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Abstract

Conditional Value-at-Risk (equivalent to the Expected Shortfall, Tail Value-at-Risk

and Tail Conditional Expectation in the case of continuous probability distributions)

is an increasingly popular risk measure in the fields of actuarial science, banking and

finance, and arguably a more suitable alternative to the currently widespread Value-

at-Risk. In my paper, I present a brief literature survey, and propose a statistical

test of the location of the CVaR, which may be applied by practising actuaries to test

whether CVaR-based capital levels are in line with observed data. Finally, I conclude

with numerical experiments and some questions for future research.
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1 Introduction

In mathematical terms, a risk measure is a mapping between the set of probability distribu-

tions and the set of real numbers. In actuarial science and finance, the aim of applying risk

measures is to quantify the underlying uncertainty of losses. One of the earliest measures of

risk in the literature is the standard deviation, which was used by Markowitz in his famous

portfolio optimization model ((17)). Even though it is well-suited for optimization, it is

not a particularly good measure of risk as it is not monotone and it makes no distinction

between downside and upside risk. Actuarial premium principles (see e.g. (12)) may also

be conceived of as special risk measures. Nowadays, the most popular risk measure applied

by the actuarial and financial professions is the Value-at-Risk (VaR or V@R), which cor-

responds to a quantile of the probability distribution of losses on a specific time horizon.

Despite its simplicity of interpretation, it has been shown (see e.g. (4) or (23)) that VaR has

several undesirable properties: it fails to take the size of any possible losses beyond the VaR

into account, thus it is not robust enough and easily manipulated, and in a counter-intuitive

way, it is not sub-additive in general, and it is not particularly well-suited for optimization

problems due to the possible lack of convexity.

More recently, a popular alternative to VaR, the so-called Conditional Value-at-Risk (CVaR

or CV@R) has emerged and gained significant and increasing popularity in academic circles

as well as among practitioners of actuarial science and finance. In the important case of

Actually, the standard deviation and several actuarial premium principles do not qualify as risk measures

according to a more rigorous definition (see e.g. (4)) used by some authors.
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continuous probability distributions, CVaR is equivalent to the Tail Conditional Expecta-

tion (TCE), Expected Shortfall (ES) and Tail Value-at-Risk (TVaR or TV@R), which are

all equal to the conditional expectation of the loss variable given that the loss exceeds a

particular quantile of the distribution. By taking the entire tail of the distribution into

account, CVaR is markedly more robust than VaR. Coherence was defined by Arztner et

al. (see (4)) as a a set of intuitively desirable properties of a risk measure, and it has been

shown that CVaR – as opposed to VaR – is a coherent risk measure (see e.g. (2), (4) or (9)).

Additionally, CVaR is more suitable for optimization problems due to its convexity (see e.g.

(19) or (3)).

Possible actuarial applications of CVaR include, among others, premium and capital re-

quirement calculations for insurance companies and pension funds as well as asset portfolio

optimization for the investment of reserves and surpluses in financial markets. The use of

CVaR has been recommended by the American Academy of Actuaries and the Canadian

Institute of Actuaries for statutory balance sheet valuation based on the stochastic modeling

of liabilities (see e.g. (1), (7) and (8)). Even though the Solvency II legislation specifies

solvency capital requirements of European insurers in terms of VaR, the possibility of in-

troducing CVaR has been examined by the European Insurance and Occupational Pensions

Authority (see (11)), and the current trend in the literature implies that a shift from VaR

to CVaR in practical applications is not at all unlikely to take place in the future.
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2 Theoretical and sample VaR and CVaR for continu-

ous distributions

Let X be a continuously distributed random variable that represents a loss and has the

cumulative distribution function F (x) $ P (X < x) (x ∈ R). Then the VaR and CVaR of X

associated with the confidence level 0 < p < 1 are given by the following formulas:

V aRp(X) = F−1(p),

CV aRp(X) = E(X|X > F−1(p)).

Let {Xi}ni=1 denote an independent and identically distributed (IID) sample from the contin-

uous probability distribution having cumulative distribution function F (x) and probability

density function f(x) $ d
dx
F (x) (x ∈ R). Furthermore, let {Yi}ni=1 denote the same sample

sorted in an ascending order, i.e., Yj (j = 1, 2, . . . , n) is the value of the j-th smallest obser-

vation in the sample {Xi}ni=1. I shall assume for the sake of simplicity that the probability

0 < p < 1 is chosen so that np is an integer. In this case, the two most commonly used

estimators for VaR and CVaR are the sample quantile and the tail sample mean given by

V̂ aRp(X) $ Ynp,

ĈV aRp(X) $
1

n(1− p)

n∑
i=np+1

Yi.

This formulation using the right tail of the distribution is only appropriate for loss distributions, whereas

the left tail needs to be used for returns. CV aRp(X) may not exist for some heavy-tailed distributions,

however, it always exists if X has a finite second moment.

This simplification is reasonable as my aim is to derive asymptotic results in large samples, where the effect

of rounding is negligible.
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The distribution of sample quantiles may easily be derived analytically by noting that Yj < x

(1 ≤ j ≤ n, x ∈ R) holds if and only if at least j values in the sample {Yi}ni=1 are less than

x (see e.g. (20)):

FYj
(x) $ P (Yj < x) =

n∑
k=j

(
n

k

)
F k(x)(1− F (x))n−k,

fYj
(x) $

d

dx
FYj

(x) =
n!

(j − 1)!(n− j)!
F j−1(x)f(x)(1− F (x))n−j.

Nevertheless, these formulas quickly become computationally intractable for large values

of n, which is the case of particular interest to us. As a reasonable approximation for

large samples, it has been shown in the literature that both the sample VaR and CVaR have

normal asymptotic distributions (see (13) and (16)). More precisely, the following asymptotic

relationships hold as n→∞:

√
n(V̂ aRp(X)− V aRp(X))

D→ N

(
0,

p(1− p)
f 2(V aRp(X))

)
, (1)

√
n(ĈV aRp(X)− CV aRp(X))

D→ N
(

0,
V ar(X |X > V aRp(X)) + p(CV aRp(X)− V aRp(X))2

1− p

)
.

These results imply that the sample quantile V̂ aRp(X) and the tail sample mean ĈV aRp(X)

are consistent estimators of the VaR and CVaR.

Additionally, sample VaRs of different confidence levels p and q (0 < p < q < 1) have a

bivariate normal asymptotic joint distribution (see (13)) with limiting correlation coefficient

lim
n→∞

Corr(V̂ aRp(X), V̂ aRq(X)) =

√
p(1− q)
q(1− p)

,

Here
D→ denotes convergence in distribution and N(µ, σ2) denotes the normal distribution with mean µ and

variance σ2 (later on, the symbol N(µ,Σ) will be used to denote the multivariate normal distribution with

mean vector µ and covariance matrix Σ). The asymptotic variance of the tail sample mean is guaranteed

to exist if X has a finite third moment.
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and the sample VaR and CVaR for the same confidence level 0 < p < 1 also follow a bivariate

normal asymptotic joint distribution (see (16)) with limiting covariance

lim
n→∞

nCov(V̂ aRp(X), ĈV aRp(X)) = p
CV aRp(X)− V aRp(X)

f(V aRp(X))
.

Besides the tail sample mean, other nonparametric estimators for the CVaR have been

proposed in the literature. Based on the observation that kernel smoothing increases the

precision of VaR estimates, a kernel smoothed version of the tail sample mean was proposed

analogously by Scaillet in (22). Nevertheless, Chen argues in (6) that this estimator does not

increase the precision of CVaR estimates, and recommends the use of the simple tail sample

mean instead. Another, more intricate kernel estimator obtained by inverting the weighted

double kernel local linear estimate of the conditional distribution function was proposed

by Cai and Wang in (5), who showed their estimator to be consistent and asymptotically

normally distributed, similarly to the tail sample mean. Lan et al. presented a two-stage

simulation approach based on simulated financial scenarios in (15) to compute scenario-based

confidence intervals for the CVaR. The estimation of the CVaR based on Efron’s bootstrap

method ((10)) was explored in (14).

Most authors agree that the tail sample mean is a reliable estimator of the CVaR in suf-

ficiently large samples, and it has the advantage of having a closed-form formula for its

variance. In the next section, I shall present a large-sample statistical test of the location of

the CVaR based on the tail sample mean.
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3 An asymptotic test for the location of the CVaR

In this section, I present a large-sample statistical test to decide upon the hypothesis

H0 : CV aRp(X) = c (c ∈ R)

given a confidence level 0 < p < 1, a significance level 0 < α < 1 and an ordered sample

{Yi}ni=1 of an IID sample {Xi}ni=1, where the sample size n is sufficiently large, from a

continuous probability distribution having a finite third moment.

This problem is conceptually similar to testing the null hypothesis

H0 : V aRp(X) = c (c ∈ R)

of the location of the VaR. In the latter case, the null hypothesis is equivalent to

H0 : P (X < c) = p,

which can be tested using the proportions test statistic

U $
#{Yi : 1 ≤ i ≤ n, Yi < c} − np√

np(1− p)

from elementary statistics textbooks. The asymptotic distribution of the U statistic is stan-

dard normal under the null hypothesis due to the De Moivre-Laplace theorem.

Before introducing an appropriate test statistic for the CVaR, I include a lemma on the delta

method (see (18) for a presentation and a proof), which is a powerful tool to compute the

limiting distribution of a function of an asymptotically multivariate normal random vector,

in order to facilitate the proof of the standard normal asymptotic distribution of the new

test statistic under the null hypothesis:

The alternative hypothesis may be both one-sided or two-sided.
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Lemma. (Delta method)

If θ is an r-dimensional random vector which satisfies for some b ∈ Rr and V ∈ Rr×r that

√
n(θ − b)

D→ N(0,V) as n→∞

and the function g : Rr → R is continuously differentiable at b then

√
n(g(θ)− g(b))

D→ N(0,∇g(b)TV∇g(b)) as n→∞. (2)

Now I introduce the desired test statistic and its asymptotic distribution under the null

hypothesis in the following theorem:

Theorem. (Test statistic for the CVaR)

Assuming that the random variable X has a finite third moment and the null hypothesis

H0 : CV aRp(X) = c (c ∈ R) is true, it holds for the test statistic

Z $
√
n(1− p) ĈV aRp(X)− c√∑n

i=np+1(Yi−ĈV aRp(X))2

n(1−p) + p(ĈV aRp(X)− V̂ aRp(X))2

that Z
D→ N(0, 1) as n→∞.
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Proof.

First of all, I assume that the dimension parameter r, the vectors θ and b, the variable

vector x ∈ Rr and the function g(x) in the delta method are defined as follows:

r $ n(1− p) + 2,

θ $ (Ynp, Ynp+1, . . . , Yn, ĈV aRp(X)),

b $ (V aRp− 1
n
(X), V aRp(X), . . . , V aRn−1

n
(X), CV aRp(X)),

x $ (x0, x1, ..., xn(1−p), y),

g(x) $

√
1− p(y − c)√∑n(1−p)

i=1 (xi−y)2
n(1−p) + p(y − x0)2

.

Assuming that the null hypothesis is true, the following two equalities trivially hold:

g(b) = 0,

Z =
√
n(g(θ)− g(b)). (3)

Additionally, the following equalities may easily be verified:

∂g(x)

∂xj

∣∣∣∣
x=b

= 0 (j = 0, 1, . . . , n(1− p)), (4)

∂g(x)

∂y

∣∣∣∣
x=b

=

√
1− p√∑n

i=np+1(V aR i−1
n

(X)−CV aRp(X))2

n(1−p) + p(CV aRp(X)− V aRp− 1
n
(X))2

. (5)
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The assumptions of the delta method hold due to the asymptotic properties of sample

quantiles and tail sample means described in Section 2 and the continuous differentiability

of the function g, and the variance of the tail sample mean exists due to the existence of a

finite third moment, so it follows from Formulas (1), (2), (3), (4) and (5) that

lim
n→∞

V ar(Z) =

= ∇g(b)TV∇g(b) =

=

(
∂g(x)

∂y

∣∣∣∣
x=b

)2

lim
n→∞

V ar(
√
nĈV aRp(X)) =

=
V ar(X|X > V aRp(X)) + p(CV aRp(X)− V aRp(X))2

1
n(1−p)

∑n
i=np+1(V aR i−1

n
(X)− CV aRp(X))2 + p(CV aRp(X)− V aRp− 1

n
(X))2

. (6)

The first term in the denominator of (6) is a Riemann sum that converges to

1

n(1− p)
lim
n→∞

n∑
i=np+1

(
F−1

(
i− 1

n

)
− CV aRp(X)

)2

=

=
1

1− p

∫ 1

p

(F−1(x)− CV aRp(X))2dx =

=
1

1− p

∫ ∞
F−1(p)

(t− CV aRp(X))2f(t)dt =

= V ar(X|X > V aRp(X)), (7)

and it follows from the continuity of F−1(p) = V aRp(X) that

lim
n→∞

V aRp− 1
n
(X) = V aRp(X). (8)

Formulas (6), (7) and (8) imply that

lim
n→∞

V ar(Z) = 1, (9)

so Z
D→ N(0, 1) holds due to Formulas (2) and (9).
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4 Numerical experiments

4.1 The distribution of the test statistic and the relative frequency

of Type I errors

To verify the construction of the test statistic, I generated 1,000 samples of n = 10, 000 ob-

servations per sample, using antithetic variables (see (21)), from the following distributions,

which are commonly used to model claims in property and casualty insurance:

• Gamma with α = 1, β = 1 (or equivalently, Exponential with λ = 1),

• Log-normal with µ = 0, σ = 1,

• Pareto with cdf F (x) = 1−
(

1
1+x

)
4

(x ∈ R),

and performed the proposed two-sided test using CVaR confidence level p = 0.95 and test

significance level α = 5% in every sample. For every distribution, I set the parameter c equal

to the theoretical CVaR of the distribution. I arrived at the following results:

Exponential Log-normal Pareto

Mean 0.03 -0.01 0.03

Variance 0.99 1.01 1

Skewness -0.05 0.04 -0.06

Excess kurtosis 0.02 -0.03 0.09

Sig. of Jarque-Bera test 81% 86% 63%

Relative frequency of rejecting H0 4.91% 5.05% 5.08%

Table 1: Sample properties of Z for three underlying distributions

Table (1) numerically validates the result that the distribution of the test statistic Z is
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approximately standard normal under the null hypothesis in large enough samples. As I ex-
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pected, the relative frequency of rejecting the null hypothesis (Type I error) was very close

to the significance level α = 5% for every distribution.

4.2 Statistical power

As a next simulation experiment, I fixed the assumed value of the CVaR at c = 4, and

performed the previous experiment several times using several different theoretical CVaRs

close to the assumed level for every distribution. I recorded the relative frequencies of rejected

null hypotheses in the experiments in order to estimate the statistical power of the test.

Figure 1: Statistical power for different values of the true CVaR and different underlying

distributions

The results plotted in Figure 1 indicate that the power of the test strongly depends on the
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choice of the underlying distribution: it is highest for the Gamma distribution, which has

the lightest tail, and lowest for the Pareto distribution, which has the heaviest tail out of

the three selected loss distributions. It remains to be examined in a subsequent paper how

the power of this test compares to that of alternative approaches.

Figure 2: The probability of Type I errors for different sample sizes

For the normal and uniform distributions (not plotted), which have lighter tails than the Gamma distribution,

even higher values of power were obtained in the experiments. In the case of uniform distributions, the power

was nearly 100% even for hardly noticeable deviations from the assumed value of the CVaR.
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4.3 Small-sample bias

Finally, I examined the effect of the sample size on the probability of Type I errors by

performing the initial experiment for the Gamma distribution with the theoretical CVaR

being equal to the assumed one. I repeated the experiment using several different sample sizes

and recorded the relative frequencies of Type I errors. The results of this experiment plotted

in Figure 2 indicate that the asymptotic approximation in the case of an underlying Gamma

distribution is sufficiently precise for samples of at least 1000 observations. Therefore, the

test in its presented form seems to be appropriate for markedly large samples, which are

nevertheless abundant in insurance: e.g. the portfolio of all property insurance policies of

an insurer. For smaller samples, the bias in the probability of Type I errors should be taken

into account. I shall present an analysis of the case of smaller samples in a subsequent paper.
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5 Applications

Assuming that insurance companies measure their risks associated with individual insurance

policies in terms of CVaR as proposed in e.g. (1), (7), (8) and (11), an estimated CVaR for

a portfolio of policies may be determined for a specific period (e.g. on a monthly or yearly

basis). As new claim statistics become available in the future, the insurance company may

be interested in the question whether it is reasonable to revise past risk estimates. If these

risk estimates are used to determine capital requirements and the test proposed in this paper

detects a significant change in the underlying risk then the company may revise its capital

requirement and modify its current amount of solvency capital accordingly. If no significant

change is detected then the capital requirement may remain unchanged. As mature prop-

erty, life and health insurance portfolios typically number at least several thousand policies,

the asymptotic standard normal approximation of the distribution of the test statistic is

supposed to work sufficiently well for this problem.

Another possible application is capital requirement calculation using stochastic simulation,

e.g. in life insurance, where deaths, disabilities and lapses may need to be simulated. In this

case, the asymptotic approximation may be made arbitrarily precise by increasing the num-

ber of simulation runs. Besides the comparison of the performance of competing approaches

and the handling of small-sample bias, actuarial applications concerning real-life numerical

data will be presented in a subsequent paper.
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[9] Csóka, P., Herings, P.J.J., Kóczy, L.Á. (2007). Coherent Measures of Risk from a General

Equilibrium Perspective. Journal of Banking and Finance, 31(8), pp. 2517–2534.

[10] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of

Statistics, 7(1): pp. 1–26.

[11] European Insurance & Occupational Pensions Committee (EIOPA, 2006). Choice of

a risk measure for supervisory purposes: possible amendments to the Framework for

Consultation.

[12] Hardy, M.R. (2006). An introduction to risk measures for actuarial applications (study

note). Education and Examination Committee of the Society of Actuaries.

[13] Ikeda, S. and Matsunawa, T. (1972). On the uniform asymptotic joint normality of

sample quantiles. Annals of the Institute of Statistical Mathematics. 24(1), pp. 33–52.

[14] Kim, H.T. (2007). Estimation and allocation of insurance risk capital. PhD thesis, Uni-

versity of Waterloo, Waterloo, Canada.

[15] Lan, H., Nelson, B. L., Staum, J. (2010). A confidence interval procedure for expected

shortfall risk measurement via two-level simulation. Operations Research, 58(5), pp.

1481–1490.

[16] Manistre, B.J., Hancock, G.H. (2005). Variance of the CTE estimator. North American

Actuarial Journal, 9(2): pp. 129-156.

[17] Markowitz, H.M. (1952). Portfolio Selection. The Journal of Finance, 7(1), pp. 77–91.

18



[18] Oehlert, G. W. (1992). A Note on the Delta Method. The American Statistician, 46(1),

pp. 27–29.

[19] Rockafellar, R.T., Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal

of Risk, vol. 2, pp. 21–42.

[20] Ross, Sheldon M. (2006). Introduction to Probability Models (9th edition), pp. 60–61.

Academic Press.

[21] Ross, Sheldon M. (2013). Simulation (5th edition), pp. 153-232. Academic Press.

[22] Scaillet, O. (2005). Nonparametric estimation of conditional expected shortfall. Insur-

ance and Risk Management Journal, vol. 74, pp. 639–660.

[23] Yamai, Y., Yoshiba, T. (2005). Value-at-risk versus expected shortfall: A practical

perspective. Journal of Banking and Finance, vol. 29, pp. 997–1015.

19




