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Young’s axiomatization of the Shapley value -
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Miklós Pintér†

April 2, 2015

Abstract

We give a new proof of Young’s characterization of the Shapley
value. Moreover, as applications of the new proof, we show that
Young’s axiomatization of the Shapley value is valid on various well-
known subclasses of TU games.
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1 Introduction

In this paper we consider one of the well-known characterizations of the
Shapley value (Shapley, 1953), the axiomatization of Young (1985). The
Shapley value is probably the most popular one-point solution (value) of
transferable utility (TU) cooperative games (henceforth games). It is applied
in various fields ranging from medicine to statistics, from engineering to
accounting etc. Therefore a solid characterization could well serve, among
others, applications by helping in understanding its very nature.

Young (1985) axiomatizes the Shapley value with three axioms: Efficiency
(Pareto optimality PO), Equal Treatment Property ETP (Symmetry)1, and
Marginality. Moulin (1988) suggests an alternative proof for Young’s result

∗I thank the AE and the two anonymous referees, Ferenc Forgó, Anna Khmelnitskaya,
Zsófia Széna and William Thomson for their suggestions and remarks. Financial sup-
port by the Hungarian Scientific Research Fund (OTKA) and the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences is also gratefully acknowledged.
†Department of Mathematics, Corvinus University of Budapest, MTA-BCE ”Lendület”

Strategic Interactions Research Group, 1093 Hungary, Budapest, Fővám tér 13-15.,
miklos.pinter@uni-corvinus.hu.

1In brackets the original, stronger axiom used by Young (1985).
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in the three player setting. Both Young (1985) and Moulin (1988) consider
the whole class of TU games, however, Young (1985) also shows that this
characterization is valid on other classes of games, he specifies the class of
superadditive games.

With respect to other subclasses on which Young’s axiomatization works
we have to mention three other papers. Neyman (1989) shows that a solu-
tion defined on the additive group generated by a game is Efficient (PO),
Symmetric (or ETP ) and Strongly Monotonic if and only if it is the Shapley
value. Khmelnitskaya (2003) proves that Young’s axiomatization works on
the class of non-negative constant-sum games with non-zero worth of grand
coalition and on the (entire) class of constant-sum games. Furthermore,
Mlodak (2003) applies the same method as that Khmelnitskaya does to char-
acterize the Shapley value á la Young (1985) on the class of non-negative
bilateral games.

It is well-known that the validity of an axiomatization can vary from
subclass to subclass, e.g. Shapley’s axiomatization of the Shapley value is
valid on the class of monotone games but not valid on the class of strictly
monotone games. Therefore, we must consider each subclass of games one
by one.

By this new proof there are already three different methods for checking
the validity of Young’s axiomatization of the Shapley value (on subclasses
of games): Young’s, Moulin’s and ours. We emphasize these three methods
are not comparable, for each of them there are cases where the one works
and the others do not and vice versa, and naturally there are cases where all
work and where none of them works.

The setup of the paper is as follows. In Section 2 we introduce the
terminology used throughout the paper. The last section discusses our main
result.

2 Preliminaries

Notation: let |N | and 2N denote the cardinality of set N and the set of all
subsets of N respectively. Moreover, A ⊂ B means A ⊆ B, but A 6= B,
and we also use |a| for the absolute value of real number a. Furthermore,∑

i∈∅ xi = 0, that is, the empty sum is zero.
Let N 6= ∅, |N | < ∞ and v : 2N → R be a function such that v(∅) = 0.

Then N and v are called set of players and transferable utility cooperative
game (henceforth game) respectively. The class of games with player set N
is denoted by GN .

Let v ∈ GN , i ∈ N , and for each S ⊆ N : let v′i(S) = v(S ∪ {i}) − v(S).
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Then v′i is called Player i’s marginal contribution function in game v. In
other words, v′i(S) is Player i’s marginal contribution to coalition S in game
v.

In this paper, along with GN , we consider also subclasses of games defined
below. A game v ∈ GN is

• essential, if v(N) >
∑
i∈N

v({i}),

• convex, if for all S, T ⊆ N : v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ),

• strictly convex, if for all S, T ⊆ N , S * T , T * S: v(S) + v(T )
< v(S ∪ T ) + v(S ∩ T ),

• superadditive, if for all S, T ⊆ N , S ∩ T = ∅: v(S) + v(T ) ≤ v(S ∪ T ),

• strictly superadditive, if for all S, T ⊆ N , S, T 6= ∅, S ∩ T = ∅: v(S) +
v(T ) < v(S ∪ T ),

• weakly superadditive, if for all S ⊆ N , i ∈ N \ S: v(S) + v({i}) ≤
v(S ∪ {i}),

• strictly weakly superadditive, if for all S ⊆ N , S 6= ∅, i ∈ N \ S:
v(S) + v({i}) < v(S ∪ {i}),

• monotone, if for all S, T ⊆ N , S ⊆ T : v(S) ≤ v(T ),

• strictly monotone, if for all S, T ⊆ N , S ⊂ T : v(S) < v(T ),

• additive, if for all S, T ⊆ N , S ∩ T = ∅: v(S) + v(T ) = v(S ∪ T ),

• weakly subadditive, if for all S ⊆ N , i ∈ N\S: v(S)+v({i})≥ v(S∪{i}),

• strictly weakly subadditive, if for all S ⊆ N , S 6= ∅, i ∈ N \ S: v(S) +
v({i}) > v(S ∪ {i}),

• subadditive, if for all S, T ⊆ N , S ∩ T = ∅: v(S) + v(T ) ≥ v(S ∪ T ),

• strictly subadditive, if for all S, T ⊆ N , S, T 6= ∅, S ∩ T = ∅: v(S) +
v(T ) > v(S ∪ T ),

• concave, if for all S, T ⊆ N : v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T ),

• strictly concave, if for all S, T ⊆ N , S * T , T * S: v(S) + v(T )
> v(S ∪ T ) + v(S ∩ T ).
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For the definition of essential games see e.g. von Neumann and Mor-
genstern (1953), and for other types of games see e.g. Peleg and Sudhölter
(2003).

The following alternative definitions of (strictly) convex and (strictly)
concave games are well known:

Game v ∈ GN is (strictly) convex, if for each i ∈ N , T, Z ⊆ N \ {i}
such that Z ⊂ T : v′i(Z) ≤ v′i(T ) (v′i(Z) < v′i(T )) ,
and v ∈ GN is (strictly) concave, if for each i ∈ N , T, Z ⊆ N \ {i}
such that Z ⊂ T : v′i(Z) ≥ v′i(T ) (v′i(Z) > v′i(T )) .

(1)

The dual of game v ∈ GN is the game v̄ ∈ GN such that for each S ⊆ N :
v̄(S) = v(N)− v(N \ S).

For any game v ∈ GN , players i, j ∈ N are equivalent, i ∼v j, if for each
S ⊆ N such that i, j /∈ S: v′i(S) = v′j(S). It is easy to verify that for any
game v ∈ GN ∼v is a binary equivalence relation on N .

Furthermore, if S ⊆ N is such that for all i, j ∈ S: i ∼v j, then we say
that S is an equivalence set in game v.

Next we summarize some important properties of dual games. For any
game v ∈ GN :

If i ∼v j, then i ∼v̄ j.
If w′i = v′i, then w̄′i = v̄′i.
The dual of a (strictly) convex game is a (strictly) concave game.
The dual of a (strictly) concave game is a (strictly) convex game.

(2)

A function ψ : A → RN , defined on set A ⊆ GN , is a solution on A.
Throughout the paper we consider single-valued solutions (values).

For any game v ∈ GN the Shapley solution φ is given by

φi(v) =
∑

S⊆N\{i}

v′i(S)
|S|!(|N \ S| − 1)!

|N |!
, i ∈ N,

where φi(v) is also called Player i’s Shapley value (Shapley, 1953).
The solution ψ on class of games A ⊆ GN satisfies

• Pareto optimality (PO), if for each v ∈ A:
∑
i∈N

ψi(v) = v(N),

• Equal Treatment Property (ETP ), if for all v ∈ A, i, j ∈ N : i ∼v j
implies ψi(v) = ψj(v),
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• Marginality (M), if for all v, w ∈ A, i ∈ N : v′i = w′i implies ψi(v) =
ψi(w).

Remark 2.1. Notice that the Shapley solution is (completely) determined by
the players’ marginal contribution functions. Therefore for any solution ψ
meeting axiom M : if ψi(v) = φi(v) and v′i = w′i, then ψi(w) = φi(w).

It is well known and not difficult to check that the Shapley solution meets
axioms PO, ETP and M (see e.g. Young (1985)).

3 The main result

In this section we present our main result. The following example illustrates
the idea behind our result (Theorem 3.4). This example shows that we can
construct chains of games such that in any chain the elements are connected
by axiom M and in the terminal games all players are equivalent.

Example 3.1. Let N = {1, 2, 3} and v = (0, 0, 0, 3, 1, 2, 3) ∈ GN , where
v = (v({1}), v({2}), v({3}), v({1, 2}), v({1, 3}), v({2, 3}), v(N)). Then v is
a superadditive but not convex game, and 1 �v 2, 1 �v 3, 2 �v 3.

Furthermore, let ψ be a PO, ETP and M solution on GN . We show that
ψ2(v) = φ2(v) (the solid path from vertex v to vertex z in Figure 1.).

Take Player 1 as a singleton equivalence set in game v and choose Player
2. Then there is a game w = (0, 0, 0, 3, 2, 2, 4) such that w′2 = v′2 and 1 ∼w 2
(it is clear that w is not the only game in which players 1 and 2 are equivalent
and w′2 = v′2).

Next take equivalence set {1, 2} in game w and choose Player 3. Then
there exists a game z = (0, 0, 0, 2, 2, 2, 3) such that z′3 = w′3 and 1 ∼z 2 ∼z 3.

Then axioms PO and ETP imply that ψ(z) = φ(z). Moreover, by axiom
M (and Remark 2.1), ψ3(w) = φ3(w). Since ψ is PO and ETP , 1 ∼w 2,
therefore ψ(w) = φ(w).

By applying axiom M (and Remark 2.1) again, we get ψ2(v) = φ2(v).

From Example 3.1 it is clear that we can deduce ψi = φi for any i (player),
see the dashed paths in Figure 1. In other words, we can show that ψ(v) =
φ(v). All we need is that ψ must be defined on the paths from v to the
leafs in Figure 1. Notice that Figure 1 is only an illustration. For example
considering the dashed path on the left we see that we copy Player 1 and
make the equivalence set {1, 2} first, then we copy Player 3, but we could
make the equivalence set {1, 3} first instead and copy Player 2 in the last
step. Therefore there are more alternatives not only those in Figure 1.

The next notion is an important ingredient of our main theorem.

5



Figure 1: The overview of Example 3.1

Definition 3.2. Class A ⊆ GN is M-closed, if for each game v ∈ A, equiv-
alence set in v S ⊆ N , and Player k ∈ N \ S there exists w ∈ A such that
S ∪ {k} is an equivalence set in w and w′

k = v′k.

Remark 3.3. Notice that from (2), if A ⊆ GN is an M -closed class of games,
then Ā = {v̄ ∈ GN : v ∈ A} is also M -closed.

The following theorem is our main result.

Theorem 3.4. Let class A ⊆ GN be M-closed. Then solution ψ, defined on
class A, satisfies axioms PO, ETP and M , if and only if ψ = φ, that is, if
and only if, it is the Shapley solution.

Proof. If : It is well-known.
Only if: Take a game z ∈ A and a player i1 ∈ N . Class A is M -

closed, therefore for any player i2 ∈ N \ {i1} there exists z(1) ∈ A such that
z(1)′i2 = z′i2 and {i1, i2} is an equivalence set in z(1). Let i3 ∈ N \ {i1, i2}.

Class A is M -closed therefore there exists z(2) ∈ A such that z(2)′i3 =
z(1)′i3 and {i1, i2, i3} is an equivalence set in z(2). Let i4 ∈ N \ {i1, i2, i3}.

...
Class A isM -closed therefore there exists z(n−1) ∈ A such that z(n−1)′in

= z(n− 2)′in and {i1, i2, . . . , in} (= N) is an equivalence set in z(n− 1).
By axioms PO and ETP , ψ(z(n−1)) = φ(z(n−1)), since all the players

i1, i2, . . . , in are equivalent in z(n− 1).
Since solution ψ meets axiom M , and by construction z(n− 1)′in = z(n−

2)′in , it follows that (see Remark 2.1) ψin(z(n− 2)) = φin(z(n− 2)). Next, all
the players i1, i2, . . . , in−1 are equivalent in game z(n− 2), whence by axioms
ETP and PO we get ψ(z(n− 2)) = φ(z(n− 2)).

Since solution ψ meets axiom M , and by construction z(n − 2)′in−1
=

z(n−3)′in−1
, it follows that (see Remark 2.1) ψin−1(z(n−3)) = φin−1(z(n−3)).
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Player in−1 was arbitrarily chosen, so for any player not i1, i2, . . . , in−2 we have
the player gets its Shapley value by solution ψ in game z(n − 3). Next, all
the players i1, i2, . . . , in−2 are equivalent in game z(n− 3), whence by axioms
ETP and PO we get ψ(z(n− 3)) = φ(z(n− 3)).

...
Since solution ψ meets axiom M , and by construction z(1)′i2 = z′i2 , it

follows that (see Remark 2.1) ψi2(z) = φi2(z). Player i2 was arbitrarily
chosen, so for any player not i1 we have the player gets its Shapley value by
solution ψ in game z. Therefore by the axiom PO we get ψ(z) = φ(z). �

Next, we show that the above theorem implements Young’s result.

Theorem 3.5 (Young (1985)). A solution ψ on GN satisfies axioms PO,
ETP and M , if and only if ψ = φ, that is, if and only if, it is the Shapley
solution.

To prove Theorem 3.5 it is enough to show that GN is M -closed.

Proposition 3.6. The class of games GN is M-closed.

First we prove the following lemma.

Lemma 3.7. Let v ∈ GN . Then S ⊆ N is an equivalence set in game v,
if and only if for all T, Z ⊆ N such that T \ S = Z \ S and |T | = |Z|:
v(T ) = v(Z).

Proof. If: It is left for the reader.
Only if: W.l.o.g. we can assume that T \ Z 6= ∅ (if T \ Z = ∅, then the

proof ends), and let T \ Z = {l1, . . . , lm} and Z \ T = {q1, . . . , qm}. Here,
T \Z ⊆ S and Z \ T ⊆ S, S is an equivalence set in v, hence for each player
i, 1 ≤ i ≤ m:

v((T ∩ Z) ∪ {l1, . . . , li})
= v((T ∩ Z) ∪ {l1, . . . , li−1}) + v′li((T ∩ Z) ∪ {l1, . . . , li−1})

= v((T ∩ Z) ∪ {q1, . . . , qi−1}) + v′qi((T ∩ Z) ∪ {q1, . . . , qi−1})
= v((T ∩ Z) ∪ {q1, . . . , qi})

Therefore v(T ) = v(Z). �

Next, we consider a direct corollary of Lemma 3.7.

Corollary 3.8. Let v ∈ GN , S ⊆ N be an equivalence set in v, and k ∈ N\S.
Then for all T, Z ⊆ N such that T \S = Z \S and |T | = |Z|: v′k(T ) = v′k(Z).
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Proof of Proposition 3.6. Let v ∈ GN be such that S ⊂ N is an equivalence
set in v, and k ∈ N \ S.

Let game w ∈ GN be defined as follows for each coalition T ⊆ N : if
T ∩ (S ∪ {k}) = ∅, then let w(T ) be arbitrarily defined such that w(∅) = 0.
In the other cases (T ∩ (S ∪ {k}) 6= ∅), let

w(T ) = w(T \ (S ∪ {k})) +
m∑
i=1

v′k((T \ (S ∪ {k})) ∪ {l1, . . . , li−1}) , (3)

where m = |(S ∪ {k}) ∩ T |, and li ∈ S ∩ T , i = 1, . . . ,m− 1.
Notice that from Corollary 3.8

∑m
i=1 v

′
k((T \ (S ∪ {k})) ∪ {l1, . . . , li−1})

does not depend on the ordering of the elements of S ∩ T , that is, w is
well-defined.

It is easy to verify that w′k = v′k. Furthermore, notice that by equation
(3) if coalitions T, Z ⊆ N are such that T \ (S ∪ {k}) = Z \ (S ∪ {k}) and
|T | = |Z| then we have w(T ) = w(Z), hence from Lemma 3.7 S ∪ {k} is an
equivalence set in w. �

Proof of Theorem 3.5. See Theorem 3.4 and Proposition 3.6. �

Next, we show that Young’s axiomatization is also valid on some consid-
ered subclasses of games.

Theorem 3.9. A solution ψ defined on the class of either (strictly) convex,
(strictly) weakly superadditive, (strictly) monotone, additive, (strictly) weakly
subadditive or (strictly) concave games satisfies axioms PO, ETP and M , if
and only if ψ = φ, that is, if and only if it is the Shapley solution.

Proof. We show that all considered subclasses of games are M -closed.
Let v ∈ GN be such that S ⊂ N is an equivalence set in v, and k ∈ N \S.

The proof of Proposition 3.6 shows that there exists w ∈ GN such that
S ∪ {k} is an equivalence set in w, w′k = v′k, and for each coalition T such
that T ∩ (S ∪ {k}) = ∅, T 6= ∅: w(T ) is arbitrarily defined. Therefore, the
only thing we have to do is to show that we can give values to these coalitions
such that w be in the considered class of games.

(I) The class of additive games: It is well known that game z ∈ GN is
additive, if and only if for each Player i ∈ N there exists ci ∈ R such that
for each coalition T ⊆ N \ {i}: z′i(T ) = ci.

Let c∗ = v′k(∅), and for for each T ⊆ N let

w(T ) = c∗|T | . (4)
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Then, it is easy to see that w′k = v′k, w is additive and N is an equivalence
set in w.

(II) The classes of (strictly) convex, (strictly) weakly superadditive and
(strictly) monotone games: Let M > maxT⊂N |v′k(T )|, and for the coalitions
on which w is arbitrarily defined (T ∩ (S ∪ {k}) = ∅, T 6= ∅, see Proposition
3.6): let

w(T ) = M |N |(|T |+ 1)|T | . (5)

(A) If v is a (strictly) weakly superadditive game, then v′k(Z) ≥ v′k(∅)
(v′k(Z) > v′k(∅)), k /∈ Z ⊆ N therefore, by equations (3) and (5) we have that
w is also a (strictly) weakly superadditive game.

If v is a (strictly) monotone game, then v′k(Z) ≥ 0 (v′k(Z) > 0), k /∈ Z ⊆
N , therefore, by equations (3) and (5) we have that w is also a (strictly)
monotone game.

For the other properties see Proposition 3.6.
(B) Next we show that, if v is a (strictly) convex game, then so is w. First

notice that game z ∈ GN is strictly convex, if and only if for each i ∈ N ,
T, Z ⊆ N \ {i} such that Z ⊂ T : z′i(Z) < z′i(T ) (see (1)).

Let l ∈ N \ (S ∪ {k}) and T, Z ⊆ N \ {l} be such that Z ⊂ T , then

w′l(T ) = w(T ∪ {l})− w(T )

= w((T ∪ {l}) \ (S ∪ {k})) +
m∑
i=1

w′li(((T ∪ {l}) \ (S ∪ {k})) ∪ {l1, . . . , li−1})

−w(T \ (S ∪ {k}))−
m∑
i=1

w′li((T \ (S ∪ {k})) ∪ {l1, . . . , li−1}) ,

and

w′l(Z) = w(Z ∪ {l})− w(Z)

= w((Z ∪ {l}) \ (S ∪ {k})) +
n∑

i=1

w′li(((Z ∪ {l}) \ (S ∪ {k})) ∪ {l1, . . . , li−1})

−w(Z \ (S ∪ {k}))−
n∑

i=1

w′li((Z \ (S ∪ {k})) ∪ {l1, . . . , li−1}) ,

where m = |(S∪{k})∩T |, n = |(S∪{k})∩Z| and {l1, . . . , ln} = (S∪{k})∩
Z = (S∪{k})∩(Z∪{l}) ⊆ (S∪{k})∩(T∪{l}) = (S∪{k})∩T = {l1, . . . , lm}.
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Notice that, if T \ (S ∪ {k}) = Z \ (S ∪ {k}), then the proof is complete.
Therefore, w.l.o.g. we can assume that Z \(S∪{k}) ⊂ T \(S∪{k}). Game v
is a (strictly) convex game, S∪{k} is an equivalence set in w and n < |N | so
(the inequality is by simple counting the players (notice that M is an upper
estimation for the marginal contributions of players li) and by considering
the signs of the terms)

m∑
i=1

w′li(((T ∪ {l}) \ (S ∪ {k})) ∪ {l1, . . . , li−1})

−
m∑
i=1

w′li((T \ (S ∪ {k})) ∪ {l1, . . . , li−1})

−
n∑

i=1

w′li(((Z ∪ {l}) \ (S ∪ {k})) ∪ {l1, . . . , li−1})

+
n∑

i=1

w′li((Z \ (S ∪ {k})) ∪ {l1, . . . , li−1}) > −2M |N | .

(6)

On the other hand, from (5) (the inequality is by Z\(S∪{k}) ⊂ T \(S∪{k}))

w((T ∪ {l}) \ (S ∪ {k}))− w(T \ (S ∪ {k}))
−w((Z ∪ {l}) \ (S ∪ {k})) + w(Z \ (S ∪ {k}))

= M |N |
(
(|(T ∪ {l}) \ (S ∪ {k})|+ 1)|(T∪{l})\(S∪{k})|

− (|T \ (S ∪ {k})|+ 1)|T\(S∪{k})|

− (|(Z ∪ {l}) \ (S ∪ {k})|+ 1)|(Z∪{l})\(S∪{k})|

+ (|Z \ (S ∪ {k})|+ 1)|Z\(S∪{k})|
)
> 2M |N | .

(7)

Summing up (6) and (7)

w′l(T )− w′l(Z) > 0 . (8)

Since l ∈ N \ (S ∪ {k}) and T, Z ⊆ N \ {l}, Z ⊂ T were arbitrarily chosen,
w is (strictly) convex (for the other properties see Proposition 3.6).

(III) The class of (strictly) concave and (strictly) subadditive games.
(A) Notice that a game v is (strictly) concave game, if and only if v̄ is

(strictly) convex (see (2)). Therefore, see Remark 3.3, from Point (II) the
class of (strictly) concave games is an M -closed class of games.

(B) The class of (strictly) weakly subadditive games: It is worth noticing
that the dual of a (strictly) subadditive or a (strictly) weakly subadditive
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game is not necessarily (strictly) superadditive or (strictly) weakly superad-
ditive respectively, e.g. v = (4, 4, 4, 4, 4, 4, 7) is strictly subadditive, but v̄ is
not weakly superadditive. Moreover, the dual of a (strictly) superadditive
or a (strictly) weakly superadditive game is not necessarily (strictly) subad-
ditive or (strictly) weakly subadditive, e.g. v = (0, 0, 0, 3, 1, 2, 4) is strictly
superadditive, but v̄ is not weakly subadditive.

Let M = −maxT⊂N |v′k(T )|, and for the coalitions on which w is arbi-
trarily defined (T ∩ (S ∪ {k}) = ∅, T 6= ∅, see Proposition 3.6): let

w(T ) = 2M |N ||T | . (9)

A game v is a (strictly) weakly subadditive if and only if v′k(Z) ≤ v′k(∅)
(v′k(Z) < v′k(∅)), k /∈ Z ⊆ N , Z 6= ∅ therefore, by equations (3) and (9) we
have that w is also a (strictly) weakly subadditive game.

For the other properties see Proposition 3.6.

Finally, we can apply Theorem 3.4. �

Notice that not all the classes of games (defined in the Preliminaries) are
M -closed, the classes of essential, (strictly) superadditive, (strictly) subad-
ditive games are not M -closed. The next example shows this fact.

Example 3.10. (1) Let v = (0, 0, 10, 50, 0, 0, 20), where S = {1, 2} is an equiv-
alence set in v. Game v is essential. However, the only game w such that
N is an equivalence set in w, and w′3 = v′3 is w = (10, 10, 10, 10, 10, 10,−20),
but w is not essential.

(2) Let v = (0, 0, 0, 10, 51, 51, 51, 51, 51, 51, 62, 62, 62, 62, 103), where S
= {1, 2, 3} is an equivalence set in v. Game v is strictly superadditive.
However, the only game w such that N is an equivalence set in w, and
w′4 = v′4, is w = (10, 10, 10, 10, 61, 61, 61, 61, 61, 61, 72, 72, 72, 72, 113), but w
is not superadditive. For the subadditive case take −v.

Remark 3.11. If |N | ≤ 3, then the classes of (strictly) superadditive, (strictly)
subadditive games coincide with the classes of (strictly) weakly superadditive,
(strictly) weakly subadditive games respectively, hence they are M -closed.
Furthermore, if |N | = 2, then the class of essential games coincides with the
class of strictly superadditive games, hence it is M -closed.

Although the above mentioned classes of games are not M -closed, so
Theorem 3.4 cannot be applied to them, Young’s axiomatization is valid on
these classes too, see Young (1985) (p. 71) and the reasoning in Csóka and
Pintér (2014).
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Csóka P, Pintér M (2014) On the impossibility of fair risk allocation. Corvinus
Economics Working Papers, CEWP 12/2014

Khmelnitskaya AB (2003) Shapley value for constant-sum games. Interna-
tional Journal of Game Theory 32:223–227

Mlodak A (2003) Some values for constant–sum and bilateral cooperative
games. Applicationes Mathematicae 30:69–87

Moulin H (1988) Axioms of cooperative decision making. Cambridge Univer-
sity Press

von Neumann J, Morgenstern O (1953) Theory of Games and Economic
Behavior. Princeton University Press

Neyman A (1989) Uniqueness of the shapley value. Games and Economic
Behavior 1:116–118

Peleg B, Sudhölter P (2003) Introduction to the theory of cooperative games.
Kluwer

Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW
(eds) Contributions to the Theory of Games II, Annals of Mathematics
Studies, vol 28, Princeton University Press, Princeton, pp 307–317

Young HP (1985) Monotonic solutions of cooperative games. International
Journal of Game Theory 14:65–72

12


	Introduction
	Preliminaries
	The main result



