equations are also utilized in the procedure of forming the

system matrices.

28



Chapter 3

Observer Based FDI for Roesser Model in

Two Dimensional Systems

3.1 Introduction

Fault detection is an integral component of system engineering. There is an abundance of

literature on process fault detection ranging from analytical methods to artificial intelligence

and statistical approaches (Wu et al., 2009; Yao et al., 2011). A priori process knowledge plays a

crucial role in diagnostic decision-making. A priori knowledge could be in the form of material

and energy balances (Mehra and Peschon, 1971; Kramer, 1987), suitably transformed process

models (Willsky and Jones, 1976; Gertler, 1991; Frank, 1990) or distribution information in

the measurement space (Hoskins and Himmelblau, 1988). The models that have been heavily

investigated in fault diagnosis are input-output or state space models. Faults in the state space

framework are described in a series of papers by (Gertler, 1991, 1993) and in recent books

on fault detection and diagnosis (Gertler, 1998; Chen and Patton, 1999; Russell et al., 2000).

Development of fault detection and diagnosis techniques have been predominantly focused on

1-D system.

Fault detection for 2-D state-space models has been considered by only a few researchers,

e.g. in (Fornasini and Maichesini, 1988). In these papers, the parity check relations were ex-
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plored for 2-D state-space models by means of a polynomial approach. The dead-beat observer

has been introduced for state estimate for decades (Zampieri, 1991; Kaczorek, 2001). In the

recent years, the dead-beat observer was introduced into fault detection of processes with the

F-M model (Bisiaco and Valcher, 2006; Bisiacco and Valcher, 2008). Very few research has

been carried out on fault detection for systems by the Roesser model (Wu et al., 2011, 2012;

Maleki et al., 2013).

In this chapter, an observer based fault detection method is investigated for systems de-

scribed by the Roesser model (Wang and Shang, 2014). From the Roesser model, the PBH

observability matrix is constructed and examined, and the transfer function of a dead beat ob-

server is then developed by solving the Bézout equation of the PBH observability matrix. The

observer is obtained from its transfer function using an efficient realization technique so that

the resulting observer is of minimal order. Fault detection is performed through monitoring

the residual, which is closely correlated with the fault signal. With the state estimate from the

observer as one of its input, a residual generator is designed such that its output residual signal

reflects occurrence of faults. Research is carried out on fault detection for systems without dis-

turbances as well as those affected by unknown disturbances. Development of fault detection

for systems affected by unknown disturbances requires stricter conditions for the existence of

the observer and residual generator. Efficiency of the fault detection is ensured by using an

enhanced realization technique and the strategy of minimizing delay in residual generator. The

proposed fault detection is shown to be effective in efficiently detecting occurrence of faults,

although unknown disturbances may sometimes jeopardize the performance of the strategy.

3.2 Realization of Roesser model

A Roesser model can be written as:
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xh(i+ 1, j)

xv(i, j + 1)

 =

A11 A12

A21 A22

xh(i, j)
xv(i, j)

+

B1

B2

u(i, j),

y(i, j) =
[
C1 C2

]xh(i, j)
xv(i, j)

+Ku(i, j),

(3.1)

where i and j indicate the horizontal (or spacial) and vertical (or time) indices, xh is the state

variable evolving horizontally (or spatially), xv is the state variable evolving vertically (or in

time), u(i, j) and y(i, j) indicate the process input and output, respectively, A’s, B’s, C’s and

K are the real matrices of suitable dimensions. The system can be denoted in abbreviation by

{A11, A12, A21, A22, B1, B2, C1, C2, K}.

For simplicity of description, the following matrices are defined:

A =

A11 A12

A21 A22

 , Z =

z1I1 0

0 z2I2

 , x =

xh
xv

 ,
B =

B1

B2

 , C =
[
C1 C2

]
,

(3.2)

where I1 and I2 are two unit matrices with the dimension of A11 and A22, respectively. The

system in (3.1) is therefore denoted by {A,B,C,K}. In the following description, where nec-

essary, the subscript is used to distinguish the unit matrices with different dimensions, e.g., Ix

indicates the unit matrix with the dimension of x(i, j), Ix+y has the dimension of x(i, j) plus

that of y(i, j), etc.

The transfer functions from input to output can be obtained as:

W (z1, z2) = CZ(I − AZ)−1B +K. (3.3)

In the proposed fault detection method, it is necessary to construct the state space Roesser mod-

els from a 2-D transfer function. An efficient realization technique is essential in order for the
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fault detection method to be implementable. Realization of a 2-D transfer function polyno-

mial is more complicated due to the two dimensional structure. The state space realizations

may have many variations such as normal form, Jordan form or canonical form. In the pro-

posed observer based fault detection, realization of state observers and residual generators are

required. It is desirable to generate system matrices of minimal order with as many sparse

matrices in it as possible such that the state space models have simple structure requiring min-

imal computations. In the 2-D Roesser model in (1.1), there exist horizontal and vertical state

variables and the system matrices have to be produced and decomposed to fit the structure of

{A11, A12, A21, A22, B1, B2, C1, C2, K}.

In this chapter, a realization method with minimal order is used to construct the Roesser

models (Xu et al., 2008). This procedure can be carried out with the following steps:

Step 1. From (3.1) and (3.3), the matrix K can be easily obtained as W (0, 0) = K.

Step 2. Denote the remaining part of the polynomialW (z1, z2) asW1(z1, z2), i.e.,W1(z1, z2) =

W (z1, z2)−W (0, 0). Decompose the polynomialW1(z1, z2) intoW1(z1, z2) = N(z1, z2)D(z1, z2)−1

using the matrix fraction description method. Without loss of generality, it is assumed

that D(0, 0) = I .

Step 3. Let DT (z1, z2) = I −D(z1, z2) and form the following polynomial:

F (z1, z2) =

 N(z1, z2)

DT (z1, z2)

 . (3.4)

Step 4. For each column of F (z1, z2), construct column vectors φ̃1i consisting of the mono-

mial entries from the k-th column of F (z1, z2) in the descending order as φ̃1k =[
zr1k1 zr1k−1

1 · · · z1

]T
and φ̃2k as φ̃2k =

[
zr2k2 zr2k−1

2 · · · z2

]T
, where k =

1, · · · , l, l indicates the number of columns in F (z1, z2), r1k is the highest order of

the z1 terms in the k-th column in F (z1, z2), and r2k is the highest order of the z2

terms in the k-th column in F (z1, z2). Insert the power product terms in the k-th
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column of F (z1, z2) into either φ̃1k or φ̃2k. Additional terms can then be added if

necessary such that for each term other than z1 in φ̃1k there is another term satisfy-

ing φ̃1k(k1) = z1φ̃1k(j1), and for each term other than z2 in φ̃2k there exists another

term satisfying φ̃2k(k2) = z2φ̃2k(j2). Let φ1k = z−1
1 φ̃1k if φ̃1k is not empty, and

φ2k = z−1
2 φ̃2k if φ̃2k is not empty. The matrix Φ can then be formed:

Φ =



φ11

. . .

φ1l

φ21

. . .

φ2l


. (3.5)

Step 5. Find DH and NH such that DT = DHZΦ and N = NHZΦ.

Step 6. Construct A0 and B such that

Φ = (I − A0)Φ +B, (3.6)

for some matrices A0 and B.

Step 7. With matrices A0 and B satisfying (3.6), the matrices A and C in the Roesser model

are obtained:

A = A0 +BDHT ,

C = NHT . (3.7)

With the {A,B,C,K}, a Roesser model is then obtained.

In the next section, observer based fault detection for Roesser models is developed and the

realization technique is used to derive 2-D state space models for fault detection. It is necessary

to form the state space models of minimal order by ensuring that the matrix Φ is of minimal
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dimension. In the above algorithm, φi is constructed such that it contains no redundant terms,

and thus can be used to derive the Roesser model for efficient fault detection.

3.3 Observer-based fault detection for the Roesser model

Consider a Roesser model with fault signals:

xh(i+ 1, j)

xv(i, j + 1)

 =

A11 A12

A21 A22

xh(i, j)
xv(i, j)

+

B1

B2

u(i, j) +

F1

F2

 f(i, j),

y(i, j) =
[
C1 C2

]xh(i, j)
xv(i, j)

+Kuu(i, j) +Kff(i, j),

(3.8)

where f(i, j) indicates the fault signal. Let

F =

F1

F2

 . (3.9)

The system in (3.8) is denoted in abbreviation by {A,B, F, C,Ku, Kf}. The transfer functions

for input to output and fault to output can be expressed as:

Wu(z1, z2) = CZ(I − AZ)−1B +Ku,

Wf (z1, z2) = CZ(I − AZ)−1F +Kf .
(3.10)

In developing a fault detection strategy, a dead-beat observer is first constructed for a Roesser

model. The state estimate obtained from the observer is then input to a fault detection residual

generator. The structure of the observer based fault detection is as shown in Fig. 3.1. Note that

development of fault detection requires a state observer and a residual generator.
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Figure 3.1: Structure of the observer based fault detection.

3.3.1 Observer development

In constructing a state space observer for the system in (3.8), the observability PBH matrix

σ(z1, z2) can be constructed:

σ(z1, z2) =

I − ZA
C

 . (3.11)

Note that the PBH matrix is a polynomial matrix. For constructing an observer, it is necessary

that the polynomial matrix is zero right prime (ZRP). An observer transfer function exists if and

only if the polynomial matrix is ZRP. ZRP of the PBH matrix can be determined by examining

the Bezout equation of σ(z1, z2):

[
Q(z1, z2) P (z1, z2)

]
σ(z1, z2) =

[
Q(z1, z2) P (z1, z2)

]Ix − ZA
C

 = Ix. (3.12)

If the Bézout equation is solvable, σ(z1, z2) is ZRP and there exists a dead beat observer. The

observer has process input u(i, j) and output y(i, j) as its input and generates a state estimate

x̂(i, j) as its output.

Theorem 1. Given the polynomial pair Q and P satisfying (3.12), an observer of the system in
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(3.8) can be designed with its transfer function being:

Ŵo(z1, z2) =
[
Ŵu(z1, z2) Ŵy(z1, z2)

]
=

[
Q(z1, z2)ZB − P (z1, z2)Ku P (z1, z2)

]
.

(3.13)

Proof: When there is no fault signal, i.e., f(i, j) = 0, the transfer function of the Roesser model

in (3.8) can be written as:

Wu(z1, z2) = C(I − ZA)−1ZB +Ku, (3.14)

which is equivalent to (3.10). For convenience of description, u(z1, z2), y(z1, z2), x(z1, z2) and

x̂(z1, z2) are used to indicate the z-transform of the input u(i, j), output y(i, j), state x(i, j) and

state estimate x̂(i, j), respectively. The output y(z1, z2) is then expressed as:

y(z1, z2) = C(I − ZA)−1x0 + (C(I − ZA)−1ZB +Ku)u(z1, z2), (3.15)

where x0 indicates the initial value of the state x(i, j). From (3.13), the transfer function of the

observer is comprised of Ŵu and Ŵy:

Ŵu(z1, z2) = Q(z1, z2)ZB − P (z1, z2)Ku,

Ŵy(z1, z2) = P (z1, z2).
(3.16)

Denote the state space form of the observer as Σ =
{
Â, B̂, Ĉ, K̂

}
. The state x and state

estimate x̂ can be described as:

x(z1, z2) = (I − ZA)−1x0 + (I − ZA)−1ZBu(z1, z2),

x̂(z1, z2) = Ĉ(I − ZÂ)−1x̂0 + Ŵu(z1, z2)u(z1, z2) + Ŵy(z1, z2)y(z1, z2),
(3.17)
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where x̂0 indicate the initial value of the state estimate x̂(i, j). By substituting (3.15) into (3.17),

the difference between x and x̂ is obtained:

E(z1, z2) = x(z1, z2)− x̂(z1, z2)

= [(I − ZA)−1 − ŴyC(I − ZA)−1]x0 − Ĉ(I − ZÂ)−1x̂0

+ [(I − ZA)−1ZB − Ŵu(z1, z2)− Ŵy(z1, z2)C(I − ZA)−1ZB − Ŵy(z1, z2)Ku]

u(z1, z2).

(3.18)

From (3.12), the polynomial matrix Q(z1, z2) is:

Q(z1, z2) = (I − ZA)−1 − P (z1, z2)C(I − ZA)−1. (3.19)

Substituting (3.16) and (3.19) into (3.18) yields:

E(z1, z2) = Q(z1, z2)x0 − Ĉ(I − ZÂ)−1x̂0. (3.20)

It is noted that when an observer is designed with the transfer function as in (3.13), E(z1, z2) is

only affected by the initial conditions and the polynomial matrices. This prove the theorem.

When there exists a fault signal, i.e., f(i, j) 6= 0, it can be obtained:

E(z1, z2) = Q(z1, z2)x0 − Ĉ(I − ZÂ)−1x̂0

+ [Q(z1, z2)ZF − P (z1, z2)Kf ] f(z1, z2).
(3.21)

Equations (3.20) and (3.21) indicate that the initial values of the state x and state estimate x̂

affect the performance of an observer. For simplicity of calculation, initial conditions of zeros

are used in this chapter.

The designed observer requires to calculate the polynomial matrices P (z1, z2) andQ(z1, z2).

From the Bézout equation of PBH matrix, P (z1, z2) and Q(z1, z2) can be calculated as a left

inverse of the PBH matrix. The Polynomial Toolbox Software was used to calculate the inverse
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Figure 3.2: Construction of a state observer for a 2-D Roesser system.

of polynomial matrices in this work. With the resulting P (z1, z2) and Q(z1, z2), the transfer

function of the observer is then obtained using Equation (3.13). In calculating the observer, it

is essential to ensure that the Bézout equation is solvable, i.e., the PBH is zero right prime.

From the obtained transfer function (3.13), the realization technique described in the last

section can be used to obtain a state space model of the observer, from which the evolvement of

state estimate x̂ is determined. The state space model of the observer takes the following form:

wh(i+ 1, j)

wv(i, j + 1)

 =

Â11 Â12

Â21 Â22

wh(i, j)
wv(i, j)

+

B̂1

B̂2

u(i, j)

y(i, j)

 ,
x̂(i, j) =

[
Ĉ1 Ĉ2

]wh(i, j)
wv(i, j)

+ K̂

u(i, j)

y(i, j)

 .
(3.22)

From the state space observer, evolvement of the state can be estimated and the state estimate x̂

is obtained. The schematic of observer construction is shown in Fig. 3.2.
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3.3.2 Residual generator for fault detection

In the proposed method, faults are detected using a residual generator with its output being a

residual signal. An effective residual generator is such that the output residual signal is zero if

no fault occurs and is nonzero when a fault affects the system. The designed residual generator

uses three types of input signals: process input u(i, j), output y(i, j), and the state estimate

x̂(i, j) from the observer. Corresponding to these signals, the transfer function of the residual

generator is comprised of three components:

W̄r(z1, z2) =
[
W̄ru(z1, z2) W̄ry(z1, z2) W̄rx̂(z1, z2)

]
. (3.23)

Denoting the minimum left annihilator (MLA) of the PBH matrix σ as the polynomial matrices

pair −N(z1, z2) and M(z1, z2), i.e,

[
−N(z1, z2) M(z1, z2)

]Ix − ZA
C

 = 0x. (3.24)

A fault-related polynomial matrix can be constructed as:

Γf (z1, z2) =
[
N(z1, z2) M(z1, z2)

]ZF
Kf

 . (3.25)

There exists a residual generator relating fault signals with residuals if Γf (z1, z2) is zero right

prime. Based on the obtained matrices Q(z1, z2), P (z1, z2), N(z1, z2) and M(z1, z2), the fol-

lowing matrix equation is established:

 Q(z1, z2) P (z1, z2)

−N(z1, z2) M(z1, z2)

Ix − ZA −L(z1, z2)

C S(z1, z2)

 = Ix+y, (3.26)

and L(z1, z2) and S(z1, z2) satisfying (3.26) can then be solved.

Let Λ(z1, z2) denote an L-polynomial left inverse of Γf (z1, z2), i.e., there exist n1 > 0 and
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n2 > 0 such that

Λ(z1, z2)Γf (z1, z2) = zn1
1 zn2

2 If . (3.27)

Theorem 2. Given the polynomial matricesQ(z1, z2), P (z1, z2),N(z1, z2),M(z1, z2), L(z1, z2)

and S(z1, z2) satisfying (3.26), a residual generator can be designed with its transfer functions[
W̄ru(z1, z2) W̄ry(z1, z2) W̄rx̂(z1, z2)

]
being:

[
V (z1, z2) W̄ry(z1, z2)

]L(z1, z2)

S(z1, z2)

 = Λ(z1, z2), (3.28)

and

[
W̄rx̂(z1, z2) W̄ru(z1, z2)

]
=
[
V (z1, z2) −W̄ry(z1, z2)

]I − ZA −ZB

C Ku

 . (3.29)

Proof: Input variables of a residual generator includes the process input u(i, j), output y(i, j)

and state estimate x̂(i, j). The output y(i, j) and state estimate x̂(i, j) are expressed as

y(z1, z2) = C(I − ZA)−1x0 + (C(I − ZA)−1ZB +Ku)u(z1, z2)

+(C(I − ZA)−1ZF +Kf )f(z1, z2),

x̂(z1, z2) = Ĉ(I − ZÂ)−1x̂0 + Ŵu(z1, z2)u(z1, z2) + Ŵy(z1, z2)y(z1, z2)

= Ĉ(I − ZÂ)−1x̂0 + [Q(z1, z2)ZB − P (z1, z2)Ku]u(z1, z2)

+P (z1, z2)y(z1, z2),

(3.30)

where f(z1, z2) indicates the z-transform of the fault signal f(i, j). Denote the state space form

of the residual generator as Σ =
{
Ā, B̄, C̄, K̄

}
. The z-transform of the residual signal can
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then be written as:

r(z1, z2) =W̄ru(z1, z2)u(z1, z2) + W̄ry(z1, z2)y(z1, z2)

+ W̄rx̂(z1, z2)x̂(z1, z2) + C̄(I − ZĀ)−1r0,
(3.31)

where r0 is the initial value of the residual signal r(i, j).

Substituting (3.30) to (3.31) and rearranging the equation yields

r(z1, z2) =
[
(W̄rx̂(z1, z2) + W̄ry(z1, z2)C)(I − ZA)−1ZB + W̄ru(z1, z2) + W̄ry(z1, z2)Ku

]
u(z1, z2) +

[
W̄rx̂(z1, z2)P (z1, z2) + W̄ry(z1, z2)

]
(C(I − ZA)−1ZF +Kf )f(z1, z2) + C̄(I − ZĀ)−1r0+

W̄rx̂(z1, z2)Ĉ(I − ZÂ)−1x̂0+[
W̄rx̂(z1, z2)P (z1, z2) + W̄ry(z1, z2)

]
C(I − ZA)−1x0.

(3.32)

It is noted that the above expression is composed of the effects of input u(z1, z2), fault f(z1, z2)

and initial conditions. Define

ru(z1, z2) =
[
W̄rx̂(z1, z2) + W̄ry(z1, z2)C

]
(I − ZA)−1ZB

+ W̄ru(z1, z2) + W̄ry(z1, z2)Ku,
(3.33)

rf (z1, z2) =
[
W̄rx̂(z1, z2)P (z1, z2) + W̄ry(z1, z2)

]
(C(I − ZA)−1ZF +Kf ).

(3.34)

It can be seen that ru(z1, z2) and rf (z1, z2) describes the effects of the input u(z1, z2) and

fault f(z1, z2), respectively. From the transfer function of the designed residual generator in

(3.29), W̄rx̂(z1, z2) and W̄ru(z1, z2) can be described as:

W̄rx̂(z1, z2) = V (z1, z2)(I − ZA)− W̄ry(z1, z2)C,

W̄ru(z1, z2) = −V (z1, z2)ZB − W̄ry(z1, z2)Ku.
(3.35)
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By substituting (3.35) to (3.33), it can be obtained

ru(z1, z2) = 0. (3.36)

The expression of rf (z1, z2) is then examined by substituting (3.35) to (3.34):

rf (z1, z2) =
[
V (z1, z2)(I − ZA)P (z1, z2) + W̄ry(I − CP (z1, z2))

]
(C(I − ZA)−1ZF +Kf ).

(3.37)

Equation (3.26) is rewritten as

Ix − ZA −L(z1, z2)

C S(z1, z2)

 Q(z1, z2) P (z1, z2)

−N(z1, z2) M(z1, z2)

 = Ix+y, (3.38)

which leads to the following equations:

(Ix − ZA)P (z1, z2) = L(z1, z2)M(z1, z2),

CP (z1, z2) = Iy − S(z1, z2)M(z1, z2).
(3.39)

From (3.24), C(I −ZA)−1 = M(z1, z2)−1N(z1, z2). By substituting (3.39) to (3.37), Equation

(3.37) becomes:

rf (z1, z2) =
[
V (z1, z2)L(z1, z2)M(z1, z2) + W̄ryS(z1, z2)M(z1, z2)

]
M(z1, z2)−1(N(z1, z2)ZF +M(z1, z2)Kf )

= [ V (z1, z2) W̄ry(z1, z2) ]

L(z1, z2)

S(z1, z2)

 [ N(z1, z2) M(z1, z2) ]

ZF
Kf


= Λ(z1, z2)Γf (z1, z2) = zn1

1 zn2
2 If .

(3.40)

Equations (3.32), (3.36) and (3.40) indicate that, except for the effect of initial conditions, the

residual r(z1, z2) is explicitly related to the fault f(z1, z2) by r(z1, z2) = zn1
1 zn2

2 f(z1, z2). The

fault can, therefore, be detected from the residual generator by monitoring the evolvement of
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residual values. This completes the proof.

For the resulting residual generator with zero initial conditions, there exist n1 > 0 and

n2 > 0 such that

r(i, j) = f(i− n1, j − n2). (3.41)

The fault is thus detected with possibly some delay, i.e., the method can detect a fault occurring

at (i, j) only at (i + n1, j + n2). Herein the term delay used in the 1-D behavior is extended to

describe the delay or shift in either time or spatial direction. To minimize the detection delay or

shift, Λ(z1, z2) may be calculated by expressing the polynomial inverse of Γf (z1, z2) as:
z−n11

1 z−n12
2

. . .

z−nf1
1 z−nf2

2

Λ(z1, z2), (3.42)

with ni1 and ni2 being as small as possible.

With the transfer functions of the residual generator W̄ry(z1, z2), W̄ru(z1, z2) and W̄rx̂(z1, z2)

obtained, a Roesser model of the residual generator can be obtained using the realization de-

scribed in the last section, leading to the state space model of the residual generator in the

following form:

vh(i+ 1, j)

vv(i, j + 1)

 =

Ā11 Ā12

Ā21 Ā22

vh(i, j)
vv(i, j)

+

B̄1

B̄2



u(i, j)

y(i, j)

x̂(i, j)

 ,

r(i, j) =
[
C̄1 C̄2

]vh(i, j)
vv(i, j)

+ K̄


u(i, j)

y(i, j)

x̂(i, j)

 .
(3.43)

The residue generator can be denoted as
{
Ā, B̄, C̄, K̄

}
. From the transfer function, realization

is then used to obtain The schematic of constructing the residual generator is shown in Fig. 3.3.
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Figure 3.3: Construction of a residual generator for a 2-D Roesser system without unknown disturbances.
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In monitoring an industrial process, it is essential to detect and locate faults as soon as pos-

sible. Delays, however, often exist due to monitoring mechanism or equipment. In the 2-D

observer based fault detection algorithm, delays could be induced from the inverse of polyno-

mial matrix Γf and realizations of observers and residue generators. In the proposed strategy,

through using an efficient realization technique and expressing the inverse of Γf (z1, z2) with

(3.42), it is expected to generate efficient fault detections.

3.3.3 Systems with unknown disturbance

If there exists an unknown disturbance in the input signals, additional polynomial matrices for

disturbances are necessary in constructing the fault detection strategy. When unknown distur-

bances affect the system dynamics, the Roesser model is expressed as:

xh(i+ 1, j)

xv(i, j + 1)

 =

A11 A12

A21 A22

xh(i, j)
xv(i, j)

+

B1

B2

u(i, j)

+

D1

D2

 d(i, j) +

F1

F2

 f(i, j),

y(i, j) =
[
C1 C2

]xh(i, j)
xv(i, j)


+Kuu(i, j) +Kdd(i, j) +Kff(i, j),

(3.44)

where d(i, j) indicates unknown disturbances and D1, D2 and Kd are matrices with proper

dimensions.

For systems affected by unknown disturbances, determining whether the observer exists is

more involved than the case without disturbances. Let

D =

D1

D2

 .
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It is necessary to calculate the minimum left annihilator of disturbance matrix

 ZD
−Kd

 in order

to determine whether an observer exists. Denote the minimum left annihilator of

 ZD
−Kd

 as

[
Hd Hk

]
. With the calculated PBH observability matrix σ(z1, z2) in (3.11), a polynomial

matrix can be defined:

Γ1(z1, z2) =
[
Hd Hk

]
σ(z1, z2). (3.45)

Existence of a dead-beat observer can be determined by examining zero right primeness of

Γ1(z1, z2) . If Γ1(z1, z2) is zero right prime, there exists a dead beat observer. Its transfer

function can be obtained similarly to that for systems with no disturbances, as described in the

last subsection. The only difference is that the polynomial pair
[
Q(z1, z2) P (z1, z2)

]
has to

be calculated satisfying a more stringent condition:

[
Q(z1, z2) P (z1, z2)

]Ix − ZA ZD

C −Kd

 =
[
Ix 0

]
. (3.46)

From the transfer function, realization is then used to obtain the Roesser model of the observer.

With the state observer constructed, it is necessary to determine whether an observer based

fault detection residual generator exists. By calculating the polynomial matrix pair
[
N(z1, z2) M(z1, z2)

]
using equation (3.24), a disturbance related polynomial Γd(z1, z2) can be determined:

Γd(z1, z2) =
[
N(z1, z2) M(z1, z2)

]ZD
Kd

 . (3.47)

Denote the minimum left annihilator of Γd(z1, z2) as Φd(z1, z2). The fault related polynomial

matrix Γf (z1, z2) is calculated using equation (3.25). The polynomial matrix is obtained:

ΓR(z1, z2) = Φd(z1, z2)Γf (z1, z2). (3.48)
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There exists an observer based fault detection residual generator if ΓR(z1, z2) is zero right prime.

With zero right primeness of the polynomial Γ1(z1, z2) and ΓR(z1, z2) satisfied, the residual

generator for fault detection can be obtained by finding a L-polynomial left inverse of Γd(z1, z2)

with equation (3.42) satisfying

Λ(z1, z2)Γd(z1, z2) = 0. (3.49)

With the obtained Λ(z1, z2), the same procedure described in the last subsection is then used

to construct a residual generator. The schematic of residual generator construction is shown in

Fig. 3.4.

A desirable fault detection should be insensitive to occurrence of disturbances. The proposed

fault detection is robust to unknown disturbances when the stricter conditions of the observer

and residual generator are satisfied. The robust property of the fault detection to unknown

disturbance is further illustrated in the Example 3 of Simulation.

In contrast to the F-M model, the state variables in the Roesser model are comprised of

horizontal and vertical variables. The two independent variables z1 and z2 corresponding to the

horizontal and vertical evolvement of the variables are expressed in a compact form using the

matrix Z defined in (3.2). As a result, the transfer functions, PBH matrix, Bézout equation and

subsequent development of a residual generator need to be constructed to be the functions of the

matrix Z. Existence of horizontal and vertical variables in the Roesser model also increases the

challenge of realization. Minimal realization is necessary for implementation of the proposed

technique.

3.4 Simulations

In this section, the proposed fault detection strategy is applied to three examples to examine

its performance. For simplicity of calculations, the initial values of the plants, observers and

residual generators were set to zero in the simulations.

47



Fault related 
polynomial: Γf (z1,z2) 

ZRP?

Inverse of Γf : Λ(z1,z2) 
such that Λ Γd =0

MLA of PBH matrix: N and M 

End

Realization: {�̅, ��, �̅, ��}

N

Y

Process: {A, B, D, F, C, Ku, Kd, Kf}

V, W
��

	, W
��

	, W
��

	

r

PBH matrix σ(z1,z2) 

Bezont equation: 
L (z1,z2) and S (z1,z2) 

u, y
Observer
�

Disturbance related 
polynomial: Γd(z1,z2) 

MLA of Γd(z1,z2): Φd

ΓR =Φd Γf

Figure 3.4: Construction of a residual generator for a 2-D Roesser system affected by unknown disturbances.

48



Example 1. Consider the following 2-D Roesser model with a fault signal:

xh(i+ 1, j)

xv(i, j + 1)

 =

 1 0

1 0

xh(i, j)
xv(i, j)

+

0

1

u(i, j) +

−1

0

 f(i, j),

y(i, j) =
[

1 0
]xh(i, j)

xv(i, j)

 .
(3.50)

From (3.50), there exists no disturbance in this example. The proposed fault detection for

systems without disturbance, described in Section 3.2, can then be applied to this example.

By solving the Bézout equation of the PBH observability matrix, the transfer function for the

observer can be obtained:

Ŵo =

0 0

0 1

 . (3.51)

As this transfer function is very simple, the state estimate x̂ can be directly obtained:

x̂h(i, j)
x̂v(i, j)

 =

0

1

 y(i, j). (3.52)

Based on the obtained state estimate x̂(i, j), the residual generator can be calculated with

the state estimate x̂, process input u(i, j), process output y(i, j) as the input to the residual

generator and the residual r(i, j) as the output. The transfer function of the residual generator

for this system is:

Ŵr =
[

1− z1 0 0 −1 + z1

]
. (3.53)
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Using the realization, the state space Roesser model of the residual generator is obtained:

vh(i+ 1, j)

vv(i, j + 1)

 =

0 1

0 0

vh(i, j)
vv(i, j)

+

 −1 0 0 1

0 0 0 0



x̂(i, j)

u(i, j)

y(i, j)

 ,

r(i, j) =
[

1 0
]vh(i, j)

vv(i, j)

+
[

1 0 0 −1
]

x̂(i, j)

u(i, j)

y(i, j)

 .
(3.54)

Simulation was carried out to evaluate the effectiveness of the fault detection strategy. In the

simulation, the spacial index i is ranging from 1 to 50 and the input signal u(i, j) is set to be a

random variable varying from 0 to 1, as illustrated in Fig. 3.5. When a fault signal of unit step

occurs at time j = 100, variation of the residual r can be seen in Fig. 3.6. It is observed that, at

i = 1, r responds instantly for the step change in f and increases with time. This indicates that

the occurrence of a fault can trigger changes in r and that the proposed fault detection strategy

is effective for the system unaffected by unknown disturbances. However, although a unit step

change in the fault signal f occurs at every spacial point for i from 1 to 50, the residual signal

r displays a change only at i = 1 and it is constantly 0 at other spacial points for i from 2 to 50.

This shows that the strategy can detect the occurrence of a fault but is not capable of diagnosing

the spacial location where a fault occurs. It is also noted that there is no delay in detecting the

fault for this system.

Example 2. In the last example, the system is not affected by any unknown disturbances.

In some applications, however, there exist unknown disturbances. For systems affected by un-

known disturbances, it requires stricter conditions in order for an observer and a fault detection

residual generator to be effective. In this example, the effect of unknown disturbances on the

performance of fault detection is investigated for a system that may not satisfy the stricter con-

50



0
100

200
300

400
500

0

10

20
30

40

50

0

0.5

1

Time index
Spatial index

In
pu

t

Figure 3.5: A random input signal.
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Figure 3.6: Residual response for a step change in fault signal for a system without unknown disturbances.
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ditions. An example the same as the last but with an additional disturbance signal is considered:

xh(i+ 1, j)

xv(i, j + 1)

 =

 1 0

1 0

xh(i, j)
xv(i, j)

+

0

1

u(i, j) +

−1

0

 f(i, j),

y(i, j) =

1 0

0 0

xh(i, j)
xv(i, j)

+

 0

−1

 d(i, j).

(3.55)

As this system is the same as that in the last example, the same observer and fault detection

residual generator as in (3.52) and (3.54) can be obtained using the proposed fault detection

method. In the simulation, the process input u(i, j) was a random signal as in Fig. 3.5, and

the unknown disturbance d was also set to be a random signal ranging from 0 to 1 as in Fig.

3.7. When a fault signal of step change occurs at time j = 100, variation of the residual signal

is examined. Fig. 3.8 indicates that the residual signal r does not respond to occurrence of

the fault signal and is constantly 0 across every spacial point. This shows that presence of the

unknown input disturbance has jeopardized performance of the residual generator. Failure to

detect the fault signal in this example is due to the fact that the calculated observer does not

completely satisfy the conditions of a dead-beat observer.

Example 3. The performance of the fault detection strategy is further investigated for a

system with unknown disturbances satisfying the stricter conditions of a dead beat observer and

a residual generator. The following system affected by an unknown disturbance is considered:

xh(i+ 1, j)

xv(i, j + 1)

 =

 0 1

1 0

xh(i, j)
xv(i, j)

+

0

0

u(i, j) +

 0

−1

 f(i, j),

y(i, j) =

 1 0

0 1

xh(i, j)
xv(i, j)

+

 0

−1

 d(i, j) +

 0

−1

 f(i, j).

(3.56)

This is a system with an unknown disturbance. By calculation, it is found that Γ1 in (3.45)

and ΓR in (3.48) are zero right prime, and a dead beat observer and a residual generator are,

therefore, exist.
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Figure 3.7: A random disturbance signal in Example 2.
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Figure 3.8: Residual response for a step change in fault signal for a system affected by unknown disturbances.
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The transfer function of the observer can be obtained:

Ŵo =

0 z1z2 0

0 z2 0

 . (3.57)

The realization can then be used to generate the Roesser model of the observer, which takes in

the following form:

wh(i+ 1, j)

wv(i, j + 1)

 =

0 1

0 0

wh(i, j)
wv(i, j)

+

0 0 0

0 1 0

u(i, j)

y(i, j)

 ,
x̂(i, j) =

 1 0

0 1

wh(i, j)
wv(i, j)

 .
(3.58)

Corresponding to the state estimate x̂(i, j), process input u(i, j), process output y(i, j) as the

inputs to the residual generator, the transfer function of the residual generator for this system is:

W̄r =
[
z1z2 − 1 0 0 0 0

]
. (3.59)

The state space Roesser model of the residual generator can then be obtained using the realiza-

tion technique:

vh(i+ 1, j)

vv(i, j + 1)

 =

0 1

0 0

vh(i, j)
vv(i, j)

+

 0 0 0 0 0

1 0 0 0 0



x̂(i, j)

u(i, j)

y(i, j)

 ,

r(i, j) =
[

1 0
]vh(i, j)

vv(i, j)

+
[
−1 0 0 0 0

]

x̂(i, j)

u(i, j)

y(i, j)

 .
(3.60)

Simulation was run for both the cases without disturbance and with a disturbance. In the

simulation, the process input u was set to be a random signal ranging from 0 to 1. Fig. 3.9

and 3.10 illustrates the residual response to a step change in the fault signal f when there is no
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Figure 3.9: Fault residual response for a step change in fault signal for a system without unknown disturbances.

disturbance, i.e., d = 0. It is observed that the residual r responds quickly to occurrence of the

fault and displays some delays at different spacial locations. The residual varies in the range

between −1 and 1.

Effect of unknown disturbances was examined by introducing a step disturbance signal at

time j = 300, as in Fig 3.11. The evolvement of the residual is displayed in Fig. 3.12 and

3.13. It is noted that, for this example, the residual responds to the fault signal despite the

disturbance and settles down at different values at different spacial points. Introduction of

disturbance at time j = 300 does not affect the residual response. The proposed strategy is

robust to disturbances and capable of detecting faults for systems without disturbance as well

as systems with disturbances.

The performance of the fault detection is also investigated for the case when the fault signal

changes from occurrence to vanishing. Such a change of the fault signal can be represented

by a pulse function. Fig. 3.14 and 3.15 show the residual response to a fault signal of the

pulse function. It is observed that the residual increases and settles at constant values when the

fault occurs at time j = 100, and the residual starts to decreases and settles at zero when the

fault vanishes at time j = 300. The result indicates that the residual signal is sensitive to fault
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Figure 3.10: 3-D plot of residual response for a step change in fault signal for a system without unknown distur-
bances.

0
100

200
300

400
500

0
10

20
30

40

50
0

0.5

1

Time index
Spatial index

D
is

tu
rb

an
ce

Figure 3.11: A disturbance signal in Example 3.
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Figure 3.12: Residual response for a step change in fault signal for a system affected by unknown disturbances.
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Figure 3.13: 3-D plot of residual response for a step change in fault signal for a system affected by unknown
disturbances.
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Figure 3.14: Residual response for a pulse change in fault signal for a system affected by unknown disturbances.

occurrence and vanishing and can, therefore, be used to detect the faults with reliability.

3.5 Summary

Fault detection for 2-D systems is a challenging topic and only limited research results have

been reported. In this chapter, an observer based fault detection method is developed for systems

modeled by the Roesser models. The proposed method is comprised of construction of a dead

beat observer and a residual generator. The PBH observability matrix of a system is calculated,

and some system specific polynomial matrices are then formed and their zero right primeness is

used to determine the existence of the observer and the residual generator. The systems affected

by unknown disturbances require more stringent conditions. Realization of the Roesser state

space models from transfer functions is an integral part of the fault detection method. An

realization technique generating the state space models of minimal order is integrated and leads

to an efficient fault detection strategy by reducing the computation cost. Simulation results show

that the algorithm is capable of detecting faults for systems described by the Roesser model.

Disturbance may jeopardize the performance of the fault detection strategy. Fault detection
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Figure 3.15: 3-D plot of fault residual response for a pulse change in fault for a system affected by unknown
disturbances.

of 2-D processes represented by the Roesser Model represents a necessary extension of the

existing fault detection methods.

The proposed algorithm is validated using numerical examples. Some challenges, how-

ever, still exist in implementing the technique into real world applications. One of them lies

in the difficulties of model identification based on industrial data. Future work should include

implementing the developed fault detection into industrial applications as well as 2-D model

identification based on industrial data.
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Chapter 4

Kalman Filter Based FDI for F-M Model

in Two Dimensional Systems

4.1 Introduction

Fault detection and diagnosis are essential in ensuring safe operations by providing timely di-

agnostic information to plant operators in process industry. Extensive research has been carried

out on fault detection and diagnosis ranging from analytical methods to artificial intelligence

and statistical approaches. The analytical schemes for fault detection and diagnosis are basically

signal processing techniques using state estimation, parameter estimation and adaptive filtering

(Venkatasubramanian et al., 2003). The key component in these schemes is to design diagnostic

observers with satisfactory decoupling properties for residual generation of dynamic systems.

For systems where variables display noisy fluctuations with known statistical parameters, fault

diagnosis problem entails monitoring the innovation process or the prediction errors (Basseville,

1988; Willsky and Jones, 1976). A Kalman filter, designed on the basis of the system model in

its normal operating mode, provides a state estimator with minimum estimation error and has

been used for the fault detection and isolation purposes (Fathi et al., 1993; Chang and Hwang,

1998). The well-developed fault detection and diagnosis techniques have been predominantly

focused on 1-D system.
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Research and development on FDI of 2-D systems have been limited, owing in part to com-

plexity of 2-D models (Wu et al., 2011, 2012; Maleki et al., 2013). The dead-beat observer has

recently been applied to fault detection and isolation of 2-D systems by constructing a residual

generator (Bisiaco and Valcher, 2004, 2006). The dead-beat observer based FDI was shown to

be effective for 2-D systems but strict conditions are required in order for an observer and a

residual generator to exist. These strict conditions may not be satisfied for some systems.

A Kalman filter, which minimizes the estimation error variance, has become one of the most

popular state estimation approaches. The Kalman filter based fault detection methods have

also been well accepted for 1-D cases. Since 1970s, extensive research has been involved with

the attempt to introduce 2-D Kalman filters (Shanks et al., 1972; Woods and Radewan, 1977;

Katayama and Kosaka, 1979; Sebek, 1992). A straightforward extension of 1-D Kalman filter

techniques would result in a number of state variables proportional to N for the filtering of an

N × N digital image (Sheng and Zou, 2007; Kwan and Lewis, 1999; Katayama and Kosaka,

1979). In a 2-D case, the enormous quantity of the data calls for an efficient recursion processor.

In parallel with the active research on development of efficient 2-D Kalman filters, it is of great

interest to explore the applications of 2-D Kalman filters for fault detection of 2-D systems.

In this chapter, a Kalman filter based fault detection method is developed for 2-D systems

described by F-M models. The state estimate minimizing the estimation error variance is recur-

sively calculated using a 2-D Kalman filter. The obtained state estimate leads to generation of a

residual through the innovation process. The generated residual is of zero mean Gaussian noise

when there exists no fault, and is no longer zero mean Gaussian noise when there are faults.

The residual directly reflects the fault information and is therefore used to determine whether a

fault occurs. The model of the residual over a moving evaluation window is formulated describ-

ing the relation of the residual with the fault. Simulations were carried out on two examples

to investigate the performance of the proposed fault detection method. In both examples, the

generated residual responds quickly to occurrences of faults and the proposed method is shown

to be effective in fault detection of 2-D systems. The Kalman filter based fault detection does
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not require to satisfy the strict conditions and can, therefore, be used to a wider range of 2-D

systems.

4.2 2-D Kalman filter based fault detection

In the Kalman filter based fault detection, a residual signal is generated using the state estimation

from a Kalman filter. Due to the noisy characteristics of the systems, it is necessary to examine

the residual over a 2-D evaluation window and then detects with its statistical properties.

4.2.1 Residual generation

A recursive Kalman filter is used to derive a state estimate and the residual is then calculated

based on the obtained state estimate and measured output. The structure of the 2-D Kalman

filter based residual generator is illustrated in Fig. 4.1.

2-D System

2-D Kalman
Filter

Residual 
Generator

( , )u i j

ˆ (i, j) |x −

( , )y i j ( , )r i j

ˆ(i, j)x

Figure 4.1: Structure of a Kalman filter based residual generator.

Consider a 2-D F-M model with a fault signal and process noises:

x(i+ 1, j + 1) = A1x(i+ 1, j) + A2x(i, j + 1) +B1u(i+ 1, j) +B2u(i, j + 1)

+F1f(i+ 1, j) + F2f(i, j + 1) +H1η(i+ 1, j) +H2η(i, j + 1)

y(i, j) = Cx(i, j) +Kff(i, j) + ν(i, j)

(4.1)

with the boundary conditions:

x(i, 0) = xi0, x(0, j) = x0j,
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where i and j indicate the horizontal (or spacial) and vertical (or time) indices, x(i, j) ∈ Rnx ,

u(i, j) ∈ Rnu , f(i, j) ∈ Rnf and y(i, j) ∈ Rny are state, input, fault and output vectors, respec-

tively, η(i, j) indicates the process noise, ν(i, j) is measurement noise, A1, A2, B1, B2, H1, H2,

F1, F2, C, Kf are known matrices of appropriate dimensions. It is assumed that the variables

η(i, j) ∈ Rnη , and ν(i, j) ∈ Rnν be white Gaussian noises with zero mean value and given

variances:
E [η(i, j)] = 0,

E [ν(i, j)] = 0,

E
[
η(i, j)ηT (k, l)

]
=

 Q(i, j), when i = k and j = l,

0, elsewhere ,

E
[
ν(i, j)νT (k, l)

]
=

 R(i, j), when i = k and j = l,

0, elsewhere ,

(4.2)

where Q, and R are the covariance matrices of η(i, j) and ν(i, j), respectively.

Let x̂(i, j) be the estimate of x(i, j) and x̃(i, j) be the estimation error, i.e., x̃(i, j) = x(i, j)−

x̂(i, j). A Kalman filter is designed to update state estimate x̂(i, j) such that the variance of

estimation error x̃(i, j) be minimized. The variance of estimate error x̃(i, j) can be written as:

P (i, j) = E
[
x̃(i, j)x̃(i, j)T

]
(4.3)

With the given initial condition, the boundary values of P (i, j) are obtained:

P (i, 0) = E
[
(xi0 − x̂(i, 0))(xi0 − x̂(i, 0))T

]
P (0, j) = E

[
(x0j − x̂(0, j))(xi0 − x̂(0, j))T

] (4.4)

The proposed fault detection is to generate a residual signal such that it reflects occurrence

of faults. For the residual generation, the state estimate x̂(i, j) is to be updated recursively. The

Kalman filter proposed in (Zou et al., 2004) is used to update the state estimate in this work.

Although there are other structures of Kalman filter in literature (Yang et al., 2009; Kwan and

Lewis, 1999; Woods, 1979; Woods and Ingle, 1981; Azimi-Sadjadi and Wong, 1987; Azimi-
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Sadjadi and Bannour, 1991), the genuine recursive approach is still not fully accessible. The

recursive scheme for optimal state estimate can be expressed:

x̂(i, 0) = x̂i0, x̂(0, j) = x̂0j (4.5)

x̂(i, j)|− = A1x̂(i, j − 1) + A2x̂(i− 1, j)

+B1u(i, j − 1) +B2u(i− 1, j) (4.6)

x̂(i, j) = x̂(i, j)|− + L(i, j)[y(i, j)− Cx̂(i, j)|−] (4.7)

where x̂(i, j)|− indicates the state estimate based on measurement up to (i−1, j) and (i, j−1),

while x̂(i, j) is the state estimate based on measurement up to (i, j) and L(i, j) denotes the

Kalman filter gain. Corresponding to x̂(i, j)|− and x̂(i, j), the associated state estimation error

variance matrices are:

P (i, j)|− = E
[
(x(i, j)− x̂|−(i, j))(x(i, j)− x̂|−(i, j))T

]
(4.8)

P (i, j) = E
[
(x(i, j)− x̂(i, j))(x(i, j)− x̂(i, j))T

]
(4.9)

In updating the state estimate x̂(i, j) in (4.7), the Kalman filter gain L(i, j) needs to be

calculated by recursively updating the state estimate error variances P (i, j)|− and P (i, j):

P (i, j)|− = A1P (i, j − 1)AT1 + A2P (i− 1, j)AT2

+A1cov[x̃(i, j − 1), x̃(i− 1, j)]AT2 + A2cov[x̃(i− 1, j), x̃(i, j − 1)]AT1

+H1Q(i, j − 1)HT
1 +H2Q(i− 1, j)HT

2 (4.10)

L(i, j) = P (i, j)|−CT
[
CP (i, j)|−CT +R(i, j)

]−1
(4.11)

P (i, j) = (I − L(i, j)C)P (i, j)|− (4.12)

In the above equation, the covariance matrices cov[x̃(i, j − 1), x̃(i − 1, j)] can be assessed
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iteratively from those of the three neighboring points:

cov[x̃(i, j − 1), x̃(i− 1, j)] = (I − L(i, j − 1)C)

[A1cov[x̃(i, j − 2), x̃(i− 1, j − 1)]AT1 + A1cov[x̃(i, j − 2), x̃(i− 2, j)]AT2

+A2cov[x̃(i− 1, j − 1), x̃(i− 1, j − 1)]AT1

+A2cov[x̃(i− 1, j − 1), x̃(i− 2, j)]AT2

+H2Q(i− 1, j − 1)HT
1 ](I − L(i− 1, j)C)T

(4.13)

With the state estimated calculated, the residual r(i, j) is obtained from the innovation pro-

cess

r(i, j) = y(i, j)− Cx̂(i, j)|− (4.14)

It follows from the above equations that

x̃(i, j) = (I − L(i, j)C)(A1x̃(i, j − 1) + A2x̃(i− 1, j)

+F1f(i, j − 1) + F2f(i− 1, j) +H1η(i, j − 1) +H2η(i− 1, j))

−L(i, j)Kff(i, j)− L(i, j)ν(i, j) (4.15)

r(i, j) = C(A1x̃(i, j − 1) + A2x̃(i− 1, j) + F1f(i, j − 1) + F2f(i− 1, j)

+H1η(i, j − 1) +H2η(i− 1, j)) +Kff(i, j) + ν(i, j) (4.16)

Equation (4.15) and (4.16) describe how the state estimate error and residual signal evolve

along two directions. For an effective Kalman filter, the state estimate error should become a

zero mean white Gaussian noise after a certain time. Consequently, if in fault free mode, i.e.,

f(i, j) = 0, the residual output r(i, j) should be a zero mean white Gaussian process. When

a fault occurs, i.e., f(i, j) 6= 0, r(i, j) is no longer a zero mean white noise. The fault can be

detected by evaluating the signal r(i, j).

Residual generation is critical for the Kalman filter based fault detection and its on-line

implementation can be performed with the following steps:

Step 1. Assuming the boundary values of a 2-D system: x(i, 0) = xi0, x(0, j) = x0j , the state
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estimates at the boundaries are set up as: x̂(i, 0) = xi0, x̂(0, j) = x0j . Calculate the

state estimate error matrices at the boundaries P (i, 0) and P (0, j) using (4.4).

Step 2. Calculate the covariance matrices at the boundaries

cov[x̃(i, 0), x̃(i− 1, 1)] and cov[x̃(0, j), x̃(1, j − 1)], i = 1.2, · · · , and j = 1, 2, · · · .

Step 3. Compute the covariance matrixes

cov[x̃(i− 1, j), x̃(i, j − 1)] using Equation (4.13).

Step 4. Evaluate the matrices

P (i, j)|−, L(i, j) and P (i, j) using Equation (4.10)-(4.12).

Step 5. Compute the state estimate x̂(i, j)|− and x̂(i, j) using Equation (4.6) and (4.7).

Step 6. Calculate the residual signal r(i, j) using (4.14).

Step 7. Evaluate the obtained r(i, j) and check if it is a zero mean white noise.

Step 8. Increase i or j, and go to Step 3.

4.2.2 Model of Residual over an Evaluation Window

The residual signal r(i, j) obtained from (4.14) carries the information of possible faults and

can, therefore, be used to determine if a fault has occurred. Since the residual signal is corrupted

by stochastic noises, it is necessary to evaluate the residual over an evaluation window. In 1-D

cases, an evaluation window with a length t is defined by a time range from a specified time

j − t to current time j. For 2-D systems, however, an evaluation window should be defined by

both horizontal and vertical directions to reflect the two dimensional evolvement of variables.

In this chapter, the evaluation window is defined by a rectangular plane with the horizontal

range from i − s to i and the vertical range from j − t to j, as illustrated in Fig. 4.2. The

evaluation window moves horizontally or vertically as new measurement becomes available. In

this section, the mean of the residual r and its relation with fault signals over the evaluation

window are examined.
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Figure 4.2: Evaluation window for 2-D residual evaluation.

Let e(i, j) denote the mean of the state estimation error x̃(i, j). For simplicity of description,

it is assumed that the Kalman filter gain L(i, j) in (4.11) converges to a constant matrix L. From

(4.15), it follows that

e(i, j) =Ā1e(i, j − 1) + Ā2e(i− 1, j)

+ F̄1f(i, j − 1) + F̄2f(i− 1, j)− LKff(i, j),
(4.17)

where

Ā1 = (I − LC)A1,

Ā2 = (I − LC)A2,

F̄1 = (I − LC)F1,

F̄2 = (I − LC)F2.

In determining how the residual value is related with the fault within the evaluation window, it

is necessary to formulate the relation of the estimation error with the fault. Propagation of the

estimation error within the evaluation window can be formulated row by row. The estimation
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error and the fault in the current row are denoted by:

e(i, i− s+ 1; j) =



e(i, j)

e(i− 1, j)

...

e(i− s+ 1, j)


, f(i, i− s+ 1; j) =



f(i, j)

f(i− 1, j)

...

f(i− s+ 1, j)


,

In describing the estimation error and residual in the range of evaluation window, a series of

matrices containing zeros need to be defined. For clarity and simplicity of expression in the

following description, x, y and f , when appear as subscripts, denote the dimensions of zero

sub-matrices, e.g., Ox×y denoting a zero matrix with dimension of nx × ny. For determining

evolvement of the estimation error from one row to the next, the following matrices are defined:

φs =



Ā2
s

Ā2
(s−1)

...

Ā2


,

Vs =



Ā1 Ā2Ā1 · · · Ā2
(s−1)

Ā1

0x×x Ā1 · · · Ā2
(s−2)

Ā1

. . .

0x×x 0x×x · · · Ā1


,

αs =



LKf F̄2 0x×f · · · 0x×f 0x×f

0x×f LKf F̄2 · · · 0x×f 0x×f
. . .

0x×f 0x×f 0x×f · · · LKf F̄2


,

βs =



F̄1 0x×f 0x×f · · · 0x×f 0x×f

0x×f F̄1 0x×f · · · 0x×f 0x×f
. . .

0x×f 0x×f 0x×f · · · F̄1 0x×f


,
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where 0s in the above matrices indicate the zero matrices with appropriate dimension. The

estimation error at the current row is thus obtained:

e(i, i− s+ 1; j) = Vse(i, i− s+ 1; j − 1) + φse(i− s, j)

+αsf(i, i− s; j) + βsf(i, i− s; j − 1).
(4.18)

Note that the estimation error at the current row is affected by the estimation error at the last row

as well as the fault at both current and last rows. Applying Equation (4.18) iteratively yields:

e(i, i− s+ 1; j) = V t
s e(i, i− s+ 1; j − t)

+ωs,te(i− s; j, j − t+ 1) + αsf(i, i− s; j)

+σs,t


f(i, i− s; j − 1)

· · ·

f(i, i− s; j − t)

 ,
(4.19)

where

ωs,t =
[
φs, Vsφs, , · · · , V t−1

s φs

]
, (4.20)

σs,t =
[
Vsαs + βs, , · · · , V t

s αs + V t−1
s βs

]
. (4.21)

Equation (4.19) indicates that the estimation error at the current row is a function of the es-

timation error at the boundaries of the evaluation window and the fault within the evaluation

window. For an effective Kalman filter, the mean of the estimation error converges to zero if

there is no fault. The estimation error at the boundaries of evaluation window in (4.19) is caused

by the faults having occurred before the evaluation window. The mean of estimation error at the

current row is, therefore, generated solely by faults within or before the evaluation window.

From the obtained relation between estimation error and fault, effects of faults on the resid-

ual signal within the evaluation window can then be obtained. Let r̄(i, j) denote the mean of
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residual r(i, j), and from (4.16), it can be expressed as:

r̄(i, j) = C̄se(i, i− s+ 1; j − 1) + CAs2e(i− s, j)

+CF1f(i, j − 1) + CF2f(i− 1, j) +Kff(i, j),
(4.22)

where

C̄s =
[
CA1 CA2A1 · · · CAs−1

2 A1

]
.

For residual evaluation, it is necessary to examine the residual value and its relation with faults

in the scope of evaluation window. Corresponding to the effect of faults on the mean of residual

r̄(i, j), the following two matrices are defined:

ζs =



Kf CF2 0y×f · · · 0y×f 0y×f

0y×f Kf CF2 · · · 0y×f 0y×f
. . .

0y×f 0y×f 0y×f · · · Kf CF2



ᾱs = C̄sαs +



CF1 0y×f · · · 0y×f 0y×f

0y×f CF1 · · · 0y×f 0y×f
. . .

0y×f 0y×f · · · CF1 0y×f


.

The matrices φs, Vs, αs and βs are defined to describe evolvement of the mean of estimation

error in (4.19). These matrices are used to specify how the estimation error at the boundaries of

the evaluation window and the faults within the evaluation window affect the estimation error at

the current time row j. To describe how the estimation error at the boundaries of the evaluation

window and the faults in the evaluation window affect the estimation error at the time row j−k,

the matrices φs−k, Vs−k, αs−k, βs−k, which are of the same dimension as that of φs, Vs, αs and
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βs, can be defined for k = 0, · · · , s− 1, correspondingly:

φs−k =



0k(x)×x

Ā2
s−k−1

Ā2
(s−k−2)

...

Ā2


,

Vs−k =



0k(x)×k(x) 0k(x)×x · · · 0k(x)×x

0x×k(x) Ā1 · · · Ā2
(s−k−1)

Ā1

0x×k(x) 0x×x · · · Ā2
(s−k−2)

Ā1

. . .

0x×k(x) 0x×x · · · Ā1


,

αs−k =



0k(x)×k(f) 0k(x)×f 0k(x)×f · · · 0k(x)×f

0x×k(f) LKf F̄2 · · · 0x×f

0x×k(f) 0x×f LKf · · · 0x×f
. . .

0x×k(f) 0x×f 0x×f · · · F̄2


,

βs−k =



0k(x)×k(f) 0k(x)×f · · · 0k(x)×f 0k(x)×f

0x×k(f) F̄1 · · · 0x×f 0x×f
. . .

0x×k(f) 0x×f · · · F̄1 0x×f


.

Based on the definition of Vk, φk, αk βk for k = 1, · · · , s, similar to ωs,t and σs,t in (4.20) and

(4.21), ωk,l and σk,l are defined for k = 1, · · · , s, l = 1, · · · , t:

ωk,l =
[
φk, Vsφk, , · · · , V l−1

k φk

]
(4.23)

σk,l =
[
Vkαk + βk, , · · · , V l

kαk + V l−1
k βk

]
(4.24)
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C̄s, ζs and ᾱs are defined above to describe the effects of the estimation error and faults on

the current residual r̄(i, j) in (4.22). To represent the residual r̄ at different points within the

evaluation window, C̄s−k, ζs−k and ᾱs−k, which have the same dimension as that of C̄s, ζs and

ᾱs, can be defined for k = 0, · · · , s− 1:

C̄s−k =
[
0y×k(x) CA1 CA2A1 · · · CAs−k−1

2 A1

]
,

ζs−k =



0k(y)×k(f) 0k(y)×f 0k(y)×f · · · 0k(y)×f

0y×k(f) Kf CF2 · · · 0y×f

0y×k(f) 0y×f Kf · · · 0y×f
. . .

0y×k(f) 0y×f 0y×f · · · CF2


ᾱs−k = C̄s−kαs−k

+



0k(y)×k(f) 0k(y)×f · · · 0k(y)×f 0k(y)×f

0y×k(f) CF1 · · · 0y×f 0y×f

0y×k(f) 0y×f · · · 0y×f 0y×f
. . .

0y×k(f) 0y×f · · · CF1 0y×f


.

Based on the defined matrices φ, V , α, β, C̄, ζ and ᾱ, the mean of residual within the

evaluation window can be expressed as a function of the estimation error and faults. For the

convenience of expression, the residual in the evaluation window, the estimation error at the

boundaries of the evaluation window and the faults in the evaluation window are described by
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stacking the variables at all point into column vectors, i.e.,

r̄(i, i− s+ 1; j, j − t) =



r(i, j)

r(i− 1, j)

...

r(i− s+ 1, j)

r(i, j − 1)

r(i− 1, j − 1)

...

r(i− s+ 1, j − 1)

...

r(i, j − t)
...

r(i− s+ 1, j − t)



,

f(i, i− s; j, j − t) =



f(i, j)

f(i− 1, j)

...

f(i− s, j)

f(i, j − 1)

f(i− 1, j − 1)

...

f(i− s, j − 1)

...

f(i, j − t)
...

f(i− s, j − t)



,
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and

e(i, i− s+ 1; j − t+ 1) =



e(i, j − t+ 1)

e(i− 1, j − t+ 1)

...

e(i− s+ 1, j − t+ 1)


,

e(i− s; j, j − t) =



e(i− s, j)

e(i− s, j − 1)

...

e(i− s, j − t)


.

The relation of the residual with the estimation error and the faults can then be obtained:

r̄(i, i− s+ 1; j, j − t) = Ψ1e(i, i− s+ 1; j − t+ 1)

+Ψ2e(i− s; j, j − t)

+Ψ3f(i, i− s; j, j − t),

(4.25)

where

Ψ1 =



ψ11

ψ12

...

ψ1t


, Ψ2 =



ψ21

ψ22

...

ψ2t


, Ψ3 =



ψ31

ψ32

...

ψ3t


,
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with ψ1l, ψ2l and ψ3l, l = 1, · · · , t− 1, expressed as:

ψ1l =



C̄sV
t−l
s

C̄s−1V
t−l
s−1

...

C̄1V
t−l

1


,

ψ2l =



0y×(l−1)(x) CAs2 C̄sωs,t−l

0y×(l−1)(x) CAs−1
2 C̄s−1ωs−1,t−l

. . .

0y×(l−1)(x) CA2 C̄1ω1,t−l


,

ψ3l =



0sy×(l−1)(s+1)(f) ζs ᾱs σs,t−l

0sy×(l−1)(s+1)(f) ζs−1 ᾱs−1 σs−1,t−l

. . .

0sy×(l−1)(s+1)(f) ζ1 ᾱ1 σ1,t−l


,

and ψ1l, ψ2l, ψ3l for l = t being

ψ1t =



C̄s

C̄s−1

...

C̄1


,

ψ2t =



0y×(t−1)(x) CAs2

0y×(t−1)(x) CAs−1
2

. . .

0y×(t−1)(x) CA2


,

ψ3t =



0sy×(t−1)(s+1)(f) ζs ᾱs

0sy×(t−1)(s+1)(f) ζs−1 ᾱs−1

. . .

0sy×(t−1)(s+1)(f) ζ1 ᾱ1


.
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Equation (4.25) shows that the mean of the residual signal is directly related with the esti-

mation error at the boundaries of the evaluation window as well as the fault value within the

evaluation window. Since the mean of the estimation error at the boundaries of the evaluation

window is also caused by faults occurring outside the evaluation window, the mean of residual

signal within the evaluation window is solely determined by faults. It is, therefore, reasonable

to detect faults by evaluating the residual signal over the evaluation window.

4.2.3 Residual Evaluation

Fault detection can be carried out by evaluating those faults whose energy level is higher than a

tolerant limit Lf , i.e.,

‖f(i, j)‖s,t =

√
f(i, i− s; j, j − t)T f(i, i− s; j, j − t)

(s+ 1)(t+ 1) ≤ Lf , fault free,

> Lf , fault.

(4.26)

Assume that the estimation error e(i, i− s+ 1; j− t+ 1) and e(i− s; j, j− t) at the boundaries

of the evaluation window in (4.25) are small enough such that

r̄(i, i− s+ 1; j, j − t) ≈ Ψ3f(i, i− s; j, j − t). (4.27)

The generalized likelihood ratio (GLR) is calculated for the model (4.27) and fault detection is

performed using the evaluation function (Ding, 2008):

Jf = r(i, i− s+ 1; j, j − t)T (Ψ3ΨT
3 )−1r(i, i− s+ 1; j, j − t). (4.28)

The decision on fault occurrence can thus be made based on:

Jf ≤ L̄2
f , fault free,

Jf > L̄2
f , fault,
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where L̄f = (s+ 1)(t+ 1)Lf .

If the assumption in (4.27) is removed, i.e., e(i, i − s + 1; j − t + 1) and e(i − s; j, j − t)

are not negligible, e(i, i − s + 1; j − t + 1) and e(i − s; j, j − t) can be the considered as the

components of faults as they are driven by faults. Define:

f̄(i, i− s; j, j − t) =


e(i, i− s+ 1; j − t+ 1)

e(i− s; j, j − t)

f(i, i− s; j, j − t)

 ,

Ψ =


Ψ1

Ψ2

Ψ3

 .
(4.29)

From (4.25), the residual signal over the evaluation window is then expressed as:

r̄(i, i− s+ 1; j, j − t) = Ψf̄(i, i− s; j, j − t). (4.30)

Fault detection can be performed as:

‖r̄(i, j)‖s,t

=

√
r̄(i, i− s+ 1; j, j − t)T r̄(i, i− s+ 1; j, j − t)

s(t+ 1) ≤ Lr̄, fault free,

> Lr̄, fault,

(4.31)

where Lr̄ is a constant determined by:

Lr̄ = ‖C[I − (Ā1z1 + Ā2z2)]−1(F̄1z1 + F̄2z2)‖∞Lf .

Defining the evaluation function as:

Jr = r(i, i− s+ 1; j, j − t)T r(i, i− s+ 1; j, j − t), (4.32)
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the decision rule on fault detection becomes:

Jr ≤ L̄2
r̄, fault free,

Jr > L̄2
r̄, fault,

where L̄2
r̄ = s(t+ 1)L2

r̄ and Jr being the test statistic. In online fault detection, whenever there

is new measurement available, the residual value is obtained as described in Section 2.1, and

Jr is calculated based on the residual from (4.32). Fault can then be detected by comparing Jr

with a threshold value.

To set the threshold Jth, the following statistic value is introduced:

r̃(i, i− s+ 1; j, j − t) = Σ−1/2
r r(i, i− s+ 1; j, j − t),

where Σr is the variance of residual within the evaluation window. r̃(i, i − s + 1; j, j − t) is

non-centrally χ2 distributed with non-central parameter δ̄2
r and δ̄2

r = γL2
r̄ with γ = λmin(Σr)

denoting the minimal eigenvalue of Σr. To obtain the threshold Jth, it is necessary to solve the

threshold J̃th corresponding to r̃ is solved using

prob
(
χ2(dim(r̃(i, i− s+ 1; j, j − t), δ̄2

r) > J̃th

)
= α,

where dim(r̃(i, i − s + 1; j, j − t) is the degrees of freedom in r̃ and α is the allowable fault

alarm rate. The threshold Jth for Jr in (4.32) can thus be obtained:

Jth = γJ̃th.

In on-line fault detection of 2-D systems, when there is new measurement available, fault

detection can be performed by generating the residual signal, calculating the testing statistic Jr,

and comparing Jr with the obtained threshold Jth. The proposed fault detection method does

not require demanding on-line computation and is applicable to a wide range of 2-D systems

described by the F-M model.
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4.3 Simulations

The proposed Kalman filter based fault detection method is evaluated using two examples. The

evolvement of residual signals in these two examples are examined to determine if it would

reflect the occurrence of faults.

Example 1. In this example, the following system with x(i, j) ∈ R2 is considered:

x(i+ 1, j + 1) =

 0.1 0.2

0 0.2

x(i+ 1, j) +

 0.1 0

0.7 0.2

x(i, j + 1)

+

 0.1

0.2

u(i+ 1, j) +

 0

0.1

u(i, j + 1)

+

 0.2

0

 η(i+ 1, j) +

 0.1

0.1

 η(i, j + 1)

+

 0.1

0.2

 f(i+ 1, j) +

 0

0.1

 f(i, j + 1)

y(i, j) =
[
0.1 0.1

]
x(i, j) + 0.03f(i, j) + 0.05µ(i, j)

(4.33)

In the simulation, the spacial index i ranges from 1 to 50. The system noise η and ν are also

random variables ranging from 0 to 1. Figure 4.3 displays the residual signal evolvement when

the input u(i, j) = 0 and a unit step fault signal occurs at time j = 100. It is observed that

the residual signal is of zero mean with a small variance when no fault occurs before j=100,

indicating that the state estimate from the Kalman filter is consistent with the true state when

there is no fault. When a step fault occurs at time j = 100, the residual becomes a signal of non-

zero mean with increased variance, indicating that the generated residual signal is capable of

detecting fault occurrence. The increased variance during the fault occurrence implies a higher

evaluation function value in (4.28).

The input signal u is then set to be a random variable varying between 0 and 1 and the

generated residual is examined when a unit step fault signal occurs at time j = 100. By setting
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Figure 4.3: 3-D plot of residual evolvement when a unit step fault occurs at j=100 and u=0 in Example 1.

the tolerable fault energy Lf = 0.05, the evaluations window as 6 × 3 and the fault alarm rate

α = 0.05, the threshold value is calculated to be Jth = 0.017. The testing statistic Jr can then

be evaluated in comparison with the threshold value. Figure 4.4 and shows the responses of

the residual r and Jr at i = 12, 22 and 32 to the step change in f . When there is no fault,

the residual r and jr are very small, implying that the state estimate converges to the true state

after a very short time using the 2-D Kalman filter. When the step fault occurs, r increases and

settles at a non-zero value with an increased variance and r displays a non-zero mean value. The

residual evaluation Jr remains within the control limit when there is no fault and it increase and

violate the threshold value when the fault occurs. This indicates that the occurrence of a fault

can trigger changes in r and Jr and that the proposed fault detection strategy is effective for this

system. The 3-D plot of residual in Figure 4.5 displays that the residual responds to the fault

across the spatial direction at j = 100 and residual changes from zero-mean to non-zero mean
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when the step fault occurs. The 3-D plot of residual evaluation Jr in Figure 4.6 indicates that

the residual evaluation Jr remains within the control limit when there is no fault and it exceeds

the threshold value when the fault occurs. The Kalman filter based fault detection can be used

to detect faults no matter whether there is a process input signal or not.
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Figure 4.4: Residual and residual evaluation at different spatial points when a unit step fault occurs at j=100 and u
is a random signal in Example 1 .

To investigate the effect of different fault signal on the performance of the fault detection

method, a sinusoidal fault is introduced to the system at j = 100 as in Figure 4.7. Note that

the sinusoidal signal used has a phase shift at each spatial point from its neighboring point. The

residual response to the sinusoidal fault is shown 4.8. It is observed that the residual response

to a fault signal of zero mean value such as a sinusoidal fault is different from that of a step

fault in that the mean value of the residual signal remains to be zero when the fault occurs. The

variance of the residual increases significantly when the fault occurs. As there is no observable
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Figure 4.5: 3-D plot of residual evolvement when a unit step fault occurs at j=100 and u is a random signal in
Example 1.

change in the mean of the residual, it is more convenient to examine the residual evaluation Jr

for fault detection in this case. Figure 4.9 displays the 3-D plot of residual evaluation Jr for the

sinusoidal fault. It indicates that the residual evaluation Jr exceeds the threshold value at all

spatial points when the fault occurs. The responses of residual r and residual evaluation Jr at

some spatial points are shown in Figure 4.10. The residual r responds to the fault of zero mean

quickly by displaying a larger variance and the residual evaluation can be conveniently used to

detect the occurrences of faults.

Example 2. In this example, a more complicated system than Example 1 with x(i, j) ∈ R3
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Figure 4.6: 3-D plot of residual evaluation when a unit step fault occurs at j=100 and u is a random signal in
Example 1.

is considered:

x(i+ 1, j + 1) =


0.1 0.2 0

0 0.2 0.1

0 0.1 0

x(i+ 1, j) +


0.1 0 0.3

0.2 0.2 0

0.2 0.4 0

x(i, j + 1)

+


0.5

0

0.1

u(i+ 1, j) +


0

0.3

0.2

u(i, j + 1) +


0.1

0

0

 f(i+ 1, j)

+


0

0.3

0

 f(i, j + 1) +


0.2

0.1

0

 η(i+ 1, j) +


0

0.1

0.1

 η(i, j + 1)

y(i, j) =
[
0 0.3 0.2

]
x(i, j) + 0.03f(i, j) + 0.05µ(i, j)

(4.34)
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Figure 4.7: 3-D plot of a sinusoidal fault signal.

Simulation was carried out to evaluate the effectiveness of the fault detection strategy for

this system. In the simulation, the spacial index i ranges from 1 to 20, the input signal u is

set to be a random variable varying from 0 to 1 and the noise signals η and µ in (4.34) are

random variables varying from 0 to 1. In residual evaluation, the tolerable fault limit is set to

be Lf = 0.05 and with the evaluation window being 6 × 3, the threshold value is calculated

to be 0.105. The residual r and residual evaluation Jr are examined to determine whether a

fault has occurred. Figure 4.11 displays the 3-D plot of the residual response to a unit step fault

occurring at j = 100. It can be seen that the residual signal r is zero mean before j = 100

and becomes non-zero mean after a fault occurs, although the non-zero mean is not as obvious

as that in Figure 4.4 and Figure 4.5 of Example 1 due to a much higher variance. The much

increased variance and some large spikes when a fault occurs is due to the complexity of the

system and effect of couple noises. The 3-D plot of residual evaluation Jr is shown in Figure

4.12. The residual evaluation is within the threshold limit when there is no fault and it exceeds
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Figure 4.8: 3-D plot of residual evolvement when a sinusoidal fault occurs at j=100 and u is a random signal in
Example 1.

the threshold value when the fault occurs. The large variances and large spikes in the residual

r also lead to the large variances in the residual evaluation Jr. Variations of the residual r and

the residual evaluation Jr at several spatial points can be clearly examined in Figure 4.13 and

the fault can be detected by examining the residual and the residual evaluation signal.

The proposed fault detection method is also evaluation for a sinusoidal fault occurring at

j = 100. As in 4.14, for a fault of zero mean, the mean value of the residual signal does

not have any noticeable change when the fault occurs, and the residual r responds to the fault

with an increased variance. In comparison with that in Example 1, the residual displays a

larger variances and more sharp spikes due to the increased complexity of the system. From

Figure 4.15, it can be seen that the residual evaluation Jr is within the control limit and it

violates the threshold when the fault occurs. Figure 4.16 shows the response of the residual and

the evaluation function Jr at several spatial points for the sinusoidal fault. It is clear that the
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Figure 4.9: 3-D plot of residual evaluation when a sinusoidal fault occurs at j=100 and u is a random signal in
Example 1.

evaluation function Jr can be used to determine whether a fault occurs.

4.4 Summary

Many systems contain stochastic noises that cannot be decoupled in a residual generator. Fault

detection of such systems has been developed in one-dimensional domain. Fault detection of

2-D systems is a challenging subject and only limited results are available. In this chapter, a

fault detection strategy is developed for 2-D systems containing stochastic noises. Based on

the 2-D F-M models, a recursive Kalman filter is used to derive a state estimate minimizing

the variances of state estimate error. The obtained state estimate is then compared with the

measured information, leading to generation of a residual signal. Since the residual signal

reflects the fault information, it can be evaluated to determine whether a fault occurs. Due

to the stochastic characteristics of the system, it is reasonable to evaluate the residual over an
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evaluation window. In 2-D system, the evaluation window is defined by a moving rectangular

plane with the limits of two independent variables corresponding to two directions. A model

relating the residual to faults over the evaluation window is derived, from which the generalized

likelihood test technique is then applied to determine if a fault has occurred.

The proposed fault detection method is evaluated using two examples via simulations. Sim-

ulation results show that the residual is of zero mean with a variance when there exists no fault.

When a step fault occurs, the residual responds quickly and evolves to a signal of non-zero

mean with increased variances. For a fault of zero mean, such as a sinusoidal fault, the residual

responds to the fault with increased variances although there is no noticeable change in its mean

value. For both the step and sinusoidal faults, the evaluation function remains within the control

limit when there is no fault and violate the threshold what the fault occurs. It can be used to

clearly determine the occurrences of faults. The proposed fault detection method is able to de-

tect faults effectively and efficiently. This method does not require to satisfy strict conditions in

order for a residual generator to exist and can, therefore, be applicable to a general 2-D systems

described by F-M models.
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Figure 4.10: Residual and residual evaluation at different spatial points when a sinusoidal fault occurs at j=100 and
u is a random signal in Example 1.

88



0

50

100

150

0

5

10

15

20
−0.5

0

0.5

1

1.5

Time index
Spatial index

R
es

id
ua

l

Figure 4.11: 3-D plot of residual evolvement when a unit step fault occurs at j=100 and u is a random signal in
Example 2.
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Figure 4.12: 3-D plot of residual evaluation when a unit step fault occurs at j=100 and u is a random signal in
Example 2.
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Figure 4.13: Residual and residual evaluation at different spatial points when a unit step fault occurs at j=100 and
u is a random signal in Example 2.
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Figure 4.14: 3-D plot of residual evolvement when a sinusoidal fault occurs at j=100 and u is a random signal in
Example 2.
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Figure 4.15: 3-D plot of residual evaluation when a sinusoidal fault occurs at j=100 and u is a random signal in
Example 2.
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Figure 4.16: Residual and residual evaluation at different spatial points when a sinusoidal fault occurs at j=100 and
u is a random signal in Example 2.
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Chapter 5

Fault Detection of Two Dimensional

Systems Using DPCA

5.1 Introduction

Principal component analysis (PCA) is a well-known data dimensionality reduction technique

that has been used in system monitoring, diagnosis and control (Yoon and MacGregor, 2001).

In the conventional PCA, it is assumed that processes operate in a “steady-state” wherein the

originating signals can be considered as statistically stationary - the signal properties do not

change with time. Dynamic principal component analysis (DPCA) takes into account serial

correlations in the data by augmenting each observation vector with the previous d observations,

and has been applied in detecting faults in dynamic processes and batch operations wherein

time variations are significant (Russell et al., 2000b; Doan and Srinivasan, 2008). Existing

applications of PCA and DPCA have been focused on 1-D systems.

In the last three chapters, the fault detection approaches have been proposed for 2-D sys-

tems and these approaches involve generating residual signals that reflect fault information.

The observer based fault detection method for systems modeled by Roesser models consists of

development of an observer and a residual generator. In the Kalman filter based fault detection

method, residual signals are generated by comparing the measurement with state estimate ob-
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tained from a recursive Kalman filter. The generated residual signals can reflect the dynamic

change of faults such as step fault signals, and faults can, therefore, be detected by examining

the variations of residual curves. In many cases, however, the fault may be irregular and as-

sociated with other variables, and the residual signal may be corrupted with disturbances and

uncertainties caused by parameter changes. It may not be obvious to determine whether a fault

occurs simply by observing the resulting residual signals. To achieve a successful fault detec-

tion based on the available residual signal, further efforts are needed. A widely accepted way is

to generate such a feature of the residual signal, by which we are able to distinguish the faults

from the disturbances and uncertainties. Residual evaluation and threshold setting serve for this

purpose. A decision on the possible occurrence of a fault is made by means of a simple compar-

ison between the residual feature and the threshold. It is therefore necessary to investigate 2-D

fault detection utilizing the concept of residual evaluation and threshold setting. The residual

evaluation and threshold setting has been discussed for the Kalman filter based fault detection

in Chapter 4. In this chapter, an approach of residual evaluation and threshold is proposed that

applies to both Kalman filter based and observer based fault detection methods.

In many 2-D systems, the horizontal (or spatial) range is binary bounded and it is possible to

investigate the timely evolvement of the residual signals at all spatial points simultaneously and

detect faults by evaluating the evolvement of residual signals. In this chapter, fault detection is

studied by considering the residual signals at all spatial points as multivariate signals. From the

discussion from the previous chapters, a 2-D residual signal can be generated using the observer

based fault detection or Kalman filter based fault detection. The 2-D residual signals are then

evaluated at all spatial points simultaneously using DPCA and fault detection is performed

using a simpler 1-D testing statistic. Two examples are used to examine the performance of the

strategy, in one example the residual is generated using the observer based fault detection and

in the other the residual generated using the Kalman filter.
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Figure 5.1: The procedure of a model-based fault detection procedure

5.2 Fault detection of 2-D systems using DPCA

In model based fault detection of 2-D systems, residual signals reflecting the dynamic change

of faults are generated based on the 2-D models. The residual signals are then evaluated using

DPCA to determine if a fault occurs. The schematic of the model based fault detection is shown

in Figure 5.1.

5.2.1 Residual generation

2-D systems have been represented by Roesser models and F-M models. A dead-beat observer

based fault detection was proposed for F-M models (Bisiaco and Valcher, 2006; Bisiacco and

Valcher, 2008). In this thesis, research has been focused on observer based fault detection for

Roesser models and Kalman filter based fault detection on F-M models. The observer based and

Kalman filter based fault detection approaches are summarized in Figure 5.2. Both approaches

involve obtaining state estimate x̂ from process input and measured output. In the observer

based fault detection, the residual generator is obtained by calculating the transfer functions

and then applying the realization technique to obtain the residual r(i, j). In the Kalman filter

based fault detection, the residual signal is generated from comparing the state estimate with

the measurement. The residual signals r(i, j) from these approaches deviate from normal op-
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erations when faults occur and can therefore be used to detect faults. Although it is feasible

to detect faults by simply observing the evolvement of the residual signals as discussed in the

previous chapters, it is more desirable to quantitatively evaluate the residual signals and com-

pare them with the threshold values for fault detection in order to provide more accurate fault

detection, especially when the fault signals are complicated and/or the systems contain noises.

2-D Process

2-D observer
or Kalman filter

Residual 
generator

ˆ( , )x i j

( , )u i j y( , )i j

r( , )i j

Figure 5.2: Schematic of fault detection of 2-D systems using an observer or a Kalman filter

5.2.2 Residual evaluation using DPCA

DPCA is an extension of PCA to the realm of dynamic processes with serial correlation. Some

literature (Ku et al., 1995; Chen and Liu, 2002) applied it to monitor batch processes. The

purpose of using DPCA is to establish a time-lagged evaluation window for off-line residual

database correction. Unlike the GLR based method presented in Chapter 4, the DPCA based

fault detection obtains the threshold value with a reference database during the off-line calcu-

lation. In comparison with the conventional PCA model relying on only current observation,

DPCA uses the measurement within the evaluation window ranging from past to current obser-

vations, and hence can obtain more reliable detection.

Mathematically, DPCA starts with forming a time-lagged window for each of the batches in

the reference database. For residual evaluation of 2-D systems, several groups of process data at

normal operations are first collected and the corresponding residual signals r(i, j) are generated

using the observer or Kalman filter approach discussed in the previous chapters. Assume that
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the dimension of i and j would be M and N , and M ≤ N . Let

r(j) =
[
r(1, j), r(2, j), · · · r(M, j)

]
, j = 1, ...N (5.1)

The data matrix for the residual signal r(j) with the previous d observations can then be written

as

Rd =



r(d+ 1) r(d) · · · r(1)

r(d+ 2) r(d+ 1) · · · r(2)

...
...

...

r(N) r(N − 1) · · · r(N − d)


(5.2)

The covariance matrix of the time lagged data Rd is

S =
1

N − d− 1
RT
dRd (5.3)

If I groups of data at normal operations are collected and Si indicates the covariance matrix

corresponding to the ith group, the average value of S is obtained:

Savg =

(N − d− 1)
I∑
i=1

Si

I(N − d)
(5.4)

Eigenvalues and eigenvector of the covariance matrix Savg are calculated. Let pi indicate the

eigenvector corresponding to the ith largest eigenvalue λi and the ith principal component is

described by ti = pTi Rd. Corresponding to a largest eigenvalues, the data matrix Rd can be ap-

proximately represented by a principal components. Let Λ be a diagonal matrix containing the

a largest eigenvalues and P =
[
p1, p2, · · · , pa

]
containing the loading vectors associated

with the a largest eigenvalues. The normal operation can be characterized by the Hotellings T 2

statistic

T 2(j) = rd(j)TPΛ−1P T rd(j) (5.5)

where rd(j) =
[
r(j), r(j − 1), · · · , r(j − d)

]
. The threshold value T 2

α is calculated using
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the probability distribution:

T 2
α =

a(N − d− 1)(N − d+ 1)

(N − d)(N − d− a)
Fa,N−d−a,α (5.6)

where α is the confidence limit which is generally set as 95% andFa,K−d−a,α is the F-distribution

above the critical point α with a and N − d− a degrees of freedom. By calculating the residual

signal r(j) and examining the Hotellings T 2 statistic, fault detection can be performed

T 2(j)

 ≤ T 2
α, fault free

> T 2
α, fault

(5.7)

Fault detection of 2-D system using DPCA is comprised of off-line and on-line procedures

and can be summarized as:

• The off-line procedure includes collecting the historical reference data and calculating

the residual signals of the reference data. Several groups of residual reference data are

organized into the time-lagged matrix form as in (5.2) and the average covariance matrix

is calculated using equation (5.4). The numbers of principal component a and the matrices

P and Λ are determined using the eigenvalue decomposition. The 95% control limit T 2
α

can be found by equation (5.6) and serves as the threshold setting.

• In the on-line monitoring, process input and output data are collected and the residual

values are computed. The real-time T 2 for the residual signals is obtained using equation

(5.5). If the value of real-time T 2 exceed the 95% control limit T 2
α , it indicates that a fault

occurs. Otherwise, no fault has occurred and the system is running normally.

The procedure of fault detection using DPCA is illustrated in Figure 5.3.

5.3 Simulation

The residual evaluation using DPCA is applied to two examples, one of which is an F-M model

with the residual generated from Kalman filter based approach and the other a Roesser model
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Figure 5.3: Fault isolation procedure using DPCA

with the residual from the observer based residual generator.

Example 1. In this example, the Kalman filter based fault detection using DPCA for residual

evaluation is investigated. Consider the same example discussed in Chapter 4:

x(i+ 1, j + 1) =

 0.1 0.2

0 0.2

x(i+ 1, j) +

 0.1 0

0.7 0.2

x(i, j + 1)

+

 0.1

0.2

u(i+ 1, j) +

 0

0.1

u(i, j + 1)

+

 0.2

0

 η(i+ 1, j) +

 0.1

0.1

 η(i, j + 1)

+

 0.1

0.2

 f(i+ 1, j) +

 0

0.1

 f(i, j + 1)

y(i, j) =
[
0.1 0.1

]
x(i, j) + 0.03f(i, j) + 0.05µ(i, j)

A historical reference database of I = 5 was generated under the normal condition and the
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residual signals was calculated using the Kalman filter based approach described in Chapter

4. The spatial dimension M = 50, the evaluation window length d = 4 and the number of

principal components a = 8 were used. The threshold value was calculated to be T 2
α = 15.916.

Figure 5.4 shows the T 2 value for the residual signal when a unit step fault occurs at j = 100.

It is observed that T 2 value is within the control limit when there is no fault. The threshold

value is violated after the fault occurs and the fault is therefore detected. The response of the T 2

value to fault is almost instant and there is no noticeable delay for the step with the evaluation

window d = 4.
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Figure 5.4: Fault detection for a unit step fault with the residual signal generated from the Kalman filter based
residual generator and evaluated using DPCA with d = 4.

The effect of different fault signals on the proposed strategy is investigated by introducing

a sinusoidal fault signal at j = 200. The threshold value was the same T 2
α = 15.916 since the

same reference signals and the same evaluation window were used. Figure 5.5 shows the fault

signal (at one spatial point i = 20) and evolvement of T 2 value. The T 2 value is smaller than
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the threshold value before the sinusoidal fault occurs and it exceeds the control limit after the

fault occurs at j = 200. The indicates that the fault detection using DPCA is effective for faults

with zero mean values such as sinusoidal signals.
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Figure 5.5: Fault detection for a sinusoidal fault with the residual signal generated from the Kalman filter based
residual generator and evaluated using DPCA with d = 4.

To examine the effect of the length of evaluation window on the performance of the fault

detection using DPCA, the same references signals but an increased evaluation window d = 12

were used to test the T 2 response to the step fault. For this case, the threshold value was

calculated to be T 2
α = 26.569 and the number of principal components a = 13 were used. From

Figure 5.6, the T 2 stays within the threshold value before the step fault starts at j = 200, and

the T 2 value increases to a large value and violates the threshold after the fault occurs. The

first time that the T 2 value exceeds its threshold value is around j = 211, indicating that there

is a delay in fault detection when the evaluation window. The delay is due to the fact that it

takes time for the effect of faults to fully influence the evaluation window. There is a trade-off
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in sensibility and reliability of fault detection by choosing a suitable length of the evaluation

window. Note that the T 2 has a significantly reduced oscillation for d = 12 in contrast to the

very large oscillation for d = 4 in Figure 5.4.

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

1.2

Time index, j

Fa
ul

t s
ig

na
l, 

f

0 50 100 150 200 250 300 350 400

0

200

400

600

800

1000

1200

Time index, j

T
2

 

 

T2

95% control limit

Figure 5.6: Fault detection for a unit step fault with the residual signal generated from the Kalman filter based
residual generator and evaluated using DPCA with d = 12.

Example 2. In Chapter 3, an observer based fault detection is developed for systems mod-

eled by the Roesser model and a residual signal is obtained from a residual generator. The

residual signal is capable of reflecting occurrences of faults. In this example, the obtained

residual signal is evaluated using DPCA in order to identify faults clearly. The Example 3 in
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Chapter 3 is considered:

xh(i+ 1, j)

xv(i, j + 1)

 =

 0 1

1 0

xh(i, j)
xv(i, j)

+

0

0

u(i, j) +

 0

−1

 f(i, j),

y(i, j) =

 1 0

0 1

xh(i, j)
xv(i, j)

+

 0

−1

 d(i, j) +

 0

−1

 f(i, j).

(5.8)

This is a system with an unknown disturbance. The parameters are set as: evaluation window

length d = 6, the number of principal component a = 1 and the number of offline reference

database I = 5. A unit step fault signal is introduced at j = 100. The threshold value was

calculated to be T 2
α = 3.87. From Figure 5.7, the value of T 2 is zero when there is no fault. At

j = 106, the T 2 value starts to exceed the threshold value and it increases to a very large value

and settles at T 2 = 2448. In this case, there are no oscillations in the T 2 value and when the

fault occurs, the T 2 value consistently exceeds the threshold value at all time points. This is due

to the fact that the system considered contains no noises.

Figure 5.8 shows the T 2 value response if the fault signal is sinusoidal. It is observed that

when the fault occurs, the T 2 value increases and exceeds the threshold value. In comparison

with that for the step fault in Figure 5.7, the T 2 value is much smaller and just slightly above

the threshold value. It would be hard to distinguish the fault by just observing the evolvement

of the fault. Using the residual evaluation by DPCA, however, the fault is detected clearly.

5.4 Summary

In model based fault detection for 2-D systems, state estimates are obtained and residual signals

are generated using the observer based or Kalman filter based approach. In this chapter, the

residual signal is evaluated using DPCA to determine whether a fault occurs with an improved

confidence. DPCA has been well accepted for fault detection of 1-D systems. Evaluation of the

residual signals of 2-D systems using DPCA provides clear and straightforward indication in

fault detection.
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Figure 5.7: Fault detection for a unit step fault with the residual signal generated from the observer based residual
generator and evaluated using DPCA.

.

Residual signals reflect the fault occurrences, but when they are corrupted with noises or

disturbances, it is reasonable to evaluate them using statistical features and comparing them

with threshold values. Based on the historical reference residual databases, the data matrix for

the residuals with the previous d observations is formed and the principal components are deter-

mined that represent most of variations of the time-lagged matrix. In on-line fault detection, the

real time residual signals are calculated and the T 2 value is obtained with the time lagged resid-

ual signals. Fault detection can then be performed by comparing the T 2 value with its threshold

value. Simulations on two examples were run to evaluate the performance of the fault detection

method. Results indicate that the T 2 value stays within the threshold values when there is no

fault and exceeds the threshold after a fault occurs. Fault can therefore be clearly detected from

evaluation of the residual signal using DPCA. The method is effective for step faults as well
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Figure 5.8: Fault detection for a sinusoidal fault with the residual signal generated from the observer based residual
generator and evaluated using DPCA.

.

as faults with zero mean values such as sinusoidal faults. In using DPCA, the current residual

signals together with the previous d observations are examined and the length of the evaluation

window d affects the performance of the fault detection with reduced oscillations but increased

detection delays.
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Chapter 6

Conclusions and Future Work

Fault detection is essential in ensuring safe and reliable operations in industrial systems. Ex-

tensive research and applications on fault detection of 1-D systems are available. Despite wide

existence of 2-D systems, research on fault detection of 2-D systems is few. 2-D systems can

generally be described by Roesser model and F-M model. Based on the two model forms, this

thesis is focused on developing model based fault detection approached for 2-D systems.

6.1 Conclusions

The observer based fault detection technique has been an active field in the area of control

theory and engineering. In Chapter 3, a dead-beat observer based fault detection is developed

for Roesser model. The proposed method requires development of an observer and a residual

generator. Based on the PBH observability matrix of Roesser model, the transfer function of

the observer is obtained by solving a Bézout equation. Application of a realization technique

lead to the state space Roesser model of the observer. The state estimate from the observer

together with process input and output form the inputs to a residual generator. The residual

generator is designed using the polynomial matrices such that the residual directly reflects the

fault signal. An efficient realization technique is integrated to the fault detection method to

convert the transfer functions of the observer and residual generator to their state space Roesser
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models. Through the unknown input decoupling, the fault detection approach is able to deal

with the systems with unknown inputs or disturbances. Simulation results indicate that the ob-

server based fault detection method can effectively determine whether a fault occurs for systems

with or without unknown input. The proposed fault detection method for Roesser model is an

extension of the existing work on the dead-beat observer based fault detection for F-M model.

The observer based fault detection method deals with the 2-D systems without noises, but

noises are inevitable in real applications. In addition, the observer based fault detection method

requires strict conditions that have to be satisfied in order for the observer and residual generator

to exist. To overcome the limitations, use of 2-D Kalman filter in fault detection is explored in

this thesis. The Kalman filter has been a well accepted method for state estimation and the

Kalman filter based fault detection has become a mature technique in 1-D systems. Despite the

challenge in extending the well developed 1-D Kalman filter to 2-D systems, the Kalman filters

in 2-D domain have been proposed. No research has, however, been reported on fault detection

using 2-D Kalman filters. The fault detection using 2-D Kalman filter in this work opens up a

new field in 2-D systems.

In Chapter 4, a 2-D Kalman filter is introduced into the FDI framework for the F-M model.

A residual signal is generated from the innovation process comparing the output measurement

with the state estimate obtained from a recursive 2-D Kalman filter. The generated residual

is found to be directly related to fault information. When there is no fault, the residual is

zero mean white Gaussian signal. When a fault occurs, the residual is no longer of zero mean

white Gaussian process. Due to the noisy nature of systems, it is necessary to evaluate the

residual signal over a 2-D evaluation window. The mean of the residual over the evaluated

window is formulated describing how the fault affects the residual. Evaluation of the residual

is investigated using GLR and a fault is determined by comparing the testing statistic of the

residual with its threshold value. The approach is validated with two examples via simulation.

For a step fault signal, the residual responds to the faults quickly with non-zero mean and

increased variances. If the fault is of zero mean such as a sinusoidal signal, there is no noticeable
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change in the mean of the residual but significant increase in the variances is observed. The fault

can therefore be clearly detected with accuracy using the Kalman filter based approach.

In the fault detection approaches using the observer or the Kalman filter, a residual signal

is generated reflecting the fault information. To achieve fault detection with confidence, it is

necessary to perform a residual evaluation and determine the fault with a threshold value. In

Chapter 4, GLR is applied to the residual evaluation of the Kalman filter based fault detection

method. In Chapter 5, an alternative approach is proposed for residual evaluation that is applica-

ble for the residuals from both the observer based and Kalman filter based approaches. The fault

detection approach is obtained by applying DPCA to the residual signal obtained from either the

observer based or the Kalman filter based residual generator. Based on historical reference data,

the time lagged residual data matrices are used to calculate the principal components model of

the residual. Online fault detection requires to calculate the T 2 value of the real time residual

signal together with its previous d values. Fault is detected with confidence comparing the T 2

value with a threshold value. Examples are simulated for both an F-M model with residual

generated from the Kalman filter based approach and a Roesser model with residual from the

observer based generator. Results show that a variety of faults can be detected with confidence

using the approach.

6.2 Future work

Model based fault detection for 2-D systems is an important but challenging subject. In this the-

sis, significant progress has been made in developing fault detection methods for 2-D systems.

Based on the current work, there are several open problems that need further investigation and

may be suggested for future research.

The Kalman filter based fault detection method for F-M model is developed in the thesis. A

well-developed Kalman filter for Roesser model has not been available. The challenge lies in

the difficulty in calculating the covariances of horizontal and vertical estimation error. Future

work is required to develop an efficient Kalman filter based on Roesser model and subsequently

110



a novel Kalman filter based fault detection method.

Model based fault detection depends on availability of models. 2-D model identification

techniques are far from being mature. Further research is needed to develop identification tech-

niques for F-M model and Roesser model based on 2-D industrial data. The fault detection

methods integrating well developed identification techniques will provide a wider applicability

and improved practical implementations.

State estimation is crucial for model based fault detection. The available state estimation

methods for 2-D systems, however, have not been abundant. It is,therefore, necessary to ex-

plore a variety of state estimation methods in 2-D form including Bayesian estimation, H2/H∞

estimation, maximum likelihood estimation and non-linear estimation et al. Enhanced state

estimation will bring the fault detection techniques to a higher level.
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